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Abstract

Informally, an indulgent algorithm is a distributed algorithm that tolerates
unreliable failure detection: the algorithm is indulgent towards its failure detec-
tor. This paper formally characterizes such algorithms and states some of their
interesting features. We show that indulgent algorithms are inherently safe and
uniform. We also state impossibility results for indulgent solutions to divergent
problems like consensus, and failure-sensitive problems like non-blocking atomic
commit and terminating reliable broadcast.

1 Introduction

Indulgent algorithms. The notion of partial failures is a fundamental characteristic
of a distributed system: some of the processes might fail whereas others might keep
executing their algorithm. A usual metric to evaluate the reliability of a system is its
ability to mask partial failures. This ability typically relies on some failure detection
mechanism that provides hints about which processes are correct and which are not.
Distributed algorithms usually differ on the assumptions made about the reliability
of that mechanism. Some algorithms assume failure detectors that accurately detect
crashes. For example, the state machine replication algorithm of [15], the election
algorithm of [12], and the non-blocking atomic commit algorithm of [16] assume that
any correct process p; accurately detects when any other process p; has failed. Other
algorithms do make weaker assumptions about failure detectors. For instance, none
of the consensus algorithms of [2, 5, 9, 13], or the replication algorithms of [10, 11, 4],
excludes the possibility of false failure detections. In a sense, those algorithms are
indulgent (towards their failure detector).

Safety and uniformity. As we will show in the paper, some problems do not have
indulgent solutions. Even when indulgent solutions exist, they are often complicated.

*“So when they continued asking him, he lifted up himself, and said unto them, He that is without
sin among you, let him first cast a stone at her” - John 8:7.
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The difficulty of devising an indulgent algorithm intuitively stems from the fact that
processes should take some non-trivial “precautions” to cope with unreliable failure
detection. Interestingly, and precisely because of those “precautions”, indulgent algo-
rithms turn out to have some “good” inherent characteristics: they are safe and uni-
form. The notions of safety and uniformity will be precised later in this paper, but to
get an intuitive idea of their meaning, consider for instance the rotating-coordinator-
based consensus ! algorithm of [2], which we denote here by ©S-cons. The algorithm
assumes a OS failure detector which ensures strong completeness (eventually every
process that crashes is permanently suspected by every correct process), and even-
tual weak accuracy (eventually some correct process is not suspected by any correct
process). Those properties do not prevent a failure detector from making an infinite
number of false failure detections. Because the ¢S-cons algorithm needs to cope with
those mistakes, it has the following interesting features:

e The &S-cons algorithm preserves safety even if neither of strong completeness
nor eventual weak accuracy is satisfied. In particular, even if crashed processes
are never suspected and correct processes are permanently suspected by all, (a)
no two processes ever disagree on a decision and (b) no process ever decides on
a value that was not proposed by some process. We say that the algorithm is
safe.

e Although initially designed to solve consensus, ¢S-cons turns out to solve uni-
form consensus: a stronger variant of consensus where safety is preserved among
all processes, whether they are correct or not.?> We say that the algorithm is
uniform.

This paper shows that safety and uniformity are inherent features of indulgent algo-
rithms.

On the semantics of unreliability. Characterizing indulgent algorithms go through
addressing a technical difficulty: defining what it means for a failure detector to be
unreliable. One might be tempted for instance to consider as unreliable any failure
detector that make mistakes, e.g., any failure detector that suspects a process to have
crashed, even if that process is correct. An unreliability degree could then measure
the number of mistakes that a failure detector makes [2]. This definition would how-
ever be counter-intuitive: a failure detector that never suspects any process (even a
faulty one) would be reliable. Furthermore, the definition would only apply to fail-
ure detectors that output lists of suspects. The definition given in this paper more
generally applies to any failure detector that outputs values that encode information
about failures. Furthermore, it conveys the intuition that an unreliable failure detec-
tor is one that does never distinguish whether a process has crashed or is simply slow.

n consensus [2], every process proposes an initial value 0 or 1, and must decide on a final value
such that the three following conditions are satisfied: agreement, i.e., no two correct processes decide
differently; wvalidity, i.e., any value decided by a correct process is proposed by some process; and
termination, every correct process eventually decides.

2In uniform consensus [7], beside the termination condition of consensus, the two following condi-
tions need to be satisfied: uniform agreement, i.e., no two processes (correct or not) decide differently;
and uniform validity, i.e., any value decided by a process (correct or not) is proposed by some pro-
cess. [7] gives an algorithm that solves consensus but not solve uniform consensus. The algorithm
assumes however a reliable failure detector.



We actually capture three variants of this intuition through three classes of failure
detectors: the class of weakly unreliable failure detectors, denoted by AU, the class of
strongly unreliable failure detectors, denoted by syU, and the class of completely unre-
liable failure detectors, denoted by 0OU. We consequently define three corresponding
classes of indulgent algorithms: weakly indulgent that assume AU, strongly indulgent
that assume \yU, and completely indulgent that assume OU.

Contributions. This paper defines the notions of unreliable failure detectors and indul-
gent algorithms, points out examples of indulgent solutions to well-known agreement
problems, and states the following results:

e Safety. Every strongly indulgent algorithm A is safe: informally, if A satisfies a
safety property P with a failure detector D, then A satisfies P even if D turns
out to be completely unreliable.

o Uniformity. Every weakly indulgent algorithm A is uniform: informally, A
cannot violate a property P without violating the correct-restriction [1] version
of P. This result generalizes the result of [7] (any algorithm that solves consensus
with &S also solves uniform consensus).

o Impossibility 1. No weakly indulgent algorithm can satisfy any globally-failure-
sensitive property (e.g., non-blocking atomic commit and terminating reliable
broadcast) if one process can crash.

o Impossibility 2. No strongly indulgent algorithm can satisfy any divergent prop-
erty (e.g., consensus if half of the processes can crash).?

