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Abstract

We analyze some queueing problems arising in guaranteed service and controlled load networks
using min-plus algebra. We �nd an explicit representation for the sub-additive closure of the minimum
of two operators, and we introduce a new, useful family of idempotent, time-varying, and min-plus
linear operators. We model queueing systems arising in networks networks as non-linear min-plus
systems that can be bounded by linear systems, and apply our concepts to: the optimal shaper
studied by Anantharam and Konstantopoulos, the window ow control problem previously studied
by: Cruz and Okino; Chang; Agrawal and Rajan. In all these cases we explain the existing bounds
and in the latter case derive another bound. We then show how the same method enables us to give
a representation for the losses in a shaper with �nite bu�er constraints or with delay constraints.
We apply the result to bound the losses in a variable bit rate (VBR) trunk system by the losses in
simpler, constant bit rate trunk systems (CBR) systems. Finally, as a by-product of the concepts
proposed in the paper, we show how it provides an explicit solution to the deterministic Skorokhod
reection mapping problem with two boundaries.

Keywords Guaranteed Quality of Service; ATM; Queueing Systems; Network Calculus; Min-Plus
Algebra; Reection Mapping; Window Flow Control; Optimal Leaky Bucket;

1 Introduction

A number of recent papers [6, 7, 8, 9] has brought together a set of calculus rules, called network
calculus, for networks with guaranteed quality of service. They extend the original theory of service
curves introduced by Parek and Gallager [1, 2] and Cruz [3, 4, 5] by placing it in the general context of
min-plus algebra [10]. The results give bounds for such quantities as delays, backlogs in networks which
o�er guaranteed service, with or without ow control.

The starting point for this paper is a central result of min-plus algebra which describes the solution of a
system of inequations using the concept of closure of an operator [10] (Theorem 1 in Section 4). We use
this result to propose a systematic method for modeling a number of situations arising in communication
networks, not only for guaranteed service.

In Section 4 we present our framework for systemmodelling; it relies on standard concepts and results from
min-plus algebra. Then we introduce a family of min-plus linear, time-varying and idempotent operators
which are useful for modelling a number of systems. They can be used in particular to represent systems
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with losses. Then we focus on the closure of the minimum of two operators, for which we propose an
explicit representation. If one of the operators is idempotent, we obtain a closed form representation.

In Section 5 we apply the results from Section 4 to Examples 1 to 3 (lossless systems). Our analysis not
only explains in a systematic way some results which were previously obtained, but it also provides new
results. Then in Section 6 we apply our framework to Examples 4 and 5 (lossy systems). We obtain a
representation of the losses in these systems, and apply it to provide bounds for variable bit rate (VBR)
shapers. VBR shapers are found in many instances of communication systems, for example with packet
video servers or in hierarchical reservation systems [21]. In Section 6.1.1 we �rst compare a VBR shaper
to a virtual system made of two simpler, constant bit rate (CBR) shapers in parallel; we show that, for
every sample path, the amount of losses in the VBR shaper is bounded by the amount of losses in the
virtual system. We show a similar result for the total amount of time spent in congestion. Then we use a
virtual system made of two CBR shapers in sequence and obtain a similar result for the amount of losses.
Such a result may exist for the time spent in congestion but we did not investigate it. In Section 6.1.2
we analyze a virtual system consisting in splitting the original input ow into component ows, and
allocating to every component ow a virtual, segregated system. Such an analysis by segregation is used
for example in [13]. We show that, for every sample path, the amount of losses in the original system
is always bounded by the amount of losses in the virtual systems. For those systems, it is known that
a similar result for the time spent in congestion is not true. In Section 6.2 we analyze Example 5 and
obtain a similar result. We expect the results in Section 6 to form the starting point for obtaining bounds
on probabilities of loss or congestion for shapers with losses; the method would consist in applying known
bounds to virtual systems and take the minimum over a set of virtual systems. This application of our
framework is outside the scope of this paper.

Finally, as a by-product of our framework, we give in Section 7 the explicit solution to the deterministic
Skorokhod reection mapping problem with two boundaries. Section 8 concludes the paper.

2 Notation and Background

We consider a discrete or continuous time system, described by ~x(t) where t is the time. We assume that
for all t the values ~x(t) are in (R+ [ f1g)J , where J is a �xed, �nite integer.

