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Abstract

Database replication protocols have historically been built on top of distributed database

systems, and have consequently been designed and implemented using distributed transac-

tional mechanisms, such as atomic commitment. We present the database state machine

approach, a new way to deal with database replication in a cluster of servers. This approach

relies on a powerful atomic broadcast primitive to propagate transactions between database

servers, and no atomic commitment is necessary. Transaction commit is based on a certi�-

cation test, and abort rate is reduced by the reordering certi�cation test. The approach is

evaluated using a detailed simulation model that shows the scalability of the system and the

bene�ts of the reordering certi�cation test.

Index terms: database replication systems, transaction processing, state machine approach,

optimistic concurrency control, synchronous replication, atomic broadcast protocols

1 Introduction

Software replication is considered a cheap way to increase data availability when compared to

hardware based techniques [1]. However, designing a replication scheme that provides syn-

chronous replication (i.e., all copies are kept consistent) at good performance is still an active

area of research both in the database and in the distributed systems community. For example,

commercial databases are typically based on the asynchronous replication model that tolerates

inconsistencies among replicas [2, 3].

This paper investigates a new approach for synchronous database replication on a cluster of

database servers (e.g., a group of workstations) connected by a local area network. The replica-
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tion mechanism presented is based on the state machine approach [4], and di�ers from traditional

replication mechanisms in that it does not handle replication using distributed transactional

mechanisms, such as atomic commitment [5, 6]. The state machine approach was proposed as

a general mechanism for dealing with replication, however no previous study has addressed its

use in the domain of a cluster of database servers.

Our database state machine is based on the deferred update technique. According to the

deferred update technique, transactions are processed locally at one database server (i.e., one

replica manager) and, at commit time, are forwarded for certi�cation to the other servers (i.e.,

the other replica managers). Deferred update replication techniques o�er many advantages over

its alternative, immediate update techniques, which synchronise every transaction operation

across all servers. Among these advantages, one may cite: (a) better performance, by gathering

and propagating multiple updates together, and localising the execution at a single, possibly

nearby, server (thus reducing the number of messages in the network), (b) better support for

fault tolerance, by simplifying server recovery (i.e., missing updates may be treated by the

communication module as lost messages), and (e) lower deadlock rate, by eliminating distributed

deadlocks [3].

The main drawback of the deferred update technique is that the lack of synchronisation

during transaction execution may lead to large transaction abort rates. We show how the

database state machine approach can be used to reduce the transaction abort rate by using a

reordering certi�cation test, which looks for possible serializable executions before deciding to

abort a transaction.

We have developed a simulation model of the database state machine and conducted several

experiments with it. The results obtained by our simulation model allowed us to assess some

important points about the system, like its scalability, and the e�ectiveness of the reordering

technique. Particularly, in the former case, it shows which parts of the system are more prone

to become resource bottlenecks. Evaluations of the reordering technique have shown that trans-

action aborts due to serialization problems can be reduced from 20% to less than 5% in clusters

of 8 database servers.

The paper is organised as follows. In Section 2, we introduce the replicated database model

where our results are based on, and the two main concept used in our approach. In Section 3,

we recall the principle of the deferred update replication technique. In Section 4, we show how

to transform deferred update replication into a state machine. An optimisation of this approach

that reduces the number of aborted transactions is described in Section 5. In Section 6, we
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present the simulation tool we used to evaluate the protocols discussed in the paper and draw

some conclusions about them. In Section 7 we discuss related, and Section 8 concludes the

paper.

2 System Model and De�nitions

In this section, we describe the system model and the two main concepts involved in our ap-

proach, that is, those of state machine, and atomic broadcast. The state machine approach

delineates the replication strategy, and the atomic broadcast constitutes a su�cient order mech-

anism to implement a state machine.

2.1 Database and Failures

We consider a system composed of a set � of sites. Sites in � communicate through message

passing, and do not have access to a shared memory or to a common clock. To simplify the

presentation, we assume the existence of a discrete global clock, even if sites do not have access

to it. The range of the clock's ticks is the set of natural numbers. The set � is divided into two

disjoint subsets: a subset of client sites, denoted �C , and a subset of database sites, denoted �D.

Hereafter, we consider that �C = fc1; c2; : : : ; cmg, and �D = fs1; s2; : : : ; sng. Each database

site plays the role of a replica manager, and each one has a full copy of the database.

Sites fail independently and only by crashing (i.e., we exclude Byzantine failures [7]). We

also assume that every database site eventually recovers after a crash. If a site is able to execute

requests at a certain time � (i.e., the site did not fail or failed but recovered) we say that the

site is up at time � . Otherwise the site is said to be down at time � . For each database site, we

consider that there is a time after which the site is forever up.1

Transactions are sequences of read and write operations followed by a commit or abort oper-

ation. A transaction is called a query (or read-only) if it does not contain any write operations,

otherwise it is called an update transaction. Transactions, denoted ta, tb, and tc, are submit-

ted by client sites, and executed by database sites. Our correctness criterion for transaction

execution is one-copy serializability (1SR) [6].

1The notion of forever up is a theoretical assumption to guarantee that sites do useful computation. This
assumption prevents cases where sites fail and recover successively without being up enough time to make the
system evolve. Forever up may mean, for example, from the beginning until the end of a termination protocol.
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2.2 The State Machine Approach

The state machine approach, also called active replication, is a non-centralised replication coor-

dination technique. Its key concept is that all replicas (or database sites) receive and process the

same sequence of requests. Replica consistency is guaranteed by assuming that when provided

with the same input (e.g., an external request) each replica will produce the same output (e.g.,

state change). This assumption implicitly implies that replicas have a deterministic behaviour.

The way requests are disseminated among replicas can be decomposed into two require-

ments [4]:

1. Agreement. Every non-faulty replica receives every request.

2. Order. If a replica �rst processes request req1 before req2, then no replica processes

request req2 before request req1.

The order requirement can be weakened if some semantic information about the requests

is known. For example, if two requests commute, that is, independently of the order they are

processed they produce the same �nal states and sequence of outputs, then it is not necessary

that order be enforced among the replicas for these two requests.