We give our definitions and results in the asynchronous computation model [6]
augmented with the failure detector abstraction [2, 3]. Basically, we assume a dis-
tributed system composed of a finite set 2 of n > 1 processes executing deterministic
algorithms that use failure detectors. Processes can fail by crashing but every pair
of processes is connected by a reliable communication channel. In this extended ab-
stract, we do not detail the various definitions of the model [3]. Furthermore, we only
informally introduce the new definitions that we had to add to the original model in
order to state our results. For space limitation we also do not give any correctness
proof. The complete model, definitions and proofs, are given in optional appendixes
A, B, C, D and E.

Roadmap. Section 2 defines the notions of unreliable failure detectors and indulgent
algorithms. Section 3 discusses the safety of indulgent algorithms whereas Section 4
discusses their uniformity and gives an impossibility result for globally-failure-sensitive
properties. Section 5 gives a lower bound fault-tolerance result for divergent proper-
ties. Section 6 concludes the paper with some practical considerations.

3This result generalizes the lower bound of [2]: no algorithm can solve consensus using an even-
tually perfect failure detector if half of the processes can crash.



2 Unreliability and Indulgence

Intuitively, a failure detector is unreliable if it can never distinguish a faulty process
from a correct one, and an indulgent algorithm is one that copes with unreliable failure
detection. This section captures these intuitions more formally.

2.1 Unreliable failure detector classes

A failure pattern is a function F from @ to 2%, where F(t) denotes the set of pro-
cesses that have crashed through time ¢. Let F' and F’ be any two failure patterns.
We say that F' covers F if ¥t € ®, F'(t) C F(t). An environment is a set of failure
patterns and we assume here that every environment contains the failure-free pattern
Fy (where no process crashes) and at least one failure pattern where some process
crashes. A failure detector history H with range G is a function H from Q x ¢ to
G. For every process p; € , for every time ¢t € &, H(p;,t) denotes the value of the
failure detector module of process p; at time t. A failure detector D is a function that
maps each failure pattern F' to a set D(F) of failure detector histories with range Gp.

Definition (complete unreliability). A failure detector D is completely unreliable
if, for every pair of failure patterns F and F’', D(F) = D(F").

We denote by OU the class of completely unreliable failure detectors. Consider for
example failure detector D which always suspects all processes, at any time, any
process, and in any failure pattern. Obviously, D is of class OU. Similarly, failure
detector D’ which always outputs the empty set, at any time, any process, and in any
failure pattern, is also of class OU (D’ does never suspect any process).

Definition (strong unreliability). A failure detector D is strongly unreliable if,
for every pair of failure patterns F and F', for every history H € D(F), for every
time t; € ®, there is a failure detector history H' € D(F') such that [Vt < t;, Vp; € Q,
H/(pi’ t) = H(piv t)]

Informally, a failure detector is strongly unreliable if it never distinguishes a crashed
process from one that is correct, and vice et versa. In other words, if a strongly unre-
liable failure detector D provides some information, at a time ¢ and a process p, in a
failure pattern F', D could have given the same information, at ¢ and p, in any other
failure pattern F’. We denote by syl the class of strongly unreliable failure detectors.
Consider 2 = {p1,p2,p3} and let D be any failure detector of class yU. Let Fj be
any failure pattern where p; crashes while py and p3 are correct. At any time and any
process, the information given by D in Fj could have been given by D in any failure
pattern F» where only ps crashes (or any failure pattern F3 where p; and ps crash, etc.)

Definition (weak unreliability). A failure detector D is weakly unreliable if, for
every failure pattern F, for every history H € D(F), for every failure pattern F' that
covers F, for every time t; € ®, there is a failure detector history H' € D(F') such
that /Vt <t Vp; € Q, Hl(pi,t) = H(pi,t)/.



Informally, a failure detector is weakly unreliable (we simply say unreliable) if it never
distinguishes a crashed process from one that is correct. In other words, if a weakly
unreliable failure detector D provides some information at a time ¢ and a process
Di, in a failure pattern F' where a process p; is faulty, D could have given the same
information, at ¢ and p;, in a failure pattern F’ similar to F', except that p; is correct
in F’. Any suspicion by D of process p; may actually turn out to be false, i.e., p;
might be correct. We denote by AU the class (the set) of weakly unreliable failure
detectors. We call elements of AU simply unreliable failure detectors. Consider for
instance the set of processes = {p1,p2, p3} and let D be any failure detector of class
AU. Let F; be any failure pattern where both p; and po crash whereas ps is correct.
At any time and any process, the information output by D in Fj could have been
given by D in some failure pattern Fy where only p; crashes (or some failure pattern
F; where all processes are correct).

Let A be any algorithm using a failure detector D. We say that A is completely
indulgent if D € OU, strongly indulgent if D € \yU, and weakly indulgent if D € AU.
Any completely (resp. strongly) unreliable failure detector is strongly (resp. weakly)
unreliable, i.e., OU C yU C AU (see Figure 1).* Consequently, every completely
(resp. strongly) indulgent algorithm is strongly (resp. weakly) indulgent. When
there is no need to distinguish between them, we call such algorithms simply indulgent
algorithms.

2.2 Relations between failure detector classes

The aim of this section is to point out examples of indulgent algorithms. Instead
however of explicitly exhibiting such algorithms, we state some intersection relations
between our failure detector classes and the classes defined by Chandra and Toueg
in [2]° (these relations are depicted in Figure 1). By doing so, we indirectly show that
some algorithms that have been described in the literature are indulgent.

Four main failure detector classes were defined in [2]: each class characterized
by a completeness and an accuracy property: (1) the class P (perfect) characterized
by strong completeness (eventually every process that crashes is permanently sus-
pected by every correct process) and strong accuracy (no process is suspected before
it crashes); (2) OP (eventually perfect) characterized by strong completeness and even-
tual strong accuracy (eventually no faulty process is ever suspected); (3) S (strong)
characterized by strong completeness and weak accuracy (some correct process is never
suspected); and (4) ©S (eventually strong) characterized by strong completeness and
eventual weak accuracy (eventually some correct process is never suspected).

