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Abstract

Alternative Best-E�ort (ABE) is a novel service for IP networks which o�ers
applications the choice between receiving a lower end-to-end delay and receiving
more overall throughput. Every best e�ort packet is marked as either green

or blue. Green packets receive a low, bounded queueing delay. To ensure blue
packets do not su�er as a result, green 
ows receive less throughput during bouts
of congestion.

The unique combination of lower delay with reduced throughput for green
makes it di�erent from recent di�erentiated service proposals such as expedited
forwarding [19] and assured forwarding [21]. The incentive to choose one or other
is based on the nature of one's tra�c and on tra�c conditions. Typically, green

ows have real-time deadlines (e.g. interactive audio), while blue tra�c (e.g.
bulk data transfer) seeks to minimise overall transfer time. There is bene�t for
all tra�c in that green tra�c achieves a low delay and blue tra�c will receive
at least as much throughput as it would in a 
at best-e�ort network and usually
more. Neither tra�c type can be said to be better, thus 
at rate pricing may be
maintained, and there is no need for reservations or pro�les.

We �rst describe the ABE service. We then describe and simulate a �rst
generation router implementation. It combines packet drop di�erentiation with
di�erential scheduling for blue and green packets. Green packets have a �xed
bounded delay. Di�erential dropping is done by ensuring blue 
ows are compen-
sated for the increased delay by higher throughput. Given these constraints, the
parameters of the system are regulated to minimise green losses. Simulations
show that our implementation is able to implement our de�nition of the ABE
service.
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1 Introduction

We present a new IP service, Alternative Best-E�ort (ABE)1. The goal of ABE is
(1) to provide a low queueing delay service and (2) to operate in best e�ort mode,
requiring no usage control. The �rst requirement is for applications with stringent
real time constraints, such as interactive audio. The second requirement is an attempt
to maintain the simplicity of the original Internet. With ABE, it is not required to
police how much tra�c uses the low delay capability; as explained below, the service
is designed to operate equally well in all tra�c scenarios.

ABE is designed primarily for rate-adaptive multimedia applications. These are
applications that adapt to network state: the rate is reduced when negative feedback
is received, and increased with positive feedback. In today's Internet, feedback is
based on packet drop. In the future, binary feedback based on Explicit Congestion
Noti�cation (ECN) [23] will be used. We assume, as is required in the Internet, that
rate adaptation is performed such that the application is TCP-friendly [8], namely, it
does not receive more throughput than a TCP 
ow would. It is now established that
it is possible to implement adaptive multimedia applications, which perform across a
wide range of network conditions [24, 25]. In this context, the key idea of ABE is to
provide low-delay at the expense of maybe less throughput. As discussed below, this
second point is fundamental in ensuring that ABE requires no usage control.

ABE operates as follows. Best e�ort IP packets are partitioned into either low
delay packets, called green packets, and other best e�ort packets, called blue packets.
The choice of the terms \blue" and \green", two primary colours of equal value, is to
indicate that none of the two has priority over the other, while \green", the colour
of the tra�c light signal for \go", indicates low queueing delay. Green packets are
given the guarantee of a low bounded delay in every router. In exchange, these packets
receive more losses during bouts of congestion than blue packets. If ECN is used, then
green packets are more likely to be marked with the congestion bit than blue packets.
For simplicity, in the rest of the document we consider only non ECN-capable systems.
Nevertheless, ABE is equally valid, and indeed would work even better with ECN.

A key requirement on the service is that \green does not hurt blue", namely, if some
sources send green rather than blue packets, there should be no negative impact on
the throughput of those sources which remain blue. In particular, an entirely blue 
ow
receives at least as good average throughput as it would in a 
at best-e�ort network i.e.
if all packets were blue. As a result, there is bene�t to all: if some application decides
to mark some packets green, then it must do so because it values the low delay more
than a potential decrease in throughput; otherwise, it would mark the packets blue.
In all cases, there is no penalty for other applications, which might choose to mark all
their packets blue. Thus, it is not required to police the colour chosen by applications,

1For clarity of purpose, the name is changed from the original \Asymmetric" Best-E�ort.
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provided they are TCP-friendly. The enforcement of friendliness [10, 9] is outside the
scope of this paper. Flat rate charging may be applied if the marketing department
so decides. We leave for future discussion the issue of how to mark packets (while
noting that the di�erentiated services framework leaves enough room for supporting
the marking of ABE packets).

The value of the delay bound o�ered to the green service depends on how many
hops are used by one 
ow. The exact setting of the green per-hop delay bound is the
object of companion work and is outside the scope of this paper. It su�ces to mention
here that we expect ABE routers to be implemented at network peripherals, where bit
rates are of the order of a few Mb/s or less. At very high bit rates, queueing delays
are in general expected to be lower and high speed backbones probably will not need
any delay di�erentiation. Thus a multimedia 
ow probably uses a small number (2 to
6) of low speed hops. An interactive audio application has a delay budget of 100-150
msec, out of which 50 msec may be allocated to network delay. As a result, we expect
the green per-hop delay bound to be set to a value of the order of 5 to 10 msec.

In Section 3 we describe the ABE service model and discuss its properties. We also
discuss some possible marking strategies for applications. Note that ABE addresses a
di�erent market than di�erentiated or integrated services. Unlike these services, ABE
does not o�er any guarantee, or even indication of guarantee, on throughput. A highly
loaded network o�ering ABE will give little throughput to all best e�ort 
ows, no
matter whether green or blue. However, ABE enables a moderately loaded network
to o�er low delay to some applications (typically, adaptive multimedia applications),
as long as such applications are satis�ed with the throughput they receive. We expect
traditional, byte transfer oriented applications to use only blue packets. More detail
on this point is given in Section 3. The design of a multimedia adaptive application
that would exploit the new degree of freedom o�ered by ABE is outside the scope of
this document.

As mentioned previously, enforcement of TCP-friendliness is outside this paper's
scope. ABE neither makes worse nor improves the enforcement problem. Work is on-
going to de�ne a router implementation which combines TCP friendliness enforcement
with support for ABE.

In Section 4, we consider the issue of implementing support for ABE in routers. We
identify generic router requirements, and then propose one possible implementation.
It is based on the combination of a deadline based scheduler and a di�erential active
queue manager called the packet admission control (PAC) module. The PAC module
uses Random Early Detection (RED) [14]. It seeks to minimise green losses subject to
the constraint that losses must be su�cient to ensure the throughput of blue 
ows is
protected. A unique feature of our implementation is that it incorporates a control loop
in order to solve the problem of an optimal tuning of the PAC parameters. Our ABE
router implementation is performed in the ns simulation environment, and is publicly
available. The mathematical details of our implementation are given in Appendix A.