2.3 Atomic Broadcast

An atomic broadcast primitive enables to send messages to database sites, with the guarantee

that all database sites agree on the set of messages delivered and the order according to which

the messages are delivered [8] (implementation details are discussed in Section 6.2). Atomic

broadcast is de�ned by the primitives broadcast(m) and deliver(m). More precisely, atomic

broadcast ensures the following properties.

1. Agreement. If a database site delivers message m then every database site delivers m.

2. Order. No two database sites deliver any two messages in di�erent orders.

3. Termination. If a database site broadcasts message m and does not fail, then every

database site eventually delivers m.

The total order induced on the deliver is represented by the relation �. If message m1 is

delivered before message m2, then deliver(m1) � deliver(m2).
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It is important to notice that the properties of atomic broadcast are de�ned in terms of

message delivery and not in terms of message reception. Typically, a database site �rst receives

a message, then performs some computation to guarantee the atomic broadcast properties, and

then delivers the message. The notion of delivery captures the concept of irrevocability (i.e., a

database site must not forget that it has delivered a message). From Section 2.2, it should be

clear that atomic broadcast is su�cient to guarantee the correct dissemination of requests to

replicas acting as state machines.

3 Deferred Update Replication

The deferred update replication technique [6] is a way of dealing with requests in a replicated

database environment, and it will be the base for the database state machine presented in

Section 4. In this section, we �rst recall the principle of the deferred update replication technique,

and then provide a detailed characterisation of it.

3.1 Deferred Update Replication Principle

In the deferred update replication technique, transactions are locally executed at one database

site, and during their execution, no interaction between other database sites occurs (see Fig-

ure 1). Transactions are locally synchronised at database sites according to some concurrency

control mechanism [6]. However, we assume throughout the paper that the concurrency control

mechanism used by every database site to local synchronise transactions is the strict two phase

locking rule. When a client requests the transaction commit, the transaction's updates (e.g.,

the redo log records) and some control structures are propagated to all database sites, where

the transaction will be certi�ed and, if possible, committed. This procedure, starting with the

commit request, is called termination protocol. The objective of the termination protocol is

twofold: (i) propagating transactions to database sites, and (ii) certifying them.

The certi�cation test aims at ensuring one-copy serializability. It decides to abort a trans-

action if the transaction's commit would lead the database to an inconsistent state (i.e., non-

serializable). For example, consider two concurrent transactions, ta and tb, that are executed

at di�erent database sites, and that update a common data item. On requesting the commit,

if ta arrives before tb at the database site si but after tb at the database site sj (i 6= j), both

transactions ta and tb might have to be aborted, since otherwise, site si would see transaction

ta before transaction tb, and site sj would see transaction tb before transaction ta, violating
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Figure 1: Deferred update technique

one-copy serializability.

While a database site si is down, si may miss some transactions by not participating in

their termination protocol. However, as soon as database site si is up again, si catches up with

another database site that has seen all transactions in the system.

3.2 Transaction States

During its processing, a transaction passes through some well-de�ned states (see Figure 2). The

transaction starts in the executing state, when its read and write operations are locally executed

at the database site where it was initiated. When the client that initiates the transaction requests

the commit, the transaction passes to the committing state and is sent to the other database sites.

A transaction received by a database site is also in the committing state, and it remains in the

committing state until its fate is known by the database site (i.e. commit or abort). The di�erent

states of a transaction ta at a database site si are denoted Executing(ta; si), Committing(ta; si),

Committed(ta; si), and Aborted(ta; si). The executing and committing states are transitory

states, whereas the committed and aborted states are �nal states.
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3.3 General Algorithm

We describe next a general algorithm for the deferred update replication technique. To simplify

the presentation, we consider a particular client ck that sends requests to a database site si in

behalf of a transaction ta.

1. Read and write operations requested by the client ck are executed at si according to

the strict two phase locking (strict 2PL) rule. From the start until the commit request,

transaction ta is in the executing state.

2. When ck requests ta's commit, ta is immediately committed if it is a read-only transaction.

If not, ta passes to the committing state, and the database site si triggers the termination

protocol for ta: the updates performed by ta, as well as its readset and writeset, are sent

to all database sites.

3. Eventually, every database site sj certi�es ta. The certi�cation test takes into account

every transaction tb known by sj that con
icts with ta (see Section 3.4). It is important

that all database sites reach the same common decision on the �nal state of ta, which may

require some coordination among database sites. Such coordination can be achieved, for

example, by means of an atomic commit protocol, or, as it will be shown in Section 4, by

using the state machine approach.

4. If ta is serializable with the previous committed transactions in the system (e.g., ta passes

the certi�cation test), all its updates will be applied to the database. Transactions in the

execution state at each site sj holding locks on the data items updated by ta are aborted.
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5. The client ck receives the outcome for ta from site si as soon as si can determine whether

ta will be committed or aborted. The exact moment this happens depends on how the

termination protocol is implemented, and will be discussed in Section 4.

Queries do not execute the certi�cation test, nevertheless, they may be aborted during their

execution due to local deadlocks and by non-local committing transactions when granting their

write locks. The algorithm presented above can be modi�ed in order to reduce or completely

avoid aborting read-only transactions. For example, if queries are pre-declared as so, once an

update transaction passes the certi�cation test, instead of aborting a query that holds a read

lock on a data item it wants to update, the update transaction waits for the query to �nish and

release the lock. In this case, update transactions have the highest priority in granting write

locks, but they wait for queries to �nish. Read-only transactions can still be aborted due to

deadlocks, though. However, multiversion data item mechanisms can prevent queries from being

aborted altogether. In [9], read-only transactions are executed using a �xed view (or version) of

the database, without interfering with the execution of update transactions.

