
Generic Broadcast

Fernando Pedone André Schiper

Département d’Informatique

Ecole Polytechnique Fédérale de Lausanne

1015 Lausanne, Switzerland

{Fernando.Pedone, Andre.Schiper@epfl.ch}

Abstract

Message ordering is a fundamental abstraction in distributed systems. However, usual
ordering guarantees are purely “syntactic”, that is, message “semantics” is not taken into
consideration, despite the fact that in several cases, semantic information about messages
leads to more efficient message ordering protocols. In this paper we define the Generic Broad-
cast problem, which orders the delivery of messages only if needed, based on the semantics
of the messages. Semantic information about the messages is introduced in the system by
a conflict relation defined over messages. We show that Reliable and Atomic Broadcast are
special cases of Generic Broadcast, and propose an algorithm that solves Generic Broadcast
efficiently. In order to assess efficiency, we introduce the concept of deliver latency.

1 Introduction

Message ordering is a fundamental abstraction in distributed systems. Total order, causal order,

view synchrony, etc., are examples of widely used ordering guarantees. However, these ordering

guarantees are purely “syntactic” in the sense that they do not take into account the “semantics”

of the messages. Active replication for example (also called state machine approach [11]), relies

on total order delivery of messages on the active replicated servers. By considering the semantics

of the messages sent to active replicated servers, total order delivery may not always be needed.

This is the case for example if we distinguish read messages from write messages sent to active

replicated servers, since read messages do not need to be ordered with respect to other read

messages. As message ordering has a cost, it makes sense to avoid ordering messages when not

required.

In this paper we define the Generic Broadcast problem (defined by the primitives g-Broadcast

and g-Deliver), which establishes a partial order on message delivery. Semantic information

1

about messages is introduced in the system by a conflict relation defined over the set of messages.

Roughly speaking, two messages m and m′ have to be g-Delivered in the same order only if m

and m′ are conflicting messages. The definition of message ordering based on a conflict relation

allows for a very powerful message ordering abstraction. For example, the Reliable Broadcast

problem is an instance of the Generic Broadcast problem in which the conflict relation is empty.

The Atomic Broadcast problem is another instance of the Generic Broadcast problem, in which

all pair of messages conflict.

Any algorithm that solves Atomic Broadcast trivially solves any instance of Generic Broad-

cast (i.e., specified by a given conflict relation), even if ordering more messages than necessary.

Thus, we define a Generic Broadcast algorithm to be strict if it only orders messages when nec-

essary. The notion of strictness captures the intuitive idea that total order delivery of messages

has a cost, and this cost should only be paid when necessary.

Although the notion of strictness adequately represents the idea behind a satisfactory solution

to the Generic Broadcast problem, we show that strictness can be ensured by an algorithm as

expensive as an Atomic Broadcast algorithm. Therefore we introduce the concept of deliver

latency of a message to assess the cost of Generic Broadcast algorithms. Roughly speaking, the

deliver latency of a message m is the number of communication steps between g-Broadcast(m)

and g-Deliver(m). We then give a strict Generic Broadcast algorithm that – in runs where

messages do not conflict – ensures that the deliver latency of every message is always equal to

2 (Atomic Broadcast algorithms have at least deliver latency equal to 3).

The rest of the paper is structured as follows. Section 2 defines the Generic Broadcast

problem. Section 3 defines the system model and introduces the concept of deliver latency.

Section 4 presents a solution to the Generic Broadcast problem. Section 5 discusses related

work, and Section 6 concludes the paper.

2 Generic Broadcast

2.1 Problem Definition

Generic Broadcast is defined by the primitives g-Broadcast and g-Deliver.1 When a process p

invokes g-Broadcast with a message m, we say that p g-Broadcasts m, and when p returns from

the execution of g-Deliver with message m, we say that p g-Delivers m. Message m is taken

from a setM to which all messages belong. Central to Generic Broadcast is the definition of a

(symmetric) conflict relation onM×M denoted by C (i.e., C ⊆ M×M). If (m,m′) ∈ C then
we say that m and m′ conflict. Generic Broadcast is specified by (1) a conflict relation C and

(2) the following conditions:

1g-Broadcast has no relation with the GBCAST primitive defined in the Isis system [1].

2

gB-1 (Validity). If a correct process g-Broadcasts a message m, then it eventually g-Delivers

m.

gB-2 (Agreement). If a correct process g-Delivers a message m, then all correct processes

eventually g-Deliver m.

gB-3 (Integrity). For any message m, every correct process g-Delivers m at most once, and

only if m was previously g-Broadcast by some process.

gB-4 (Partial Order). If correct processes p and q both g-Deliver messages m and m′, and
m and m′ conflict, p g-Delivers m before m′ if and only if q g-Delivers m before m′.

The conflict relation C determines the pair of messages that are sensitive to order, that is, the

pair of messages for which the g-Deliver order should be the same at all processes that g-Deliver

the messages. The conflict relation C renders the above specification generic, as shown in the

next section.

2.2 Reliable and Atomic Broadcast as Instances of Generic Broadcast

We consider in the following two special cases of conflict relations: (1) the empty conflict relation,

denoted by C∅, where C∅ = ∅, and (2) theM×M conflict relation, denoted by CM×M, where

CM×M =M×M. In case (1) no pair of messages conflict, that is, the partial order property

gB-4 imposes no constraint. This is equivalent to having only the conditions gB-1, gB-2 and

gB-3, which is called Reliable Broadcast [4]. In case (2) any pair (m,m′) of messages conflict,

that is, the partial order property gB-4 imposes that all pairs of messages be ordered, which

is called Atomic Broadcast [4]. In other words, Reliable Broadcast and Atomic Broadcast lie

at the two ends of the spectrum defined by Generic Broadcast. In between, any other conflict

relation defines an instance of Generic Broadcast.

Conflict relations lying in between the two extremes of the conflict spectrum can be better

illustrated by an example. Consider a replicated Account object, defined by the operations de-

posit(x) and withdraw(x). Clearly, deposit operations commute with each other, while withdraw

operations do not, neither with each other nor with deposit operations.2 Let Mdeposit denote

the set of messages that carry a deposit operation, andMwithdraw the set of messages that carry

a withdraw operation. This leads to the following conflict relation CAccount:

CAccount = { (m,m′) : m ∈Mwithdraw or m′ ∈Mwithdraw}.

2This is the case for instance if we consider that a withdraw(x) operation can only be performed if the current
balance is larger than or equal to x.

3

Generic Broadcast with the CAccount conflict relation for broadcasting the invocation of deposit

and withdraw operations to the replicated Account object defines a weaker ordering primitive

than Atomic Broadcast (e.g., messages in Mdeposit are not required to be ordered with each

other), and a stronger ordering primitive than Reliable Broadcast (which imposes no order at

all).

