
Distributed Asynchronous Collections:
Abstractions for Publish/Subscribe Interaction∗

Patrick Eugster † Rachid Guerraoui† Joe Sventek‡
†Swiss Federal Institute of Technology, Lausanne

‡Agilent Laboratories, Edinburgh

Abstract

Publish/subscribe is considered one of the most impor-
tant interaction styles for the explosive market of enterprise
application integration. Producers publish information on
a software bus and consumers subscribe to the information
they want to receive from that bus. The decoupling nature of
the interaction between the publishers and the subscribers
is not only important for enterprise computing products but
also for many emerging e-commerce and telecommunica-
tion applications.
It is often claimed that object-orientation is inherently
incompatible with the publish/subscribe interaction style.
This flawed argument is due to the persistent confusion be-
tween object-orientation as a modeling discipline and the
specific request/reply mechanism promoted by CORBA-like
middleware systems. This paper describes object-oriented
abstractions for publish/subscribe interaction in the form
of Distributed Asynchronous Collections (DACs). DACs
are general enough to capture the commonalities of vari-
ous publish/subscribe styles, and flexible enough to allow
the exploitation of the differences between these styles.

Keywords
Abstraction, concurrency, distribution, asynchrony,

publish/subscribe, reflection, collection

1 Introduction

This paper presents Distributed Asynchronous Collec-
tions (DACs): object-oriented abstractions for expressing
the many diverging publish/subscribe interaction styles.

Motivation. With the emergence of wide area networks,
the importance of flexible, well-structured and also efficient

∗This work is partially supported by Agilent Laboratories and Lombard
Odier & Co.

communication mechanisms is increasing. Basing a com-
plex interaction between multiple hosts on individual point-
to-point communication models is a burden for the appli-
cation developer and leads to rather static and limited ap-
plications. In mobile communications furthermore, it may
not be simple for an application to spot the exact location of
a component at any moment. Also may the number of en-
tities interested in certain information vary throughout the
entire lifetime of the system. All these constraints visual-
ize the demand for more flexible communication models,
reflecting the dynamic nature of the applications. The pub-
lish/subscribe interaction style has proven its ability to fill
this gap [OPSS93]. Indeed the decoupling of parties in time
as well as space is a key to scalability.1

Publish/Subscribe Dialects. There are different estab-
lished variants of the publish/subscribe interaction model,
each one presenting its respective advantages but also short-
comings. The classical topic-based or subject-based style
involves a static classification of the messages by intro-
ducing group-like notions [Pow96], and is incorporated by
most industrial strength solutions, e.g., [Cor99, TIB99].
However, research efforts have been targeted more to-
wards content-based publish/subscribe [CRW98, SA97,
BCM+99].2 This more flexible variant removes entirely
the “arbitrary” division of the message space, and lets con-
sumers delineate their individual interests by expressing
properties of messages they wish to receive. When dissemi-
nating messages over wide area networks, this variant in re-
turn requires a fine tuned filtering strategy, in order to avoid
a flood of needless notifications and subscriptions. While
classical publish/subscribe is based on a push model, some
approaches to “messaging” furthermore integrate pull-style
mechanisms [OMG98]. As noticed in [SV97] in fact, some
applications need only one interaction style while others re-
quire both. Instead of bringing all these variants to a com-

1Time decoupling: the interacting parties do not need to be up at the
same time. Space decoupling: the interacting parties do not need to know
each other.

2The taxonomy introduced in [RW97] refers to this as property-based.

1

mon denominator, much emphasis is usually put on their
differences.

Object-Oriented Publish/Subscribe: Does it make
Sense? It is often claimed that “objects” cannot really
support the requirements of a publish/subscribe middle-
ware [Koe99]. The flawed rational under that argument is
twofold. First, and this is the argument commonly used
by the promoters of so-called “messaging systems”, it is
claimed that objects do communicate through synchronous
method invocations which force the interacting parties to be
both coupled in time and in space. Second, effective filter-
ing in content-based publish/subscribe requires expressing
properties of objects and that usually violates object encap-
sulation.

This paper makes a case against these arguments and fur-
thermore attempts to unify the diverging variants of pub-
lish/subscribe. The first argument against a fusion of object-
orientation and the publish/subscribe communication style
indeed might apply to the current commercial practices in
distributed object-oriented computing, which are mainly
based on synchronous remote method invocations (DCOM,
Java RMI, CORBA).3 As we will convey in this paper, de-
coupling publishers and subscribers can be made very prac-
tical in an object-oriented setting. The second argument
might apply to current implementations of content-based
systems. When applying the same principles to an object-
oriented environment, one might end up in the situation
where the encapsulation property is violated by exposing
the state of objects through a query language used for the
subscription. Again, and as we will show in the paper,
content-based filtering can indeed be implemented in a way
that completely preserves encapsulation, namely by using
reflection [KdRB91].

Publish/Subscribe Abstractions. To capture the various
types of publish/subscribe, we propose an abstraction called
Distributed Asynchronous Collection (DAC). A DAC dif-
fers from a conventional collection by its distributed nature
and the way objects interact with it: besides representing a
collection of objects (set, bag, queue, etc.), a DAC can be
viewed as a publish/subscribe engine of its own. In fact,
when querying a DAC for objects fulfilling certain condi-
tions, the client expresses its interest in such objects. In
other words, the invocation of an operation on a DAC ex-
presses the notion of future notifications and can be viewed
as a subscription. According to the terminology adopted in
the observer design pattern [GHJV95], the DAC is the sub-
ject and its client is the observer. This abstraction allows
to unify different publish/subscribe styles in a single frame-
work, which can be seen as an extension of a conventional

3Much effort is currently made to integrate messaging into existing
middleware solutions, as shown by [HBS98, OMG98].

collection framework. We will show in this paper how this
approach allowed us to mix different publish/subscribe vari-
ants together with push and pull models, one-for-all and
one-for-each semantics, along with different qualities of
service. Besides showing how collections provide a natu-
ral way of expressing topic-based publish/subscribe, we il-
lustrate how reflection allows to realize content-based pub-
lish/subscribe in a manner that does not violate encapsula-
tion.

In addition we introduce in this paper the notion of type-
based publish/subscribe, which is a new variant of the pub-
lish/subscribe communication model: instead of explicitly
associating an event to a topic, the type is used in a nat-
ural way to categorize the event. In other terms, the no-
tion of event kind is matched with that of event type. Our
framework furthermore allows to combine type-based pub-
lish/subscribe with content-based subscription facilities, the
same way it provides for an original marriage of topic-based
with content-based publish/subscribe.

In short, within all publish/subscribe models none is
clearly better than the others for all application purposes.
In this paper we present simple abstractions for pub-
lish/subscribe interaction, called Distributed Asynchronous
Collections. On the one hand, DACs allow to capture the
different styles without blurring their respective advantages.
On the other hand, DACs unite these styles inside a single
framework.

Roadmap. The remainder of this paper is organized as
follows. Section 2 recalls the various interaction styles
in distributed computing and motivates the need for a
subscription-like way of communicating. Section 3 gives
an overview of the DAC abstraction. Section 4 gives the
basic DAC API, whereas Section 5 presents some prelimi-
nary class implementations. In Section 6 we discuss some
performance issues of our implementation, and Section 7
contrasts our efforts with related work. Finally Section 8
summarizes our work and concludes the paper.

Appendix A contains excerpts of the API and two
classes illustrating our approach to content-based pub-
lish/subscribe. Appendix B shows step by step how to put
DACs to work through a small example application, fol-
lowed by the complete code for that example.

2 Publish/Subscribe: Commonalities and
Variations

Before describing our DAC abstraction, we first
overview the basics of publish/subscribe interaction styles.
In a first step, the publish/subscribe communication style
is compared with more traditional interaction schemes. In
a second phase, the different existing approaches to pub-
lish/subscribe are elucidated more precisely. We point out

the fact that each of the different variants has proven certain
advantages over others, which motivates the usefulness of
unifying them inside a framework.

2.1 Publish/Subscribe in Perspective

The publish/subscribe paradigm is a loose communica-
tion scheme for modeling the interaction between applica-
tions in distributed systems. Unlike the classic request/reply
model or shared memory communication, publish/subscribe
provides time decoupling (i.e., the interacting parties do not
need to be up at the same time) of message producers and
consumers. Figure 1 shows a comparison of the most com-
mon communication schemes: message passing (singleton
send) may also offer an asynchronous interaction scheme,
but lacks space decoupling (i.e., the interacting parties need
to know each other), just like the request/reply communica-
tion style. Indeed with message passing, the information
producer must have a means of locating the information
consumer to which the information will be sent, whereas
with the request/reply interaction model the message con-
sumer requires a reference to the information producer in
order to issue a request to it. Publish/subscribe combines
time as well as space decoupling, since the information
providers and consumers remain anonymous to each other.
This outlines the general applicability of this communica-
tion model and makes it appealing.4 Like communication
based on shared memory, publish/subscribe moreover al-
lows to address several destinations (arity of n). Basically
the publish/subscribe terminology defines two players:

• Subscriber: A party which is interested in certain in-
formation (events, messages) subscribes to that infor-
mation, signalling that it wishes to receive all pieces of
information (event notifications, messages) manifest-
ing the specified characteristics. Leasing is a special
form of subscribing, in which the duration of the sub-
scription is limited by a time-out.

• Publisher: A party that produces information (events,
messages) becomes a publisher.

In most applications however, participating entities in-
corporate both publishers and subscribers, which allows a
very flexible interaction. This is one of the main differences
to pure push-based systems [HJ99], where participants are
either producers or consumers and producers are supposed
to be higher in number than consumers.

4It is possible to build closer coupled communication models on top of
loose ones and vice versa, as proposed by [WWWK95] for instance. The
resulting performance in the second case however is generally poor.

Time Space Arity
Request/Reply Coupled Coupled 1
Singleton Send Decoupled Coupled 1
Shared Memory Coupled Decoupled n
Publish/Subscribe Decoupled Decoupled n

Figure 1. Different Communication Models

2.2 Subscription Styles

When subscribing, a party expresses its interests in re-
ceiving certain messages. Rarely a subscriber is eager to
receive all produced messages. Dividing the message space
provides a means of confining the subscribers requirements.
There are different approaches to the classification of mes-
sages. This can be done in advance by introducing a global
classification (topic-based), or more dynamically by taking
into consideration the nature of the messages that will be
created during the lifetime of the system (content-based).

2.2.1 Topic-Based Publish/Subscribe

The classic publish/subscribe interaction model is based on
the notion of topics or subjects, which basically resemble
groups [Pow96]. Subscribing to a topic T can be viewed as
becoming member of a group T . The topic abstraction how-
ever differs from the group abstraction by its more dynamic
nature. While groups are usually disjoint sets of members
(e.g., group communication for replication [Bir93]), topics
typically overlap, i.e., a participant subscribes to more than
just one topic. In order to classify the topics more easily,
it is of great use to furthermore introduce a hierarchy of
topics [TIB99]. In this model, a topic can be a derived
or more specialized topic of another one, and is therefore
called subtopic. The use of wildcards offers a more conve-
nient way of expressing cross-topic requests.

Figure 2 shows an example of topic-based subscribing.
Subscriber S1has announced its interest in both topics x and
y. It is notified of events corresponding to both topics (mes-
sages mx and my). Subscriber S2 has only subscribed to
topic x, and therefore only receives messages related to that
topic (message mx).

2.2.2 Content-Based Publish/Subscribe

A next step to loosen the restrictions of communication
models has been taken by the introduction of content-based
publish/subscribe [CRW98, SA97]. This new feature gives
even more flexibility to the application, by removing en-
tirely the limitations of concretely defined distinct topics.
Subscribers can announce their individual interests by spec-
ifying the properties of the event notifications they are in-
terested in. The notifications or messages are therefore not

Topic x

Topic y

mx my

mx

my

mx

Subscribe

Deliver

Publish
P S2S1

Publisher

Subscriber

P

Si

Figure 2. Topic-Based Subscribing

classified according to arbitrarily fixed criteria, but by their
runtime properties. Each subscriber hence only receives the
notifications that match entirely its individual criteria. The
variations of these criteria have also to be taken into ac-
count. Thanks to the expressiveness of the content-based
approach the dissemination of unrequired messages can be
avoided.