3.4 Transaction Dependencies

In order for a database site si to certify a committing transaction ta, si must be able to tell

which transactions at si con
ict with ta. A transaction tb con
icts with ta if ta and tb have

con
icting operations and tb does not precede ta. Two operations con
ict if they are issued by

di�erent transactions, access the same data item and at least one of them is a write. The precede

relation between two transactions ta and tb is de�ned as follows. (a) If ta and tb execute at the

same database site, tb precedes ta if tb enters the committing state before ta. (b) If ta and tb

execute at di�erent database sites, say si and sj, respectively, tb precedes ta if tb commits at si

before ta enters the committing state at si. Let site(t) be the identity of the database site where

transaction t was executed, and committing(t) and commit(t)sj be the events that represent,

respectively, the request for commit and the commit of t at sj. The event committing(t) only

happens at the database site si where t was executed, and the event commit(t)sj happens at

every database site sj. We formally de�ne that transaction tb precedes transaction ta, denoted

tb ! ta, as

tb ! ta =

8><
>:

committing(tb)
e
! committing(ta) site(ta) = site(tb);

commit(tb)site(ta)
e
! committing(ta) otherwise;
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where
e
! is the local (total) order relation for the events committing(t) and commit(t)sj . The

relation ta 6! tb (ta not ! tb) establishes that ta does not precede tb.
2

The deferred update replication does not require any distributed locking protocol to syn-

chronise transactions during their execution. Therefore, network bandwidth is not consumed by

synchronising messages, and there are no distributed deadlocks. However, transactions may be

aborted due to con
icting accesses. In the next sections, we show that the deferred update repli-

cation technique can be implemented using the state machine approach, and that this approach

allows optimisations that can reduce the transaction abortion due to con
icting accesses.

4 The Database State Machine Approach

The deferred update replication technique can be implemented as a state machine. In this

section, we discuss the details of this approach, and the implications to the way transactions are

processed.

4.1 The Termination Protocol as a State Machine

The termination protocol presented in Section 3 can be turned into a state machine as follows.

Whenever a client requests a transaction's commit, the transaction's updates, its readset and

writeset (or, for short, the transaction) are atomically broadcast to all database sites. Each

database site will behave as a state machine, and the agreement and order properties required

by the state machine approach are ensured by the atomic broadcast primitive.

The database sites, upon delivering and processing the transaction, should eventually reach

the same state. In order to accomplish this requirement, delivered transactions should be pro-

cessed with certain care. Before delving deeper into details, we describe the database modules

involved in the transaction processing. Figure 3 abstractly presents such modules and the way

they are related to each other.3 Transaction execution, as described in Section 3, is handled by

the Transaction Manager, the Lock Manager, and the Data Manager. The Certi�er executes

the certi�cation test for an incoming transaction. It receives the transactions delivered by the

Atomic Broadcast module. On certifying a transaction, the Certi�er may ask information to

the data manager about already committed transactions (e.g., logged data). If the transaction

2Since local events are totally ordered at database sites, ta 6! tb is equivalent to tb ! ta.
3In a database implementation, these distinctions may be much less apparent, and the modules more tightly

integrated [10]. However, for presentation clarity, we have chosen to separate the modules.
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is successfully certi�ed, its write operations are transmitted to the Lock Manager, and once the

write locks are granted, the updates can be performed.

Transaction Manager

Data Manager

Atomic Broadcast

CertifierLock Manager

Data Manager

Atomic Broadcast

Lock Manager

Transaction Manager

receive
message

send
message

transaction
broadcast transaction

deliver

Client m

Certifier

Client 1 Client 2

Database Site n

State Machine

Network

Database Site 1 . . .

Figure 3: Termination protocol based on atomic broadcast

To make sure that each database site will reach the same state after processing committing

transactions, each certi�er has to guarantee that write-con
icting transactions are applied to the

database in the same order (since transactions whose writes do not con
ict are commutable).

This is the only requirement from the certi�er, and can be attained if the certi�er ensures

that write-con
icting transactions grant their locks following the order they are delivered. This

requirement is straightforward to implement, nevertheless, it reduces concurrency in the certi�er.

4.2 The Termination Algorithm

The procedure executed on delivering the request of a committing update transaction ta is

detailed next. For the discussion that follows, the readset (RS) and the writeset (WS) are sets

containing the identi�ers of the data items read and written by the transaction, respectively,

during its execution. Transaction ta was executed at database site si. Every database site sj,

after delivering ta, performs the following steps.

1. Certi�cation test. Database site sj commits ta (i.e., ta passes from the committing state

to the committed state) if there no committed transaction tb that con
icts with ta. Since
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only committed transactions are taken into account to certify ta, the notion of con
icting

operations de�ned in Section 3.4 is weakened, and just write operations performed by

committed transactions and read operations performed by ta are considered.

The certi�cation test is formalised next as a condition for a state transition from the

committing state to the committed state (see Figure 2).

Committing(ta; sj); Committed(ta; sj) �

2
4
8tb; Committed(tb; sj) :

tb ! ta _ (WS(tb) \RS(ta) = ;)

3
5

The condition for a transition from the committing state to the aborted state is the com-

plement of the right side of the expression shown below.

Once ta has been certi�ed by database site si, where it was executed, si can inform ta's

outcome to the client that requested ta's execution.

2. Commitment. If ta is not aborted, it passes to the commit state, all its write locks are

requested, and once granted, its updates are performed. On granting ta's write locks, there

are three cases to consider.

(a) There is a transaction tb in execution at sj whose read or write locks con
ict with

ta's writes. In this case tb is aborted by sj , and therefore, all tb's read and write locks

are released.

(b) There is a transaction tb, that was executed locally at sj and requested the commit,

but has not been delivered yet. Since tb executed locally at sj, tb has its write locks on

the data items it updated. If tb commits, its writes will overwrite ta's (i.e. the ones

that overlap) and, in this case, ta need neither request these write locks nor process

the updates over the database. This is similar to Thomas' Write Rule [11]. However,

if tb is later aborted (i.e., it does not pass the certi�cation test), the database should

be restored to a state without tb, for example, by applying ta's redo log entries to the

database.

(c) There is a transaction tb that has passed the certi�cation test and has granted its write

locks at sj, but it has not released them yet. In this case, ta waits for tb to �nish its

updates and release its write locks.

An important aspect of the termination algorithm presented above is that the atomic broad-

cast is the only form of interaction between database sites. The atomic broadcast properties
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guarantee that every database site will certify a transaction ta using the same set of preceding

transactions. It remains to be shown how each database site builds such a set. If transactions

ta and tb execute at the same database site, this can be evaluated by identifying transactions

that execute at the same site (e.g., each transaction carries the identity of the site where it was

initiated) and associating local timestamps to the committing events of transactions.