2.3 Strict Generic Broadcast Algorithm

From the specification it is obvious that any algorithm solving Atomic Broadcast also solves any

instance of the Generic Broadcast problem defined by C ⊆ M×M. However, such a solution

also orders messages that do not conflict. We are interested in a strict algorithm, that is, an

algorithm that does not order two messages if not required, according to the conflict relation

C. The idea is that ordering messages has a cost (in terms of number of messages, number of

communication steps, etc.) and this cost should be kept as low as possible. More formally, we

define an algorithm that solves Generic Broadcast for a conflict relation C ⊂ M×M, denoted

by AC , strict if it satisfies the condition below.

(Strictness). Consider an algorithm AC , and let RNC
C be the set of runs of AC in which

no conflicting messages are g-Broadcast. Then there exists a run R in RNC
C , such that in

R at least two processes pi and pj g-Deliver two messages m and m′ in a different order.

Informally, the strictness condition requires that algorithm AC allow runs in which the g-Deliver

of non conflicting messages is not totally ordered. However, even if AC does not order messages,

it can happen that total order is spontaneously ensured. So we cannot require violation of total

order to be observed in every run: we require it in at least one run of AC .

2.4 A Trivial Strict Generic Broadcast Algorithm

In the following, we present a trivial strict Generic Broadcast algorithm, based on Atomic

Broadcast. Every process pi has a buffer BUFi that can hold one message. Atomic Broadcast

is defined by the primitives A-Broadcast and A-Deliver.

• g-Broadcast(m) is executed by calling A-Broadcast(m);

• on executing A-Deliver(m) each process pi does the following:3

if BUFi is empty then

store m in BUFi

3To simplify the presentation, this algorithm assumes that an even number of messages is g-Broadcast.

4

else

let m′ be the message removed from BUFi

if m and m′ do not conflict and i is an odd number then

g-Deliver(m); g-Deliver(m’)

else

g-Deliver(m’); g-Deliver(m)

The drawback of the algorithm above is that it has the “cost” of an Atomic Broadcast

algorithm. In the next sections, we present a Generic Broadcast algorithm that is “cheaper”

than the algorithm above. In particular, we consider the deliver latency as the parameter to

measure cost (defined in Section 3.2).

3 System Model and Definitions

3.1 Processes, Failures and Failure Detectors

We consider an asynchronous system composed of n processes Π = {p1, . . . , pn}. Processes

communicate by message passing. A process can only fail by crashing (i.e., we do not consider

Byzantine failures). Processes are connected through reliable channels, defined by the two

primitives send(m) and receive(m). We assume that the asynchronous system is augmented

with failure detectors allowing to solve Consensus (e.g., the class of failure detector ✸S allows

Consensus to be solved if f < n/2) [2].

3.2 Deliver Latency

In the following, we introduce the deliver latency as a measure of the efficiency of algorithms

solving a Broadcast problem (defined by the primitives α-Broadcast and α-Deliver). The de-

liver latency is a variation of the Latency Degree introduced [10], which is based on modified

Lamport’s clocks [7].

• a send event and a local event on a process pi do not modify pi’s local clock,

• let ts(send(m)) be the timestamp of the send(m) event, and ts(m) the timestamp carried

by message m: ts(m) def= ts(send(m)) + 1,

• the timestamp of receive(m) on a process pi is the maximum between ts(m) and pi’s

current clock value.

5

The deliver latency of a message m α-Broadcast in a run R of an algorithm A solving a

Broadcast problem, denoted by dlR(m), is defined as the difference between the largest times-

tamp of all α-Deliver(m) events (at most one per process) in run R and the timestamp of the

α-Broadcast(m) event in run R.

Let setRm be the set of processes that α-Deliver message m in run R. The deliver latency of

m in run R is formally defined as

dlR(m) def= MAX
p∈setRm

(ts(α-Deliverp(m))− ts(α-Broadcast(m))).

For example, consider a broadcast algorithm where a process p, willing to broadcast a message

m, sends m to all processes, each process q on receiving m sends an acknowledge message

ACK(m) to all processes, and as soon as q receives nack ACK(m) messages, q delivers m. Let

R be a run of this algorithm where only m is broadcast. It follows that dlR(m) = 2.

4 Solving Generic Broadcast

4.1 Overview of the Algorithm

Provided that the number of correct processes is at least max(nack, nchk) (the definitions of nack

and nchk are presented next), Algorithm 1 (see page 9) solves Generic Broadcast for any conflict

relation C. Processes executing Algorithm 1 progress in a sequence of local stages numbered

1, 2, ..., k. Each stage is terminated by a Consensus to decide on two sets of messages, denoted

by NCmsgSetk (NC stands for Non Conflicting) and CmsgSetk (C stands for Conflicting).

The set NCmsgSetk ∪ CmsgSetk is the set of messages that are g-Delivered in stage k. All

messages in NCmsgSetk are g-Delivered by all processes before all messages in CmsgSetk.

The set NCmsgSetk does not contain conflicting messages, while messages in CmsgSetk may

conflict. Messages in CmsgSetk are g-Delivered in some deterministic order. Process p starts

stage k + 1 once it has g-Delivered all messages in CmsgSetk. Messages in NCmsgSetk may

be g-Delivered by process p in stage k before p executes the k-th Consensus. Such messages are

g-Delivered without the cost of a Consensus execution. Furthermore, Algorithm 1 satisfies the

following two properties:

(a) If m and m′ are two conflicting messages then they are g-Delivered either (1) in different

stages, or (2) in the same stage k, but at most one of them is in NCmsgSetk.

(b) If message m is g-Delivered by some process p in stage k, then no process g-Delivers

message m in stage k′, k �= k′.

Property (a) is ensured by having processes exchange ACK messages among each other be-

fore g-Delivering a message at line 36, and property (b) is ensured by having processes exchange

6

CHK (i.e., checking) messages whose role is to compute the initial value of each process pi

before starting Consensus execution at line 21. More specifically, a process needs nack ACK

messages to g-Deliver a message at line 36, and nchk CHK messages to define its initial value

before starting the k-th Consensus execution at line 21. Properties (a) and (b) are guaranteed

if nack and nchk are such that

nack ≥ (n+ 1)/2, and (1)

2nack + nchk ≥ 2n+ 1. (2)

The proof is given in Section 4.3. Intuitively the idea is as follows (see Figure 1). Let

ackPSetk(m) be a set containing processes that have sent an ACK message for message m in

stage k. Condition (1) ensures that for any two messages m andm′, if |ackPSetk(m)| ≥ nack and

|ackPSetk(m′)| ≥ nack, then ackPSetk(m)∩ ackPSetk(m′) is non-empty. Let chkPSetk be the

set containing processes that send a CHK message in stage k. Condition (2) ensures that for any

two messages m and m′, if |ackPSetk(m)| ≥ nack and |chkPSetk| ≥ nchk, then ackPSetk(m) ∩
chkPSetk, denoted by PSetk(m), contains a majority of processes from chkPSetk.

ackPSet (m)
k

���
���
���

���
���
���

ackPSet (m)
k

ackPSet (m’)
k chkPSet

k

PSet (m)
k

������
������
������
������

������
������
������
������

Figure 1: Acknowledge and checking sets

From conditions (1) and (2), and the fact that Algorithm 1 requires max(nack, nchk) cor-

rect processes, we can determine the minimal number of correct processes for solving Generic

Broadcast with Algorithm 1 (which happens when nack = nchk) to be (2n+ 1)/3 processes.