For ~z; ~z0 2 (R+ [ f1g)J , we de�ne ~z ^ ~z0 as the coordinate-wise minimum of ~z and ~z0, and similarly for

the + operator. We write ~z � ~z0 with the meaning that ~zj � ~z0j for j = 1 : : : J . Note that the comparison

so de�ned is not a total order, namely, we cannot guarantee that either ~z � ~z0 or ~z0 � ~z holds. For a
constant K, we note ~z +K the vector de�ned by adding K to all elements of ~z.

For sequences or functions, we note similarly (~x ^ ~y)(t) = ~x(t) ^ ~y(t) and (~x +K)(t) = ~x(t) +K for all
t � 0, and write ~x � ~y with the meaning that ~x(t) � ~y(t) for all t.

We further call FJ the set of sequences or functions ~x that are wide-sense increasing and non-negative,
namely, for which 0 � xj(0) � xj(t1) � xj(t2) for any 0 < t1 < t2 and all j = 1 : : : J .

We denote vectors with the arrow symbol as in ~x or with a non-arrowed greek letter.

The min-plus convolution operation, which we note 
 is de�ned as follows [6, 8, 9, 10].

(~x
 ~y)(t) = inf
u such that 0�u�t

f~x(u) + ~y(t� u))g

Note that (~x
 ~y) +K = (~x+K)
 ~y = ~x
 (~y +K).

In network calculus, when the dimension J = 1, ~x(t) = x(t) is for example the number of bits, or
ATM cells, counted from time 0 to t at a given observation point. We say that a network element
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guarantees to a ow x(t) a service curve � if there exists some u 2 [0; t] such that the output y(t) satis�es
y(t)� x(s) � �(t� s), or equivalently

y � � 
 x:

For example, an ideal constant bit rate (CBR) server with rate c o�ers a service curve de�ned by �(t) = ct.
More realistically, the IETF assumes that guaranteed service nodes o�er a service curve �(t) = R[t�T ]+

[6]. Similarly, we say that a ow, described by x(t), is constrained by � if for any t � 0, any 0 � s � t,
x(t)� x(s) � �(t� s), or equivalently

x � �
 x:

We say that � is an arrival curve for the ow [6, 7, 8, 9]. The concept of arrival curve generalizes that of
leaky buckets. Service and arrival curves are the key concept for modelling guaranteed service schedulers
and computing useful bounds.

3 Examples considered in this Paper

We consider the following examples.

3.1 Example 1: Optimal tra�c shaper

This example is found in [12]. Let �0 and � be two increasing, concave functions, such that �0 � �. We
want to �nd an operator '(�) which

� is causal, meaning that '(a)(t) depends only on a(s) for 0 � s � t,

� is realizable, meaning that '(a)(t) � a(t) for any t � 0, and a(t) � 0,

� satis�es the burstiness constraints speci�ed by (�0; �), namely for any t � s � 0, a(t) � 0, '(a)(t) �
�0(t) and '(a)(t) � '(a)(s) � �(t� s),

and which is optimal in the sense that if  is another operator satisfying the above requirements then
 (a)(t) � '(a)(t) for any t � 0, a(�) � 0.

The solution to this problem is found in [12] using reection mappings, and is summarized as follows.

Let g? denote the convex transform of a function g 2 F1, de�ned as

g?(�) = sup
t�0

fg(t)� �tg: (1)

with � � 0. The inverse transform is

g(t) = inf
��0

fg?(�) + �tg: (2)

Theorem 5 of [12] de�nes the optimal map ' by the following equations, with � � 0.

z�(t) = �?(�)� �?0(�) + a(t)� �t (3)

N�(t) = � inf
0�s�t

fz�(s)g ^ 0 (4)

'(a)(t) = a(t) ^ inf
��0

f�?0(�) + �t�N�(t)g: (5)

We will show that these equations can be obtained and recast in a simpler form using min-plus methods.
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In general, the burstiness constraints of a shaper are expressed only over sliding temporal windows, i.e.
by �, which means that �0 = �. We �nd then back the results of [6]. For the following Examples 4 and
5, we will assume that for a shaper �0 = �, and moreover that �(0) = 0 and that � is sub-additive, which
is not a restriction [6].