In Section 5 we provide some simulation results for this implementation. In practice,
achieving the strict de�nition of ABE is hard under all circumstances, and we have yet
to prove that our router implementation of ABE de�nitively satis�es this. However,
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under all the awkward circumstances we were able to test it under, it provided more
throughput to blue than under a 
at best-e�ort network while giving a low bounded
delay to green.

2 Related Work

Within the framework of di�erentiated services, Expedited Forwarding [19, 20] (EF)
o�ers a guaranteed service in the form of a virtual leased line or point-to-point con-
nection to provide extremely low loss and low queueing delay guarantees. In the same
framework, Assured Forwarding [21](AF) o�ers an assurance that IP packets are for-
warded with high probability as long as the aggregate tra�c entering the network from
an edge does not exceed an agreed pro�le. It divides AF tra�c into classes within each
there are distinct levels of drop precedence. The authors suggest that an AF PHB (Per
Hop Behaviour) group could be used to implement a low delay service where low loss is
not an objective, by allocating an AF class with a low maximum bu�er space available.
SIMA [26] o�ers applications the choice of a level (0-7) of how \real-time" its tra�c is,
with each level having relatively lower delay and loss ratio than the previous one.

Crowcroft [2] proposed a low delay service, analysed by May et al [17], where desire
for low delay is distinguished by a single bit. Turning on this bit ensures that the
packet receives serving priority while constrained to a smaller bu�er size. Depending
on the input tra�c and the bu�er sizes of both types of tra�c, this may or may not,
but typically would, result in the low delay tra�c also having more throughput.

Dovrolis et al [22] and Moret and Fdida [18] both describe a system based on a
proportional distribution model, where the quality between classes of tra�c is propor-
tional and thus can be performed independently of the load within each class. They
both propose controlling the relative queueing delays between classes. The former pro-
poses the problem of proportional distribution of coupled delay and loss di�erentiation
as future work. ABE trades-o� delay with throughput, and thus, in a non-ECN based
context, loss. This is not the same as coupling, which seeks to ameliorate both.

All the services described above are priority in one form or another. If one's tra�c
is non adaptive such that guaranteed low delay, high throughput and low probability of
loss are needed, then priority over and above standard best-e�ort is the only solution.
Priority schemes are complementary to ABE which does not provide any throughput
guarantees. In contrast, what ABE adds is a new dimension in the best-e�ort class to
the bene�t of all within that class.

3 The ABE Service

3.1 Service Requirements

ABE is an Internet service de�ned by the following set of requirements.

1. ABE packets are marked either green or blue.
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Figure 1: A possible strategy for a multimedia source using the ABE service.

2. Green packets receive a low, bounded delay at every hop. The value of the per-
hop delay bound is left to the operator. As discussed in the introduction, the
choice of \good" values is for further study.

3. Applications are expected to control their rate in a TCP-friendly manner. Blue
and green packets are considered as belonging to the same 
ow, not two distinct

ows.

4. (\Transparency to Blue") If some sources decide to mark some of its packets green
rather than blue, then the throughput of sources that mark all their packets blue
remains the same or becomes better.

5. All ABE packets belong to one single best e�ort class. If the total load is high,
then every source may receive little throughput. However, entirely green sources
may experience less throughput than entirely blue sources sharing the same net-
work resources.

In Section 4 we discuss a router implementation of the service.

3.2 Source Aspects

ABE is intended to provide a low delay service for multimedia, rate-adaptive applica-
tions. We discuss now a very simple scenario, in order to illustrate the ABE service.

Figure 1 shows a simple simulation where a multimedia source competes with n
background sources for one bottleneck. The other sources are all blue. Assume the
source has a required minimum rate R0 in order to function properly, for a given
loss pattern in the network. The rate R0 is shown by the horizontal dashed line. Also
assume that the source is able to forward-correct packet losses, as long as the minimum
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rate is achieved (see [24] for such an application example; note that this would not be
needed if ECN was used). Then, the source is able to mark its packets green in the low
load region shown. In this region, the source may also mark its packets blue, in which
case it will receive more throughput. The choice between green or blue is left to the
application. It depends on its utility function u(R;D), for a given throughput R and
end-to-end network delay D. In many situations today throughput (or equivalently
packet drop) is the major impediment. However, once a minimum rate R0 is achieved
which provides enough intelligibility, delay becomes the major impediment. Thus, we
assume that the utility function for our source satis�es (1) u(R;D) = 0 for R < R0

and (2) u(R;D) is a decreasing function of D for R � R0. For this source, the optimal
strategy is to be green in the low load region, blue in the moderate load region, and
to disconnect when the load is too high. This example illustrates that ABE opens up
a new region of operation for the best-e�ort network: in low load scenarios, a source
may decide to obtain less throughput at the bene�t of low delay. In a 
at best e�ort
network, a network without the ABE service, there is no such option. By refraining
from sending at a higher rate, there is in general no impact on the queueing delay,
because of external sources.

Note that this example is oversimpli�ed. In general we expect more complex utility
functions to be used. Note also that the detection of which region the source is currently
operating in has to be made automatically by the source itself.

Unlike the multimedia source above, a source using TCP is probably more interested
in its throughput and should thus mark all its packets blue. This follows immediately
from the de�nition of the service. Intuitively, it is because ARQ protocols such as TCP
are more sensitive to packet loss than to queueing delay, though queueing delay does
have an impact. We will see in Figure 10 on page 28 and Figure 12 on page 28 that a
blue source has a higher throughput than a green one, It will also be shown that the
throughput given to the blue source is higher in the ABE case. The blue source is a
TCP Reno source and the green source uses a transport protocol designed to represent
TCP friendliness which is described in Appendix B.

More realistic sources would probably use a colour mixing strategy, where they
would send some green packets and some blue. This is perfectly permissible and con-
sidered normal practice; in fact, apart from possibly policing TCP-friendliness, the
network supporting ABE does not need to analyse individual 
ows. Source strategies
would typically be performed at the application level as expected by Application Layer
Framing (ALF).

3.3 Global Aspects

The service de�nition implies that introducing ABE has bene�t for all. As illustrated in
the previous section, if a source marks some packets green, then it must do so because
it sees value in low delay. Otherwise, the source should mark the packet as blue, since
a blue packet gets at least the same service as it would in a 
at network.