4.2 The Generic Broadcast Algorithm

All tasks in Algorithm 1 execute concurrently, and Task 3 has two entry points (lines 12 and 31).

Process p in stage k manages the following sets.

• R deliveredp: contains all messages R-delivered by p up to the current time,

7

• G deliveredp: contains all messages g-Delivered by p in all stages k′ < k,

• pendingk
p : contains every message m such that p has sent an ACK message for m in stage

k up to current time, and

• localNCg Deliverkp : is the set of non conflicting messages that are g-Delivered by p in

stage k, up to the current time (and before p executes the k-th Consensus).

When p wants to g-Broadcast message m, p executes R-broadcast(m) (line 8). After R-

delivering a message m, the actions taken by p depend on whether m conflicts or not with some

other message m′ in R deliveredp \G deliveredp.

No conflict. If no conflict exists, then p includes m in pendingk
p (line 14), and sends an

ACK message to all processes, acknowledging the R-deliver of m (line 15). Once p receives

nack ACK messages for a messagem (line 31), p includesm in localNCg Deliverkp (line 35)

and g-Delivers m (line 36).

Conflict. In case of conflict, p starts the terminating procedure for stage k. Process p

first sends a message of the type (k, pendingk
p , CHK) to all processes (line 17), and waits

the same information from nchk processes (line 18). Then p builds the set majMSetkp

(line 20)4. It can be proved that majMSetkp contains every message m such that for any

process q, m ∈ localNCg Deliverkq . Then p starts consensus (line 21) to decide on a pair

(NCmsgSetk, CmsgSetk) (line 22). Once the decision is made, process p first g-Delivers

(in any order) the messages inNCmsgSetk that is has not g-Delivered yet (lines 23 and 25),

and then p g-Delivers (in some deterministic order) the messages in CmsgSetk that it has

not g-Delivered yet (lines 24 and 26). After g-Delivering all messages decided in Consensus

execution k, p starts stage k + 1 (lines 28-30).

4.3 Proof of Correctness

The correctness of the Generic Broadcast algorithm presented in Section 4.2 follows from Propo-

sitions 1 (Agreement), 2 (Partial Order), 3 (Validity), and 4 (Integrity) that are given in the

Appendix. Propositions 1 and 2 follow from the Lemmata 2 and 3 below. Lemma 2 follows from

Lemma 1. All proofs are in the Appendix.

Lemma 1 relates the sets ackPSetk, chkPSetk, and PSetk (see Figure 1). It states that,

provided that 2nack + nchk ≥ 2n+ 1 (Condition 2, page 7), any intersection between ackPSetk

and chkPSetk contains a set PSetk which contains a majority of the elements in chkPSetk.

4majMSetk
p = {m| |PSetk

p(m)| ≥ (nchk + 1)/2}

8

Algorithm 1 Generic Broadcast

1: Initialisation:
2: R delivered← ∅
3: G delivered← ∅
4: k ← 1
5: pending1 ← ∅
6: localNCg Deliver1 ← ∅

7: To execute g-Broadcast(m): {Task 1}

8: R-broadcast(m)

9: g-Deliver(−) occurs as follows:

10: when R-deliver(m) {Task 2}
11: R delivered← R delivered ∪ {m}

12: when (R delivered \G delivered) \ pendingk �= ∅ {Task 3}
13: if [for all m,m′ ∈ R delivered \G delivered, m �= m′ : (m,m′) �∈ Conflict] then
14: pendingk ← R delivered \G delivered

15: send(k, pendingk, ACK) to all
16: else
17: send(k, pendingk, CHK) to all
18: wait until [for nchk processes q : p received (k, pendingk

q , CHK) from q]
19: #Define chkPSetk(m) = {q : p received (k, pendingk

q , CHK) from q and m ∈ pendingk
q}

20: majMSetk ← {m : | chkPSetk(m) | ≥ �(nchk + 1)/2�}
21: propose(k, (majMSetk, (R delivered \G delivered) \majMSetk))
22: wait until decide(k, (NCmsgSetk, CmsgSetk))
23: NCg Deliverk ← (NCmsgSetk \ localNCg Deliverk) \G delivered

24: Cg Deliverk ← CmsgSetk \G delivered

25: g-Deliver messages in NCg Deliverk in any order
26: g-Deliver messages in Cg Deliverk using some deterministic order
27: G delivered← (localNCg Deliverk ∪NCg Deliverk ∪ Cg Deliverk) ∪G delivered

28: k ← k + 1
29: pendingk ← ∅
30: localNCg Deliverk ← ∅

31: when receive(k, pendingk
q , ACK) from q

32: #Define ackPSetk(m) = {q : p received (k, pendingk
q , ACK) from q and m ∈ pendingk

q }
33: ackMSetk ← {m : |ackPSetk(m)| ≥ nack}
34: localNCmsgSetk ← ackMSetk \ (G delivered ∪NCmsgSetk)
35: localNCg Deliverk ← localNCg Deliverk ∪ localNCmsgSetk
36: g-Deliver all messages in localNCmsgSetk in any order

9

Lemma 1 Let ackPSetk(m) be a set containing nack processes that execute send(k, pendingk,

ACK) (line 15) in stage k such that m ∈ pendingk, and let chkPSetk be the set of processes

from which some process p receives nchk messages of the type (k, pendingk, CHK) in stage k

(line 18). If 2nack +nchk ≥ 2n+1, then there are at least (nchk +1)/2 processes in (chkPSetk ∩
ackPSetk(m)).

Lemma 2 states that any message g-Delivered by some process q during stage k, before q

executes Consensus in stage k will be included in the set NCmsgSetk decided by Consensus k.

Lemma 2 For any two processes p and q, and all k ≥ 1, if p executes decide(k, (NCmsgSetk,−)),
then localNCg Deliverkq ⊆ NCmsgSetk.

Lemma 3 states that the set pendingk does not contain conflicting messages.

Lemma 3 For any process p, and all k ≥ 1, if messages m and m′ are in pendingk
p , then m

and m′ do not conflict.

4.4 Strictness and Cost of the Generic Broadcast Algorithm

Proposition 5 states that the Generic Broadcast algorithm of Section 4.2 is a strict implemen-

tation of Generic Broadcast.

Proposition 5 Algorithm 1 is a strict Generic Broadcast algorithm.