Proposition 2.1 (SN AU # D) A failure detector can be unreliable and strong.

4There are obvious examples of weakly (resp. strongly) unreliable failure detectors that are not
strongly (resp. completely) unreliable. Appendix B gives examples of such failure detectors.

51t is important to notice that those classes were all defined according to desirable properties:
completeness measures the extent to which a failure detector suspects the crash of faulty processes
while accuracy restricts the mistakes made about failure suspicions. In contrast, our failure detector
classes are defined according to undesirable properties that capture the intuition of unreliable failure
detection.
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Figure 1: Intersection relations between failure detector classes

Proposition 2.2 (OPNyU # (0) A failure detector can be strongly unreliable and
eventually perfect.

Proposition 2.3 (SN syU = 0) No failure detector can be strong and strongly unre-
liable.

Proposition 2.4 (PN AU = D) No failure detector can be perfect and unreliable.

Proposition 2.5 (CSNOU =0) No failure detector can be eventually strong and
completely unreliable.

A simple corollary of Proposition 2.1 (resp. Proposition 2.2) is that any algo-
rithm that uses a strong (resp. eventually perfect) failure detector is indulgent (resp.
strongly indulgent). For example, Chandra and Toueg described in [2] an algorithm
S-cons that solves consensus using any strong failure detector, and an algorithm
OS-cons that solves consensus using any eventually strong failure detector in envi-
ronments with a majority of correct processes: <S-cons is strongly indulgent and
S-cons is weakly indulgent. It was also shown in [2] that atomic broadcast and con-
sensus are equivalent. This also means that atomic broadcast has a weakly indulgent
solution in any environment, and a strongly indulgent solution in any environment
with a majority of correct processes.

3 Safety

A property (or a problem) P is a set of runs (we use the term property as a synonymous
to the term problem). We say that P holds in a run R if R is in P; P holds in a
partial run R if P holds in any extension of R; and an algorithm A satisfies P if P
holds in every run of A. In this paper, we restrict ourselves to properties that do not
depend on failure detector values. These are properties P such that if two runs R
and R’ differ only in their failure detector history, then P cannot hold in R and not
in R'.6

SWe hence exclude properties of the form: “the failure detector is reliable”. Such properties

would pose a circularity problem since we use characteristics of failure detectors to derive results
about algorithms that satisfy certain properties.




Definition (failure detector extension). We informally say that a failure detec-
tor D' extends a failure detector D if, at any time ¢ and in any failure pattern F,
the output given by D’ could have be given by D. (A formal definition is given in
Appendix C.)

Informally, a safety property is one which states that “bad” things must not happen.
More precisely, if the property does not hold in a run R, then R must have a partial
run R’ where P does not hold [14].7

Proposition 3.1 (safety) Let A be any algorithm and P any safety property. If A
satisfies P using a failure detector D, then A satisfies P using any extension of D.

Proposition 3.2 (from strong to complete unreliability) FEvery strongly unre-
liable failure detector D has a completely unreliable extension D’.

A simple corollary of propositions 3.1 and 3.2 is that if an algorithm A solves a
problem P with a strongly unreliable failure detector D, then A always preserves the
safety aspects of P even if A is actually used with an extension of D that is completely
unreliable. To illustrate this, consider a failure detector D that may (falsely) suspect
any subset of processes until some arbitrary time ¢, and behaves perfectly after ¢: D
is both strongly unreliable and eventually perfect. An algorithm A that uses D to
solve a given problem P will never violate the safety aspects of P even if, instead of
D, A is actually used with a failure detector D’ that keeps indefinitely behaving in
an unreliable manner (D’ is a completely unreliable extension of D).

4 Failure Sensitivity

Some of the properties that have been defined in the literature are failure-insensitive:
roughly speaking, the behavior of crashed processes does not impact the validity of
these properties. Consensus is a typical example of a failure-insensitive property.
Many properties are however failure-sensitive, and their sensitivity to failures may
come in different flavors. Some properties are failure-sensitive in the sense that they
also restrict the behavior of faulty processes:® in wniform consensus for example,
every faulty process should also respect agreement and validity. We say that such
properties are locally-failure-sensitive (Ifs). Other properties are failure-sensitive in
a different sense. Consider a property, which we call here atomic consensus, defined
with the termination and agreement condition of consensus, plus the following valid-
ity condition: 0 can only be decided if some process crashes. Atomic consensus does
not restrict the behavior of crashed processes, but the very fact that some process

"NB. In contrast to a common belief, the agreement condition of consensus (as defined in the
literature, e.g., [6]) does not define a safety property (in the sense of [14]). Agreement states that
no two correct processes should decide differently: even if two processes has decided differently by
some time ¢, there is still the hope that one of them will crash and validate agreement - this is
rather a liveness property [14]. In order to conform to the intuition that agreement is indeed a safety
property, one could rather phrase it as follows: no two processes can decide differently unless at least
one of them has crashed. For agreement not to hold in a run R, there must be a partial run R’ of R
where two processes has decided differently and none of them has crashed: no extension of R’ would
satisfy agreement. The same observation applies to the validity condition of consensus.

8This notion corresponds to the notion of failure-sensitivity in [1].



p; has crashed might globally impact the behavior of correct processes - even if p;
has initially crashed without executing any step. We say that atomic consensus is
globally-failure-sensitive (gfs). Atomic commitment [16] is Ifs and gfs; terminating
reliable broadcast [8] is gfs but not Ifs; and uniform consensus is gfs but not Ifs.

Definition (correct restriction). Given a property P, we informally define the
correct-restriction of P as the property, denoted by C'(P), that is similar to P, except
that C'(P) does not restrict the behavior of correct processes. (A formal definition is
given in Appendix D.)