The \single class" requirement (number 5 on the list of service requirements) makes
sure that no policing of colour marking is required. We see in Figure 1, that in a
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network with a large number of blue sources, a green source receives little throughput.
Conversely, in a network with many green sources, a blue source also receives little
throughput. However, this is not because the green sources are green, but because
there are many of them. If they were blue, the blue source would probably get less
throughput. However, it does get more than if it were green. Lastly, a network where
all sources are blue would probably behave the same as a 
at best e�ort network (this is
at least true with our implementation). Conversely, a network with only green sources
behaves like a 
at best e�ort network with smaller bu�ers.

3.4 Can we replace ABE with destination drop ?

Lastly, we conclude this section by discussing what might appear as an alternative to
ABE. This alternative would consist in having the destination drop all packets that
arrive too late, say after a transit deadline Dobj. Intuitively, this should waste network
resources, since packets are dropped after being carried by the network. We show, at
least on some simulation examples, and for our implementation, that, as long as Dobj

is smaller than the tail of delays obtained for blue packets, it is better to send green
packets. In other words, the throughput reduction due to being green is less than the
throughput reduction due to dropping late packets. Of course, if the delay objective
Dobj is large, then no packet is dropped at the destination, and it is better to mark the
packets as blue.

Figure 2 shows the simulation results. The network consists of 
ows with long and
short round-trip times, which each compete on the same best-e�ort network. The ABE
implementation used is as described in Section 4.2. The curves show the number of
useful packets received by the application as a function of the tolerated deadline Dobj.
If Dobj is less than the end-to-end delay when there is no queueing no useful packets can
be received by the application. After this point the amount of useful packets received
by the application is larger while green until the delay tolerance is su�ciently high.

4 Router Support

In this section we give one possible implementation in routers of the ABE service.
Since there may be many di�erent implementations, we �rst discuss generic router
requirements. We consider only a non-ECN router implementation in this document
(extension to ECN is straightforward).

4.1 General Router Requirements

Requirements on a router implementing ABE are as follows:

1. Provide low, bounded delay to green packets;

2. Provide transparency to blue packets;
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Figure 2: The amount of useful packets received by an application as a function of the
end-to-end delay tolerance Dobj:

3. Drop green packets with higher probability than blue, such that an entirely green

ow gets a lesser or equal throughput than if it were blue;

4. Minimise green packet dropping, subject to the above requirements.

The �rst three requirements directly map from service requirements 2, 4 and 5 in
Section 3. The last requirement is because an implementation should try to minimise
green packet loss, in order to make the service attractive.

As mentioned earlier, we do not consider in this document the task of enforcing
TCP-friendliness. From service requirement 5 in Section 3, the relation between packet
drop ratio and source rate should be enforced independently of packet marking.

4.2 Outline of Our Implementation

We have designed a router implementation of ABE, then implemented and simulated
in ns [16]. Our design is outlined in Figure 3. We use two main modules: a Packet
Admission Control (PAC) module and a scheduler. The PAC module manages the
queue by dropping packets whenever necessary or appropriate, acceptance being biased
in favour of blue packets. It must ensure that su�cient green packets are dropped in
order to prevent blue 
ows from su�ering. The PAC module must not accept green
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Figure 3: Overview of Implementation's Router Support: � and D

packets if they would experience delay greater than a speci�ed bound, which is the
delay guarantee given to green packets by the ABE router.

The PAC controls green packet dropping such that blue tra�c receives as much
throughput as if the network was 
at best-e�ort, while trying to keep these green losses
to a minimum. Let qb and qg be the drop ratio of blue and green tra�c respectively.
The PAC attempts to have the following relation hold,

qg = �qb

where � is a controlled parameter, called the drop bias. The drop bias must �rst provide
a drop disadvantage to green packets (a second purpose appears later in this section).

For simplicity we describe the implementation as though packets were of constant
size rather than considering variable packet sizes. A byte-oriented description will
appear at a later date.

The PAC uses Random Early Detection (RED) [14] to obtain an initial probability
p of dropping a packet. RED is a congestion avoidance mechanism, such that when
the average queue size exceeds a pre-set threshold, the router drops each arriving
packet with a certain probability which is a function of the average queue size. The
modi�cation is as shown in Figure 4. The RED dropping probability p is calculated as
before. If the packet is green, the probability of dropping p is multiplied by �.

RED actually calculates the drop probability in two parts (the second calculated
from an input of the �rst probability and the amount of packets since the last drop)
in order to achieve a more uniform distribution of packet losses. The increase in
probability of loss for green packets is calculated after the second part.

The scheduling is Earliest Deadline First [15]. Each packet is assigned a �nishing
service time deadline, a tag, and the packet currently having the lowest value is served
�rst (i.e. earliest deadline). Each green packet arriving is assigned a �nishing service
time deadline equal to its arrival time now. A blue packet is assigned a time equal to
its arrival time plus the value of the o�set bound D, namely now + D. The goal of
the o�set bound is to limit the delay penalty imposed on blue by our implementation.
This scheduling is more advantageous than an absolute priority scheme which serves
blue packets only if there are no green ones awaiting service. This can prevent service
starvation for blue tra�c. Also, even when service starvation does not occur with
absolute priority, one would be forced to drop a large number of green packets in order
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Figure 4: Summary of PAC Algorithm

to preserve transparency to blue.
The scheduling does impose a delay penalty on blue packets, which reduces through-

put, and contradicts requirement 2. We could have designed an implementation which
simply drops green packets when they cannot be served within the per-hop bound for
green packets. However, the throughput for greens of such an implementation would
be very little, thus contradicting requirement 4 (This is equivalent to our implemen-
tation if D was always 0). We compensate for the delay penalty imposed on blues by
arti�cially reducing their drop rate, done by adjusting the value of the drop bias �.
The determination and behaviour of the minimum � required to provide transparency
for blue in a given network is analysed in Section 4.4. A su�cient � in the general case
is described in Section 4.5.

A green packet is only provisionally accepted at this point. It then undergoes a
second stage dropping acceptance decision. This is to ensure the low delay guarantee
to green is provided. The packet is accepted only if the number of packets in the queue
with a deadline less than the current time is less than some de�ned value L0. This
bounds the queueing delay for green packets to L0=c where c is the capacity of the
output link in packets per second. In this way, if there are only green packets arriving,
the system acts like a 
at best-e�ort network with smaller bu�ers. The queueing delay
for blue packets is at most Ltot=c+D where Ltot is the bu�er size.