We now discuss the cost of our Generic Broadcast algorithm. Our main result is that for

messages that do not conflict, the Generic Broadcast algorithm can deliver messages with a

deliver latency equal to 2, while for messages that conflict, the deliver latency is at least equal

to 4. Since known Atomic Broadcast algorithms deliver messages with a deliver latency of at

least 3,5 this results shows the tradeoff of the Generic Broadcast algorithm: if messages conflict

frequently, our Generic Broadcast algorithm may become less efficient than an Atomic Broadcast

algorithm, while if conflicts are rare, then our Generic Broadcast algorithm leads to smaller costs

compared to Atomic Broadcast algorithms.

Propositions 6 and 7 assess the cost of the Generic Broadcast algorithm when messages

do not conflict. In order to simplify the analysis of the deliver latency, we concentrate our

results on runs with one message (although the results can be extended to more general runs).

Proposition 6 defines a lower bound on the deliver latency of the algorithm, and Proposition 7

5An exception is the Optimistic Atomic Broadcast algorithm [8], which can deliver messages with deliver
latency equal to 2 if the spontaneous total order property holds.

10

shows that this bound can be reached in runs where there are no process failures nor failure

suspicions. We consider a particular implementation of Reliable Broadcast that appears in [2].6

Proposition 6 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2]. If RC is a set of runs generated by Algorithm 1 such that m is the only message g-

Broadcast and g-Delivered in runs in RC, then there is no run R in RC where dlR(m) < 2.

Proposition 7 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2]. If RC is a set of runs generated by Algorithm 1, such that in runs in RC, m is the only

message g-Broadcast and g-Delivered, and there are no process failures nor failure suspicions,

then there is a run R in RC where dlR(m) = 2.

The results that follow define the behaviour of the Generic Broadcast algorithm in runs

where conflicting messages are g-Broadcast. Proposition 8 establishes a lower bound for cases

where messages conflict, and Proposition 9 shows that the best case with conflicts can be reached

when there are no process failures nor failure suspicions.

Proposition 8 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2], and the Consensus implementation presented in [10]). Let RC be a set of runs generated

by Algorithm 1, such that m and m′ are the only messages g-Broadcast and g-Delivered in RC.
If m and m′ conflict, then there is no run R in RC where dlR(m) < 4 and dlR(m′) < 4.

Proposition 9 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2], and the Consensus implementation presented in [10]). Let RC be a set of runs generated

by Algorithm 1, such that m and m′ are the only messages g-Broadcast and g-Delivered in RC,
and there are no process failures nor failure suspicions. If m and m′ conflict, then there is a

run R in RC where m is g-Delivered before m′ and dlR(m) = 2 and dlR(m′) = 4.

5 Related Work

Group communication aim at extending traditional one-to-one communication, which is insuf-

ficient in many settings. One-to-many communication is typically needed to handle replication

(replicated data, replicated objects, etc.). Classical techniques to manage replicated data are

based on voting and quorum systems (e.g., [3, 5, 6] to cite a few). Early quorum systems dis-

tinguish read operations from write operations in order to allow for concurrent read operations.

These ideas have been extended to abstract data types in [5]. Increasing concurrency, with-

out compromising the strong consistency guarantees on replicated data, is a standard way to

6Whenever a process p wants to R-broadcast a message m, p sends m to all processes. Once a process q receives
m, if q �= p then q sends m to all processes, and, in any case, q R-delivers m.

11

increase the performances of the system. Lazy replication [9] is another approach that aims

at increasing the performances by reducing the cost of replication. Lazy replication also distin-

guishes between read and write operations, and relaxes the requirement of total order delivery of

read operations. Consistency is ensured at the cost of managing timestamps outside of the set of

replicated servers; these timestamps are used to ensure Causal Order delivery on the replicated

servers.

Our approach also aims at increasing the performances of replication by increasing con-

currency in the context of group communications. Similarly to quorum systems, our Generic

Broadcast algorithm allows for concurrency that is not possible with traditional replication tech-

niques based on Atomic Broadcast. From this perspective, our work can be seen as a way to

integrate group communications and quorum systems. There is even a stronger similarity be-

tween quorum systems and our Generic Broadcast algorithm. Our algorithm is based on two

sets: an acknowledgement set and a checking set.7 These sets play a role similar to quorum

systems. However, quorum systems require weaker conditions to keep consistency than the

condition required by the acknowledgement and checking sets.8 Although the reason for this

discrepancy is very probably related to the guarantees offered by quorum systems, the question

requires further investigation.

6 Conclusions

The paper has introduced the Generic Broadcast problem, which is defined based on a conflict

relation on the set of messages. The notion of conflict can be derived from the semantic of the

messages. Only conflicting messages have to be delivered by all processes in the same order. As

such, Generic Broadcast is a powerful message ordering abstraction, which includes Reliable and

Atomic Broadcast as special cases. The advantage of Generic Broadcast over Atomic Broadcast

is a cost issue, where cost is defined by the notion of deliver latency of messages.

On a different issue, our Generic Broadcast algorithm uses mechanisms that have similarities

with quorum systems. As future work it would be interesting to investigate this point to better

understand the differences between replication protocols based on group communication (e.g.,

Atomic Broadcast, Generic Broadcast) and replication protocols based on quorum systems.

Finally, as noted in Section 4.1, our Generic Broadcast algorithm requires at least (2n+1)/3

correct processes. Such a condition is usual in the context of Byzantine failures, but rather

surprising in the context of crash failures.

7Used respectively for g-Delivering non-conflicting messages during a stage, and determining non-conflicting
messages g-Delivered at the termination of a stage.

8Let nr be the size of a read quorum, and nw the size of a write quorum. Quorum systems usually requires
that nr + nw ≥ n + 1.

12

References

[1] K. Birman and T. Joseph. Reliable Communication in the Presence of Failures. ACM

Transactions on Computer Systems, 5(1):47–76, February 1987.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225–267, March 1996.

[3] D.K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the 7th Symposium

on Operating Systems Principles, pages 150–159, December 1979.

[4] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In Dis-

tributed Systems, chapter 5. Addison Wesley, second edition, 1993.

[5] M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types. ACM

Transactions on Computer Systems, 4(1):32–53, February 1986.

[6] S. Jajodia and D. Mutchler. Dynamic Voting. In Proc. of the ACM SIGMOD Int. Confer-

ence on Management of Data, pages 227–238, May 1987.

[7] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM, 21(7):558–565, July 1978.

[8] F. Pedone and A. Schiper. Optimistic Atomic Broadcast. In Proc. of 12th International

Symposium on Distributed Computing, pages 318–332, September 1998.

[9] S. Ghemawat R. Ladin, B. Liskov. Providing High Availability Using Lazy Replication.

ACM Transactions on Computer Systems, 10(4):360–391, November 1992.

[10] A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Dis-

tributed Computing, 10(3):149–157, 1997.