If ta and tb executed at di�erent sites, this is done as follows. Every transaction commit event

is timestamped with the order of deliver of the transaction (the atomic broadcast ensures that

each database site associates the same timestamps to the same transactions). Each transaction t

has a committing(t) �eld associated to it that stores the timestamp of the last locally committed

transaction when t passes to the committing state, and is broadcast to all database sites. When

certifying ta, all committed transactions that have been delivered by the database site with

commit timestamp greater than committing(t) take part in the set of preceding transactions,

used to certify ta.

4.3 Algorithm Correctness

The database state machine algorithm is proved correct using the multiversion formalism of [6].

Although we do not explicitly use multiversion databases, our approach can be seen as so, since

replicas of a data item located at di�erent database sites can be considered as di�erent versions

of the data item.

We �rst de�ne C(H)si as a multiversion history derived from the system history H, just

containing operations of committed transactions involving data items stored at si. We denote

wa[xa] a write by ta (as writes generate new data versions, the subscript in x for data writes is

always the same as the one in t) and ra[xb] a read by ta of data item xb.

The multiversion formalism employs a multiversion serialization graph (MV SG(C(H)si) or

MV SGsi for short) and consists in showing that all the histories produced by the algorithm

have a multiversion serialization graph that is acyclic. We denote MV SGk
si
a particular state of

the multiversion serialization graph for database site si. Whenever a transaction is committed,

the multiversion serialization graph passes from one state MV SGk
si
into another MV SGk+1

si
.

We exploit the state machine characteristics to structure our proof in two parts. In the �rst

part, Lemma 1 shows that, by the properties of the atomic broadcast primitive and the deter-

minism of the certi�er, every database site si 2 �D eventually constructs the same MV SGk
si
,

k � 0. In the second part, Lemmas 2 and 3 show that every MV SGk
si
is acyclic.
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Lemma 1 If a database site si 2 �D constructs a multiversion serialization graph MV SGk
si
; k �

0, then every database sj eventually constructs the same multiversion serialization graph MV SGk
sj
.

Proof: The proof is by induction. Basic step: when the database is initialised, every database

site sj has the same empty multiversion serialization graph MV SG0
sj
. Inductive step (assump-

tion): assume that every database site sj that has constructed a multiversion serialization graph

MV SGk
sj

has constructed the same MV SGk
sj
. Inductive step (conclusion). Consider ta the

transaction whose committing generates, from MV SGk
sj
, a new multiversion serialization graph

MV SGk+1
sj

. In order to do so, database site sj must deliver transaction ta, certify and commit it.

By the order property of the atomic broadcast primitive, every database site sj that delivers a

transaction after installingMV SGk
sj
, delivers ta, and, by the atomicity property, if one database

site delivers transaction ta, then every database site ta. To certify ta, sj takes into account the

transactions that it has already locally committed (i.e., the transactions in MV SGk
sj
). Thus,

based on the same local state (MV SGk
sj
), the same input (ta), and the same (deterministic)

certi�cation algorithm, every database site eventually constructs the same MV SGk+1
sj

. 2

We show next that every history C(H)si produced by a database site si has an acyclic

MV SGsi and, therefore, is 1SR [6]. Given a multiversion history C(H)si and a version order

�, the multiversion serialization graph for C(H)si and �, MV SGsi, is a serialization graph

with read-from and version order edges. A read-from relation ta ,! tb is de�ned by an operation

rb[xa]. There are two cases where a version-order relation ta ,! tb is in MV SGsi: (a) for each

rc[xb], wb[xb] and wa[xa] in C(H)si (a, b, and c are distinct) and xa � xb, and (b) for each

ra[xc], wc[xc] and wb[xb] in C(H)si and xc � xb. The version order is de�ned by the delivery

order of the transactions. Formally, a version order can be expressed as follows: xa � xb i�

deliver(ta) � deliver(tb) and ta, tb 2MV SGsi .

To prove that C(H)si has an acyclic multiversion serialization graph (MV SGsi) we show

that the read-from and version-order relations in MV SGsi follow the order of delivery of the

committed transactions inC(H)si . That is, if ta ,! tb 2MV SGsi then deliver(ta) � deliver(tb).

Lemma 2 If there is a read-from relation ta ,! tb 2MV SGsi then deliver(ta) � deliver(tb).

Proof: A read-from relation ta ,! tb is in MV SGsi if rb[xa] 2 C(H)si ; a 6= b. For a contra-

diction, assume that deliver(tb) � deliver(ta). If ta and tb were executed at di�erent database

sites, by the time tb was executed, ta had not been committed at site(tb), and thus, tb could

not have read a value updated by ta. If ta and tb were executed at the same database site, tb
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must have read uncommitted data from ta, since ta had not been committed yet. However, this

contradicts the strict two phase locking rule. 2

Lemma 3 If there is a version-order relation ta ,! tb 2MV SGsi then deliver(ta) � deliver(tb).

Proof: According to the de�nition of version-order edges, there are two cases to consider.

(1) Let rc[xb], wb[xb] and wa[xa] be in C(H)si (a, b and c distinct), and xa � xb, which

implies ta ,! tb is in MV SGsi . It follows from the de�nition of version-order that deliver(ta) �

deliver(tb). (2) Let ra[xc], wc[xc] and wb[xb] be in C(H)si , and xc � xb, which implies ta ,! tb

is in MV SGsi , and have to show that deliver(ta) � deliver(tb). For a contradiction, assume

that deliver(tb) � deliver(ta). From the certi�cation test, when ta is certi�ed, either tb ! ta or

WS(tb) \RS(ta) = ;. But since x 2 RS(ta), and x 2WS(tb), it must be that tb ! ta.

Assume that ta and tb were executed at the same database site. By the de�nition of prece-

dence (Section 3.4), tb requested the commit before ta (that is, committing(tb)
e
! committing(ta)).