The PAC algorithm can now be summarised as follows:

For each packet arrival to output port:

if buffer full

drop packet

else if Blue

drop if queue size > Ltot

if not dropped

drop with random probability p

if still not dropped

deadline = now + D

accept packet
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else Green

drop with random probability p�

if not dropped

if number of packets with a deadline less than now > L0

drop packet

else

deadline = now

accept packet

We now examine how our implementations satis�es the router requirements.

1. Low delay for green is enforced by the PAC; the per-hop delay bound for green
is L0=c where c is the capacity of the output link in packets per second and L0 is
the queue threshold.

2. Transparency to blue packets is obtained by the PAC ensuring that the delay
penalty incurred by blue is compensated by a lower drop ratio. This is imple-
mented by adjusting the o�set bound D and the drop bias �.

3. Higher drop probability for greens is implemented with the PAC, using drop bias
�.

4. Minimising the green drop ratio is performed by the control loop which adjusts
the o�set bound D and the drop bias �.

The queue size Ltot and threshold L0 are �xed, whereas the o�set bound D and the
drop bias � are adjusted automatically, on a slow time scale, by means of the control
loop described in Section 4.3. The question of what drop bias � would be su�cient to
protect blue 
ows is addressed in Sections 4.4 and 4.5.

4.3 Control Loop Description

Let db and dg denote the average queueing delay for blue and green packets respectively.
Let �e be the lowest possible round-trip time of a source through the router, excluding
queueing delays in the router. Hence �g = �e + dg and �b = �e + db. The drop bias �
required to provide transparency to blue is described in Section 4.5, and is given by
Equation (5), which is,

� = max

 
1;

�
� 3b

�g(2� 2g � � 2b )

�2
!

(1)

Thus, � is not a �xed value, since it is a function of the queueing delays db and
dg, which are variable. By responding to measured queueing delay we adapt to the
variations in green and blue tra�c load.

For a given �, the system will not drop exactly � times more green than blue
packets due to the intrinsic randomness in the dropping mechanism, the approximate
modelling used in Equation (5), variations in the input process and green drops which
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occur in the second stage. The actual ratio of green to blue drop ratios may be quite
di�erent from the � computed in Equation (1). This calls for a control loop.

We also control the value of the D, the delay priority given to green 
ows. The
reasons we do so are two-fold. We would like to ensure there are few drops due to
second stage drops (which is caused if D is too low), thus increasing the number of
drops caused by the di�erential loss. Also, we seek to minimise green �rst stage losses
(4th router requirement), and having too high a D results in too many green losses to
protect blue.

Indeed, if D is low, then the delay boost b is low, which in turn makes the required
� low since � is an increasing function of b. This reduces the number of �rst stage
green drops, but can increase the number of second stage drops. A lot of second stage
drops is a symptom of too low a D.

Conversely, if D is high, then b is high, and thus � is high. This may result in
an unnecessarily high number of green losses. The higher the � the lower the average
number of green packets in the queue. To minimise green losses, the number of green
packets in the queue should be maximised as much as possible while avoiding second
stage drops. We control D in such a way as to drive it into this operating region.

The actions required can be be thought of as follows. � should be increased if the
delay boost increases or too many blue packets were dropped in the past. Conversely,
� should be decreased if the delay boost decreases or too many green packets were
dropped in the past. D should be decreased if the number of green packets in the
queue has been small, and increased if there were many second stage drops.

These observations lead us to the following control laws for the parameters. Let q0g
denote the ratio of the number of �rst stage green packet losses to the total number
of green arrivals. Let q00g denote the ratio of the number of second stage green packet
losses to the total number of green arrivals. In this way, qg = q0g + q00g .

To protect blue 
ows we must ensure that Equation (1) holds. This means that
for a measured blue loss ratio qb and delay boost b, the ideal ratio of green �rst stage
losses to green arrivals q

0
�

g is such that we maintain the relationship,

q
0
�

g

qb
� max(1;

�
� 3b

�g(2� 2g � � 2b )

�2

):

So we would like to drive the actual value q0g to be equal to q
0
�

g . This motivates the
following update law for �,

log� log� +K1(log q
0
�

g � log q0g)

for gain parameter K1 > 0 where

q
0
�

g = qbmax

 
1;

�
� 3b

�g(2� 2g � � 2b )

�2
!
: (2)

We now discuss the controlling mechanism for the o�set bound D. Let wl be the
measured average number of packets with a deadline less than now over the time
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interval T1. In the control law, a safety margin � is used to avoid waiting for second
stage losses before increasing D, � being a measure of the tolerance of how close we
allow the green bu�er to being full. Thus we consider �L0 � wl a measure as how
\far" we are from a full queue, or, if negative, how much we have exceeded it by. In
controlling D we would like to ensure q00g ! 0 and wl ! �L0. We arrive at the control
law,

D D +K2(
wl

�L0

� 1) +K3q
00

g

for gain parameters K2; K3 > 0 and � 2 (0; 1]. D is restricted to lie in the range
[0; Dmax], where Dmax is the highest tolerable o�set bound, given by the value beyond
which the system behaves e�ectively as it gave absolute priority to greens. From our
experiments, it was found that � should lie between about 0.4 and 0.6.

We can now describe how this is actualised in the implementation. � and D are
updated after each time interval T1, for some T1. qmb , q

0m
g , q

00m
g , dmg and dmb are the

measured values, in this time period T1, for ratio of blue losses to number of green
arrivals, the ratio of �rst stage green losses to number of green arrivals, the ratio of
second stage green losses to number of green arrivals, the average green queueing delay,
and the average blue queueing delay respectively.

In order not to be too reactive to the instantaneous values of qmb and q
0m
g , we

smooth using an exponentially weighted moving average (EWMA) �lter with parameter

1 2 [0; 1]. dmb and dmg are also smoothed by an EMWA �lter with parameter 
2 2 [0; 1],

and q
00m
g is smoothed by an EWMA �lter with parameter 
3 2 [0; 1]. bm and q

00m
g are

�ltered di�erently to the loss ratios in order to react to higher frequency oscillations in
these signals. We use the measured value of wl without any �ltering.