[11] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

13

Appendix - Proofs

Lemma 1 Let ackPSetk(m) be a set containing nack processes that execute send(k, pendingk,

ACK) (line 15) in stage k such that m ∈ pendingk, and let chkPSetk be the set of processes

from which some process p receives nchk messages of the type (k, pendingk, CHK) in stage k

(line 18). If 2nack +nchk ≥ 2n+1, then there are at least (nchk +1)/2 processes in (chkPSetk ∩
ackPSetk(m)).

Proof: It follows that |ackPSet(m)k ∩ chkPSetk| ≥ (nchk + 1)/2. Assume for a contradiction

that 2nack +nchk ≥ 2n+1, and |ackPSet(m)k ∩ chkPSetk| < (nchk+1)/2. We define intSetk =

ackPSet(m)k ∩ chkPSetk, ackOnlySetk = ackPSet(m)k \ intSetk, and chkOnlySetk =

chkPSetk\intSetk. Therefore, (1) ackPSet(m)k = ackOnlySetk∪intSetk, and (2) chkPSetk =

chkOnlySetk ∪ intSetk. Let nackOnly = |ackOnlySetk|, nchkOnly = |chkPSetk|, and nint =

|intSetk|.
From (1) and ackOnlySetk ∩ intSetk = ∅, we have that (3) nack = nackOnly +nint, and from

(2) and chkOnlySetk∩intSetk = ∅, we have that (4) nchk = nchkOnly+nint. Substituting (3) and

(4) in the hypothesis 2nack+nchk ≥ 2n+1, we have that (5) 3nint ≥ 2n+1−(2nackOnly+nchkOnly).

Since nint < (nchk+1)/2, (6) nint < nchkOnly+1. From (5) and (6), nackOnly+nchkOnly > n+1.

However, ackOnlySetk ∩ chkOnlySetk = ∅, and so nackOnly +nchkOnly ≤ n, a contradiction that

concludes the proof. ✷

Lemma 2 For any two processes p and q, and all k ≥ 1, if p executes decide(k, (NCmsgSetk,−)),
then localNCg Deliverkq ⊆ NCmsgSetk.

Proof: Let m be a message in localNCg Deliverkq . We first show that if p executes the

statement propose(k,majMSetkp ,−)), then m ∈ majMSetkp . Since m ∈ localNCg Deliverkq ,
q must have received nack messages of the type (k, pendingk, ACK) (line 31) such that m ∈
pendingk. Thus, there are nack processes that sent m to all processes in the send(−) statement

at line 15. From Lemma 1, m ∈ majMSetkp. Therefore, for every process q that executes

propose(k, (majMSetkq ,−)), m ∈ majMSetkq . Let (NCmsgSetk,−) be the value decided on

Consensus execution k. By the uniform validity of Consensus, there is a process r that executed

propose(k, (majMSetkr ,−)) such that NCmsgSetk = majMSetkr , and so, m ∈ NCmsgSetk. ✷

Lemma 3 For any process p, and all k ≥ 1, if messages m and m′ are in pendingk
p , then m

and m′ do not conflict.

Proof: Assume for a contradiction that there is a process p, and some k ≥ 1 such that m

and m′ are in pendingk
p , and m and m′ conflict. Since m and m′ are in pendingk

p , p must

have R-delivered m and m′. Without loss of generality, assume that p first R-delivers m and

14

then m′. Thus, there is a time after p R-delivers m′ such that p evaluates the if statement at

line 13, and m′ ∈ R deliveredp, m′ �∈ G deliveredp, and m′ �∈ pendingk
p . When this happens,

m ∈ R deliveredp (by the hypothesis m is R-delivered before m′), and m �∈ G deliveredp (if

m ∈ G delivered, from lines 27-29 m and m′ cannot be both in pendingk
p). Therefore, m and

m′ are in R delivered \ G delivered, the test at line 13 evaluates false, and m′ is not included
in pendingk

p , a contradiction that concludes the proof. ✷

Lemma 4 For any two correct processes p and q, and all k ≥ 1:

(1) If p executes send(k,−, CHK), then q eventually executes send(k,−, CHK).

(2) If p executes propose(k,−), then q eventually executes propose(k,−).

(3) If p g-Delivers messages in NCg Deliverkp ∪ Cg Deliverkp , then

(3.1) q also g-Delivers messages in NCg Deliverkq ∪ Cg Deliverkq , and

(3.2) localNCg Deliverkp ∪ NCg Deliverkp = localNCg Deliverkq ∪ NCg Deliverkq and

Cg Deliverkp = Cg Deliverkq .

Proof: The proof is by simultaneous induction on (1), (2) and (3). (Basic step.) For k = 1,

we first show that if p executes send(1,−, CHK) (line 17), then q also executes send(1,−, CHK).

If p executes send(1,−, CHK), then p has R-delivered two messages, m and m′, that conflict.
From the agreement of R-broadcast, q also R-delivers m and m′. Assume that q first R-delivers

m, and then m′. Since initially G deliveredq = ∅, there is a time when m and m′ are in

R deliveredq \G deliveredq , and from Lemma 3, either m is not in pending1
q , or neither m nor

m′ are in pending1
q . Thus q eventually executes send(1,−, CHK) (line 17). Since there are nchk

processes correct that also execute send(1,−, CHK), q eventually receives nchk messages of the

type (1,−, CHK) (line 18), and so, if p executes propose(1,−) then q also executes propose(1,−).
We now consider that p g-Delivers messages in NCg Deliver1p ∪ Cg Deliver1p. Before exe-

cuting decide(1, (NCmsgSet1p, CmsgSet
1
p)), p executes propose(1,−). By the first part of the

lemma, q also executes propose(1,−). By termination and uniform integrity of Consensus, q even-

tually executes decide(1,−) and does it exactly once. We show that (a) localNCg Deliver1p ∪
NCg Deliver1p = localNCg Deliver1q ∪NCg Deliver1q , and (b) Cg Deliver1p = Cg Deliver1q .

(a) From the algorithm (line 23), NCg Deliver1p = (NCmsgSet1p \ localNCg Deliver1p) \
G deliveredp. Initially both G deliveredp and G deliveredq are empty, and it follows that

localNCg Deliver1p ∪ NCg Deliver1p = localNCg Deliver1p ∪ (NCmsgSet1p \
localNCg Deliver1p). From Lemma 2, localNCg Deliver1p ⊆ NCmsgSet1p, and so,

localNCg Deliver1p ∪ (NCmsgSet1p \ localNCg Deliver1p) = NCmsgSet1p, and also

15

localNCg Deliver1q ∪ (NCmsgSet1q \ localNCg Deliver1q) = NCmsgSet1q. By agree-

ment of Consensus, NCmsgSet1p = NCmsgSet1q, and it follows that localNCg Deliver1p ∪
NCg Deliver1p = localNCg Deliver1q ∪NCg Deliver1q .