3.2 Example 2: Window ow controller

This example is found independently in [8] and [9]. A data ow a(t) is fed via a window ow controller to
a network o�ering a service curve of �. The window ow controller limits the amount of data admitted
into the network in such a way that the total backlog is less than or equal to K, where K (the window
size) is a �xed number (Figure 1).

a(t) x(t)

y(t)

network

controller

Figure 1: Example 2, from [8] or [9]

Call x(t) the ow admitted to the network, and y(t) the output. The de�nition of the controller means
that x(t) is the maximum solution to �

x(t) � a(t)
x(t) � y(t) +K

(6)

which implies that x(t) = a(t) ^ (y(t) +K). Note that we do not know the mapping x(t)! y(t), but we
do know that

y(t) � (� 
 x)(t): (7)

In [8], (6) and (7) are used to derive that

x � (� +K)
 a (8)

In the formula, (� +K) is the sub-additive closure of � +K [6, 8, 10]. The sub-additive closure � of a
vector or function � is de�ned by

�(t) = inff�; �; �(2); �(3); : : : g

with �(i) = �
 : : :
 � (i times) and � is the �xed function de�ned by �(t) =1 for t > 0 and �(0) = 0.

Equation (8) means that the complete system o�ers a service curve equal to (� +K). We show in this
paper that this result is indeed obtained by min-plus methods.
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3.3 Example 3: Detailed window ow control

This example is a more detailed representation of window-ow control. Compared to Example 1, the
additional modelling assumptions in [7] can be re-formulated as follows (see Figure 2 for the notation).

� the output of the window ow controller (marked Network element 1 on the �gure) is constrained
by an arrival curve �.

� the output of network elements 1 and 2 is constrained by a maximum service rate . More precisely,
the number of bits output at station i (i = 1; 2) during time interval (s; t] is bounded byMi(t)�Mi(s)
for some �xed functions M1 and M2. This models the fact that the server is busy serving other
ows.

a(t) x(t)

y(t)

network
(forwards)

network 
element 1

network
(backwards)

network 
element 2

y2(t)

y1(t)

Figure 2: Example 3, from [7]

As with Example 2, the controller guarantees that a maximum of K bits are backlogged in the loop.
Network elements f (forwards) and b (backwards) are assumed to o�er service curves Sf and Sb.

With these assumptions, the admitted ow x is the maximum solution to the system8>><
>>:

x(t) � a(t)
x(t) � (� 
 x)(t)
x(t) � infu such that 0�u�t fx(u) +M1(t)�M1(u)g
x(t) � y(t) +K

(9)

As with Example 1, we do not know the exact mapping x(t)! y(t), but we do know that8>>>>>><
>>>>>>:

y1(t) � x(t)
y1(t) � (Sf 
 x)(t)
y2(t) � y1(t)
y2(t) � infu such that 0�u�t fy2(u) +M2(t)�M2(u)g
y(t) � y2(t)
y(t) � (Sb 
 y2)(t)

(10)

and that (x; y2) is the maximum couple of functions such that (9) and (10) hold.

Additional assumptions made in [7] are that for all t � 0, 0 � s � t�
�(t) � C1 � t

Ŝi(t� s) �Mi(t)�Mi(s) � Ci � (t� s); i = 1; 2
(11)

In (11), C1 and C2 represent the maximum line rates at network elements 1 and 2, while functions Ŝ1
and Ŝ2 give minimum guarantees on the service rates. With these assumptions, Cruz and Okino derive
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in [7] a service curve S1 for network element 1, namely, they �nd an S1 such that x � S1 
 a. We give
more detail about S1 in Section 5 and show that it is obtained by min-plus algebra methods. Further,
we are able to improve S1.

3.4 Example 4: Losses in a shaper with �nite bu�er

In this example, one considers a shaper with a bu�er X and a shaping curve �, which is a system that
forces an input ow a(t) ow to have an output y(t) which has � as arrival curve, at the expense of
possibly delaying bits in the bu�er. The shaping curve is assumed to be sub-additive and such that
�(0) = 0 (If it is not the case, � should be replaced by its sub-additive closure). If the tra�c a enters the
shaper, its output is y = � 
 a [8, 9].