However, ta reads x from tc, and this can only happen if tb updates x before tc, that is, xb � xc,

contradicting that xc � xb. A similar argument follows for the case where ta and tb were

executed at distinct database sites. 2

Theorem 1 Every history H produced by the database state machine algorithm is 1SR.

Proof: By Lemmas 2 and 3, every database site si produces a serialization graphMV SGk
si
such

that every edge ta ,! tb 2MV SGk
si
satis�es the relation deliver(ta) � deliver(tb). Hence, every

database site si produces an acyclic multiversion serialization graph MV SGk
si
. By Lemma 1,

every database site si constructs the same MV SGk
si
. By the Multiversion Graph theorem of [6],

every history produced by database state machine algorithm is 1SR. 2

5 The Reordering Certi�cation Test

Transactions running without any synchronisation between database sites may lead to high

abort rates. In this section, we show how the certi�cation test can be modi�ed such that more

transactions pass the certi�cation test, and thus, do not abort.

5.1 General Idea

The reordering certi�cation test [12] is based on the observation that the serial order in which

transactions are committed does not need to be the same order in which transactions are deliv-
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ered to the certi�er. The idea is to dynamically build a serial order (that does not necessarily

follow the delivery order) in such a way that less aborts are produced. By being able to reorder

a transaction ta to a position other than the one ta is delivered, the reordering protocol increases

the probability of committing ta.

The atomic broadcast based termination protocol augmented with the reordering feature

di�ers from the atomic broadcast based termination protocol presented in Section 4 in the way

the certi�cation test is performed for committing transactions (see Figure 4). The certi�er

distinguishes between committed transactions already applied to the database and committed

transactions in the Reorder List. The Reorder List contains committed transactions whose write

locks have been granted but whose updates have not been applied to the database yet, and thus,

have not been seen by transactions in execution. The bottom line is that transactions in the

Reorder List may change their relative order.

The Reorder List has a pre-determined threshold, called Reorder Factor, that limits the

number of transactions it contains. Whenever the Reorder Factor is reached, the leftmost

transaction ta in the Reorder List is removed, its updates are applied to the database, and its

write locks are released. If no transaction in the Reorder List is waiting to acquire a write lock

just released by ta, the corresponding data item is available to executing transactions. The

reordering technique reduces the number of aborts, however, introduces some data contention

since data items remain blocked longer. This tradeo� was indeed observed by our simulation

model (see Section 6.3).

ta tb ct td te

Reorder List

t(1)t(0) . . . ?

transaction
deliver

Certifier

Database

Figure 4: Reorder technique (reorder factor = 4)

5.2 The Termination Protocol based on Reordering

Let databasesi = t(0)�t(1)�: : :�t(lastsi (�)) be the sequence containing all transactions on database

site si, at time � , that have passed the certi�cation test augmented with the reordering technique
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(order of delivery plus some possible reordering). The sequence databasesi includes transactions

that have been applied to the database and transactions in the Reorder List. We de�ne pos(t)

the position transaction t has in databasesi , and extend below the termination protocol described

in Section 4.2 to include the reordering technique.

1. Certi�cation test. Database site sj commits ta if there is a position in which ta can be

included in the Reorder List. Transaction ta can be included in a certain position p in the

Reorder List if the following conditions are true.

(a) There is no transaction tb in the Reorder List, pos(tb) < p, that con
icts with ta. That

is, for all transactions tb in the Reorder List, pos(tb) < p, either tb precedes ta, or tb

has not updated any data item that ta has read (this is essentially the certi�cation

test described in Section 3.3).

(b) There is no transaction tb in the Reorder List, pos(tb) � p, that satis�es the condi-

tions: (b.1) tb does not precede ta, or ta has not read any data item written by tb.

In which case, ta can come before tb in databasesi , since ta did not read any data

value that was only written after its execution (by tb), and (b.2) ta did not update

any data item read by tb.

The certi�cation test with reordering is formalised in the following as a state transition

from the committing state to the committed state.

Committing(ta; sj); Committed(ta; sj) �

2
666666664

9 position p in the Reorder List s:t: 8tb; Committed(tb; sj) :

pos(tb) < p) tb ! ta _WS(tb) \ RS(ta) = ; ^

pos(tb) � p)

0
@

(tb 6! ta _WS(tb) \ RS(ta) = ;)
^

WS(ta) \RS(tb) = ;

1
A

3
777777775

The condition for a transition from the committing state to the aborted state is the com-

plement of the right side of the expression shown below.

2. Commitment. If ta passes the certi�cation test it is included in the Reorder List: all

transaction on the right side of p, including p, are shifted one position to the right, and ta

is included, assuming now position p. If, with the inclusion of ta, the Reorder List reaches
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the Reorder Factor threshold, the leftmost transaction in Reorder List is removed and its

updates are applied to the database.

5.3 Algorithm Correctness

From Lemma 1, every database site builds the same multiversion serialization graph. It re-

mains to show that all the histories produced by every database site using reordering have a

multiversion serialization graph that is acyclic, and, therefore, 1SR.

We rede�ne the version-order relation � for the termination protocol based on reordering

as follows: xa � xb i� pos(ta) < pos(tb) and ta, tb 2MV SGsi .

Lemma 4 If there is a read-from relation ta ,! tb 2MV SGsi then pos(ta) < pos(tb).

Proof: A read-from relation ta ,! tb is in MV SGsi if rb[xa] 2 C(H)si ; a 6= b. For a contra-

diction, assume that pos(tb) < pos(ta). The following cases are possible: (a) tb was delivered

and committed before ta, and (b) tb was delivered and committed after ta but reordered to a

position before ta.

In case (a), it follows that tb reads uncommitted data (i.e., x) from ta, which is not possible:

if ta and tb executed at the same database site, reading uncommitted data is avoided by the

strict 2PL rule, and if ta and tb executed at di�erent database sites, ta's updates are only seen by

tb after ta's commit. In case (b), from the certi�cation test augmented with reordering, when tb

is certi�ed, we have that (ta 6! tb_WS(ta)\RS(tb) = ;)^WS(tb)\RS(ta) = ; evaluates true.