(b) From the algorithm (line 24), Cg Deliver1p = CmsgSet1p \ G deliveredp. Since initially

G deliveredp and G deliveredq are empty, Cg Deliver1p = CmsgSet1p, and Cg Deliver1q =

CmsgSet1q. By agreement of Consensus, for every p and q, CmsgSet1p = CmsgSet1q, and

so, Cg Deliver1p = Cg Deliver1q .

(Inductive step.) Assume that the Lemma holds for all k, 1 ≤ k < l. We proceed by first

showing that if p executes send(l,−, CHK) (line 17), then q also executes send(l,−, CHK). If

p executes send(l,−, CHK), then from line 13, there exist two messages m and m′ that conflict,
and a time when m and m′ are in R deliveredp \G deliveredp, and m �∈ pendingl

p. Since m and

m′ are not in G deliveredp, m and m′ are not in ∪k
i=1(localNCg Deliver

i
p ∪ NCg Deliverip ∪

Cg Deliverip). By the induction hypothesis, m and m′ are not in ∪k
i=1(localNCg Deliver

i
q ∪

NCg Deliveriq ∪ Cg Deliveriq). By the agreement property of R-broadcast, eventually m and

m′ belong to R deliveredq . From Lemma 3, and the fact that m and m′ conflict, there is a time

after which q g-Delivers all messages in ∪k
i=1(localNCg Deliver

i
q∪NCg Deliveriq∪Cg Deliveriq)

such that there are two messages m and m′ in R deliveredq \ G deliveredq , and m and m′ are
not both in pendingl

q. Thus, q eventually executes send(l,−, CHK). Since there are at least

nchk processes correct that execute send(l,−, CHK), q eventually receives nchk messages of the

type (l,−, CHK) (line 18), and so, if p executed propose(l,−), q also executes propose(l,−).
We now consider that p g-Delivers messages in NCg Deliverlp ∪ Cg Deliverlp. Before exe-

cuting decide(l, (NCmsgSetlp, CmsgSetlp)), p executes propose(l,−). By part (1) of the lemma,

q also executes propose(l,−). By the termination and agreement properties of Consensus, q

eventually executes decide(l,−) exactly once. We show next that (a) localNCg Deliverlp ∪
NCg Deliverlp = localNCg Deliverlp ∪NCg Deliverlq, and (b) Cg Deliverlp = Cg Deliverlq.

(a) From the algorithm (line 23), NCg Deliverlp = (NCmsgSetlp \ localNCg Deliverlp) \
G deliveredp, and from Lemma 2, localNCg Deliverlp ⊆ NCmsgSetlp. It follows that

localNCg Deliverlp ∪ NCg Deliverlp = NCmsgSetlp − G deliveredp. By agreement of

Consensus, NCmsgSetlp = NCmsgSetlq. From the algorithm, it can be shown that

G delivered = ∪k
i=1(localNCg Deliver

i ∪ NCg Deliveri ∪ Cg Deliveri), and from the

induction hypothesis, for all 1 ≤ k < l : ∪k
i=1(localNCg Deliver

i
p ∪ NCg Deliverip ∪

Cg Deliverip) = ∪k
i=1(localNCg Deliver

i
q ∪ NCg Deliveriq ∪ Cg Deliveriq), and so,

G deliveredp = G deliveredq . Therefore, localNCg Deliverlp ∪ NCg Deliverlp =

localNCg Deliverlp ∪NCg Deliverlq.

(b) From the algorithm (line 24), Cg Deliverlp = CmsgSetlp \ G deliveredp. When line 24

16

is evaluated, G deliveredp = ∪k
i=1(localNCg Deliver

i
p ∪ NCg Deliverip ∪ Cg Deliverip),

and it follows from the induction hypothesis that G deliveredp = G deliveredq . By the

agreement of Consensus, CmsgSetlp = CmsgSetlq, and thus, Cg Deliverlp = Cg Deliverlq.

✷

Proposition 1 (Agreement). Let f < max(nack, nchk). If a correct process p g-Delivers a

message m, then every correct process q eventually g-Delivers m.

Proof: Consider that p has g-Delivered message m in stage k. We show that q also g-Delivers

m in stage k. There are two cases to consider: (a) p executes Consensus in stage k, and (b) p

never executes Consensus in stage k.

(a) From Lemma 4, q also executes Consensus in stage k. Since p g-Delivers m in stage k, m ∈
localNCg Deliverkp ∪ NCg Deliverkp ∪ Cg Deliverkp , and so, m ∈ localNCg Deliverkq ∪
NCg Deliverkq ∪ Cg Deliverkq . Thus, q either g-Delivers m at line 36 (in which case

m ∈ localNCg Deliverkq), or at line 25 (in which case m ∈ NCg Deliverkq), or at line 26
(in which case m ∈ Cg Deliverkq).

(b) Since p does not execute Consensus in stage k, by Lemma 4, no correct process exe-

cutes Consensus in stage k. Therefore, m ∈ localNCg Deliverkp , and it must be that

p has received nack messages of the type (k, pendingk, ACK) (line 30) such that m ∈
pendingk. There are nack ≥ (n + 1)/2 processes correct, and so, p has received the mes-

sage (k, pendingk, ACK) from at least one correct process r.

We claim that every correct process r′ executes the send(k, pendingk , ACK) statement at

line 15, such that m ∈ pendingk. From lines 12-15, r R-delivers m, and by the agree-

ment of Reliable Broadcast, eventually r′ also R-delivers m. It follows from the fact that

m is g-Delivered by p in stage k that m �∈ ∪k−1
i=1 (localNCg Deliver

k
p ∪ NCg Deliverkp ∪

Cg Deliverkp). By Lemma 4,m �∈ ∪k−1
i=1 (localNCg Deliver

k
r′∪NCg Deliverkr′∪Cg Deliverkr′).

Thus, there is a time after r′ R-delivers m such that m �∈ ∪k−1
i=1 (localNCg Deliver

k
r′ ∪

NCg Deliverkr′ ∪Cg Deliverkr′), and m does not conflict with any other message, and so,

r′ executes send(k,−, ACK) at line 15, concluding the claim.

Since there are nack processes correct that from the claim above execute the send(k, pendingk,

ACK) statement at line 15, such that m ∈ pendingk, q will eventually execute the when

statement at line 31, and g-Deliver m. ✷

Proposition 2 (Partial Order). If correct processes p and q both g-Deliver messages m and

m′, and m and m′ conflict, then p g-Delivers m before m′ if and only if q g-Delivers m before

m′.

17

Proof: Assume that messages m and m′ conflict, and that q g-Delivers message m before

message m′. The following cases cover all combinations involving the g-Deliver of m and m′ by
q:

(a) m and m′ are g-Delivered by q in stage k, and q executes Consensus in stage k,

(b) m and m′ are g-Delivered by q in stage k, and q does not execute Consensus in stage k,

and

(c) m is g-Delivered by q in stage k, and m′ is g-Delivered by q in stage k′, k �= k′.