We suppose that the bu�er is not large enough to avoid losses for all possible input tra�c, and we would
like to compute the amount of data lost at time t, with the convention that the system is empty at time
t = 0. We model losses as shown in Figure 3, where x(t) is the data that has actually entered the system
in the time interval [0; t]. The amount of data lost during the same period is therefore L(t) = a(t)�x(t).
The amount of data (x(t) � x(s)) that actually entered the system in any time interval (s; t] is always
bounded above by the total amount of data (a(t)� a(s)) that has arrived in the system during the same
period. Therefore, for any 0 � s � t, x(t) � x(s) + a(t)� a(s) or equivalently

x(t) � inf
u such that 0�u�t

fx(u) + a(t)� a(u)g : (12)

On the other hand, x is the part of a that does actually enter the shaper, so the output of the shaper is
y = � 
 x. There is no loss for x(t) if x(t) � y(t) � X for any t. Thus

x(t) � y(t) +X = (� 
 x)(t) +X (13)

The data x that actually enters the system is therefore the maximum solution to (12) and (13).

Controller

a(t)

L(t)

x(t)
X

Shaper

y(t)

Figure 3: Example 4, shaper with losses

In this paper we will obtain an exact representation of L(t). Then we apply this representation to the
case where the shaper represents a variable bit rate (VBR) trunk system. A VBR trunks system is a
node which multiplexes a number of ows onto one variable bit rate connection. It can be modelled
as a shaper where � is the minimum of two a�ne functions. In that case, we are able to compare the
amount of lost data L(t), and in some case, the time spent in congestion (\congestion periods") to those
of simpler, constant bit rate (CBR) systems. We expect these results to be used in deriving bounds for
stochastic VBR trunk systems from known bounds applicable to CBR trunk systems. Stochastic bounds
for CBR trunk systems can be found for example in [13].
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3.5 Example 5: Losses in a shaper with delay constraints

This last example is similar to the previous one, except that now there is no �nite bu�er limit. The latter
is replaced by a delay constraint: any entering data must have exited the system after at most d unit of
times, otherwise it is discarded. Such discarded data will be called losses due to a delay constraint of d
time units. As above, let x be the part of a that does actually enter the shaper, so the output of the
shaper is y = � 
 x. All the data x(t) that has entered the system during [0; t] must therefore have left
at time t+ d at the latest, so that x(t)� y(t+ d) � 0 for any t. Thus

x(t) � y(t+ d) = (� 
 x)(t+ d): (14)

On the other hand, as in the previous example, the amount of data (x(t) � x(s)) that actually entered
the system in any time interval (s; t] is always bounded above by the total amount of data (a(t)� a(s))
that has arrived in the system during the same period. Therefore the data x that actually enters the
system is therefore the maximum solution to (12) and (14).

As with Example 4, we are able to obtain a representation of the ow of lost data which can be used to
derive from CBR systems some bounds which are applicable to VBR trunk systems.

4 System Modelling

4.1 General Model

In this Section we show how to use concepts from min-plus algebra in order to model problems such as
in the three examples.

For operators � : FJ ! FJ we de�ne the following properties, which are direct applications of [10]:

De�nition 1 ([10]) � � is isotone if ~x(t) � ~y(t) for all t always implies �(~x)(t) � �(~y)(t) for all t.

� � is causal if for all t, �(~x)(t) depends only on ~x(s) for 0 � s � t.

� � is upper-semi-continuous if for any decreasing sequence of trajectories (~xi(t))i we have inf i �(~x
i) =

�(inf i ~x
i).

� � is time-invariant if ~y(t) = �(~x)(t) for all t and ~x0(t) = ~x(t + s) for some s always implies that
for all t �(~x0)(t) = ~y(t+ s).

by

We propose to model network elements as isotone, causal, upper-semicontinuous operators. The �rst two
properties are intuitive. The third one is a technical assumption required for the Theorem 1 to hold. It
is however not a practical restriction.

For � and �0 we note � � �0 the compound operator, de�ned by (� � �0)(~x) = � [�0(~x)]. We also note
�(i) = � � : : : �� (i times, i � 1).

We will use the following de�nition.

De�nition 2 ([10]) The closure � of the operator � is de�ned by

�(~x) = inf
n
~x;�(~x);�(2)(~x); : : : ;�(i)(~x); : : :

o
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Lastly, we write � � �0 to express that �(~x) � �0(~x) for all ~x 2 FJ . The following propostion will be
useful.