Figure 3 shows the difference to topic-based subscribing.
As a matter of fact, one can picture the message space as a
single topic. Every subscriber announces its individual cri-
teria on the messages. In the situation outlined in the figure,
message m1 contains ◦ and therefore matches the criteria of
S2 (which is interested in messages containing • or ◦) and
S1 (only interested in ◦). Message m1 is thus delivered to
both. The content of message m2 though only matches the
requirements of subscriber S2 and is hence not delivered to
subscriber S1.

m1
m1,
m2

m2

m1

v

S1
Subscribe

Deliver

Publish

Publisher

Subscriber

P

Si

S2P

Figure 3. Content-Based Subscribing

2.3 Push and Pull Mixing

In the publish/subscribe model, the action of subscribing
describes a sort of registration procedure for an interested
party. However, interests in events can also be expressed
through a more direct interaction. In general, we distinguish
two ways for an interested party to interact:

• In a passive way, it can subscribe to a choice of no-
tifications. By callbacks it will be notified of the oc-
currence of events. This kind of interaction constitutes

the push model, since the information is pushed from
the publisher to the subscriber. This is the classic pub-
lish/subscribe approach, since it enforces applications
which are only loosely coupled in time.

• More actively, a consumer can poll for new notifica-
tions. This task may waste resources and is not well
adapted to asynchronous systems. In fact, polling
based solutions tend to be very expensive and scale
poorly: polling too often can be inefficient and polling
too slowly may result in delayed responses to critical
situations [Ske98]. This type of interaction is called
pull model.5

Although in general the push model seems more appro-
priate, certain applications may not be interested in receiv-
ing information as soon as possible, but only at precise mo-
ments. In those situations, a pull-style interaction might be
of interest.

2.4 Delivery Semantics and Reliability Issues

In distributed systems, and in particular when consider-
ing communication models and protocols, precise specifica-
tion of the semantics of a delivery is a crucial issue. Deliv-
ery guarantees are often limited by the behavior of deeper
communication layers, down to the properties of the net-
work itself, limiting the choice of feasible semantics. On
the other hand, different applications also may demand for
different semantics. While sometimes a high throughput is
preeminent and a low reliability degree is tolerable, some
applications prioritize reliability to throughput. For this
reason most common systems provide different qualities of
service, in order to meet the demands of a variety of appli-
cation purposes [AEM99, TIB99].6 The delivery semantics
for notifications offered by existing systems can be roughly
divided into two groups.

• Unreliable delivery. Protocols for unreliable delivery
give few guarantees. These semantics are often used
for applications where the throughput is of primary im-
portance, but the loss of certain messages is not fatal
for the application.

• Reliable delivery. Reliable delivery means that a mes-
sage will be delivered to every subscriber despite cer-
tain failures. Usually the failure or the absence of the
subscriber itself is not considered, i.e., if the subscriber
has failed, the message might not be delivered to it
and the reliability property is not considered violated.

5Blocking is a more synchronous pull-type interaction, where a partic-
ipant which tries to pull information is blocked until a new notification is
available. Just like the request-reply model however, this variant lacks time
decoupling.

6[TIB99] adopts the notion of delivery service.

When using persistent storage to buffer such messages
until the subscriber is back on line, a stronger guar-
antee is given. This is often referred to as certified
delivery [TIB99].

3 Distributed Asynchronous Collections:
Overview

This section gives an overview of our approach to
publish/subscribe, by first introducing Distributed Asyn-
chronous Collections as key abstractions. We show
the relationship between those abstractions and the pub-
lish/subscribe communication model. In a second step,
we picture more in detail how these abstractions allow to
build several different publish/subscribe variants inside a
unified framework. This section however should be un-
derstood as a general introduction to our abstractions for
publish/subscribe. The following sections will give a more
concrete view of DACs.

3.1 DACs as Object Containers

Just like any collection, a DAC is an abstraction of a
container object that represents a group of objects. It can
be seen as a means to store, retrieve and manipulate ob-
jects that form a natural group, like a mail folder or a file
directory. Unlike a conventional collection, a DAC is a dis-
tributed collection whose operations might be invoked from
various nodes of a network. DACs differ fundamentally
from the distributed collections described in [Obj99] for in-
stance, by being essentially distributed7 and asynchronous.
DACs are not centralized on a single host, in order to guar-
antee their availability despite certain failures.

A collection framework is a unified architecture for rep-
resenting and accessing collections, allowing them to be
manipulated independently of their representation. For ex-
ample, both Smalltalk [IBM95] and Java [JCF99] contain
rich collection frameworks that reduce the programming ef-
fort by providing useful data structures and algorithms to-
gether with high-performance implementations. Collection
frameworks can for instance also be found for C++ (e.g.,
Silicon Graphics’ STL [SL95]) as additional libraries. Fig-
ure 4 shows the inheritance graph of the Java collection
framework.

3.2 The Asynchronous Flavor of DACs

Our notion of Distributed Asynchronous Collection rep-
resents more than just a distributed collection. In fact, a
synchronous invocation of a distant object can involve a

7The distributed collections presented in [Obj99] are centralized col-
lections that can be remotely accessed through RMI.

Set

SortedSet

List

HashSet Vector

LinkedList

Collection

TreeSet

implements extends

ArrayList

AbstractList

Stack

AbstractColl

AbsSeqList

AbstractSet

Interface Class Abstract Cl.

Figure 4. Collections in Java (excerpt)

considerable latency, hardly comparable with that of a lo-
cal one. In contrast, asynchronous interaction is enforced
with our collections. By calling an operation of a DAC, one
expresses an interest in future notifications. When querying
a DAC for objects of a certain kind for instance, the party in-
teracting with the DAC expresses its interest in such objects.
Therefore, when such an object is eventually “pushed” into
the DAC, the interested party is asynchronously notified.

There is a strong resemblance with the notion of future
[BGL98] (future type message passing [YSTH87]), that de-
scribes a communication model in which a client queries
an asynchronous object for information by issuing a re-
quest to it. Instead of blocking however, the client can
pursue its processing. As soon as the reply has been com-
puted, the object acting as server notifies the client. Latter
one may query the result (lazy synchronization or wait-by-
necessity [Car93]), or ignore it. Figure 5 compares the two
paradigms. When programming with DACs, the subscriber
can be viewed as the client. The DAC incarnates a server
role in this scenario, since the publishers, which are the ef-
fective information suppliers, remain anonymous.

By calling an operation on the DAC, the caller requests
certain information. The main difference with futures lies
in the number of times that information is supplied to the
client. Within the notion of future, only a single reply is
passed to the client, whereas with DACs, every time an in-
formation which is interesting for the registered party is cre-
ated, it will be sent to it.

Asynchronous Invocation Publish/Subscribe with DACs

Asynchr. ObjectClient Subscriber DAC

1

1

1

n

Invocation

Future

Invocation

Notifications

Thread

Figure 5. DACs vs. Future

3.3 Publish/Subscribe with DACs

Expressing ones interest in receiving information of a
certain kind can be viewed as subscribing to information
of that kind. By viewing event notifications as objects, a
DAC can be seen as an entity representing related event
notifications. Clearly, if a collection is a set of some-
how related objects, a DAC can be seen as a set of related
“events”. When considering the classical topic-based ap-
proach to publish/subscribe, a DAC can be pictured as an
extension of a conventional collection but also as a repre-
sentation for a topic. It is always possible to insert a new el-
ement into a DAC. In the sense of publish/subscribe, insert-
ing an object into a DAC also means to publish that object
for the topic represented by the DAC. Every DAC can thus
be viewed as a publish/subscribe engine of its own. Figure 6
shows the traditional topic-based publish/subscribe scheme.
The topic is represented by an attribute of the message, and
the application has to deal with it explicitly. Since a DAC
is bound to a topic, the topic is given implicitly, and ap-
pears only in the protocol message which is hidden from
the application, as shown in Figure 7. It encapsulates the
application message.

Message m public class Message {
public String topic;

public String content;

}
Criteria topic of m is “/Chat/Insomnia”
Argument String topicName = "/Chat/Insomnia"

Evaluation m.topic.equals("/Chat/Insomnia")

Deliver m

Figure 6. “Traditional” Topic-Based Publish/Subscribe

3.3.1 Content-Based Publish/Subscribe with DACs

We have explained how topic-based publish/subscribe can
be realized through DACs in an object-oriented setting by

Protocol
Message p

public class Message {
public String getTopic() {...}
public Object getMsg() {...}
...

}
Message m public class ChatMsg {...}
Criteria topic of m is “/Chat/Insomnia”
Argument String topicName = "/Chat/Insomnia"

Evaluation p.getTopic().equals("/Chat/Insomnia")

Deliver m = p.getMsg()

Figure 7. Topic-Based Publish/Subscribe with DACs

considering event notifications as objects. We strive to go
a step further by realizing content-based publish/subscribe
which is more flexible by allowing a subscriber to express
its individual requirements instead of conforming to a rigid
classification of events. Moreover, DACs do not only pro-
vide both topic-based and content-based styles, but offer the
possibility to combine the two publish/subscribe styles. In-
deed, with the ability to apply a content-based subscription
pattern to a set of topics, we get the best of both worlds.

Existing content-based publish/suscribe systems allow
the application to express its individual subscription based
on the contents or attributes of the messages. In such sys-
tems [CRW99, SA97, SBCea98] which are mostly realized
in procedural languages, a message can indeed best be pic-
tured as a record with several fields. It seems problematic
to apply such an approach without accessing the objects
attributes and thus violating encapsulation. Conventional
content-based publish/subscribe systems furthermore intro-
duce a specialized query language to express conditions on
the messages. These languages do not only expose the mes-
sages structure and content but also render the use of the
system more difficult. Furthermore, they often only en-
dulge a fixed set of patterns. The subscription argument
given in Figure 8 would be passed directly as string to the
publish/subscribe engine.

Message m public class ChatMsg {
public String sender;

...

}
Criteria sender of m is “Tom”
Argument String criteria = "sender is Tom"

Evaluation m.sender.equals("Tom")

Deliver m

Figure 8. “Traditional” Content-Based Publish/Subscribe

Our approach removes these deficiencies by using reflec-
tion [KdRB91]. Reflection allows to represent and manip-

ulate characteristics of the language by the language itself.
In particular, this allows to reflect properties of objects, in
our case messages used to notify events, through the lan-
guage itself. In fact, instead of expressing conditions on an
object through its attributes, we query the object through
its methods. Roughly spoken, our approach to specifying
constraints is based on the association of a method and a
result as seen in Figure 9. The method getSender()
is evaluated on a message object m and the result is com-
pared to the required value. The reflection properties of an
object-oriented language give us the mechanisms to repre-
sent such constraints in terms of objects. Section 4 depicts
more in detail how DACs allow to express and manipulate
conditions as objects, instead of using a separate subscrip-
tion language.

Message m public class ChatMsg {
public String getSender(){...}
...

}
Criteria method getSender() of m returns “Tom”
Arguments Method sender = ...