For instance, the correct-restriction of uniform consensus is consensus.”

Proposition 4.1 (uniformity) Let A be any indulgent algorithm and P any safety
property. If A satisfies C(P) then A satisfies P.

Definition (global failure sensitivity). We informally say that a property P is
globally-failure-sensitive if the initial crash of some process restricts the behavior of
correct processes. (A formal definition is given in Appendix D.)

Proposition 4.2 (impossibility) No indulgent algorithm can satisy any globally-
failure-sensitive property.

A simple corollary of this result is that, unlike consensus and atomic broadcast, prob-
lems like non-blocking atomic commit and terminating reliable broadcast do not have
(even weakly) indulgent solutions.

5 Divergence

Many properties in distributed systems involve agreement among a set of processes.
These properties have a divergent flavour in the sense that the processes could po-
tentially reach different (and contradictory) values, but in each run, these processes
should agree on the same decision.

Definition (divergence). We informally say that a property is divergent if it can
separately hold in two partial runs but not in the composition of these runs. (A
formal definition is given in Appendix E.)

Consider Q = {p1, p2, p3}, failure pattern F; where p; and ps initially crash whereas
ps is correct, and failure pattern F where ps initially crashes whereas p; and ps are
correct. Consensus is typically divergent in any environment that contains F} and
F;. Consider configuration C' where p; and py initially propose 0 and ps proposes 1'°.
Starting from C, one could exhibit two partial runs of consensus, one where processes
decide 1 and one where correct processes decode 0, such that consensus is violated
in the composition of those runs. In contrast, reliable broadcast is not a divergent

property [8].

9NB. If a property P is locally-failure-insensitive, then C'(P) = P.
10C is a bivalent configuration in the sense of [6].



Proposition 5.1 (impossibility) No strongly indulgent algorithm can satisfy any
divergent property.

Proposition 5.1 generalizes the lower bound fault-tolerance result of [2], which states
that no algorithm can solve consensus using an eventually perfect failure detector if
half of the processes can crash (consensus is divergent in any environment where half
of the processes can crash).

6 Concluding Remarks

Distributed systems are rarely perfectly synchronous nor completely asynchronous.
Process relative speeds and communication delays usually have upper timing bounds
that can be determined, but there are sometimes unstability periods where those
bounds are overrun. Failure detectors are typically implemented using time-outs and
an application developer is left with a crucial dilemna: either to set up the time-outs
with short values that ensure fast reaction to failures but increase the probability
of false suspicions during unstability periods, or to choose large values that reduce
the probability of false suspicions but introduce a slow fail-over. With a strongly
indulgent algorithm, one can safely choose the first option or even consider dynamic
time-outs. Despite false suspicions (during the unstability period of the system),
safety is uniformly guaranteed among all processes. Liveness is eventually ensured
when the system becomes stable again.!'’ A non-indulgent algorithm might violate
safety at the least false suspicion, and hence loses any chance to solve the problem
even if the system becomes stable immediately after that suspicion.

Many practical distributed problems are globally-failure-sensitive, and as we stated
in Proposition 4.2, such problems do not have indulgent solutions. Fortunately, most
of those problems do often have a significant globally-failure-insensitive part. To
illustrate this, consider non-blocking atomic commit. The agreement, validity and
termination conditions of the problem define a sub-problem that is globally-failure-
insensitive the problematic condition is non-triviality (i.e., abort cannot be decided if
all processes vote yes and they are all correct) [7]. One could hence devise a strongly
indulgent algorithm A; that solves the globally-failure-insensitive part of the problem,
and uses this algorithm as a sub-algorithm withing the global algorithm A that solves
the full problem (possibly assuming a reliable failure detector). If the failure detector
makes mistakes (i.e., during an unstability period of the system), A might violate
non-triviality and abort transactions that should have been otherwise committed.
The developer could choose a large time-out value for the failure detector used by A
(to reduce the probability of falsely aborting transactions) and a short time-out for
the failure detector used by A;: no matter what happens to the system, A would
never violate agreement or validity. For example, the non-blocking atomic commit
algorithm of [7] uses a strongly indulgent sub-algorithm to solve the agreement part
of the problem. In contrast, the algorithm of [16] does not rely on any indulgent
sub-algorithm and might violate agreement if the failure detector makes mistakes.

1L «While there’s life there’s hope” - Cicero.
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Appendix A: system model

We consider an asynchronous computation model augmented with the failure detector
abstraction [2, 3]. The model is patterned after the FLP model [6]. Basically, we as-
sume a distributed system composed of a finite set of n processes Q = {p1,pa,...,pn}
(|2] = n > 1). There is no bound on communication delays or process relative speeds.
A discrete global clock is assumed, and ®, the range of the clock’s ticks, is the set
of natural numbers. The global clock is used for presentation simplicity and is not
accessible to the processes.

Failure patterns

We assume that processes can only fail by crashing, i.e., they cannot behave mali-
ciously. A process p; is said to crash at time t if p; does not perform any action after
time ¢ (the notion of action is recalled below). A correct process is a process that does
not crash. Otherwise the process is said to be faulty. A failure pattern is a function
F from @ to 2%, where F(t) denotes the set of processes that have crashed through
time ¢. Failures are permanent, i.e., no process recovers after a crash. In other words,
Vi < ¢/, F(t) C F(t'). The set of correct processes in a failure pattern F' is noted
correct(F'). Let Fy and Fy be any two failure patterns. We say that Fy covers Fy if
for every time t € ®, F5(t) C Fi(t). For instance, the failure-free pattern Fy (where
no process crashes) covers all failure patterns.

An environment E is a set of failure patterns. Environments describe the crashes
that can occur in a system. We consider in this paper environments that contain the
failure-free pattern Fyy and at least one failure pattern where some process crashes.