(Being tb the committing transaction, the indexes a and b have been inverted, when compared

to expression given in the previous section.) Since tb reads-from ta, WS(ta) \ RS(tb) 6= ;, and

so, it must be that ta 6! tb. If ta and tb executed at the same database site, ta 6! tb implies

committing(tb)
e
! committing(ta). However, this is only possible if tb reads x from ta before

ta commits, contradicting the strict 2PL rule. If ta and tb executed at di�erent database sites,

ta 6! tb implies commit(ta)site(tb) 6
e
! committing(tb), and so, tb passed to the committing state

before ta committed at site(tb), which contradicts the fact that tb reads from ta, and concludes

the Lemma. 2

Lemma 5 If there is a version-order relation ta ,! tb 2MV SGs then pos(ta) < pos(tb).

Proof: According to the de�nition of version-order edges, there are two cases of interest.

(1) Let rc[xb], wb[xb], and wa[xa] be in C(H)si (a, b and c distinct), and xa � xb, which implies

ta ,! tb is in MV SGsi. It follows from the de�nition of version-order that pos(ta) < pos(tb).
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(2) Let ra[xc], wc[xc], and wb[xb] be in C(H)si (a, b and c distinct), and xc � xb, which implies

ta ,! tb is in MV SGsi . We show that pos(ta) < pos(tb). There are two situations to consider.

(a) tc and tb have been committed when ta is certi�ed. Assume for a contradiction that

pos(tb) < pos(ta). From the certi�cation test, we have that either tb ! ta or WS(tb) \

RS(ta) = ;. Since x 2 WS(tb) and x 2 RS(ta), WS(tb) \ RS(ta) 6= ;, and so, it must

be that tb ! ta. However, ta reads x from tc and not from tb, which can only happen if

xb � xc, a contradiction.

(b) tc and ta have been committed when tb is certi�ed. Assume for a contradiction that

pos(tb) < pos(ta). From the certi�cation test, we have that (ta 6! tb _WS(ta) \RS(tb) =

;) ^WS(tb)\RS(ta) = ; evaluates true, which leads to a contradiction since x 2WS(tb)

and x 2 RS(ta), and thus, WS(tb) \RS(ta) 6= ;. 2

Theorem 2 Every history H produced by the database state machine algorithm augmented with

the reordering technique is 1SR.

Proof: By Lemmas 4 and 5, every database site si produces a serialization graph MV SGk
si

such that every edge ta ,! tb 2 MV SGk
si
satis�es the relation pos(ta) < pos(tb). Hence, every

database site produces an acyclic multiversion serialization graph MV SGx
s . By Lemma 1, every

database site si constructs the same MV SGk
si
. By the Multiversion Graph theorem of [6], every

history produced by the reordering algorithm is 1SR. 2

6 Simulation Model

The simulation model we have developed abstracts the main components of a replicated database

system (our approach is similar to [13]). In this section, we describe the simulation model and

analyse the behaviour of the database state machine approach using the output provided by the

simulation model.

6.1 Database Model and Settings

Every database site is modelled as a processor, some data disks, and a log disk as local resources.

The network is modelled as a common resource shared by all database sites. Each processor is

shared by a set of execution threads, a terminating thread, and a workload generator thread

(see Figure 5). All threads have the same priority, and resources are allocated to threads in
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a �rst-in-�rst-out basis. Each execution thread executes one transaction at a time, and the

terminating thread is responsible for doing the certi�cation. The workload generator thread

creates transactions at the database site. Execution and terminating threads at a database site

share the database data structures (e.g., lock table).
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execution

workload
generator

terminating
thread
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execution
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Figure 5: Simulation model

Committing transactions are delivered by the terminating thread and then certi�ed. If

a transaction passes the certi�cation test, its write locks are requested and its updates are

performed. However, once the terminating thread acquires the transaction's write locks, it

makes a log entry for this transaction (with its writes) and assigns an execution thread to

execute the transaction's updates over the database. This releases the terminating thread to

treat the next committing transaction.

The parameters considered by our simulation model with the settings used in the experi-

ments are shown in Figure 6. The workload generator thread creates transactions and assigns

them to executing threads according to the pro�le described (percentage of update transactions,

percentage of writes in update transactions, and number of operations). We have chosen a rel-

ative small database size in order to reach data contention quickly and avoid extremely long

simulation runs that would be necessary to obtain statistically signi�cant results.

We use a closed model, that is, each terminated transaction (committed or aborted) is re-

placed by a new one. Aborted transactions are sent back to the workload generator thread, and

some time later resubmitted at the same database process. The multiprogramming level deter-

mines the number of executing threads at each database process. Local deadlocks are detected

with a timeout mechanism: transactions are given a certain amount of time to execute (transac-
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tion timeout), and transactions that do not reach the committing state within the timeout are

aborted.

Database parameters Processor parameters
Database size (data items) 2000 Processor speed 100 MIPS
Number of servers (n) 1::8 Execute an operation 2800 ins
Multiprogramming level (MPL) 8 Certify a transaction 5000 ins
Data item size 2 KB Reorder a transaction 15000 ins

Transaction parameters Disk parameters (Seagate ST-32155W)
Update transactions 10% Number of data disks 4
Writes in update transactions 30% Number of log disks 1
Number of operations 5::15 Miss ratio 20%
Transaction timeout 0:5 sec Latency 5:54 msec
Reorder factor 0; n; 2n; 3n; 4n Transfer rate (Ultra-SCSI) 40 MB/sec

General parameters Communication parameters
Control data size 1 KB Atomic Broadcasts per second 1; 180; 800=n

Communication overhead 12000 ins

Figure 6: Simulation model parameters

Processor activities are speci�ed as a number of instructions to be performed. The settings

are an approximation from the number of instructions used by the simulator to execute the

operations. The certi�cation test is e�ciently implemented by associating to each database

item a version number [13]. Each time a data item is updated by a committing transaction, its

version number is incremented. When a transaction �rst reads a data item, it stores the data

item's version number (this is the transaction read set). The certi�cation test for a transaction

consists thus in comparing each entry in the transaction's read set with the current version

of the corresponding data item. If all data items read by the transaction are still current,

the transaction passes the certi�cation test. We consider that version numbers are stored in

main memory. The reordering test (Section 5.2) is more complex, since it requires handling

read sets and write sets of transactions in the reorder list. The control data size contains the

data structures necessary to perform the certi�cation test (e.g., readset and writeset). Atomic

broadcast settings are described in the next section.