(reference to method getSender())

Object[] args = null

(arguments for the call, here empty)

Object res = "Tom"

(required result)

Evaluation m.getSender().equals("Tom")

i.e., sender.invoke(m,args).equals(res)
Deliver m

Figure 9. Content-Based Publish/Subscribe with DACs

3.3.2 Type-Based Publish/Subscribe

In classical publish/subscribe systems, all event notifica-
tions are carried by messages of the same type (Figure 6).
The topic is an attribute of that type which is introduced to
regroup messages with a common meaning. When consid-
ering messages as objects however, these already express
an affiliation through their type. In other terms, the no-
tion of event kind is simply matched with that of an event
type. That is, we use the type scheme of an “ordinary” pro-
gramming language without explicitly introducing a topic
hierarchy, a predicate-matcher tool or a specific notion of
kind. Topics are represented by distributed asynchronous
collections for specific types, and subscribing to a specific
collection of which events are of a given type Insomni-
aMsg (Figure 10), implicitly means that the events of in-
terest are those of type InsomniaMsg. This approach al-
lows furthermore to use type polymorphism by generating
automatic subscriptions to collections of subtypes. If a con-
sumer subscribes to a collection of a type ChatMsg then

a subscription can be automatically generated for any col-
lection of which events are of a subtype of ChatMsg (e.g.,
InsomniaMsg).

Message m public class ChatMsg {...}
public class InsomniaMsg

extends ChatMsg {...}
Criteria m is of type InsomniaMsg
Argument Class imClass =

Class.forName("InsomniaMsg")

Evaluation m instanceof InsomniaMsg

i.e., imClass.isInstance(m)
Deliver m

Figure 10. Type-Based Publish/Subscribe with DACs

4 DAC Interfaces

The previous section introduced DACs as general ab-
stractions for publish/subscribe. This section presents the
main interfaces of our DAC realization in Java. In the con-
text of this paper, we will limit ourselves to describing the
functionalities which are common to all DAC subinterfaces,
in order to show their similarity to operations on conven-
tional centralized collections. Each of the three parts of this
section describes one of the subscription styles we offer,
namely topic-based, content-based and type-based. In the
context of the second one, we introduce Conditions and Ac-
cessors as a means of representing constraints.

4.1 Topic-Based Publish/Subscribe

In our system, each topic is represented by a DAC, and
is denoted by a name, like “Chat”. Topics can have special-
izations, or subtopics, and connecting to a topic requires the
name in a URL-type format. Typically, “/Chat/Insomnia”
is a reference to the topic called “Insomnia” which is a
subtopic of “Chat”. The root of the hierarchy is repre-
sented by an abstract topic (denoted by “/”). Top-level top-
ics, which are no specializations of already existing ones,
are subtopics of the abstract root topic only. Existing pub-
lish/subscribe frameworks introduce specialized message
types, e.g., [HBS98]. Our approach frees the application
programmer from the burden of marshalling and unmar-
shalling data into and from dedicated messages. In our
context, a message can be basically of any kind of object.
In Java, this is expressed by allowing any object of class
java.lang.Object to be passed as a message.8

Figure 11 summarizes the main methods of the base

8In order to be conveyable, a Java object should furthermore imple-
ment the java.io.Serializable interface [JLA99], which contains
no methods.

DAC interface. The complete interface is given in Ap-
pendix A.1. Since a DAC is in the first place a col-
lection, the DAC interface inherits from the standard
Java java.util.Collection interface. The inherited
methods are not denatured, and we connote them as syn-
chronous in contrast to the methods added to express the
asynchronous nature of publish/subscribe interaction spe-
cific to DACs. Not all operations known from conventional
collections find an analogous meaning in an asynchronous
distributed context, and our ongoing research in that domain
might cause minor modifications to this interface.

Synchronous Methods:

• get(). Similarly to a centralized collection, calling
this method allows to retrieve objects. Which element
will be returned depends on the nature of the collection
(see Section 5 for more details). This implements the
pull model.

• contains(). A DAC is first of all a representa-
tion of a collection of elements. This method allows
to query the collection for the presence of an object.
Note that an object that is contained in a DAC belongs
to the topic represented by that DAC.

• add(). This method allows to add an object to the
collection. The corresponding meaning for a DAC is
straightforward: it allows to publish a message for the
topic represented by that collection. An asynchronous
variant of this method could consist in advertising the
eventual production of notifications. This could fur-
thermore be combined with the registration of a call-
back object, that the DAC would poll in order to obtain
new event notifications. In the terminology adopted in
[OMG98], this is called a pullsupplier.

The following asynchronous methods have been added
to express the distributed asynchronous flavor of DACs.

Asynchronous Methods:

• contains(Subscriber S,...). The effect,
for instance, of invoking one of these two methods is
not to check if the collection already contains an ob-
ject revealing certain characteristics, but is to manifest
an interest in any such object, that should be eventu-
ally pushed into the collection. The interested party
advertises its interest by providing a reference to an
object implementing the Subscriber interface (Fig-
ure 12), through which it will be notified of events.
There are different signatures for this method. The
first variant given in Figure 11 can be used by a partic-
ipant to subscribe to the topic represented by the DAC,

whereas the second proposed signature allows a fine-
grained specification of constraints for content-based
filtering. This is covered in more detail in the next sec-
tion.

• containsAll(Subscriber S,...). These
methods offer the same signatures than the two pre-
vious methods in Figure 11. The difference is that a
subscription is generated for all subtopics of the topic
represented by this DAC.

• remove(Subscriber S,...). Likewise, by
calling one of these methods, a subscriber does not
trigger the removal of an object already contained in
the collection, but expresses its interest in being no-
tified whenever an object matching its criteria is in-
serted in the collection, after which the object will
be removed immediately. This expresses that a mes-
sage is delivered to one single subscriber only. This
is frequently called one-for-all or one-of-n [TIB99] in
contrast to one-for-each,9 implemented by the asyn-
chronous contains() methods, where a message
is sent to all. The same signatures can be found than
for the asynchronous contains() and contain-
sAll().

• clear(Subscriber S). While the conventional
argument-lessclear()method allows to erase all el-
ements from the collection, this asynchronous variant
expresses the action of unsubscribing.

4.2 Content-Based Publish/Subscribe

Existing content-based publish/subscribe implementa-
tions usually rely on a separate query language for a
flexible expression of the constraints. This brings the
burden of learning the language, and furthermore of-
ten only allows a limited set of patterns. Our ap-
proach uses Java language reflection properties to de-
scribe constraints. Java offers classes representing methods
(java.reflection.Method) as well as classes them-
selves (java.lang.Class) and other specific Java lan-
guage constructs.10 These give a means to describe an ob-
ject by objects. The idea is to use these reflection properties,
and to offer a syntaxically related interface for an easier use.

The main constraints that can be defined on a Java object
have been identified and sorted. For the sake of brevity we
present only the most important ones:

9By using the formalism of [RW97], one could say that every Nth oc-
currence of an event is notified to a subscriber, with N being the total
number of subscribers, and no event being delivered to more than one sub-
scriber.

10There is also type java.reflection.Field representing an at-
tribute. Dealing with such objects however means abandoning encapsula-
tion.

public interface DAC
extends java.util.Collection

{
public Object get();
public boolean contains(Object message);
public boolean add(Object message);
...
public boolean contains(Subscriber S);
public boolean contains(Subscriber S,

Condition c);
public boolean containsAll(Subscriber S);
public boolean containsAll(Subscriber S,

Condition c);
...
public boolean remove(Subscriber S);
...
public void clear(Subscriber S);
...

}

Figure 11. Interface DAC (Excerpt)

public interface Subscriber {

public void contains(Object msg,
String topicName);

}

Figure 12. Interface Subscriber

I. Is object O of class C?
This reflects the method isInstance() in the Java
class java.lang.Class. That method is itself the
dynamic counterpart to the language instanceof
operator. One can expect the result to be true or false.
When using type-based subscribing, this condition ap-
plies implicitly.

II. Is object O equal to object O′?
Every object can be compared to another object by us-
ing the equals() method, which is defined on each
object. Again the result can be true or false.

III. How does object O compare to object O ′?
This is only for objects implementing the
java.lang.Comparable interface. Every
object implementing that interface provides a method
called compareTo(). The return value is of in-
teger type, which indicates the order of the object
compared to the second object. This presupposes
that the objects manifest a natural ordering e.g., class
java.lang.Integer.

By applying one of these tests to the message objects for
filtering, only a coarse granularity can be achieved. The two

following extensions improve the expressiveness consider-
ably:

IV. The same tests can be applied also to any object O ′′

which is a return value of a method of object O.
That way, we can apply all the above constraints to
nested method calls.

V. A conjunction of any of these constraints is of course
more realistic than just a single one.
Therefore any logical combination of several condi-
tions should be possible. These are called filters in
[CRW98].

public interface Condition {

public boolean add(Object msg,
String topicName);

}

Figure 13. Condition Interface

4.2.1 Conditions

We use objects to express the above mentioned constraints.
By creating an instance of class Equals (Figure 14, first
constructor) and giving it a reference to an object O, we
can express for instance that we are interested in all objects
which are equal to O in the sense of the equals()method
which is inherent in Java. Such condition objects are sim-
ilar to the argument filters defined in [CRW98] and can be
seen as unary predicate objects. They implement the Con-
dition interface outlined in Figure 13. A message will be
delivered to a subscriber iff the method add() of the con-
dition object associated to its subscription returns true for
that message object. [Obj99] describes a similar approach
to predicate objects in Java. Our approach however focuses
mainly on unary predicates.11 Moreover, our efforts have
been concentrated on finding a simple and intuitive way for
the application programmer to create and combine our basic
conditions. The application defining its constraints does not
apprehend these as predicates, but just expresses its condi-
tions for the message objects it is interested in. Therefore,
we refer to these constructs as conditions rather than predi-
cates.

There are thus two possibilities to express constraints de-
scribing the desired notifications:

• Create and combine instances of the condition classes
provided in package DACE.Conditions. This min-
imizes the effort for the application programmer, since

11The second argument, representing the name of the topic is only used
in certain cases, and will therefore be ignored henceforth.

we provide classes covering a large spectrum of appli-
cations. These classes furthermore provide hooks for a
faster evaluation.

• Generate specific condition classes. This allows the
application developer to generate custom tailored con-
ditions. By implementing the Condition interface,
the developer has full control of his criteria, and these
can vary throughout the validity of the subscription
without any further call to the DAC. 12

public final class Equals
implements Condition

{
public Equals(Object to, boolean result)
public Equals(Accessor obj, Object to,

boolean result)
public Equals(String name, Object to,

boolean result)
public Equals(String name, Object[][] params,

Object to, boolean result)
...
public boolean add(Object msg, String topicName)

}

Figure 14. Equals Class (Excerpt)

Simple subscription patterns involving only one condi-
tion are rather rare. We also provide operators to combine
conditions. These can be seen as binary predicates, if the
two conditions that will be combined are seen as the argu-
ments. From our point of view, those two conditions are not
the arguments. The argument of an operator is the message
object for which it is evaluated at runtime. These operators
hence implement the Condition interface as well.

Figure 15 shows the evaluation of a simple predicate
representing an equality condition in the sense of the Java
equals() method supported by all Java objects. When
the condition object is created, an object to is passed as ar-
gument to it. When the predicate is evaluated for a message
msg (which can be of any class), the equals() method
is called on the message with to as argument. If the method
call returns true, the message is delivered to the subscriber
associated to the condition.

4.2.2 Accessors

Rather than expressing conditions on merely the message
object itself, it seems more natural to put restrictions only

12This holds only true as long as the original condition object is queried.
By making the condition object serializable, it can be transferred to another
host, allowing the messages to be filtered earlier. This helps reducing the
number of unnecessarily conveyed messages.

equals:
Equals

msg:
<Class>

add(msg)

equals(to)

Figure 15. Predicate Evaluation

on part(s) of those objects. This can be done by specify-
ing restrictions on an object returned by a method of the
message object. This possibility is given by using accessor
objects. Such an object implements the Accessor inter-
face shown in Figure 16, and basically represents a means
to access a partial information on the runtime message ob-
ject.