Failure detectors

Roughly speaking, a failure detector D is a distributed oracle which gives hints about
failure patterns. Fach process p; has a local failure detector module of D, denoted
by D;. Associated with each failure detector D is a range Gp of values output by
the failure detector.'? A failure detector history H with range G is a function H
from Q x ® to G. For every process p; € {2, for every time t € ®, H(p;,t) denotes
the value of the failure detector module of process p; at time ¢, i.e., H(p;,t) denotes
the value output by D; at time t. A failure detector D is a function that maps each
failure pattern F' to a set of failure detector histories with range Gp. D(F') denotes
the set of possible failure detector histories permitted for the failure pattern F, i.e.,
each history represents a possible behavior of D for the failure pattern F.

Algorithms

An algorithm is a collection A of n deterministic automata A; (one per process p;).
Computation proceeds in steps of the algorithm. In each step of an algorithm A, a
process p; atomically performs the following three actions: (1) p; receives a message
from some process ¢, or a “null” message \; (2) p; queries and receives a value d

12Unlike in [3], we denote a range by G, instead of R, in order to avoid confusions between runs
and failure detector ranges.
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from its failure detector module (d is said to be seen by p;); (3) p; changes its state
and sends a message (possibly null) to some process. This third action is performed
according to (a) the automaton A;, (b) the state of p; at the beginning of the step,
(c) the message received in action 1, and (d) the value d seen by p; in action 2. The
message received by a process is chosen non-deterministically among the messages
in the message buffer destined to p; , and the null message A. A configuration is a
pair (I, M) where I is a function mapping each process p; to its local state, and M
is a set of messages currently in the message buffer. A configuration (I, M) is an
initial configuration if M = () (no message is initially in the buffer): in this case, the
states to which I maps the processes are called initial states. A step of an algorithm
A is a tuple e = (p;,m,d, A), uniquely defined by the algorithm A, the identity of
the process p; that takes the step, the message m received by p; , and the failure
detector value d seen by p; during the step. A step e = (p;, m,d, A) is applicable to
a configuration (I, M) if and only if m € M U; {A\}. The unique configuration that
results from applying e to configuration C' = (I, M) is noted e(C).

Schedules and runs

A schedule of an algorithm A is a (possibly infinite) sequence S = S[1];S[2];...
S[k];... of steps of A. A schedule S is applicable to a configuration C if (1) S is
the empty schedule, or (2) S[1] is applicable to C, S[2] is applicable to S[1](C) (the
configuration obtained from applying S[1] to C'), etc. Given any schedule S, we denote
by P(S) the set of the processes that take at least one step in S.

A partial run (resp. a run) is a tuple R =< F, H,C,S,T > where, F is a failure
pattern, H is a failure detector history, C' is an initial configuration, 7" is a finite (resp.
infinite) sequence of increasing time values, and S is a finite (resp. infinite) schedule
(of some algorithm).

Let Ry =< Fy, Hy,C1, 51,11 > be any partial run, and Ry =< Fy, Ho, Cy, S5, To >
any run. We say that Ry is an extension of Ry if Cy = Cy, Vt < Ty[|T1|], Vp; € Q:
Fy(t) C Fi(t) and Hi(pi,t) = Ha(pi,t), and Vi, 1 < i < |Th|: S1[i] = Sz2[i] and
T, [i] = T»[i]. We also say that Ry is a partial run of Ro.

Let A be any algorithm and D any failure detector. A partial run of A using
D, is a tuple R =< F,H,C,S,T > where H is a failure detector history such that
H € D(F), C is an initial configuration of A, T is a finite sequence of increasing time
values, and S is a finite schedule of A such that, (1) [S| = |T|, (2) S is applicable
to C, and (3) for all k¥ < |S| where S[k] = (p;, m,d, A), we have p; ¢ F(T[k]) and
d= H(p;, T[k]).

A partial run of A using D, is a tuple R =< F, H,C, S, T > where H is a failure
detector history and H € D(F), C is an initial configuration of A, S is an infinite
schedule of A, T is an infinite sequence of increasing time values, and in addition to
the conditions above of a partial run ((1), (2) and (3)), the two following conditions
are satisfied: (4) every correct process takes an infinite number of steps, and (5) every
message sent to a correct process ¢ is eventually received by q.
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Properties

A property (or a problem) is a set of runs. For instance, consensus is the set of runs
for which agreement, termination and validity are satisfied [2] . Each of those sub-
properties itself defines a set of runs. We say that a property P holds in a run R if R
is in P. We say that P holds in a partial run R if P holds in any extension of R. An
algorithm A satisfies a property P if P holds in every run of A.

Failure-detector-insensitivity. We say that a property P is failure-detector-insensitive
if whenever P holds for a run R =< F, H,C,S,T >, P holds for any run of the form
R =< F,H',C,S,T >. Informally, P does not depend on the values output by the
failure detectors. In the paper, we consider only such properties.

Appendix B: relations between failure detector classes

Proposition 2.1 (SN AU # 0) A failure detector can be unreliable and strong.

PRrROOF: To show this result, we exhibit a “typical” unreliable failure detector D,, that
satisfies the strong completeness and weak accuracy properties of §. Failure detector
D,, has range 2 and is defined as follows:

e For every failure pattern F', D, (F) = {H | 3pr € correct(F),¥p; € QVt €
D, pi ¢ H(pl',t) and Jtg € ®,Vp; € Q .Vt > tQ,H(pl',t) = F(t)}

Roughly speaking, in every failure pattern F', D,, might suspect all but some
correct process gr until some time ¢y, and after time ¢y, D,, suspects exactly the
crashed processes, i.e., after time ¢y, D,, behaves like a perfect failure detector. It is
obvious that D,, is a strong failure detector: it satisfies both strong completeness and
weak accuracy.