We now summarise the control action for the nth iteration (i.e. at time nT1):

qb(n) = 
1qb(n� 1) + (1� 
1)q
m
b (n)

q0g(n) = 
1q
0

g(n� 1) + (1� 
1)q
0m
g (n)

q00g (n) = 
3q
00

g (n� 1) + (1� 
3)q
00m
g (n)

db(n) = 
2db(n� 1) + (1� 
2)d
m
b (n)

dg(n) = 
2dg(n� 1) + (1� 
2)d
m
g (n)

�b(n) = �e + db(n)

�g(n) = �e + dg(n)

q
0
�

g (n) = qb(n)max

 
1;

�
�b(n)

3

�g(n)(2�g(n)2 � �b(n)2)

�2
!

�(n) = �(n� 1)

 
q

0
�

g (n)

q0g(n)

!K1

D(n) = D(n� 1) +K2(
wl(n)

�L0

� 1) +K3q
00

g (n)

To start the system, some initial values are required. The choice of these values is
not vital as the system will settle to operating values. qb(0) is chosen to be an initial
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blue loss ratio based on observation e.g. qb(0) = 0:01. q0g(0) is calculated from the
initial qb according to Formula (2) and q00g (0) = 0. D(0) can be chosen to be something
reasonable e.g. D(0) = 0:1. The queueing delay measurements can be chosen to be
dg(0) = 0 and db(0) = D(0)=2.

We are currently investigating methods for the determination of appropriate pa-
rameter settings for the control for a variety of conditions. Optimal settings are not
necessary for the service to work, as it is robust enough. Examples of settings used are
shown in the simulations section, Section 5.2.

4.4 Analysis of Minimum Drop Bias �

We call b (\delay boost"), for an output queue to a link, the di�erence between average
queueing delay for blue packets and for green packets, namely db� dg, for average blue
queueing delay db, and average green queueing delay where dg.

In this section we analyse the drop bias � requirements for a given network for a
given delay boost b.

We �rst describe a method to determine � for a given arbitrary network composed
of a deterministic number of blue and green sources and links. We then show, under an
example but reasonably generic topology, that (i) the minimum � required is dependent
on the relative number of green and blue sources, (ii) the determination of the minimum
� for all 
ows is equivalent to choosing the highest � needed for sources with just one
bottleneck and (iii) the required � increases approximately exponentially as the boost
b increases linearly.

The establishment of (ii) was shown on the example and not in general. This result
also held under simulation tests, but we have yet to prove it de�nitively. Result (iii)
has signi�cance in the engineering of a router's delay advantage to green.

Consider the following abstraction of a general network. It contains L links, a set
of blue sources B and a set of green sources G. Ll is the set of all sources who use
link l. A source s is on link l if s 2 Ll. Assume each source s has a long term rate
of xs and a �xed round-trip time �s. The capacity of each link l is cl. Whenever the
probability of not accepting a blue packet on a link l is p, the probability of rejecting
a green packet is �lp.

Assume a source s responds in an additive increase, multiplicative decrease way
i.e. in the event of no loss in a RTT �s it increases its rate by rs, and responds to loss
detection by decreasing its rate to be � 2 (0; 1) times the previous rate. This behaviour
is a simpli�cation of the congestion response of a TCP 
ow.

We need to use this method of global modelling, rather than using known TCP
equations [6, 7, 3, 4, 1]. Those relate loss rate to throughput for an indiviual source,
with no concept of the number of bottlenecks a 
ow experiences.

Suppose � = �l for all l = 1 : : : L, namely the drop bias is the same on every link.
Then it can be shown that the distribution of long term rates xs can be determined by
the maximisation of the utility function,X

s2B

1

�s
log

xs
rs + �xs

+
1

�

X
s2G

1

�s
log

xs
rs + �xs

(3)

14



nb,l Blue flows with throughput xb,l 
ng,l Green flows with throughput xg,l

Dropping Probability at each router: 
Blue = p 
Green = α * p

α, b α, bc=100 c=100

Dropping parameter: α  
Delay boost:  b

I Links

Text

nb,sBlue flows with throughput xb,s 
ng,sGreen flows with throughput xg,s

nb,sBlue flows with throughput xb,s 
ng,sGreen flows with throughput xg,s

Figure 5: Parking Lot Scenario used in analysis of �.

subject to the link constraints,X
s2Ll

xs � cl l = 1 : : : L: (4)

The derivation, which relies on losses being rare, is an easy consequence of the
results in [13] and [5], and is shown in Appendix C. The restriction that � = �l for all
l = 1 : : : L is of course not true in general. Determining the distribution in this case is
not as simple, and not necessary for the network which we analyse here. When � = 1,
the maximisation results in the 
at best-e�ort distribution of rates.

For a blue source s and a delay boost b, the minimum drop bias �s should be the
smallest value such that:

1. Its throughput with ABE is no less than if the network were 
at best-e�ort. This
ensures router requirement 2 (transparency to blue) is satis�ed. The minimum in
this case, �0

s, is given when both throughputs are the same i.e. it is the solution
to xs(b; �

0

s) = xfs where xs(�
0

s) is the throughput from an ABE network with drop
bias �s and xfs is the throughput the 
ow receives in a 
at best-e�ort network.

2. If the blue source were to become green it would not receive more throughput
(router requirement 3). The minimum in this case, �00

s , is given by the solution
to xs(�

00

s) = x0s(�
00

s) where x
0

s(�
00

s) is the throughput from the ABE network if the
source was green rather than blue.

The minimum drop bias for a source s is thus given by �s = max(�0

s; �
00

s). Note that
in general �0

s � �00

s may not hold, a point illustrated on the parking lot network.
For a given network, the � that protects all blue 
ows at minimum cost to green


ows is given by � = maxs2B �s. Dropping with this drop bias � ensures that all blue

ows receive at least as much as they would if it were a 
at best-e�ort network, while
turning green cannot result in a throughput advantage.
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We now look at the parking lot scenario as depicted in Figure 5. There are I links
each of capacity c. There are nb;l blue 
ows with throughput xb;l and ng;l green 
ows
with throughput xg;l which traverse all links. These are the long 
ows. On each link
there are nb;s blue 
ows with throughput xb;s and ng;s green 
ows with throughput xg;s
which traverse just this link. These are the short 
ows.

When this is an ABE network, the long and short green 
ows have a round-trip
time (RTT) of �g;l and �g;s respectively. The long and short blue 
ows have a round-trip
time of �b;l and �b;s respectively. Let the average extra queueing delay at each link for a
blue 
ow be the delay boost b. Thus, �b;s = �g;s+ b and �b;l = �g;l+ Ib. The assumption
that the drop bias � is the same on each link is valid given that the load on each link is
the same. For the same reason, the delay boost b can also be considered to be the same
on each link. The � su�cient to ensure blues do not su�er is given by max(�l; �s),
where �l and �s are the minimum drop biases for long and short 
ows respectively.