An accessor object can for instance represent an invoca-
tion of a given method with a given list of arguments. That
method will be invoked on an incoming message passed
to the accessor object by the encapsulating condition ob-
ject. Figure 17 shows the class diagram for the Equals
class. The second proposed constructor in Figure 14 allows
to specify how to access part of the object through an acces-
sor. In this case, the accessor object belongs to the generic
class Invoke (classes Equals and Invoke are given in
Appendix A.3 and Appendix A.4 respectively). An instance
of that class bears a reference to a method, and can further-
more contain an array of objects representing the runtime
arguments for that method. As explained previously, an in-
stance of the Method class can reify any method of any
class. This is made visible in the class diagram by putting
the class name in < ... >.

The object returned by the accessor will be delivered if
its comparison with the second argument that was passed to
the Equals constructor is positive. In a nested way, it is
possible to consider only the return value of a method of the
object returned by the first accessor. In fact, when construct-
ing an accessor object, it is possible to indicate a nested ac-
cessor object (this is shown in Figure 17 by the reference
nested). The method referenced by the encapsulating ac-
cessor will be invoked on the returned value of the method
of the first accessor. This offers an arbitrary fine granularity
for the expression of conditions. The third variant shows a
shortcut for the same purpose. The first argument denotes
the name13 of the access method(s) to be called (in a nested
way). The accessors are created implicitly.

13In Java, obtaining a reference to a Method or a Field object always
requires at least its name as it appears in the interface or class.

public interface Accessor {

public Object get(Object msg);
}

Figure 16. Accessor Interface

Equals

to:Object

Condition

add()

accessor

0..1

0..*0..*

implements

Accessor

get()

Invoke

arg:Object[]

 <Method>()

Method

invoke()

<Class>

1

1

0..*

1

method

nested

0..1

Figure 17. Class Diagram

Figure 18 illustrates the runtime interaction based on the
previous example. When an event notification msg be-
longing to class < Class > is produced, it is matched
against the criteria of every subscriber through their respec-
tive condition objects (1). If an accessor was specified along
with a method, evaluating the accessor (2) will result in in-
voking the method (3) object which triggers the effective
method call on the message object (4). If the method ob-
ject represents a method of the message objects class (if
< Method > is a method of the message objects class),
the return value will be compared to the reference object by
a call to the equals() method (5). Appendix B.1 shows
more details in a concrete example.

4.3 Typed DACs

As mentioned earlier, our DACs support both topic-
based and content-based publish/subscribe or a combina-
tion of both. Another feature we offer consists in providing
a stronger typed interaction model. In fact, as explained in
Section 4, type-based publish/subscribe can be seen as the
projection of the name space to a type space, and as a conse-
quence a DAC is bound to a single type. The DAC accepts
only events of that type, which impacts the DAC interface.
Thanks to a pre-compiler, type-specific DACs can be cre-
ated automatically. During pre-compilation, a typed DAC
interface is generated as well as typed Subscriber and
Condition interfaces.

get(msg)

accessor:
Accessor

equals:
Equals

method:
Method

msg:
<Class>

add(msg)

invoke(msg,
 arg)

<Method>()

ret:
<Method>.Result

equals(to)

(1)

(2)

(3)

(4)

(5)

Figure 18. Accessor Interaction

5 DAC Classes

The previous section focused on the interfaces, through
which an application can use DACs in order to benefit from
the strength of our publish/subscribe abstractions. As de-
picted earlier, our framework consists of a variety of DACs
spanning different semantics and guarantees, since different
applications have different requirements. These semantics
can be seen as different QoS. While certain properties of
DACs reflect in their interfaces, certain semantics do not
appear in the API. These parameters influence the classes
implementing those interfaces, and thus lead to a variety
of classes implementing the same interface. This section
presents the different properties of the classes constituting
our framework.

5.1 Delivery Semantics

When a producer publishes a message, it does not di-
rectly interact with subscribers. To whom exactly the mes-
sage will be delivered does not show in the DACs interface.
Parts of the semantics do not come to light in the inter-
faces. The underlying multicast protocols might lead to dif-
ferent classes implementing the same interface. The DASet
(Distributed Asynchronous Set) interface, for instance, is
implemented by multiple classes. The first one does not
offer more than plain unreliable delivery (DAWeakSet),
whereas others guarantee reliability (e.g., DAStrongSet).
By distinguishing between unreliable and reliable DACs our
framework hierarchy is roughly split into two subtrees, as
shown in Figure 19.

5.2 Duplicates

Just like it is possible to have duplicate elements in
centralized collections, it is possible in Distributed Asyn-

chronous Collections that a same message is delivered more
than once. The simple DAWeakBag class for instance does
not prevent a notification to be delivered more than once,
whereas the DAWeakSet class gives stronger guarantees
by eliminating duplicate elements. This property is orthog-
onal to other characteristics of our DACs. For that reason,
our framework contains a variant with and without dupli-
cates for every other property, as shown in Figure 19. When
allowing duplicates and combining with unreliable delivery
for instance, the outcome is best-effort semantics. In return,
with reliable delivery, at-least-once semantics can be guar-
anteed.

Reliable?

Duplicates?

Criteria?

DAWeakSetDAWeakBag

Duplicates?

Ordering?

DAStrongSetDAStrongBag

Duplicates? Duplicates?

DASortedSetDASortedBagDAListDAArray

Best-effort At-most-once

At-least-once Exactly-once

At-least-once
FIFO

Exactly-once
FIFO

At-least-once
Total Order

Exactly-once
Total Order

Yes Yes

Yes

YesYes

No

No

No

No No

NoYes

ImplicitExplicit

DACollection

Figure 19. DAC Framework

5.3 Storage vs. Delivery Order

Collections are often characterized by the way they store
their elements. Sets or bags for instance do not rely on a de-
terministic order of their elements. Conversely, sequences
can store their elements in an order given explicitly or im-
plicitly based on properties of the elements. In Distributed
Asynchronous Collections however, the notion of space is
somehow replaced by the notion of time. If some central-
ized collections reveal a deterministic storage order, a dis-
tributed asynchronous sequence may offer a deterministic
ordering in terms of order of delivery to the subscribers. In
the Java collection framework for instance, a sorted set is
a sequence which is characterized by an ordering of the el-
ements based on their properties. This can be seen as an
implicit order. With our DACs, an implicit order is a global
delivery order on which the DAC itself decides. The DA-

SortedSet class for instance presents a total order of de-
livery. Inversely, a FIFO delivery order can be seen as an
explicit order: it is given by the order in which events are
notified to the DAC by a publisher.

5.4 Insertion Order

In different centralized collections, the insertion order
may have an impact on the storage order. In a queue or
a stack for instance, the chronological insertion order will
drive the storage order as well as the extraction order. A
position can be given as additional argument to an inser-
tion into a list for instance. In an asynchronous collection
however, the order of insertion corresponds to the order of
sending or publishing. It seems obvious that inserting an
element at a specific position cannot translate to delivering
a message at a certain moment in time relative to other mes-
sages, since inserting a message at the beginning of a list
would translate to sending a message before messages that
have possibly already been delivered to subscribers. There-
fore there is never any explicit argument for the order passed
when “inserting” a new element into a DAC.

5.5 Extraction Order

Extracting an element from a centralized implementation
corresponds to pulling messages from a distributed asyn-
chronous one. In the case of consumers polling a DAC for
new messages, two different policies may be applied:

• FIFO. The collection behaves like a queue by return-
ing the first received and undelivered message. In fact,
the DAC proxy contains a buffer, in which received
messages are inserted. From there, they are delivered
to the pulling consumer in a FIFO order.

• LIFO. The collection acts like a stack and delivers the
latest received message. The principle is the same
than above, except that the messages are delivered in a
LIFO order from the buffer to the consumer.

Therefore when using a pull model, the application has the
choice between queues and stacks. Any class presented in
Figure 19 can be used both as stack or queue.

Messages may be volatile, which means that they may
be dropped immediately after delivery. Conversely, the
message could be stored in memory or even on persistent
storage. In the context of this work however, we did not
deal with message storage so far. Messages are considered
volatile, and are dropped as soon as they have been con-
sumed. Missed messages are therefore not replayed to late
subscribers or temporarily disconnected participants.

6 Implementation Issues

This section discusses the realization of our first DAC
implementation, including first performance measurements.
We draw preliminary conclusions of our prototype, which
has been developed in pure Java and relies on UDP, thus
increasing its portability.

6.1 Inside DACs

The effective DAC class as it is perceived by the applica-
tion only represents a small portion of the underlying code.
Redundant code has been avoided by a modular design and
using inheritance. Figure 20 shows the different layers in
our implementation. These layers do not necessarily corre-
spond to Java classes, but represent protocol layers.

Application

DAC

Network

UDP

IP

Figure 20. Layers

• The DAC layer. This layer is composed of the classes
implementing directly the DAC interfaces. They
are rather lightweight classes, which delegate general
functionality to the underlying layer. Their tasks are
similar to centralized container classes. They mainly
take care of the local management of messages, and
furthermore handle the subscriptions. The most fre-
quent interaction model is the callback model (push-
model), where subscribers do not poll for new mes-
sages but are called back upon incoming messages.
In that case the DAC applies a predefined threading
model, by assigning notifications to threads.

• The Network layer. The Network layer regroups com-
mon functionalities of all DACs, like publishing mes-
sages or forwarding subscription information. It hides
any remote party involved in same topics from the
DAC layer. This layer maintains a form of network
topology knowledge, which basically consists of its
immediate neighbors.

• The UDP layer. Our entire publish/subscribe archi-
tecture is finally implemented on top of UDP. UDP is
a non reliable protocol, which offers us the looseness
required for the decoupled nature of publish/subscribe.

Java offers classes for UDP sockets and datagrams
(java.net.DatagramPacket and Datagram-
Socket), which are pretty close to the metal.

6.2 Performance

The performance tests of our prototype were made on
HP workstations running HP-UX 10.20 and JVM 1.1.5 and
1.1.6. on a normal working day. The implementation uses
a marshalling/unmarshalling procedure built from scratch
and optimized for each event type (the Java serialization
classes were not used, since they are usually considered
rather slow). Four example message types were considered:

• Integer. This corresponds to the basic Java int
type.

• String. Java type String with a length varying
between 10 and 20

• DetailRecord. This is a class containing four
attributes, of which two represent dates (Java type
Date) and two are strings (Java type String).

• CallDetailRecord. A subtype of Detail-
Record. In addition to the attributes of the latter one,
a CallDetailRecord furthermore contains 4 inte-
gers and two strings.

In our measurement scenario, several subscribers asyn-
chronously receive events for a topic where a publisher pro-
duced the events. The numbers of messages considered for
a single run of the experiment varied between 10 and 1000
and the measures obtained conveyed an average result after
several experiments of the same profile.

[s]

0

1

2

3

4

5

6

Integers Strings CDR CDR++

N = 10
N = 100

N = 1000

N: nb messages

Figure 21. Latency

Figure 21 shows the latency when publishing. For ex-
ample, a publisher needs 3s to publish 100 events of type
DetailRecord. They include the time for marshalling
each of the events and the time to put the events into the
UDP socket.

[s]

0

1

2

3

4

5

6

7

8

9

Integers Strings CDR CDR++

N = 10

N = 100

N = 1000

N: nb messages

Figure 22. Throughput

Figure 22 shows the global throughput for the same sce-
nario. It takes for instance 5s until a subscriber has received
100 events of type DetailRecord. The 5s correspond
therefore to the time spent at the publisher side and the
subscriber side of the DAC. They include the time for mar-
shalling, remote communication and unmarshalling.

These simple measurements allowed us to do draw sev-
eral preliminary conclusions:

• The complexity of the event type has a heavier impact
on the time it takes for a publisher to send events then
on a subscriber to receive events. This is not surprising
because in the first case, the marshalling time is more
significant (there is no inherent cost of remote commu-
nication).

• It might look surprising that integers take longer than
strings. In this implementation however, everything is
converted to strings in the serialization procedure.

• Finally, the overall measures confirm the very fact that
nowadays, optimizing marshalling is at least as impor-
tant as optimizing remote communication.