We show below that D,, is indeed unreliable. Consider any time t; € ®, any
failure pattern F, and any history H € D,,(F). By the definition of D,,, there is
a process qr € correct(F) that is never suspected in H, and a time ¢y after which
all processes in faulty(F') are permanently suspected by all processes and no correct
process is ever suspected. Consider any failure pattern F’ that covers F (i.e., such
that V¢ € ® F'(t) C F(t)). Consider the history H’ such that [Vt < t;, Vp; € Q,
H'(p;,t) = H(ps, t) and Vt > to, H(p;,t) = F'(t)]. As process g € correct(F), and
correct(F) C correct(F'), then g € correct(F"). Process g is thus never suspected
in H and never suspected in H’. Furthermore, there is a time ¢; after which, in H’,
all processes in faulty(F’) are permanently suspected and no correct process is ever
suspected. Consequently, H' € D,,(F’), which means that D,, is unreliable. O

Proposition 2.2 (OP N<yU # 0) A failure detector can be strongly unreliable and
eventually perfect.

PRrROOF: To show this result, we exhibit a “typical” strongly unreliable failure detector
D, which satisfies the strong completeness and eventual strong accuracy properties
of OP. Failure detector D, has range 2 and is defined as follows:
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e For every failure pattern F, Ds(F) = {H | Jtg € @, Vp; € Q, Vt > to, H(p;, t) =
F(t)}.

Roughly speaking, in every failure pattern F', Dy might suspect all processes until
some time to, and after time to, D, suspects exactly the crashed processes (after
time tg, Ds behaves like a perfect failure detector). It is obvious to see that D,
satisfies strong completeness and eventual strong accuracy. We show below that
D; is indeed strongly unreliable. Consider any time ¢; € ®, any failure pattern
F, and any history H € D,(F). By the definition of Dy, there is a time ¢y after
which all processes in faulty(F') are permanently suspected and no correct process is
ever suspected. Consider any failure pattern F’. Consider the history H’ such that
[Vt < ¢, Vp; € Q, H (p;,t) = H(p;, t) and Vt > to, H(p;,t) = F'(t)]. After time ¢;,
all processes in faulty(F’) are permanently suspected and no correct process is ever
suspected. Consequently, H' € D4(F"), which means that D; is strongly unreliable.
O

Proposition 2.3 (SN syU = 0) No failure detector can be strong and strongly unre-
liable.

ProoF: (By contradiction) Let D be any failure detector that is both strong and
strongly unreliable. Let F' be any failure pattern where process p; initially crashes
and all other processes are correct. Let H be any history in D(F). By the properties
of a strong failure detector, process p; is never suspected and there is a time ¢ after
which all processes, except p; are suspected by p;. Consider the failure pattern F’
where all processes except process p; # p; initially crash and time ¢’ =t+1. As D is
strongly unreliable, then there is a history H' in D(F’) such that, for every process
pi, H(pi,t') = H'(p;,t'). As a consequence, there is a time ¢’ at which the only process
that is correct in F” is suspected by some correct process: a contradiction with the
weak accuracy property of a strong failure detector. O

Proposition 2.4 (PN AU = () No failure detector can be perfect and unreliable.

PROOF: (By contradiction) Let D be a failure detector that is both perfect and
unreliable. Let F' be any failure pattern where some process p; initially crashes
and all other processes are correct. Let H be any history in D(F'). By the strong
completeness property of a perfect failure detector, there is a time ¢ after which all
correct processes permanently suspect p;. Let p; be any of those processes. Consider
the failure-free pattern Fy. Obviously, Fy covers F' (i.e., Vi € ® Fy(t) =0 C F(t)).
By the definition of a unreliable failure detector, there is a history Hy € Dy such that
[Vt < t;, Vp; € Q, H (p;,t) = H(p;,t)]. Hence at time ¢ and history H', p; suspects
p; in Fy which is a failure-free: in contradiction with the strong accuracy property of
a perfect failure detector. O

Proposition 2.5 (0SNOU = () No failure detector can be eventually strong and
completely unreliable.

PROOF (SKETCH): An asynchronous system model augmented with a completely un-
reliable failure detector is equivalent to a pure asynchronous system model. Assume
that some completely unreliable failure detector is eventually strong. Such failure de-
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tector would solve consensus [2] and hence would contradict the FLP [6] impossibility
result about solving consensus in an asynchronous system if one process can crash. O

Appendix C: safety

Safety property. We say that a property P is a safety property if any R where P does
not hold has a partial run where P does not hold [14].

Failure detector extension. Let Dy and Dy be any two failure detectors. We say that
Dy extends D, if for every failure pattern F', for every history Hy € Do(F), for every
time t € ®, there is a failure detector history Hy € D;(F'), such that [Vt; < t, Vp; € Q,
Hy(p,t) = Hyi(p,t)]. Informally, we say that Dy extends D; if, at any time ¢ and in
any failure pattern F', the output given by D5 could have be given by D;.

Proposition 3.1 (safety) Let A be any algorithm and P any safety property. If A
satisfies P using a failure detector D, then A satisfies P using any extension of D.

PROOF: (By contradiction) Let A be any algorithm using a failure detector D. Let D’
be any extension of D with which A does not satisfy P. Since P is a safety property,
then there is a partial run R =< F, H',C,S,T > of A using D’ such that P does not
hold in R. Since D’ extends D, then there is a failure detector history H € D(F), such
that [V¢; < T[|T], Yp € Q, H (p;,t) = H(pi,t)]. Partial run R =< F, H,C,S,T > is
also a partial run of A because (1) |S| = |T|, (2) S is applicable to C, and (3) for all
k < |S| where S[k] = (p;,m,d, A), we have p; ¢ F(T[k]) and d = H(p;, T|[k]). Let R"
be any run of A that extends R. Since R” is an extension of R, then R” is also an
extension of R’. R” is a run of A and P does not hold in R”: a contradiction. O

Proposition 3.2 (from strong to complete unreliability) Fvery strongly unre-
liable failure detector D has a completely unreliable extension D’.