When this network is 
at best-e�ort, � = 1. The round-trip times of the 
ows are
unknown, unless queueing analysis is performed. To bypass this di�culty we consider
all possible values to determine a worse-case �.

Let � = 0:5. The additive increase parameters for a long and short blue 
ow are
given by rb;l and rb;s respectively, and rg;s and rg;s for a long and short green 
ow. Let
rb;l = 1=�b;l, rb;s = 1=�b;s, rg;l = 1=�g;l and rg;s = 1=�g;s. This means the sources react
like a TCP source by decreasing the rate by two in the event of a lost packet, and
increasing their rate accordingly in the event of no loss.

The throughput for the long blue and green 
ows is given by xb;l and xg;l, and by
xb;s and xg;s for the short blue and green 
ows. By maximisation procedures, we can
determine from Equations (3) and (4) that the distribution is given by the solution to
the following equations:

�b;lxb;l(2 + �b;lxb;l)I = �xg;s�g;s(2 + xg;s�g;s)

xg;l =
1

��g;l

�
�� +

q
�(�+ xb;l�b;l(2 + xb;l�b;l))

�

xb;s =
1

�b;s

�
�1 +

q
1 + Ixb;l�b;l(2 + xb;l�b;l)

�

xg;s =
1

ng;s
(c� nb;lxb;l � ng;lxg;l � nb;sxb;s) :

The results that follow are determined by numerical solutions to these. As an
example, consider that I = 2, the capacity of each link c = 100, �g;l = 0:2 and
�g;s = 0:1. We examine �rst the case of an equal number of green and blue 
ows,
nb;l = ng;l = 5, nb;s = ng;s = 3. First let the boost be �xed, b = 0:03. Figure 6
shows the throughput of each source. The short 
ows get more throughput than the
long ones due to their shorter round-trip times and less number of bottlenecks. In
the long 
ow case, blue 
ows receive more than green 
ows when � > �00

l � 1:40 but
do not receive at least as much they would if it were a 
at best-e�ort network until
� � �0

l � 1:44. In the short 
ow case, blue 
ows receive as much as they would if it
were a 
at best-e�ort network when � � �0

s � 1:42, but do not receive more than green
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Figure 6: The throughput of long and short 
ows as a function of the drop bias �.
Here, nb;l = ng;l = 5, nb;s = ng;s = 3, and b = 0:03.


ows until � > �00

s � 1:46. When the short blue 
ow receives as much as in the 
at
case, the greens still get more because the long green 
ows lose su�cient throughput
to the bene�t of the short green 
ows. Overall, � = 1:46 is su�cient to ensure both
blue 
ow types receive enough throughput.

In Figure 7 we let the delay boost b vary, and measure the required �s and �l.
We notice two things. Firstly, satisfying the short blue 
ows requires a higher � than
the long blue 
ows. Secondly, as b increases, we must increase � exponentially to
compensate.

Suppose we increase the number of short and long blue and green 
ows alternatively
while keeping the others �xed as in Figure 8. Note that the delay boost is �xed at
b = 0:03 here. In reality, when we change the number of 
ows, we also change b. To
obtain the relationship between b and the number of 
ows, a queueing analysis would be
needed, which we leave for future work. The number of other 
ows directly in
uences
the minimum required drop bias. In particular, in this case we see that increasing the
number of short blue 
ows increases the size of � needed while in all other cases it
reduces the � required.

The results in this section apply to long lived 
ows. However, it is known that
shorter 
ows will su�er more from loss than long term ones. Therefore the worst case
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Figure 7: The minimum � for the long and short 
ows as a function of the delay boost
b. nb;l = ng;l = 5, nb;s = 3, ng;s = 1, and b = 0:03.

drop bias � needed is obtained by considering all 
ows as being long lived.
Also, we used TCP-Reno for our de�nition of TCP-friendliness. It is known that

TCP-Reno has a strong negative bias against 
ows with long round trip times, due
to the fact that the window is increased with a period roughly equal to the round
trip time. This appears in the modelling above by the fact that, for any given source
s, the increase parameter rs is proportional to

1
�s
. Variants of TCP-Reno have been

proposed which correct this bias to give the same value of rs to all sources. If such
a variant were to become the standard for TCP-friendliness, then we would need to
correct our analysis accordingly. Note that even with this correction, sources which
use many hops usually still get less throughput, because maximising a utility function
leads to penalising those sources which use more resources.

4.5 Transparency for blue

In the previous section, we knew the network conditions in order to determine the
lowest possible drop bias �. In practice we need to choose a safe � at a router which
works under general conditions with an unknown number of blue and green sources,
unknown round-trip times, and unknown conditions these 
ows experience elsewhere.
In addition, the previous modelling relied on losses being rare, which may not be the
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Figure 8: � required when we keep other amount of 
ows �xed but vary one amount
of 
ows. For �xed b = 0:03.

case for green packets.
We derived a su�cient drop bias �, which works under general conditions. As in

Section 4.3, �e is the reasonable possible round-trip time of a source through the router,
excluding queueing delays. As before, �g = �e + dg and �b = �e + db, where db and dg
are the average queueing delays for blue and green packets respectively. If the router
has only 
ows with one bottleneck then choosing

� = max

 
1;

�
� 3b

�g(2� 2g � � 2b )

�2
!

(5)

is su�cient, assuming the modelling holds, to ensure blue 
ows would not receive a
better throughput in a 
at best-e�ort network than with ABE. The derivation is in
Appendix A. This is an extremely safe choice of � designed to work in the absence of
knowledge of the number of green and blue 
ows. The safety margin is bigger than the
simpli�ed modelling used in deriving this result.

Optimisation of this � is not required for ABE to work. However, lower values would
reduce the green loss requirements. This would be possible if we had (approximate)
knowledge of the ratio of the number of blue to green 
ows or queueing analysis to
determine the RTT in the hypothetical 
at best-e�ort network, as opposed to using
the worst case as we do now. This is the subject of ongoing work.
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nb,l Blue flows,  
ng,lGreen flows

nb,s1 Blue flows,  

ng,s1 Green flows

5Mbps 50ms 5Mbps 50ms

nb,s2 Blue flows,  

ng,s2 Green flows

Figure 9: Simulation topology.