Case (a). It follows that m and m′ are in localNCg Deliverkq ∪NCg Deliverkq ∪Cg Deliverkq .
We claim that m′ ∈ Cg Deliverkq . For a contradiction, assume that m′ �∈ Cg Deliverkq . Thus,
either (a.1) m′ ∈ localNCmsgSetkq , or (a.2) m′ ∈ NCg Deliverkq .

(a.1) If m′ ∈ localNCmsgSetkq , then q received nack messages of the type (k, pendingk, ACK),

such that m′ ∈ pendingk. By the hypothesis, m is g-Delivered before m′, and this can

only happen if m ∈ localNCmsgSetkq . Thus, q also received nack messages of the type

(k, pendingk, ACK) such that m ∈ pendingk. Since nack > n/2, there must be at least

one process r that executed send(k, pendingk
r , ACK), such that m and m′ are in pendingk

r ,

contradicting Lemma 3.

(a.2) Since m′ ∈ NCmsgSetk, from validity of Consensus, there is a process r that exe-

cuted propose(k, (majMSetkr ,−)), such that NCmsgSetk = majMSetkr . Therefore, m′ ∈
majMSetkr , and from the algorithm, r received �(nchk + 1)/2� messages of the type

(k, pendingk) such that m′ ∈ pendingk. Since m is g-Delivered before m′, either (i)

m ∈ localNCmsgSetkq and, from the algorithm, m is g-Delivered before the k-th Consen-

sus execution, or (ii) m ∈ NCg Deliverkq and q chooses to g-Deliver m before m′ (line 25).
We proceed by showing that in both cases, there is at least one process r′ such that m and

m′ are in pendingk
r′ . Since m and m′ conflict, this contradicts Lemma 3.

(i) Process q received nack messages of the type (k, pendingk, ACK),m ∈ pendingk.

Let nmaj = |chkPSetk(m)|. From line 20, nmaj ≥ (nchk + 1)/2. Since nchk ≥
2(n−nack)+1, nmaj ≥ n−nack +1, thus, nack +nmaj ≥ n+1, and we conclude that

there is at least on process r′ such that m and m′ are in pendingk
r′ .

(ii) It must be that m ∈ majMSetkr , and thus, r received �(nchk +1)/2� messages of the

type (k, pendingk) such that m′ ∈ pendingk. From item (i), nmaj ≥ n−nack +1, and

from the hypothesis, nack ≥ (n+ 1)/2. Therefore, nmaj ≥ (n+ 1)/2, and there must

exist an r′ such that m and m′ are in pendingk
r′ , concluding our claim.

18

If m ∈ localNCg Deliverkq ∪ NCg Deliverkq , by Lemma 4, m ∈ localNCg Deliverkp ∪
NCg Deliverkp . From the claim,m ∈ Cg Deliverkq , and so, by Lemma 4,m ∈ Cg Deliverkp .
It follows from the algorithm that messages in localNCg Deliverk ∪NCg Deliverk are g-

Delivered before messages in Cg Deliverk. If m and m′ are in Cg Deliverkq , they are also

in Cg Deliverkp (Cg Deliverkq = Cg Deliverkp), and since messages in Cg Deliverk are g-

Delivered according to some deterministic order, if q g-Delivers m before m′, p g-Delivers
m before m′.

Case (b). Since there is no Consensus execution in stage k,m andm′ are in localNCg Deliverkq .
It follows from the same argument used in (a.1) that there must be a process r such that m

and m′ are in pendingk
r , and this contradicts Lemma 3. Thus, it cannot be that m and m′ are

g-Delivered by q in stage k if q does not execute Consensus in stage k.

Case (c). If q g-Delivers m before m′, then k < k′. It follows immediately from Lemma 4 that

p does not g-Deliver m′ before m. ✷

Proposition 3 (Validity). Let f < max(nack, nchk). If a correct process p g-Broadcasts a

message m, then p eventually g-Delivers m.

Proof: For a contradiction, assume that p g-Broadcasts m but never g-Delivers it. From

Lemma 1, no correct process g-Delivers m. Since p g-Broadcasts m, it R-broadcasts m, and

from the validity of Reliable Broadcast, p eventually R-delivers m. From the agreement of

Reliable Broadcast, there is a time after which for every correct process q, m ∈ (R deliveredq \
G deliveredq) \ pendingk

q .

By the hypothesis, p does not g-Deliver m, and so, p does not receive nack messages of the

type (k, pendingk, ACK) such that m ∈ pendingk. But since there are nack processes correct

that execute the if statement at line 13, there is at least one correct process q that never

executes the then branch (lines 14-15), that is, send(k, pendingk
q , ACK), and always executes

the else branch (lines 17-30). Thus, q executes send(k, pendingk , CHK). From Lemma 4, part

(1), every correct process also executes send(k, pendingk, CHK). Since there are nchk processes

correct, no correct process remains blocked forever at the wait statement (line 18), and every

correct process executes propose(k,−). Thus, there is a k1 such that for all l ≥ k1, all correct

processes execute propose(l, (majMSetl , (R delivered \ G delivered) \ majMSetl)) such that

m ∈ majMSetl ∪ (R delivered \G delivered).

Since all faulty processes crash, there is a k2 such that no faulty process executes propose(l,−),
l ≥ k2. Let k = max(k1, k2). All correct processes execute propose(k,−), and by the termination

and agreement of consensus, all correct processes execute decide(k, (NCmsgSetk, CmsgSetk))

with the same (NCmsgSetk, CmsgSetk). By uniform validity of Consensus, some process

19

q executes propose(k, (majMSetl , (R delivered \ G delivered) \ majMSetl)) such that m ∈
majMSetl∪ (R delivered\G delivered), and so, all processes g-Deliver m, a contradiction that

concludes the proof. ✷

Proposition 4 (Uniform Integrity). For any message m, each process g-Delivers m at

most once, and only if m was previously g-Broadcast by sender(m).

Proof: If a process p g-Delivers m at line 36, then p received nack messages of the type

(k, pendingk, ACK),m ∈ pendingk. Let q be a process from which p received the message

(k, pendingk
q , ACK),m ∈ pendingk

q . Since q executes send(k, pendingk
q , ACK), q has R-delivered

m. By the uniform integrity of Reliable Broadcast, process sender(m) R-broadcast m, and so,

sender(m) g-Broadcast m.