7 Related Work

During the last years, the need for large scale event no-
tification mechanisms has been recognized. Much effort
has therefore been invested in this domain, and a multitude
of approaches have emerged from academic as well as in-
dustrial impulses. We present here the main characteristics
of related approaches and we compare them with our Dis-
tributed Asynchronous Collections.

7.1 Event Service Specifications

In order to integrate the publish/subscribe communica-
tion style into existing middleware standards, specifica-
tions have been conceived by both the Object Management
Group [OMG98] and Sun [HBS98, AOS+99, Col99].

The OMG has specified a CORBA service for pub-
lish/subscribe oriented communication, called the CORBA
Event Service. The specification is aimed to be general
enough to not preclude sub-specifications and various im-
plementations that would match the needs of specific appli-
cations. According to the general service specified however,
a consumer subscribes to a channel expressing thereby an
interest in receiving all the events from the channel. In other
words, filtering of events is done according to the channel
names, which basically correspond to topic names. When
the consumer subscribes to the channel, it is supposed to
receive all events put in the channel. Event channels are
CORBA objects themselves, and in current implementa-
tions they are centralized components. Therefore these en-
gines manifest a strong sensitivity to any component failure,
which makes them unsuitable for critical applications.

The Java Messaging Service [HBS98] is a specification
from Sun. Its goal is to offer a unified Java API around
common publish/subscribe engines. Certain existing ser-
vices implement the JMS, but to our knowledge no pub-
lish/subscribe system has been implemented with the goal
to merely support the JMS API directly. Its generic nature,
required in order to conform to a maximum number of ex-
isting systems, appears to be rather cumbersome.

The Java Distributed Event Specification [AOS+99] ex-
plicitly introduces the notion of event kind. Registration
of interest indicates the kind of events that is of inter-
est, while a notification indicates an occurrence of that
kind of event. One can combine this notion with that of
JavaSpace [FHA99] to provide support for topic-based pub-
lish/subscribe notification. Inspired by Linda [Gel85], a
JavaSpace is for example a container of objects that might
be shared among various suppliers and consumers. The
JavaSpace type is described by a set of operations among
which a read operation to get a copy of an object from a
JavaSpace, and a notify operation aimed at alerting some
potential consumer object about the presence of some spe-
cific object in the JavaSpace. Combined with the Java Dis-
tributed Event interfaces, one can build a publish/subscribe
communication scheme where a JavaSpace plays the role
of the event channel aimed at broadcasting events (notifica-
tions) to a set of subscriber objects. The nature of the sub-
scription is however not specified and it is not clear whether
one would be able to subscribe to a particular operation.

The InfoBus 1.2 Specification [Col99] describes an in-
formation bus which enables dynamic data exchange be-
tween JavaBeans. Components must implement a minimal
interface in order to plug into the bus. As a member of the
bus any component can exchange data structured as arrays,
tables, or database rowsets with other components. Inter-
estingly, adapted collection types are available for InfoBus,
which ease the transfer of collections of objects.

These standards are based on specifications and it would

be interesting to see how one could implement services that
comply with these standards using DACs. Note however
that the CORBA Event Service lacks content-based pub-
lish/subscribe, and the Java Messaging Service introduces
an explicit message class and uses Java Properties to
describe constraints in the case of content-based subscrib-
ing. This leads to defining a subscription language, while
oppositely DACs exploit the reflection facilities of the lan-
guage.

7.2 Topic-Based Systems

Most industrial strength solutions involve topic-based
publish/subscribe, but offer less support for content-
based subscription facilities. Smartsockets [Cor99] or
TIB/Rendezvous [TIB99] are such engines.

In Smartsockets, an event channel can accept subscrip-
tions for specific topics. A consumer receives all the event
notifications that belong to the topic to which it has sub-
scribed. The topic defines a kind of virtual connector be-
tween objects of interest and recipients. If a producer is
interested in producing an event on a number of topics or
channels, it has to explicitly publish the event on all of them.
Event notifications are represented by records, nevertheless
custom event types may be defined.

A similar approach was adopted in the development of
the TIB/Rendezvous infrastructure. A hierarchical nam-
ing model corresponds to the hierarchical organization of
the entities of interest. Just as Uniform Resource Locators
(URLs) provide a way of locating and accessing Internet
resources, a naming scheme is provided to locate and ac-
cess events of interest. The naming scheme proposed can
use wildcards, which allows to subscribe to patterns of top-
ics. TIB/Rendezvous provides a certain degree of fault-
tolerance, and makes usage of IP-multicast. Event notifi-
cations are composed of a set of typed data fields, including
the topic.

Most industrial systems offer API’s in object-oriented
languages like Java. These solutions however did not un-
dergo a fundamentally object-oriented design. In addition,
they mainly offer the rather rigid topic-based subscription
style.

7.3 Content-Based Systems

Most approaches to content-based publish/subscribe are
outcome of academic research, like Siena [CRW98] or Elvin
[SA97]. But also industrial players have brought up in-
teresting solutions in the context of content-based pub-
lish/subscribe, as shown by Gryphon [BCM+99].

Gryphon takes a new direction by introducing informa-
tion flow graphs, which describe the routing and manip-
ulation of streams of events from information providers

to information consumers. Reflection is also present
in Gryphon, but with another objective than to express
content-based subscribing. In fact, protocol messages, con-
cerning for instance subscriptions, are handled just like noti-
fications created by applications. Much effort has also been
made to optimize the matching algorithms.

Siena’s strength is based on its scalability, since it was
designed especially for wide area networks. Siena also ex-
plores different QoS, but more in combination with transac-
tions and security. Filters are used to express content-based
subscribing, and patterns allow to express the combination
of simple events.

Elvin covers mainly content-based publish/subscribe.
Requirements are expressed through a specially developed
subscription grammar. For performance reasons Elvin was
implemented in C, and notifications are therefore records,
like in most classical content-based systems.

These approaches have driven the evolution of content-
based publish/subscribe. In contrast to our DACs though,
they use specific query languages to express requirements,
and do furthermore not integrate several subscription styles.
Some of the ideas developed in these projects are very in-
teresting and have motivated us to adapt them to an object-
oriented setting [SBS98].

7.4 Collections

Both Java and Smalltalk offer integrated collection
frameworks. These only span the most common collec-
tion types. More specific collections can be found as
external libraries, e.g., for Java. JGL [Obj99] and the
util.concurrent [Lea99] package offer more elabo-
rate collection types.

JGL is a first approach to distributed collections in Java.
It was designed to provide a more advanced series of col-
lections, since the Java environment by default only offers
limited support for data collections and algorithms, cover-
ing only the main features used by the majority of Java de-
velopers. JGL extends the basic Java collections with more
refined types. The notion of distributed collection in JGL
though describes a centralized collection object, accessible
through Java RMI.

The util.concurrent package provides the appli-
cation programmer with a set of collections especially tar-
geted at resolving concurrency problems. It contains for in-
stance collections which alleviate concurrent traversals by
making each time a copy of the array backing the collec-
tion. Another feature are synchronization wrappers for stan-
dard collections, with the possibility to specify external read
and/or write locks.

In contrast to JGL, our DACs avoid any single point of
failure and are essentially distributed. JGL also offers algo-
rithms to process collections, including predicate and func-

tion objects. As depicted in Section 4.2 however, they con-
centrate more on the inside view of a predicate, and less on
the ability of creating and combining them easily in order
to intuitively express a more complex constraint. Synchro-
nization is an issue we do not address with our DACs, but
could be the topic of future work.

8 Concluding Remarks

It has long been argued that distribution is an implemen-
tation issue and that the very well known metaphor of ob-
jects as “autonomous entities communicating via message
passing” can directly represent the interacting entities of a
distributed system. This approach has been conducted by
the legitimate desire to provide distribution transparency,
i.e., hiding all aspects related to distribution under tradi-
tional centralized constructs. One could then reuse, in a
distributed context, a centralized program that was designed
and implemented without distribution in mind.

As argued in [WWWK94, Lea97, Gue99] however, dis-
tribution transparency is a myth that is both missleading and
dangerous. Distributed interactions are inherently unreli-
able and often introduce a significant latency that is hardly
comparable to that of a local interaction. The possibility of
partial failures can fundamentally change the semantics of
an invocation. High availability and masking of partial fail-
ures involves distributed protocols that are usually expen-
sive and hard, if not impossible to implement in the pres-
ence of network failures (partitions).

We have been considering an alternative approach where
the programmer would be very aware of distribution but
where the ugly and complicated aspects of distribution
would be encapsulated inside specific abstractions with a
well-defined interface. This paper presents a candidate for
such an abstraction: The Distributed Asynchronous Collec-
tion. It is a simple extension of the well-known collection
abstraction. DACs add an asynchronous and distributed fla-
vor to traditional collections [BGL98], and enable to ex-
press various forms of publish/subscribe interaction. In fact,
most systems we know about are unwieldy and consider
only a limited set of interaction models. Furthermore, ex-
isting approaches to content-based publish/subscribe usu-
ally introduce new languages to express filters. DACs are
lightweight publish/subscribe abstractions: they can be in-
troduced through a library approach and they exploit the re-
flection facilities of the language to express content-based
filtering, removing the need for an additional query lan-
guage.

We believe that our object-oriented view of pub-
lish/subscribe is a unique compromise between trans-
parency and efficiency. By offering a modular design
aligned with different communication semantics, we en-
force ease of use without missing performance related is-

sues. We are currently making use of DACs in various prac-
tical examples, which are far more complex than the simple
chat example presented in the appendix. The objective of
investing in several applications is to end up with a stable
framework, that would for instance extend JGL. The issue
of translating operations known from conventional collec-
tions to an asynchronous distributed context is however not
entirely completed, and certain parts of the API might be
affected by future modifications. We also explore specific
algorithms to realize efficient matching, specially in a mo-
bile environment, where nodes might be disconnected, and
objects might migrate from a node to another [JLHB88].

References

[AEM99] M. Altherr, M. Erzberger, and S. Maffeis. iBus -
a software bus middleware for the Java platform.
In International Workshop on Reliable Middleware
Systems, pages 43–53, October 1999.

[AOS+99] K. Arnold, B. O’Sullivan, R.W. Scheifler, J. Waldo,
and J. Wollrath. The Jini Specification. Addison
Wesley, June 1999.

[BCM+99] G. Banavar, T. Chandra, B. Muhkerjes, J. Nagara-
jarao, R.E. Strom, and D.C. Sturman. An effi-
cient multicast protocol for content-based publish-
subscribe systems. In Proceedings of the 19th IEEE
International Conference on Distributed Comput-
ing Systems (ICDCS ’99), 1999.

[BGL98] J.P. Briot, R. Guerraoui, and K.P. Löhr. Con-
currency, distribution and parallelism in object-
oriented programming. ACM Computing Surveys,
30(3):291–329, September 1998.

[Bir93] K.P. Birman. The process group approach to reli-
able distributed computing. Communications of the
ACM, 36(12):36–53, December 1993.

[Car93] D. Caromel. Towards a method of object-oriented
concurrent programming. In Communications of the
ACM, volume 36, pages 90–102, September 1993.

[Col99] M. Colan. InfoBus 1.2 specification. Technical re-
port, Sun Microsystems Inc., February 1999.

[Cor99] Talarian Corporation. SmartSockets White Paper.
http://www.talarian.com/products/, 1999.

[CRW98] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. De-
sign of a scalable event notification service: In-
terface and architecture. Technical report, Depart-
ment of Computer Science, University of Colorado,
http://www.cs.colorado.edu/ carzanig/papers/, Au-
gust 1998.

[CRW99] A. Carzaniga, D.S. Rosenblum, and A.L.
Wolf. Challenges for distributed event
services: Scalability vs. expressiveness.
In Engineering Distributed Objects ’99,
http://www.cs.colorado.edu/ carzanig/papers/,
May 1999.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces
Principles, Patterns, and Practice. Addison Wesley,
June 1999.