6.2 Atomic Broadcast Implementation

The literature on atomic broadcast algorithms is abundant (e.g., [14], [15], [16], [17], [18], [19],

[20]), and the multitude of di�erent models (synchronous, asynchronous, etc.) and assumptions

about the system renders any fair comparison di�cult. However, known atomic broadcast

algorithms can be divided into two classes, according to scalability issues. An atomic broadcast
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algorithm is scalable, and belongs to the �rst class, if the number of atomic broadcasts that can

be executed per time unit in the system does not depend on the number of sites that delivery

the messages atomically broadcast. If the number of atomic broadcasts that can be executed

per time unit decreases with the number of database sites, the atomic broadcast algorithm is

not scalable, and belongs to the second class.

The �rst class, to which we refer as k-abcast algorithms, has a constant deliver time, in-

dependent of the number of sites that deliver the messages. Thus, the k factor determines

the number of atomic broadcasts executed per time unit. The second class is referred to as

k=n-abcast algorithms, where n is the number of sites that deliver the messages. In this case,

the more sites are added, the more time it takes to execute an atomic broadcast, and so, the

number of atomic broadcast per time unit executed in the system decreases exponentially with

the number of sites.

As a reference to the scalability classes, we also de�ne an atomic broadcast time zero, that is,

an atomic broadcast that delivers messages instantaneously. This is referred to as a 1-abcast,

since a time zero atomic broadcast algorithm would allow in theory an in�nite number of atomic

broadcasts executed per time unit.

The values chosen for k in Figure 6 are an approximation based on experiments with SPARC

20 workstations running Solaris 2.3 and an FDDI network (100Mb/s) using the UDP transport

protocol with messages of 20 Kbytes. Each time a site executes an atomic broadcast, it incurs

in some communication overhead.

6.3 Experiments and Results

In the following, we discuss the experiments we conducted and the results obtained with the

simulation model. Each point plotted in the graphs has a con�dence interval of 95%, and was de-

termined from a sequence of simulations, each one containing 100000 submitted transactions. In

order to remove initial transients [21], only after the �rst 1000 transactions had been submitted,

the statistics started to be gathered.

In the following, we analyse update and read-only transactions separately, although the

values presented were observed in the same simulations (i.e., all simulations contain update and

read-only transactions).

Update Transactions Throughput. The experiments shown in Figures 7 and 8 evaluate the

e�ect of the atomic broadcast algorithm on the transaction throughput. In these experiments,
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each cluster of database sites processed as many transactions as possible, that is, transaction

throughput was only limited by the resources available. Figure 7 shows the number of update

transactions submitted, and Figure 8 the number of committed update transactions. As can be

seen in Figure 7, the choice of a particular atomic broadcast algorithm is not relevant for a cluster

with less than �ve database sites: whatever the atomic broadcast algorithm, the transaction

throughput increases linearly with the number of database sites. This happens because until

four database sites, all three con�gurations are limited by the same resource, namely, local data

disks. Since the number of data disks increases linearly with the number of database sites,

transaction throughput also increases linearly. For clusters with more than four database sites,

contention is determined di�erently for each con�guration. For the 1-abcast based execution,

after �ve database sites, contention is caused by the certi�cation procedure. For the k-abcast

and k=n-abcast based executions, contention is caused by the network (the limit being 180 and

800=n atomic broadcasts per second, respectively).

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Su
bm

itt
ed

 T
PS

 (
up

da
te

)

Number of Sites

Inf-abcast
k-abcast

k/n-abcast

Figure 7: Submitted TPS (update)

0

50

100

150

200

250

1 2 3 4 5 6 7 8

C
om

m
itt

ed
 T

PS
 (

up
da

te
)

Number of Sites

Inf-abcast
k-abcast

k/n-abcast

Figure 8: Committed TPS (update)

It is indeed expected that after a certain point (system load), the terminating thread would

become a bottleneck, and transaction certi�cation critical. However, as can be seen in Figure 8,

this only happens for the1-abcast based execution (about 170 update transactions per second),

since for the others, the network limits the execution before that point is reached. It can also

be seen in Figure 8 that for the k-abcast based execution, although the number of transactions

submitted per second for clusters with more than four sites is constant, the aborts increase

(with the number of database sites). This is due to the fact that the more database sites, the

more transactions are executed under an optimistic concurrency control and thus, the higher

the probability that a transaction aborts.
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Queries Throughput. Figures 9 and 10 show submitted and committed queries per second

in the system. The curves in Figure 9 have the same shape as the ones in Figure 7. This is

so because the simulator enforces a constant relation between submitted queries and submitted

update transactions (see Figure 6, update transactions parameter). Update transactions are

determined by resource contention, and so, queries present the same behaviour. This could be

avoided if some executing threads were only assigned to queries, however, the relation between

submitted queries and update transactions would be determined by internal characteristics of

the system and not by an input parameter, as we would like it to be. Queries are only aborted

during their execution to solve (local) deadlocks they are involved in, or on behalf of committing

update transactions that have passed the certi�cation test and are requesting their write locks

(Section 4.2). As shown in Figure 9 and 10, submitted and committed queries, for all atomic

broadcast based executions, are very close to each other, which amounts to a small abort rate.
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Response Time. The next graphs (Figures 11 and 12) depict the response time of queries

and update transactions. Figure 11 presents the response time for the executions shown in

Figures 7 and 8. It can be seen that the price paid for the higher throughput presented by the

1-abcast based execution, when compared to the k-abcast based execution, is a higher response

time. However, as it was expected, when all atomic broadcast based executions process the same

number of transactions per second (Figure 12), the 1-abcast based execution is faster. Queries

have the same response time for all atomic broadcast based executions of the simulation.