PROOF: (By contradiction) Let D be any strongly unreliable failure detector. We
construct a failure detector D’ that (1) extends D, and (2) is completely unreliable.
Failure detector D’ has the same range as D, i.e., Gp = Gp, and for every failure
pattern F, D'(F) = {H|3F',H € D(F")}.

We first show that D’ is completely unreliable. Let F} and Fy be any two failure
patterns. Let H; be any history in D'(Fy). By the definition of D', there is a failure
pattern F such that H; is in D(F). By the definition of D', this implies that H; is
also in D' (Fy).

We show now that D’ is an extension of D. Let F’ be any failure pattern and H’
any history in D/(F’). Consider any time ¢ € ®. By the definition of D', there is a
failure pattern F such that H' is in D(F). Since D is strongly unreliable, then there
is a history H in D(F") such that [Vt < t;, Vp; € Q, H'(pi,t) = H(p;, t)]; which means
that D’ extends D O
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Appendix D: failure-sensitivity

Correct-equivalence. Consider F' any failure pattern and S any infinite sequence of
steps. We denote by correct(F,S) the restriction of S to correct processes in F. Let
Ry =< F1,H,,C1,51,T1 > and Ry =< F3, Hy, (5, S5, T > be any two runs. We say
that Ry and Ro are correct-equivalent if correct(Fy,S1) = correct(Fy, Sa).

Local-failure-sensitivity. We say that a property P is locally-failure-sensitive if for any
two runs R; and Ry that are correct-equivalent, P holds in R; iff P holds in Rs.
Consensus is an example of a locally-failure-insensitive property: it does not restrict
the behavior of correct processes. Consider two runs Ry and Ry of any consensus
algorithm. Assume that the subsect IT of correct processes in both runs is the same.
If consensus holds in a run R, and the correct processes of II behave similarly in R
and R/, then no matter how faulty processes behave in R’, consensus will indeed hold
in R'. We say that a property is locally-failure-insensitive if it is not locally-failure-
sensitive. Uniform consensus is for example a locally-failure-insensitive property.

Correct-restriction. Every property P has a locally-failure-insensitive part, which we
call the correct-restriction of P. We define the correct-restriction of a property P,
as the property denoted by C(P) such that C(P) does not hold in some run R iff P
does not hold in every run that is correct-equivalent to R. Note that if a property P
is locally-failure-insensitive, then C'(P) = P. Consensus is for example the correct-
restriction of consensus.

Proposition 4.1 (uniformity) Let A be any indulgent algorithm and P any safety
property. If A satisfies C(P) then A satisfies P.

We first introduce three lemmatas that are needed to prove the proposition.

Lemma 4.1 Consider any property P and any run R with the failure-free pattern. If
P holds in R then P holds in every run that is correct-equivalent to R.

ProoOF: Let Ry =< Fy, Hy, Cl, Sl, Ty > and Ry =< Fy, Ho, CQ, SQ, T5 > any two runs
with the failure-free pattern Fy. If R; and Rs are correct equivalent, then we have

S1 = Ss. Since we assume failure-detector-insensitive properties, then for any prop-
erty P, P holds in R; iff P holds in Rs. O

Lemma 4.2 Consider P any property and R any run with the failure-free pattern.
C(P) does not hold in R iff P does not hold in R.

ProOF: If C(P) does not hold in some run R then obviously P does not hold in R.
Consider a run R with the failure-free pattern and assume that P does not hold in R.
By Lemma 4.1 above, P does not hold in any run R’ that is correct-equivalent to R.
Hence, by the definition of the notion of correct-restriction, P does not hold in R. O

Lemma 4.3 Let R =< F,H,C,S,T > be any partial run of an algorithm A using an
unreliable failure detector D. For every failure pattern F' that covers F, there is a
failure detector history H' € D(F') such that R' =< F', H',C,S,T > is also a partial
run of A.

16



PRrROOF: Let R =< F,H,C,S,T > be any partial run of A. Consider the time T'[|T].
By the definition of a weakly unreliable failure detector, for every failure pattern F’
that covers F' (i.e., such that Vt € @, F'(t) C F(t)), there is a failure detector history
H' € D(F') such that [Vt < T[|T|], Vp € Q, H'(p;,t) = H(p;,t)]. We have |S| = |T],
S is applicable to C, and for all i < |S| where S[i] = (p,m,d, A), p & F'(T[i]) (as
correct(F) C correct(F')) and d = H'(p,T[i]) (as ¥t < T[|T|], Vp € Q, H'(p;,t) =
H(p;,t)). Hence the partial run R =< F', H',C, S, T > is also a partial run of A. O

PROOF OF PROPOSITION 4.1: (By contradiction) Let A be any algorithm using a
weakly unreliable failure detector D. Assume by contradiction that A satisfies C(P)
but does not satisfy P. Hence, there is a partial run of A using D, R =< F, H,C,S,T >,
such that P does not hold in R. Let Fy be the failure-free pattern. By Lemma 4.3
above, Ry =< Fy, H,C,S,T > is also a partial run of A. Let R, =< Fy, H',C’, 5", T" >
be any run of A that extends Ry. R} is also an extension of R; which means that P
does not hold in Rj,. Since Fj is a failure-free failure pattern and P does not hold in
Ry, then by Lemma 4.2 above, C(P) does not hold in Rj: a contradiction. O

Global-failure-sensitivity. We say that a property P is globally-failure-sensitive if
there is a configuration C, a failure pattern F', and a failure pattern F’ that cov-
ers F', such that any run R =< F,H,C,S,T > where P holds has a partial run
R =< F',H',C,S, T > where P does not hold.

Informally, in a globally-correct-sensitive property, the very fact that some process
has crashed might globally restrict the behavior of correct processes. Consider any
environment F that has the failure-free pattern Fy and at least one failure-pattern
F where all processes are correct, except a process p; that initially crashes. Non-
blocking atomic commit [16] is for instance globally-failure-sensitive in E. Consider
the configuration C' where all processes vote yes. Any run R, with configuration C
and failure pattern Fy, where all correct processes decide abort satisfies atomic com-
mit conditions. However, consider any run R’, with C' and Fjy, where correct processes
decide abort: atomic commit conditions do not hold in R’ - the non-triviality condi-
tion of atomic commit is violated [7].