[Gel85] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages
and Systems, 7:80–112, January 1985.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[Gue99] R. Guerraoui. What object-oriented distributed pro-
gramming does not have to be, and what it may be.
Informatik, 2, April 1999.

[HBS98] M. Happner, R. Burridge, and R. Sharma. Java Mes-
sage Service. Technical report, Sun Microsystems
Inc., October 1998.

[HJ99] M. Hauswirth and M. Jazayeri. A component
and communication model for push systems. In
ESEC/FSE 99 - Joint 7th European Software En-
gineering Conference (ESEC) and 7th ACM SIG-
SOFT International Symposium on the Foundations
of Software Engineering (FSE-7), September 1999.

[IBM95] IBM. Smalltalk Tutorial.
http://www.smalltalksystems.com/references.htm,
1995.

[JCF99] The Java Collections Framework.
http://java.sun.com/products/jdk/1.2/docs/, 1999.

[JLA99] The Java Platform 1.2 API Specification.
http://java.sun.com/products/jdk/1.2/docs/api/,
1999.

[JLHB88] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6:109–133,
February 1988.

[KdRB91] G. Kiczales, J. des Rivières, and D.G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

[Koe99] P. Koenig. Messages vs. objects for application inte-
gration. Distributed Computing, 2(3):44–45, April
1999.

[Lea97] D. Lea. Design for open systems in Java. In Second
International Conference on Coordination Models
and Languages, http://gee.cs.oswego.edu/dl/coord/,
1997.

[Lea99] D. Lea. Overview of package util.concurrent Re-
lease 1.2.5. http://gee.cs.oswego.edu/dl/classes/,
October 1999.

[Obj99] ObjectSpace. JGL - Generic Collection Library.
http://www.objectspace.com/products/jgl/, 1999.

[OMG98] OMG. CORBAservices: Common Object Services
Specification. OMG, December 1998.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
information bus - an architecture for extensible dis-
tributed systems. In Fourteenth ACM Symposium on
Operating System Principles, pages 58–68, Decem-
ber 1993.

[Pow96] D. Powell. Group communications. Communica-
tions of the ACM, 39(4):50–97, April 1996.

[RW97] D. Rosenblum and A. Wolf. A design framework
for internet-scale event observation and notification.
In Sixth European Software Engineering Confer-
ence/ACM SIGSOFT Fifth Symposium on the Foun-
dations of Soft ware Engineering, September 1997.

[SA97] B. Segall and D. Arnold. Elvin has left the
building: A publish/subscribe notification service
with quenching. In Proceedings of the Australian
UNIX and Open Systems User Group Confer-
ence (AUUG97), http://www.dtsc.edu.au/, Septem-
ber 1997.

[SBCea98] R. Strom, G. Banavar, T. Chandra, and M. Kaplan
et al. Gryphon: An information flow based ap-
proach to message brokering. In International Sym-
posium on Software Reliability Engineering (ISSRE
’98)., November 1998.

[SBS98] D.C. Sturman, G. Banavar, and R. Strom. Re-
flection in the Gryphon message brokering system.
In Reflection Workshop of the ACM Conference on
Object Oriented Programming Systems, Languages
and Applications (OOPSLA’98), 1998.

[Ske98] D. Skeen. Vitria’s Publish-Subscribe Ar-
chitecture: Publish-Subscribe Overview.
http://www.vitria.com, 1998.

[SL95] A. Stepanov and M. Lee. The Standard Template
Library. Technical report, Silicon Graphics Inc.,
October 1995.

[SV97] D. Schmidt and S. Vinoski. Overcoming drawbacks
in the OMG Event Service. SIGS C++ Report mag-
azine, 10, June 1997.

[TIB99] TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/whitepaper.html, 1999.

[WWWK94] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall.
A note on distributed computing. Technical report,
Sun Microsystems Inc., November 1994.

[WWWK95] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall.
Events in an RPC based distributed system. Tech-
nical report, Sun Microsystems Laboratories Inc.,
November 1995.

[YSTH87] A. Yonezawa, E. Shibayama, T. Takada, and
Y. Honda. Object-Oriented Concurrent Program-
ming, chapter Modeling and Programming in an
Object-Oriented Concurrent Language ABCL/1,
pages 55–89. MIT Press, 1987.

Appendix A DAC Interfaces and Classes

A.1 DAC Interface

We present here the core interface, namely the DAC interface, of which interfaces for more specialized Distributed Asyn-
chronous Collections inherit.

1 package DACE;
2
3 public interface DAC extends java.util.Collection {
4

As explained in Section 3.3, inserting an object into a DAC comes to publishing that object. When calling method add(),
the object passed as argument is sent to all subscribers.

5 /** Publishing */
6
7 /**
8 * Publish a message for this DAC.
9 * @param message The message
10 * @return True if the message was successfully published.
11 * @see java.util.Collection
12 */
13 public boolean add(Object message);
14

The pull model is implemented by actively asking the DAC for a new object. If no new message has been received yet,
the null value is returned.

15 /** Pulling */
16
17 /**
18 * Pull a new message
19 * @return An object, if there’s one, null otherwise.
20 */
21 public Object get();
22

When subscribing with one-for-each semantics (a same message is delivered to each subscriber), one of the following
methods must be used for pure topic-based subscribing. The containsAll() variant on line 39 generates subscriptions
for all subtopics as well.

23 /** Topic-based subscribing (one-for-each) */
24
25 /**
26 * Subscribe to this DAC.
27 * @param s The subscriber callback object
28 * @return True if the subscription was possible.
29 * @see Subscriber
30 */
31 public boolean contains(Subscriber s);
32
33 /**
34 * Subscribe to this DAC with subtopics.
35 * @param s The subscriber callback object
36 * @return True if the subscription was possible.
37 * @see Subscriber
38 */
39 public boolean containsAll(Subscriber s);
40

With one-for-each semantics, the next two methods offer the possibility to specify finer constraints by combining with a
content-based condition pattern. Again, the containsAll()method applies the same subscription pattern to all subtopics.

41 /** Content-based subscribing (one-for-each) */
42
43 /**
44 * Subscribe to this DAC with condition(s).
45 * @param s The subscriber callback object
46 * @param c List of constraints
47 * @return True if the subscription was possible.
48 * @see Subscriber
49 * @see Conditions
50 */
51 public boolean contains(Subscriber s, Condition c);
52
53 /**
54 * Subscribe to this DAC with its subtopics with condition(s).
55 * @param s The subscriber callback object
56 * @param c List of constraints
57 * @return True if the subscription was possible.
58 * @see Subscriber
59 * @see Conditions
60 */
61 public boolean containsAll(Subscriber s, Condition c);
62

In contrast to the contains() and containsAll()methods, the remove() and removeAll()methods allow to
express one-for-all semantics, which means that a message is delivered to one within all subscribers. These two first methods
provide for pure topic-based subscribing.

63 /** Topic-based subscribing (one-for-all) */
64
65 /**
66 * Subscribe to this DAC.
67 * @param s The subscriber callback object
68 * @return True if the subscription was possible.
69 * @see Subscriber
70 */
71 public boolean remove(Subscriber s);
72
73 /**
74 * Subscribe to this DAC with subtopics.
75 * @param s The subscriber callback object
76 * @return True if the subscription was possible.
77 * @see Subscriber
78 */
79 public boolean removeAll(Subscriber s);
80

Again with one-for-all semantics, these two variants support content-based subscribing. Just like the previous re-
moveAll() method (line 79), the one on line 101 triggers subscriptions to all subtopics.

81 /** Content-based subscribing (one-for-all) */
82
83 /**
84 * Subscribe to this DAC with condition(s).
85 * @param s The subscriber callback object
86 * @param c List of constraints
87 * @return True if the subscription was possible.
88 * @see Subscriber
89 * @see Conditions
90 */
91 public boolean remove(Subscriber s, Condition c);
92

93 /**
94 * Subscribe to this DAC with subtopics with condition(s).
95 * @param s The subscriber callback object
96 * @param c List of constraints
97 * @return True if the subscription was possible.
98 * @see Subscriber
99 * @see Conditions
100 */
101 public boolean removeAll(Subscriber s, Condition c);
102

A subscriber can be unsubscribed through this method.

103 /** Unsubscribing */
104
105 /**
106 * Unsubscribe this subscriber from this DAC.
107 * @param s The subscriber to be removed.
108 */
109 public void clear(Subscriber s);
110

The next methods give access to the identity of the DAC. The first method returns the name of the topic which this DAC
represents. The second method must be implemented by every Java object. In the case of a DAC, it returns true if the object
it is compared to is a DAC representing the same topic. Finally, the last method (line 130) returns a unique hash code for this
DAC.

111 /** Identity */
112
113 /**
114 * Returns the name of the topic represented by this DAC.
115 * @return The name of the topic.
116 */
117 public String getName();
118
119 /**
120 * Compares the specified object with this dac for equality.
121 * @param dac The DAC containing the topic to compare to
122 * @return True if the object represents the same topic.
123 * @see Object
124 */
125 public boolean equals(Object dac);
126
127 /**
128 * Returns the hash code value for this object.
129 */
130 public int hashCode();
131

The remaining methods are all inherited from the original java.util.Collection interface. Their meanings have
been adapted. The first method allows to query whether an object was published under this topic. The second method allows
to verify whether a DAC represents a subtopic of the topic represented by this DAC.

132 /** Relationship */
133
134 /**
135 * Verify whether a message belongs to this DAC.
136 * @param message The message
137 * @return True if the message belongs to this DAC, false otherwise.
138 * @see java.util.Collection
139 */
140 public boolean contains(Object message);
141

142 /**
143 * Verify whether a DAC represents a specialization of this DAC.
144 * @param dac The DAC representing the other topic
145 * @return True if the topic is a specialization of this topic, false otherwise.
146 * @see java.util.Collection
147 */
148 public boolean containsAll(java.util.Collection dac);
149

Methods isEmpty() and size() give information about the number of messages that have not been consumed yet.
They are particularly useful in combination with the pull model. Method clear() allows to purge the message buffer.

150 /** Size */
151
152 /**
153 * Returns true if this DAC contains no messages.
154 * This indicates if any messages have not been consumed yet.
155 */
156 public boolean isEmpty();
157
158 /**
159 * Returns the number of elements in this collection.
160 * This indicates the number of messages that have not been consumed yet.
161 */
162 public int size();
163
164 /**
165 * Clear this DAC.
166 * @see java.util.Collection
167 */
168 public void clear();
169

These last standard methods are used to browse the message buffer backing this DAC instance. In combination with the
pull model they allow to retrieve several values at a time.

170 /** Buffer */
171
172 /**
173 * Returns an iterator over the messages for this DAC.
174 * @return An iterator
175 * @see java.util.Collection
176 * @see java.util.Iterator
177 */
178 public java.util.Iterator iterator();
179
180 /**
181 * Returns an array containing all the messages.
182 * @return An array
183 * @see java.util.Collection
184 */
185 public Object[] toArray();
186
187 /**
188 * Returns an array containing all of the messages in this DAC
189 * whose runtime type is that of the specified array.
190 * @param a An array with the given runtime type
191 * @return An array of same type
192 * @see java.util.Collection
193 */
194 public Object[] toArray(Object[] a);
195
196 }

A.2 Interfaces for Subscribing

Below are further interfaces used for subscribing. Interface Subscriber is used for the callbacks from the DAC. The
contains() method is called by the DAC whenever a message corresponding to the subscription criteria is received.

1 package DACE;
2
3 public interface Subscriber {
4
5 /**
6 * Callback method for delivery of messages
7 * @param message The incoming message
8 * @param topicName The precise associated topic name
9 */
10 public void contains(Object message,
11 String topicName);
12 }

Interface Condition is used to express subscription patterns. An object implementing that interface must be passed to
the DAC upon subscription in order to benefit from content-based publish/subscribe (e.g., by a call to method contains()
on line 51, Appendix A.1). The condition object will be querried to evaluate whether a message should be delivered to the
associated subscriber. Appendix A.3 shows an implementation example.