Reordering. We consider next the e�ect of the reordering technique. Figures 13 and 14 show

the abort rate for the k-abcast and the k=n-abcast based con�gurations, with di�erent reorder
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factors. We do not consider the 1-abcast based solution because reordering does not bring any

improvement to the abort rate in this case (even if more transactions could pass the certi�cation

test, the terminating thread would not be able to process them). In both cases, reorder factors

smaller then 4n, have proved to reduce the abort rate without introducing any side e�ect. For

reordering factors equal to or greater than 4n, the data contention introduced by the reordering

technique leads to an increase on the abort rate that is greater than the reduction on the abort

rate that can be obtained with its use (i.e., the reordering technique increases the abort rate of

update transactions).
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Figure 14: Reordering (k=n-abcast)

Overall Discussion. Besides showing the feasibility of the database state machine approach,

the simulation model allows to draw some conclusions about its scalability. Update transactions

scalability is determined by the scalability of the atomic broadcast primitive, which has showed

to be a potential bottleneck of the system. This happens because the network is the only resource
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shared by all database sites (and network bandwidth does not increase as more database sites

are added to the system). As for queries, only a slight grow in the abort rate was observed

as the number of sites increase. This is due to the fact that queries are executed only locally,

without any synchronisation among database sites.

The above result about update transactions scalability deserves a careful interpretation since

in which concerns network utilisation, techniques that fully synchronise transactions among

database sites (e.g., distributed 2PL protocol [6]) probably will not do better than the database

state machine approach. The argument for this statement is very simple: they consume more

network resources. A typical k=n-abcast algorithm needs about 4n [22] messages to deliver

a transaction, where n is the number of database servers, and a protocol that synchronises

transaction operations needs around m � n messages, where m is the number of transaction

operations (assuming that reads and writes are synchronised). Thus, unless transactions are

very small (m � 4), the database state machine approach outperforms any fully synchronisation

technique in number of messages. Furthermore, the simulation model also shows that any e�ort

to improve the scalability of update transactions should be concentrated on the atomic broadcast

primitive.

Finally, if on the one hand the deferred update technique has no distributed deadlocks, on

the other hand its lack of synchronisation may lead to high abort rates. The simulation model

has showed that, if well tuned, the reordering certi�cation test can overcome this drawback.

7 Related Work

The work here presented is at the intersection of two axes of research. First, relying on a certi�-

cation test to commit transactions is an application of optimistic concurrency control. However,

terminating transactions with an atomic broadcast primitive is an alternative to solutions based

on atomic commit protocols.

Although most commercial database systems are based on (pessimistic) 2PL synchronisa-

tion [10], optimistic concurrency control have received increasing attention, since it introduction

in [23] (see [24] for a brief survey). It has been shown in [13] that if su�cient hardware resources

are available, optimistic concurrency control can o�er better transaction throughput than 2PL.

This result is explained by the fact that an increase in the multiprogramming level, in order to

reach high transaction throughput, also increases locking contention, and thus, the probability

of transaction waits due to con
icts, and transaction restarts to solve deadlocks. The study
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in [13] is for a centralised single-copy database. One could expect that in a replicated database,

the cost of synchronising distributed accesses by message passing would be non negligible as

well. In fact, a more recent study [3] has shown that fully synchronising accesses in replicated

database contexts (as required by 2PL) is dangerous, since the probability of deadlocks is directly

proportional to the third power of the number of database sites in the system.

The limitations of traditional atomic commitment protocols in replicated contexts have been

recognised by several authors. In [25], the authors point out the fact that atomic commitment

leads to abort transactions in situations where a single replica manager crashes. They propose a

variation of the three phase commit protocol [26] that commits transactions as long as a majority

of replica managers are up.

In [27], a class of epidemic replication protocols is proposed as an alternative to traditional

replication protocols. However, solutions based on epidemic replication end up being either

a case of lazy propagation where consistency is relaxed, or solved with semantic knowledge

about the application [28]. In [29], a replication protocol based on the deferred update model

is presented. Transactions that execute at the same process share the same data items, using

locks to solve local con
icts. The protocol is based on a variation of the three phase commit

protocol to certi�cate and terminate transactions.

It is only recently that atomic broadcast has been considered as a possible candidate to

support replication, as termination protocols. Schiper and Raynal [30] pointed out some simi-

larities between the properties of atomic broadcast and static transactions (transactions whose

operations are known in advance). Atomic broadcasting static transactions was also addressed

in [31]. In [12], we present a reordering technique, based on atomic broadcast, that allows for a

greater transaction throughput in replicated databases.

In [32], a family of protocols for the management of replicated database based on the im-

mediate and the deferred models are proposed. The immediate update replication consists in

atomic broadcasting every write operation to all database sites. For the deferred update repli-

cation, two atomic broadcasts are necessary to commit a transaction. An alternative solution is

also proposed, using a sort of multiversion mechanism to deal with the writes during transaction

execution (if a transaction writes a data item, a later read should re
ect this write).

Amir et al. [33] also utilise atomic broadcast to implement replicated databases. However,

the scheme proposed considers that clients submit individual object operations rather than

transactions.
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8 Concluding Remarks

This paper shows how the state machine approach can be used to implement a replication

protocol in a cluster of database servers. Replication in this scenario is used to improve both

fault tolerance (e.g., by increasing data availability), and performance (e.g., by sharing the

workload among servers). The database state machine approach implements a form of deferred

update technique. The agreement and order properties of the state machine approach are

provided by an atomic broadcast primitive. This approach has the bene�t that it encapsulates

all communication between database sites in the atomic broadcast primitive. The paper also

shows how transaction aborts, due to synchronisation reasons, can be reduced by the reordering

certi�cation test.

The state machine approach is evaluated by means of a detailed simulation model. The

results obtained show the role played by the atomic broadcast primitive, and its importance for

scalability. In particular, the simulation model also evaluates the reordering certi�cation test

and shows that in certain cases, speci�cally for 8 database servers, it reduces the number of

transactions aborted from 20% to less than 5%.

Finally, in order to simplify the overall approach, we did not address some issues that may

deserve further analysis. For example, one such point concerns recoverability conditions for

atomic broadcast primitives. Another issue concerns how clients choose the servers that will

execute their requests.
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