Proposition 4.2 (impossibility) No indulgent algorithm can satisfy any globally-
failure-sensitive property.

PROOF: (By contradiction) Assume by contradiction that there is an algorithm A
using an unreliable failure detector D that satisfies a global-failure-sensitive property
P. Since P is globally-correct-sensitive then there is a configuration C, a failure
pattern F, and a failure pattern F’ that covers F', such that any run R with F' and
C where P holds has a partial run R’ =< F’, H,C, S, T > where P does not hold.
Consider time T[|T|]. Since D is unreliable and F’ covers F, then there is a failure
detector history H' € D(F’) such that: [Vt < TI[|T|], Vp; € Q, H(p;,t) = H'(p;, t)].
Partial run R’ =< F/, H"”,C,S,T > is also a partial run of A and any extension of
R is an extension of R’. Since P does not hold in R’ then it does not hold in R”: a
contradiction. a
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Appendix E: divergence

Run composition. Let Fy and F» be any two failure patterns. We say that Fj
and F, are disjoint if correct(Fy) N correct(Fy) = (. Consider two partial runs
Ri =< F\,H{,C{,51,T1 > and Ry =< F5, Hy,C5,55, Ty >. We say that Ro follows

Now, let F} and F> be any two disjoint failure patterns, and consider any two
runs of the form Ry =< Fi,Hy,C1,51,T1 > and Ry =< Fy, Hy,C5, So,T5 > such
that R; follows R;. We define the composition of R; and R, as the partial run
R1.Ry =< Fy,H,C, S, T > such that: C = Cy, Vi < T1[|T1|], Vp; € Q: H(pi,t) =
Hl(pi,t), Vt,TlnTl” <t< TQHTQ”, Vpi e QO H(pi,t) = Hg(pi,t), Vi, 1 <1< |T1|2
S[i] = Si1i] and Ty [i] = T'[é], and Vi, |T1| < i < |Th|+|Tz|: S[i] = Se[i] and T[i] = Tx]i].

Divergence. We say that a property P is divergent if there are two disjoint failure pat-
terns F} and F5, and there is a configuration C, such that any run Ry =< Fy, Hy,C, 51,11 >,
where P holds, has a partial run R} =< F}, Hj, C, S, T] > such, for any run Ry =< Fy, Hy,C, S3, Ty >
that follows R;, where P holds, has a partial run R/ such that P does not hold in
R} .R,. We say that C' is a divergent configuration of P for F} and F5.

Consider © = {p1, p2, ps} and the two following failure patterns: F; where p; and
po initially crash whereas ps is correct, and F; where ps initially crashes whereas p;
and po are correct. Consensus is typically divergent in any environment that contains
Fy and F,. In fact, consensus has two divergent configurations for F; and Fy: C;
where p; and po initially propose 0 and p3 proposes 1; and Co where p; and po ini-
tially propose 1 and p3 proposes 0. Starting from each of those configurations, one
could exhibit two partial runs of consensus (one where processes decide 1 and one
where correct processes decode 0) such that consensus is violated in the composition
of those runs.

Proposition 5.1 (impossibility) No strongly indulgent algorithm can satisfy any
divergent property.

ProoOF: (By contradiction) Assume that there is an algorithm A using a strongly
unreliable failure detector D that satisfies a divergent property in an environment
with disjoint failure patterns F; and F5. Since P is a divergent property, then P has
a divergent initial configuration C for F} and F5.

Consider failure pattern Fy, any failure detector history H; € D(F}1), and the
initial configuration C'. Let Ry be any run of A of the form Ry =< Fy, H1,C, 51,11 >.
Since A satisfies P, then P holds in R;. Since P is divergent, then there is a partial run
R} =< Fy{,H{,C,S1,T] > of Ry, such that for any run Ry =< Fy, Hy,C, S2,T» >€ P
such that T»[1] > TY[|T]]|], there is a restriction R) of Ry such that P does not hold
in R|.R}.

Consider time T{[|T7|] and failure pattern F,. By the definition of a strongly
unreliable failure detector, there is a failure detector history Hy € D(F3) such that
[Vt < T{[|T]]], Vp; € Q, Ha(pi,t) = Hi(p;,t)]. Consider failure pattern Fy, failure
detector history Hs, and configuration C. Let Re =< Fy, Hy,C,S2,T5 > be any run
of A starting at time T7[|T}]] + 1. Since A satisfies P then P does not hold in Rs.
Since P is divergent, then there is a partial Ry, =< Fy, Hj, C, S5, T4 > of Ry such that
P does not hold in R}.Rj.
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Consider time T4[|T4|] and failure-free pattern Fy. By the definition of a strongly
unreliable failure detector, there is a failure detector history Hy € D(Fp) such that
IVt < T3[T), Vpi € 0, Ho(pi,t) = Hj(ps, t)]-

Consider now the following partial run: Ry =< Fy, Hy, C, So = 5.5, Ty = T4. T4 >.
We have: |Syg| = |To|, So is applicable to C, and for all i < |S| where So[i] =
(pi,m,d, A), p; & Fo(To[i]) (Fo is the failure free pattern), and d = H(p;, To[i]) be-
cause: Vp; € Q, (1) Vt € ® such that: t < T{[|TY|], Ho(p:,t) = Hj(pi,t), and (2)
Vt € @ such that T{[|T7|] <t < Ty[|T4]], Ho(pi,t) = Hy(pi,t). Ro is thus a partial run
of A and any extension R of Ry is also an extension of R|.Rj. Let R be any extension
of Ry. Since P is a divergent property, it does not hold in R: a contradiction. O
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