The router considers, for the purpose of determining � that all 
ows experience
just it as a bottleneck. We show through simulation in Section 5 and through analysis
in Section 4.4 that provides a higher and thus a su�cient � than if � was (able to
be) chosen in conjunction with more global state. However, we have yet to prove this
completely.

�e is a parameter speci�ed in the router. The higher one can choose �e, the less
green losses there will be. If it is chosen too high, there may be circumstances in which
blue 
ows may not receive as much as they would in a 
at best-e�ort network.

5 Simulations of the Implementation

In this section, we show that the implementation satis�es the router requirements.
From the description in the previous section, requirement 3 is automatically satis�ed.
We now check that green tra�c is provided with a low bounded delay (requirement 2)
while still receiving acceptable throughput (requirement 4) and blue tra�c receives at
least as much throughput as it would from a 
at best-e�ort network (requirement 4).
These results are in Section 5.2.

5.1 Simulations Description

The general test topology, shown in Figure 9, consists of: nb;l blue and ng;l green
sources which traverse both links, the long 
ows; nb;s1 blue and ng;s1 green sources
which traverse the �rst link, the type 1 short 
ows; and nb;s2 blue and ng;s2 green
sources which traverse the second link, the type 2 short 
ows. The links from the
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sources and sinks to the bottleneck links were 10Mbps and had propagation delays of
20ms.

One bit in the header of a packet speci�es whether the packet is green or blue. The
blue source is a TCP Reno source which has always a packet to send. The green source
uses the TCP friendly type algorithm described in Appendix B. It is a simple one for
simulation purposes, used to represent the fact that green tra�c will most likely be
real-time in nature. The TCP friendly protocol is basic, and its success in providing
said property is approximate but su�cient for our purposes. More sophisticated rate-
based TCP friendly unicast protocols which explore their algorithms ability to provide
TCP friendliness e�ectively are described and evaluated in [12] and [11].

Each router bu�er size was 60 packets (i.e. Ltot = 60) and the apparent bu�er size to
green was 10 packets (i.e. L0 = 10). The set of RED parameters used, were as follows:
The initial threshold minth = 10, maximum threshold maxth = 30, the upper bound
on the (blue) marking probability maxp = 0:15, and average queue weight wq = 0:002.
Throughout, 
1 = 0:8, 
2 = 0:4, and 
3 = 0:4, and the control loop updates � and D
every T1 = 0:5s. The gain parameters were K1 = 1:1, K2 = 0:02, K3 = 2:0 and � = 0:4.
The initial values were qb(0) = 0:01, wl(0) = 4, and D(0) = 0:1, db = D(0)=2. The
round-trip time �e, used in determining �, was 0:18, which is based on the propagation
delays for the short 
ows.

Given the randomness in dropping, average values were obtained after four simu-
lation runs and con�dence interval results obtained. Throughput and delay measure-
ments for the �rst 30s of simulation time are not measured as we allow the control
mechanism to warm up to re
ect more realistic operation.

5.2 Service Simulations Results

5.2.1 Equal numbers of blue and green 
ows

We �rst look at the case when there are an equal number of blue and green 
ows for
each 
ow type, explicitly nb;l = nb;s1 = nb;s2 = 5 and ng;l = ng;s1 = ng;s2 = 5. Figure 10
shows the average number of packets received by each blue and green connection at
each time t. The average shown at each time t is the average obtained over 4 simulation
results for that time t. For clarity the con�dence intervals are not shown. The worst-
case interval for 95% con�dence seen was small, 80 packets. Figure 11 shows the
end-to-end delay distributions received for green packets of each type under ABE and

at best-e�ort. We show only the type 1 short 
ows delay distribution, since the type
2 short 
ow distribution is practically identical.

All ABE router requirements were satis�ed. Green packet delay is small and
bounded (requirement 1), receiving the bene�t of low bounded delay. The blue 
ows
receive at least as much as they would as with 
at best-e�ort (requirement 2). They
actually receive more, thus receiving bene�t from the use of ABE. They also receive
more throughput than if they became green (requirement 3). The green sources receive
reasonable throughput (thus providing requirement 4).

Figure 10 provides some additional observations. The long blue 
ows receive less
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throughput than the short blue 
ows due to their longer round-trip time and multiple
bottlenecks. A similar observation hold for the green 
ows. The long blue 
ows receive
proportionally more throughput bene�t from ABE than the short blue 
ows do, which
is expected. The minimum round trip-time value used in the calculation of the drop
bias � was the short 
ows' propagation delay. Thus, the long 
ows bene�tted from
being considered, for the purposes of protecting it by dropping green packets, as having
a lower round-trip time. Also, because of the multiple bottlenecks, the long green 
ows'
losses receive a proportionally lower share.

The short green 
ows actually receive higher throughput in the ABE case than
in the 
at best-e�ort case. This does not violate the requirements of ABE; in fact,
they would receive more if blue. The higher throughput with ABE results from them
bene�ting from the reduced long green throughput, a point also seen in the analysis in
Section 4.4.

5.2.2 Unequal numbers of blue and green 
ows

We now look at the case where there is the same number of long blue and green 
ows,
but there are more green than blue 
ows of type 1, and more blue than green 
ows
of type 2 - The explicit values are nb;l = ng;l = 5, nb;s1 = 1, ng;s1 = 4, nb;s2 = 4, and
ng;s2 = 1. Figure 12 shows how the average throughput received by each type. For
brevity, we omit the end-to-end delay distribution which is similar to the previous case.
Again all ABE router requirements are satis�ed.

We observe that, when using ABE the type 2 short blue 
ow get a signi�cantly
higher increase in throughput than the type 1 short blue sources. This is expected
behaviour. Both compete with the same number of 
ows on its bottleneck link. How-
ever, the type 2 short blue 
ow has more since it competes with less blue 
ows and
more green 
ows. If these greens were to become blue then the type 2 short blue 
ows
throughput would reduce.

6 Conclusions

We have described ABE, a new service which enables best-e�ort tra�c to experience a
low delay, at the expense of possibly more throughput. ABE is targeted at supporting
rate-adaptive multimedia applications, with no concept of reservation or signalling and
while retaining the spirit of a 
at rate network. The service choice of green or blue is
self-policing since the user/application will be coaxed into choosing one or the other
or indeed a mixture of both, based on its tra�c pro�le objectives. ABE allows a
collection of rate-adaptive multimedia applications to drive the network into a region
of moderately high load and low delay. It also allows such an application to trade
reduced throughput for low delay, thus in some cases increasing its utility.