1 package DACE;
2
3 public interface Condition {
4
5 /**
6 * Query whether the message should be delivered
7 * @param message The message that must be matched
8 * @param topicName The precise name of the topic
9 * @return True if the message should be delivered
10 */
11 public boolean add(Object message,
12 String topicName);
13 }

The Accessor interface is used in combination with the previous interface for content-based publish/subscribe. Through
the add() method an accessor object gives access to a partial information on the object passed as argument. An example is
given in Appendix A.4.

1 package DACE;
2
3 public interface Accessor {
4
5 /**
6 * Get a component of the message.
7 * @param message The message object
8 * @param topicName The precise name of the topic
9 * @return The component of the message object
10 */
11 public Object get(Object message,
12 String topicName);
13 }

A.3 Equals Class

In the following we present the Equals condition class introduced in Section 4.2.
1 package DACE.Conditions;
2
3 import DACE.*;
4 import DACE.Conditions.*;
5 import DACE.Accessors.*;
6
7 public final class Equals implements Condition {
8

These are the arguments of this equality condition. The accessor object, denoted by invoke, is applied (if not null) to
a message object, in order to compare the returned value to to. The result is matched against requiredResult.
9 private Accessor invoke = null;
10
11 private Object to = null;;
12
13 private boolean requiredResult = true;
14

This first constructor is used to express an equality requirement between runtime message objects and the object given as
argument. The second argument indicates the needed result of the comparison.
15 /**
16 * Indicate whether a message object is equal to a given object.
17 * @param to Object the message object is compared to.
18 * @param requiredResult What the result of the comparison should be
19 */
20 public Equals(Object to,
21 boolean requiredResult) {
22
23 this.to = to;
24 this.requiredResult = requiredResult;
25 }
26

This constructor allows to put an equality restriction only on a return value of a method of the message objects. This
variant accepts only methods without arguments (pure accessor) to be called. The method name is given as URL-like string
(see Section B.1). Nested method calls can be expressed as well. Accessors are created implicitly: the accessor for the first
method (that will be called on the message object) is created on line 48, while nested accessors are created and connected on
line 50.
27 /**
28 * Indicate whether a message object is equal to a given object.
29 * If the object is the message itself: name = "";
30 * If the object is returned by a method call: name = "<I>method-name</I>";
31 * Recursively: name = "<I>method1-name/.../methodn-name</I>"
32 * @param name Name of the argument-less method(s)
33 * @param to Object the message object is compared to.
34 * @param requiredResult What the result of the comparison should be
35 */
36 public Equals(String name,
37 Object to,
38 boolean requiredResult)
39 throws InitializationException {
40
41 this(to, requiredResult);
42 if (name == null)
43 throw new InitializationException("Missing name");
44 String[] names = Utils.getNames(name);
45 if (names.length != 0) {
46 Accessor nested = new Invoke(names[0], null);
47 for (int i = 1; i < names.length; i++)
48 nested = new Invoke(nested, names[i], null);
49 this.invoke = nested;
50 }
51 }
52

This variant differs from the previous one by allowing to specify methods with argument lists.

53 /**
54 * Indicate whether a message object is equal to a given object.
55 * The name of the method: name = "<I>method-name</I>";
56 * Recursively: name = "<I>method1-name/.../methodn-name</I>"
57 * @param name Name of the method(s)
58 * @param params A list of arguments for each method call
59 * @param to Object the message object is compared to.
60 * @param requiredResult What the result of the comparison should be
61 */
62 public Equals(String name,
63 Object[][] params,
64 Object to,
65 boolean requiredResult)
66 throws InitializationException
67
68 {
69 this(to, requiredResult);
70 if (name == null)
71 throw new InitializationException("Missing name");
72 String[] names = Utils.getNames(name);
73 if (names.length != params.length)
74 throw new InitializationException("Wrong number of argument lists");
75 if (names.length != 0) {
76 Accessor nested = new Invoke(names[0], params[0]);
77 for (int i = 1; i < names.length; i++)
78 nested = new Invoke(nested, names[i], params[i]);
79 this.invoke = nested;
80 }
81 }
82

This variant is based on explicit accessor creation. It offers the same functionality than the previous constructor. The main
difference remains in the way a method is specified. The previous constructor uses the method name, while it is possible with
accessors to specify methods as objects. Appendix A.4 elucidates the difference in more detail through a sample accessor.

83 /**
84 * Indicate whether a message object is equal to a given object.
85 * @param obj Accessor object that returns a component of the message
86 * @param to Object the message object is compared to.
87 * @param requiredResult What the result of the comparison should be
88 */
89 public Equals(Accessor obj,
90 Object to,
91 boolean requiredResult)
92 throws InitializationException
93
94 {
95 this(to, requiredResult);
96 this.invoke = obj;
97 }
98

These following methods give access to the attributes of the condition. They are needed by the equals() method, to
compare two instances of this class.
99 /**
100 * @return The required result for this condition.
101 * @see equals
102 */
103 boolean getRequiredResult() { return requiredResult; }
104

105 /**
106 * @return The accessor object for this condition.
107 * @see equals
108 */
109 DACE.Accessor getAccessor() { return invoke; }
110
111 /**
112 * @return The object to compare to.
113 * @see equals
114 */
115 Object getTo() { return to; }
116

The add() method is called whenever this condition should be evaluated for a message. It returns true if the message
satisfies the runtime condition expressed by this instance of Equals. If an accessor exists, it is evaluated first (the nested
accessors, if any, are recursively invoked).

117 /**
118 * Query whether the message should be delivered
119 * @param message The message that must be matched
120 * @param topicName The precise name of the topic
121 * @return True if the message should be delivered
122 * @see DACE.DAC
123 */
124 public boolean add(Object message,
125 String topicName)
126
127 {
128 Object returnObj = null;
129 if (invoke == null)
130 return (message.equals(to) == requiredResult);
131 else
132 returnObj = (invoke.get(message, topicName));
133 if (returnObj == null)
134 return false;
135 else
136 return (returnObj.equals(to) == requiredResult);
137 }
138

This method compares two instances of this class for equality. When optimizing condition evaluation, this method permits
to avoid the evaluation of redundant conditions.
139 /**
140 * Indicate whether an object is equal to this Condition.
141 * Overrides the standard implementation, makes a recursive test.
142 * @param to Object this Condition is compared to.
143 * @return Result of the comparison
144 */
145 public boolean equals(Object to)
146
147 {
148 try {
149 Equals other = (Equals)to;
150 return (requiredResult == other.getRequiredResult()
151 && to.equals(other.getTo())
152 && invoke.equals(other.getAccessor()));
153 } catch(java.lang.ClassCastException cce) {
154 /* Object is not of same class */
155 return false;
156 }
157 }
158
159 }

A.4 Invoke Class

Below we list the Invoke accessor class which allows to obtain partial information on a message through its methods in
order to express conditions only on parts of the messages.

1 package DACE.Accessors;
2
3 import java.lang.reflect.*;
4 import java.util.*;
5 import DACE.*;
6
7 public final class Invoke implements Accessor
8
9 {
10

These are the arguments of this accessor. A method can either be represented by its name (methodName), or a method
object (method). If this accessor represents a method call with arguments, args will be initialized. A possible nested
method call is represented by a reference to the corresponding accessor (nested).

11 private String methodName = null;
12
13 private Method method = null;
14
15 private Object[] args = null;
16
17 private Accessor nested = null;
18

This first constructor allows to specify a method by its name, along with a list of arguments, which can be empty.

19 /**
20 * Constructor for one method given by name.
21 * @param methodName The name of the method.
22 * @param args The arguments for the call. Can be null.
23 */
24 public Invoke(String methodName,
25 Object[] args)
26 throws InitializationException
27
28 {
29 if (methodName == null || methodName.length() == 0)
30 throw new InitializationException("No method name specified");
31 this.methodName = methodName;
32 this.args = args;
33 }
34

To use this constructor, the application must use reflection explicitly.

35 /**
36 * Constructor for one method given by reference.
37 * Attention! The class of the method must be the class
38 * of the runtime message.
39 * @param method The method object.
40 * @param args The arguments for the call. Can be null.
41 */
42 public Invoke(Method method,
43 Object[] args)
44 throws InitializationException
45
46 {
47 if (method == null)
48 throw new InitializationException("Method object null");
49 this.method = method;
50 this.methodName = method.getName();
51 this.args = args;
52 }
53

Constructor for nested method calls. The corresponding method names are given by a URL-like string (first argument).

54 /**
55 * Constructor for nested methods given by names.
56 * @param methodNames The names of the methods.
57 * @param args The arguments for the calls.
58 */
59 public Invoke(String methodNames,
60 Object[][] args)
61 throws InitializationException
62
63 {
64 String[] names = Utils.getNames(methodNames);
65 if (names.length == 0)
66 throw new InitializationException("No methods specified");
67 if (args == null)
68 throw new InitializationException("Received null arguments");
69 if (names.length != args.length)
70 throw new InitializationException(
71 "Unequal number of methods and argument lists");
72 this.methodName = names[names.length - 1];
73 this.args = args[names.length - 1];
74 Object[] nestedArgs = new Object[names.length - 1];
75 String[] nestedNames = new String[names.length - 1];
76 System.arraycopy(args, 0, nestedArgs, 0, nestedArgs.length);
77 System.arraycopy(names, 0, nestedNames, 0, nestedNames.length);
78 nested = new Invoke(Utils.getURL(nestedNames), nestedArgs);
79 }
80

The next constructor gives the possibility to use nested accessors. The method associated to this accessor is specified by
its name. Note that the nested accessor(s) can be specified by name or by using directly reflection.

81 /**
82 * Constructor for nested methods. Add one by name.
83 * @param methodName The name of the method.
84 * @param args The arguments for the call.
85 */
86 public Invoke(Accessor nested,
87 String methodName,
88 Object[] args)
89 throws InitializationException
90
91 {
92 this(methodName, args);
93 this.nested = nested;
94 }
95

This constructor gives the possibility to use nested accessors as well, but the method represented by the top-level accessor
is specified by a method object. Again, the nested accessor(s) can be specified by name or by using directly reflection.

96 /**
97 * Constructor for nested methods. Add one by reference.
98 * Attention! The class of the method must be the class
99 * of the runtime message.
100 * @param method The method object.
101 * @param args The arguments for the call.
102 */
103 public Invoke(Accessor nested,
104 Method method,
105 Object[] args)
106 throws InitializationException
107
108 {
109 this(method, args);
110 this.nested = nested;
111 }
112

As explained in Section 4.2.2, an accessor object is evaluated on an object (message) through this method. The method
associated to an accessor can be either given by its name or by a reference to the Method object. In the first case, a reference
to the method object will be obtained at runtime in the beginning of the evaluation of this accessor (line 137). This requires
that the runtime message object implements a method of that name with a signature corresponding to the arguments list. In
the latter case, the method object, which is bound to a class, is already given. This expresses an implicit restriction on the
type of the runtime message objects.

At line 125, the nested accessor (if any) is evaluated first. Lines 130 to 138 are necessary to get the method object with the
signature corresponding to the argument list (if this accessor was initialized with a method name). At line 139, the method is
finally invoked.