Now consider that p g-Delivers m at line 25 or 26. Thus, p executed decide(k, (NCmsgSetk,

CmsgSetk)) for some k, and such that m ∈ NCmsgSetk ∪ CmsgSetk. By uniform valid-

ity of Consensus, some process q must have executed propose(k, (majMSetk , (R delivered \
G delivered) \majMSetk)) such that m ∈ majMSetk ∪ (R delivered \ G delivered). If m ∈
majMSetkq , then chkPSetkq (m) �= ∅. Let r ∈ chkPSetkq (m). Thus, r executed send(k, pendingk

r ,

CHK), such that m ∈ pendingk
r , and thus, r R-delivered m. If m ∈ R delivered \ G delivered

then q has R-delivered m. In any case, by the uniform integrity of Reliable Broadcast, process

sender(m) R-broadcast m, and so, sender(m) g-Broadcast m. ✷

Theorem 1 If f < max(nack, nchk), Algorithm 1 solves Generic Broadcast, or reduces Generic

Broadcast to a sequence of Consensus problems.

Proof. Immediate from Propositions 1, 2, 3, and 4. ✷

Proposition 5 Algorithm 1 is a strict Generic Broadcast algorithm.

Proof. From Theorem 1, Algorithm 1 is a Generic Broadcast algorithm. We show next that

it is also strict. Let RNC be the set of runs generated by Algorithm 1 in which no conflicting

messages are g-Broadcast. We show that there is some run R in RNC and messages m′ and m′′

g-Broadcast in R such that some process r′ g-Delivers m′ before m′′ in R, and some process r′′

g-Delivers m′′ before m′ in R.
We construct run R as follows. Assume that r′ and r′′ are two process correct in R, and let

m ∈ {m′,m′′}. If m is g-Broadcast, then m is R-broadcast. By the agreement and validity of

Reliable Broadcast, eventually every correct process R-delivers m. Since no message conflicts in

R, after a process p R-delivers m, p executes send(1, pending1, ACK), such that m ∈ pending1.

Assume that when p executes send(1, pending1, ACK), m′ and m′′ are in pendingk. Since there

are nack process correct, eventually every process correct receives nack messages of the type

20

(1, pending1, ACK), such that, m′ and m′′ are in pending1. Therefore, r′ and r′′ eventually
g-Deliver messages m′ and m′′ in ackMSet1. If r′ g-Delivers m′ before m′′ than assume that r′′

g-Delivers m′′ before m′, and if r′ g-Delivers m′′ before m′ than assume that r′′ g-Delivers m′

before m′′. ✷

Proposition 6 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2]. If RC is a set of runs generated by Algorithm 1 such that m is the only message g-

Broadcast and g-Delivered in runs in RC, then there is no run R in RC where dlR(m) < 2.

Proof. Assume for a contradiction that there is a run R in RC such that dlR(m) < 2. Let p be a

correct process that g-Delivers m in R. By the integrity of Generic Broadcast, there is a process q

that g-Broadcast m. From Algorithm 1, q R-broadcastm, and by the implementation of Reliable

Broadcast, q sends m to all processes. Let ts(sendq(m)) be the timestamp of the send event at

q. When p receives m, we have that ts(receivep(m)) = ts(sendq(m))+1. From the contradiction

hypothesis and the definition of deliver latency, g-Deliverp(m) − g-Broadcastq(m) < 2, and so,

after receiving m, p does not receive any message m′ such that m → m′. There are two cases

to consider: either (a) p g-Delivers m at line 36, or (b) p g-Delivers m in lines 25-26. In case

(a), p receives nack messages of the type (k, pendingk, ACK), such that m ∈ pendingk. Let r

be a process that sends message (k, pendingk, ACK)r at line 17. If m ∈ pendingk, than r has

received m, and so, m→ (k, pendingk, ACK)r, a contradiction. In case (b), p has received nchk

messages of the type (k, pendingk, CHK), such that in (nchk + 1)/2 messages, m ∈ pendingk.

Let r be a process that sends message (k, pendingk, CHK)r such that m ∈ pendingk. It can

be show that m → (k, pendingk, CHK)r, contradicting the fact that p does not receive any

message m′ such that m→ m′. ✷

Proposition 7 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2]. If RC is a set of runs generated by Algorithm 1, such that in runs in RC, m is the only

message g-Broadcast and g-Delivered, and there are no process failures nor failure suspicions,

then there is a run R in RC where dlR(m) = 2.

Proof. Immediate from Algorithm 1. ✷

Proposition 8 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2], and the Consensus implementation presented in [10]). Let RC be a set of runs generated

by Algorithm 1, such that m and m′ are the only messages g-Broadcast and g-Delivered in RC.
If m and m′ conflict, then there is no run R in RC where dlR(m) < 4 and dlR(m′) < 4.

Proof. Assume for a contradiction that there is a run R in RC such that dlR(m) < 4 and

dlR(m′) < 4. Let p be a correct process that g-Delivers m and m′ in R. By the integrity

21

of Generic Broadcast, there are processes q and q′ that g-Broadcast m and m′, respectively.
From Algorithm 1, q and q′ R-broadcast m and m′, and by the implementation of Reliable

Broadcast, q and q′ send m and m′ to all processes. Without loss of generality, consider that

p first receives m and then m′. We will reach a contradiction by showing that dlR(m′) ≥ 4.

Let ts(sendq′(m′)) be the timestamp of the send event at q′. When p receives m′, we have that
ts(receivep(m′)) = ts(sendq′(m′)) + 1.

After receiving m′, there is a time t when p executes the when statement at line 12 such

that m′ ∈ R deliveredp \ G deliveredp, and m′ �∈ pendingk
p . Since m is received by p before

m′, at time t both m and m′ are in R deliveredp \ G deliveredp. Since m and m′ conflict, p
executes the else branch of the if statement at line 13, and at line 18 p receives nchk messages

of the type (k, pendingk, CHK), such that in (nchk + 1)/2 messages, m′ ∈ pendingk. Let r

be a process that sends message (k, pendingk, CHK)r such that m′ ∈ pendingk. It follows

that m′ → (k, pendingk, CHK)r, and so, ts(receivep(k, pendingk, CHK)) = ts(sendq′(m′)) + 2.

From the contradiction hypothesis and the definition of deliver latency, ts(g-Deliverp(m)) −
ts(g-Broadcastq(m)) < 4. Since ts(g-Broadcastq(m)) = ts(sendq′(m′)), and ts(g-Deliverp(m)) =

ts(sendq′(m′)) + 2 + C, where C is the length of the causal chain of messages generated by

the Consensus execution, we conclude that C < 2. This leads to a contradiction since for the

Consensus algorithm presented in [10], the minimal causal chain of messages is 2, and therefore,

C ≥ 2. ✷

Proposition 9 Assume that Algorithm 1 uses the Reliable Broadcast implementation presented

in [2], and the Consensus implementation presented in [10]). Let RC be a set of runs generated

by Algorithm 1, such that m and m′ are the only messages g-Broadcast and g-Delivered in RC,
and there are no process failures nor failure suspicions. If m and m′ conflict, then there is a

run R in RC where m is g-Delivered before m′ and dlR(m) = 2 and dlR(m′) = 4.

Proof. Immediate from Algorithm 1. ✷

22