It should be stressed that ABE is a new service in its own right and not a substitute
for reservation or priority services. In contrast, with ABE, both delay sensitive (green)
and throughput sensitive (blue) tra�c share the same resources, and high load in any
of the two pools a�ects the other.
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We have de�ned the ABE service and presented a router implementation. Initial
simulations tend to indicate that it provides the ABE service. Work is ongoing to re�ne
and validate the implementation.

We have presented ABE with the assumption that negative feedback is based on
packet drop. It would be relatively straightforward to map our implementation to a
network supporting explicit congestion noti�cation.

The implementation of a multimedia adaptive application that would exploit the
new degree of freedom o�ered by ABE is ongoing work, outside the scope of this
document. Ongoing work is also addressing: the optimal value for the maximum green
delay in a router (or equivalently, the L0 parameter of our router implementation); a
router implementation that would combine policing of TCP-friendliness with support
for ABE (based on per-
ow queueing).
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Appendix A: Derivation of a su�cient drop bias

Let n blue 
ows and m green 
ows share a link of capacity c. They have all just this
link as a bottleneck i.e. they experience all congestion losses at this link.

Let all green 
ows have a round-trip time �g, and blue 
ows have a round-trip
time �b = �g + b, where b is the delay boost provided by the preferential scheduling of
green packets. In the 
at best-e�ort network all 
ows have a round-trip time �f , where
�f 2 [�b; �g].

Let xb and xg be the throughput received by a blue and green 
ow respectively in
the ABE environment. In the 
at best-e�ort scenario they would have throughput xf .

Assuming the established loss-throughput formula [6, 7, 3, 4, 1] holds,

xb =
C

�b
p
qb
; xg =

C

�g
p
qg

and xb =
C

�f
p
qf

where qb, qg, qg are the blue, green, and 
at loss ratios respectively, and C is a constant.
Assume we can characterise the dropping at the router by a nondecreasing convex

function �(x) where �(0) = 0 and �(x) = 1 for x � c, where c is the output link
capacity. The ABE PAC drops blue and green packets with probability �(x) and
��(x) respectively, for given load x. The 
at best-e�ort router drops all packets with
probability �(x).

Then qb = �(nxb + mxg), qg = �qb, and qf = �((n + m)xf ). For simplicity of
notation consider that we would like to determine a su�cient � where � = �2. We can
then deduce that,

xb =
C

�b
p
�((n+ 
m)xb)

and xf =
C

�f
p
�((n+m)xf )
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where 
 = �b
�g�

: This yields that,

x2b�
2
b �((n+ 
m)xb) = x2f�

2
f�((n+m)xf ): (6)

Now we propose that a su�cient 
 for the blue 
ows to get at least as much
throughput as in the 
at best-e�ort case i.e. xb � xf , is


 =
1

m

�
� 2f
� 2b
(n+m)� n

�
: (7)

The proof is as follows. From Equation (7),

�((n+ 
m)xb) = �(
� 2f
� 2b
(n+m)xb): (8)

Since �f � �b, �(0) = 0 and � is convex,

�(
� 2f
� 2b
(n+m)xb) �

� 2f
� 2b
�((n+m)xb) (9)

Equations (6), (8) and (9) then yield that,

x2f�((n+m)xf ) � x2b�((n+m)xb)

while implies xf � xb since � is nondecreasing.
Equation (7) translates as a su�cient � being,

�(a) =
� 3b

�g(� 2f (1 + a)� a� 2b )
(10)

where a = m
n
. This depends on the RTT in a 
at best-e�ort network �f 2 [�g; �b].

In the absence of knowledge of this, all we can say is that for large values of a,
�f � �g and Equation (10) becomes,

� =
� 3b

�g(2� 2g � � 2b )
: (11)

Conversely, for small values of a, �f � �b and Equation (10) becomes,

�b
�g
:

In practice, we found that Equation (11) provides a value that works well for large
range of a.
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Appendix B: A TCP-Friendly protocol

Green tra�c would typically be rate rather than window based, and not necessarily
concerned with loss recovery given its real-time nature. As such, a protocol was de-
signed which approximates TCP friendliness in a rate based unicast context. The goal
was not to de�ne a sophisticated rate based scheme which is proven to be TCP-friendly.
Rather it was to have a simple one for simulation purposes. More sophisticated rate-
based TCP friendly unicast protocols which explore their algorithms ability to provide
TCP friendliness e�ectively are described and evaluated in [12] and [11].

Each packet contains a sequence number. The receiver acknowledges every packet
it receives. A source starts by sending one packet. It is then subjected to additive
increase, multiplicative decrease as follows. In the event of a loss, the rate, measured
in packets per second, is reduced by half to r=2. No re-transmission is attempted. If
in a given round-trip time, � , no loss is detected, the source increases its rate by 1=� .

The round trip time is estimated by the same algorithm as TCP. Losses are detected
by two means. Each packet sent is assigned a timeout and a loss is deduced if one of
these timeouts expire before receipt of an acknowledgement for that packet.

In the spirit of the Fast Retransmit algorithm in TCP, losses are also deduced
when we receive two acknowledgements and a gap remains in the sequence number
acknowledgement space. A loss (or losses) causes a restart of all timers for packets up
to the most recently acknowledged, and monitoring is restricted to packets after this
value.

Appendix C: ABE Fairness Distribution

Let �̂s = � if s 2 G (source is green) and �̂s = 1 if s 2 B (source is blue). Equation
(22) on page 4 of [5] changes to

_xs =
rs
ts
� xs(rs + �xs)�̂s

X
l2L;s2Ll

gl(fl)

since the dropping probability function for a green source is �gl(fl). From this, it
follows that

Jh
A(~x) =

X
s2B

1

�s
log

xs
rs + �xs

+
1

�

X
s2G

1

�s
log

xs
rs + �xs

�G(~x):

The rest of the derivation is the same.
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Figure 10: Average number of packets transferred per green and blue connection, for
each tra�c type, at each time t. When routers implement ABE and not (
at best-
e�ort). There are 5 blue and green 
ows of each 
ow type.
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Figure 11: End-to-End Delay distributions received for green packets of each type
under ABE and 
at best-e�ort. 5 blue and green 
ows of each 
ow type.
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Figure 12: Average number of packets received per connection for each time t for ABE
and 
at best-e�ort when nb;l = ng;l = 5, nb;s1 = 1, ng;s1 = 4, nb;s2 = 4, ng;s2 = 1.
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