113 /**
114 * Get a component of the message.
115 * @param message The message object.
116 * @param topicName The precise name of the topic.
117 * @return The component of the message object.
118 */
119 public Object get(Object message,
120 String topicName)
121
122 {
123 Object returnObject = null;
124 if (nested != null) {
125 Object msg = nested.get(message, topicName);
126 message = msg;
127 }
128 try {
129 if (method == null && message != null) {
130 Class[] argsClasses = null;
131 if (args != null && args.length != 0) {
132 argsClasses = new Class[args.length];
133 for (int i = 0; i < argsClasses.length; i++) {
134 argsClasses[i] = args[i].getClass();
135 }
136 }
137 method = message.getClass().getMethod(methodName, argsClasses);
138 }
139 returnObject = method.invoke(message, args);
140 } catch (NoSuchMethodException nsme) {
141 /* This method does not exist */
142 } catch (InvocationTargetException ite) {
143 /* Exception while invoking method */
144 } catch (IllegalAccessException iae) {
145 /* Class method may not be called */
146 } catch (IllegalArgumentException iae) {
147 /* Wrong signature for method call */
148 } catch (SecurityException se) {
149 /* Problem with SecurityManager */
150 } catch (Exception ex) {
151 /* Other problem */
152 ex.printStackTrace();
153 }
154 return returnObject;
155 }
156

These following methods give access to the attributes of the accessor. They are needed by the equals() method below,
to compare two instances of this class.

157 /**
158 * @return The method name.
159 * @see equals
160 */
161 String getMethodName() { return methodName; }
162

163 /**
164 * @return The arguments associated to the method.
165 * @see equals
166 */
167 Object[] getArgs() { return args; }
168
169 /**
170 * @return The nested accessor if any.
171 * @see equals
172 */
173 Accessor getNested() { return nested; }
174
175 /**
176 * @return The method object if any.
177 * @see equals
178 */
179 Method getMethod() { return method; }
180

This method compares two instances of this class for equality. When optimizing condition and accessor evaluation, this
method permits to avoid the evaluation of redundant accessors.

181 /**
182 * Indicate whether an object is equal to this Accessor.
183 * Overrides the standard implementation, makes a recursive test.
184 * @param to Object this Accessor is compared to.
185 * @return Result of the comparison
186 */
187 public boolean equals(Object to)
188
189 {
190 try {
191 Invoke other = (Invoke)to;
192 Object[] otherArgs = other.getArgs();
193 boolean argsEqual = true;
194 if (args == null || args.length == 0)
195 argsEqual = (otherArgs == null || otherArgs.length == 0);
196 else if (args.length != otherArgs.length)
197 argsEqual = false;
198 else
199 for(int i = 0; i < args.length; i++)
200 if (!args[i].equals(otherArgs[i]))
201 argsEqual = false;
202 return (methodName.equals(other.getMethodName())
203 && nested.equals(other.getNested())
204 && argsEqual);
205 } catch(java.lang.ClassCastException cce) {
206 /* Object is not of same class */
207 return false;
208 }
209 }
210
211 }

Appendix B Putting DACs to Work

B.1 Programming with DACs

We describe here a simple example application using
the flexibility of Distributed Asynchronous Collections. It
shows how to implement chat sessions based on simple
DACs. The complete code is given in Appendix B.2.

We will concentrate on two users, Alice and Tom. They
are both chat addicts, and love to chat deep into the night.
Therefore they subscribe to the topic “Insomnia” which is a
subtopic of “Chat” to receive all messages from like-minded
chatters (see Figure 23). For the sake of simplicity, we will
assume that this evening Tom is missing inspiration, and
therefore takes a pure subscriber role. Alice on the other
hand, is very talkative, and publishes several messages. Fig-
ure 24 shows class ChatMsg, which represents a possible
message class for this application.

/Chat/Insomnia

 (2) add(msg) (3) contains(msg)(1) contains(...)

Alice Tom

P S Subscribe

Deliver

Publish

Publisher

Subscriber

P

S

Figure 23. Chatters

public class ChatMsg
implements java.io.Serializable

{
private String sender;
private String text;
public String getSender() { return sender; }
public String getText() { return text; }
public ChatMsg(String sender, String text) {

this.sender = sender; this.text = text; }
}

Figure 24. Event Class for Chat Example

B.1.1 Publishing for a Topic

When making use of topic-based publish/subscribe, a topic
is represented by a DAC, as seen previously. In order to ac-
cess a DAC from a process, a proxy must be created. This
requires an argument denoting the name of the topic it bears.
Except for that argument, the action of creating a proxy is
indistinguishable from creating a local collection. The DAC

instance called mychat in Figure 25 henceforth allows us to
access the topic “/Chat/Insomnia”. Now it is possible to di-
rectly publish and receive messages for the topic associated
to that DAC.

Creating an event notification for a topic consists in in-
serting a message object into the DAC by issuing a call to
the add()method (see Section 4), from where it is accessi-
ble for any party. It is more favourable for consumers to be
notified automatically when a new message has been pub-
lished, than to waste computation time on polling activity.
For that purpose, a party interested in a topic can register as
subscriber.

DASet mychat =
new DAStrongSet("/Chat/Insomnia");

String me = "Alice";
ChatMsg msg = new ChatMsg(me, "Hi everyone");
mychat.add(msg);

Figure 25. Publishing a Message

B.1.2 Topic-Based Subscribing

In order to subscribe to a topic an interested party must pro-
vide a callback object implementing the Subscriber in-
terface (see Appendix A.2). The callback method comprises
two arguments. The first argument represents the effective
message, and the second argument represents the name of
the topic the message was published for. This provides more
flexibility, since the same subscriber object can be used to
receive messages related to several topics. In the above ex-
ample, a subscriber may be interested in all ongoing chat
sessions, and not only in “Insomnia”. Our solution offers
several ways to subscribe to a topic, specifying different ar-
guments or constraints. Figure 23 shows the interactions
with the DAC, and Figure 26 shows the corresponding code
for a subscriber.

class ChatSubscriber
implements Subscriber

{
public void contains(Object msg, String topic) {
System.out.println(((ChatMsg)msg).getText());

}
}

DASet sleeplessChatters =
new DAStrongSet("/Chat/Insomnia");

Subscriber sub = new ChatSubscriber();
sleeplessChatters.contains(sub);

Figure 26. Topic-Based Publish/Subscribe with DACs

DASet sleeplessChatters =
new DAStrongSet("/Chat/Insomnia");

Condition onlyAlice =
new Equals("/getSender", "Alice", true);

Subscriber sub = new ChatSubscriber();
sleeplessChatters.contains(sub, onlyAlice);

Figure 27. Content-Based Pub/Sub with DACs

B.1.3 Content-Based Subscribing

When choosing pure topic-based subscription mode, only
a callback object is required. As mentioned in Section 3,
DACs enable to combine for instance topic-based and
content-based subscribing. This offers more flexibility than
pure topic-based publish/subscribe, by allowing more dy-
namically defined constraints, which delineate the messages
the applications are instantaneously interested in.

In order to benefit from this advanced feature, the ap-
plication programmer must provide a condition object as
revealed in Section 4. That object will evaluate for every
received message, whether it matches the requirements or
not. The condition object, to which the decision of delivery
is delegated, can also be implemented by the application
programmer. In this example however, we make use of a
predefined condition object.

Figure 27 shows a simple example of content-based pub-
lish/subscribe. Suppose that Tom is only more interested in
what Alice has to say, and defines a corresponding condi-
tion. This example uses implicit accessor creation, as ex-
plained in Section 4.2. Note the analogy between the string
representing the topic, and the string representing the ac-
cess to the message object. An even better illustration of
the similarity between the two key types can be found on
line 53 in Appendix B.2.

accessor:
Accessor

onlyAlice:
Equals

method:
Method

msg:
Chatmsg

add(msg)

get(msg)
invoke(msg,
 arg)

getSender()

sender:
String

equals(to)

(1)

(2)

(3)

(4)

(5)

Figure 28. Evaluation of a Condition

Figure 28 shows the runtime matching of the condition
object with a message (1). The accessor representing the
call of method getSender() is evaluated, which results
in the invocation of that method (3) on the message object
(4). If latter object is not of the class corresponding to the
method object, an exception is generated. Otherwise the
string returned by the invocation is compared to the value
that was given upon the creation of the Equals condition
object (5).

B.2 Complete Chat Code

In the following we reveal the complete code for the chat example given in the paper. In this extended version, the
subscriber is interested only more in what a particular participant says about him/her.

1 package DACE.Examples.Chat;
2

The ChatMsg implements a message that is exchanged between chat participants. The message bears a text
stored in a conventional string and a second string representing the sender of the message. It implements the
java.io.Serializable, which enforces standard java serialization. This class must be in a separate file, in order
to allow dynamic invocations of its methods when using reflection in the context of content-based subscribing.
3 public class ChatMsg implements java.io.Serializable {
4
5 private String sender;
6 private String text;
7
8 public String getSender() { return sender; }
9 public String getText() { return text; }
10
11 public ChatMsg(String sender,
12 String text)
13
14 {
15 this.sender = sender;
16 this.text = text;
17 }
18 }
19

Class ChatPublisher declares a runnable object, which querries the chat participants standard input for messages to
publish. It will be run in a dedicated thread.
3 import DACE.*;
4 import DACE.Conditions.*;
5 import java.io.*;
6
7 class ChatPublisher implements Runnable {
8
9 private DAC topic;
10 private String sender;
11
12 public ChatPublisher(DAC topic, String sender)
13
14 {
15 this.topic = topic;
16 this.sender = sender;
17 }
18
19 public void run()
20
21 {
22 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
23 for (;;) {
24 try{
25 String toSay = null;
26 toSay = br.readLine();
27 if (toSay != null) {
28 ChatMsg msg = new ChatMsg(sender, toSay);
29 System.out.println(sender + " says " + toSay);
30 topic.add(msg);
31 }
32 } catch(java.io.IOException ioe) {
33 }
34 }
35 }
36 }
37

The ChatSubscriber class defines the callback object, that will be registered with the DAC, and therefore implements
the Subscriber interface (Appendix A.2). This subscriber wishes to henceforth only more receive messages from a
specific sender (condition onlyFrom, line 49) and which mention his/her name (aboutMe, line 53). Latter condition is
expressed by evaluating the method indexOf() of the string representing the text. If the string given as argument (the
subscribers name) is contained in the text, a value different from -1 is returned.
38 class ChatSubscriber implements DACE.Subscriber {
39
40 ChatSubscriber(DAC topic,
41 String me,
42 String from)
43 {
44 Condition finalCond = null;
45 Condition onlyFrom = null;
46 Condition aboutMe = null;
47 try {
48 /* We only want messages from ’from’ */
49 onlyFrom = new Equals("/getSender", from, true);
50 /* We only want messages concerning ourself, i.e., the text contains ’me’. */
51 /* In other words, the method ’indexOf()’ has to return something != -1. */
52 Object[][] params = {null, {me}};
53 aboutMe = new Equals("/getText/indexOf", params, new Integer(-1), false);
54 Condition fromAboutMe = new And(onlyFrom, aboutMe);
55 topic.contains(this, fromAboutMe);
56 } catch (InitializationException iex) {
57 iex.printStackTrace();
58 }
59 }
60
61 public void contains(Object o,
62 String topicName)
63 {
64 try {
65 ChatMsg msg = (ChatMsg)o;
66 System.out.println("Message from " + msg.getSender() + " : " + msg.getText());
67 } catch (ClassCastException ccex) {
68 }
69 }
70 }
71

The main() clause of the chat client performs three operations. It first creates a DAC (proxy) for the chat topic given as
first argument, before a subscriber object is created, which registers itself with the DAC. Finally, a publisher object is created
as well as a thread to execute it.
72 public class ChatClient {
73
74 public static void main(String[] args)
75
76 {
77 if (args.length != 3) {
78 System.err.println("ChatClient <topic> <participant> <person of interest>");
79 System.exit(0);
80 }
81 String chatTopicName = new String("/Chat/" + args[0]);
82 DASet chatTopic = null;
83 try {
84 chatTopic = new DAStrongSet(chatTopicName);
85 } catch (InitializationException ie) {
86 ie.printStackTrace();
87 System.exit(-1);
88 }
89 Subscriber chatSubscriber = new ChatSubscriber(chatTopic, args[1], args[2]);
90 publisherThread = new Thread(new ChatPublisher(chatTopic, args[1]));
91 publisherThread.start();
92 }
93 }