Proposition 1 If � and �0 are isotone and � � �0 then � � �0

The proof is simple and left to the reader.

The main result from min-plus algebra which we use in this paper is the following.

Theorem 1 ([10], Theorem 4.70, item 6) Let � be an operator FJ ! FJ , and assume it is isotone
and upper-semi-continuous. For any �xed function ~a 2 FJ , the problem

~x � �(~x) ^ ~a (15)

has one maximum solution, given by ~x = �(~a)

The theorem is proven in [10]. We give here a direct proof which does not require the pre-requisites in
[10].

Proof: (i) Let us �rst show that �(~a) is a solution of (15). Consider the sequence f~xng of decreasing
sequences de�ned by

~x0 = ~a

~xn+1 = ~xn ^ �(~xn); n � 0:

Then one checks that
~x? = inf

n�0
f~xng

is a solution to (15) because ~x? � ~x0 = ~a and because � is upper-semi-continuous so that

�(~x?) = �( inf
n�0

f~xng) = inf
n�0

f�(~xn)g � inf
n�0

f~xn+1g � inf
n�0

f~xng = ~x?:

Now, one easily checks that ~xn = inf0�m�nf�
(m)(~a)g, so

~x? = inf
n�0

f~xng = inf
n�0

inf
0�m�n

f�(m)(~a)g = inf
n�0

f�(n)(~a)g = �(~a):

(ii) Let ~x be a solution of (15). Then ~x � ~a and since � is isotone, �(~x) � �(~a). From (15), ~x � �(~x),
so that ~x � �(~a). Suppose that for some n � 1, we have shown that ~x � �(n�1)(~a). Then as ~x � �(~x)
and as � is isotone, it yields that ~x � �(n)(~a). Therefore ~x � infn�0f�

(n)(~a)g = �(~a), which shows that
~x? = �(~a) is the maximal solution.

4.2 Min-Plus linear operators

We also de�ne min-plus linear operators:

De�nition 3 ([10]) Operator � is min-plus linear if it is upper-semi-continuous and �(~x+K) = �(~x)+
K for all constant K.

Min-plus operators are the equivalent in min-plus algebra of traditional linear system theory. In particular,
it is shown in [10] that an operator is min-plus linear if and only if it can be represented under the form
�(~x)(t) = infu fH(t; u) + ~x(u)g : H is called the matrix representation of the linear operator �.
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In general, a network element cannot be assumed to be a min-plus linear operator on its input. A notable
exception is the case of shapers, which are linear and time invariant. We will see later that linear operators
can be used to obtain bounds, even when the system is not linear.

The composition of operators translates into min-plus matrix multiplication, namely, if � and �0 are
linear, with matrices H and H 0, then the compound operator � � �0 is also linear, with matrix H �H 0,
de�ned by (H �H 0)(t; s) = infufH(t; u) +H 0(u; s)g:

For a linear operator with matrix H , being causal is equivalent to Hj(t; s) = 1 for s > t and for all
coordinates j. Being time-invariant is equivalent to Hj(t; s) = Hj(t� s) for all coordinates j.

As with standard system theory, if � is time invariant, causal and min-plus linear, then there exists some
� 2 FJ such that �(~x) = � 
 ~x [10, 8, 9]. We say that � is the convolution by � operator and note
� = C�. So

C�(~x)(t) = (� 
 ~x)(t) = inf
u such that 0�u�t

f�(t � u) + ~x(u)g :

One easily shows that C� is isotone and upper-semi continuous. Note that in that case the closure � is
also time invariant, causal and min-plus linear, with �(~x) = � 
 ~x. In the formula, � is the sub-additive
closure of � [6, 8].

Two time-invariant, causal and min-plus linear operators � and �0 commute: � ��0 = �0 ��.

We introduce the following linear, causal but non-time invariant family of operators, which we will use
to model Examples 3, 4 and 5.

De�nition 4 For a given � 2 FJ , de�ne the min-plus linear operator h� by

h�(~x)(t) = inf
u such that 0�u�t

f�(t)� �(u) + ~x(u)g :

It can easily be shown that the h� operators are isotone, causal and upper-semi-continuous. Moreover,
they are idempotent, namely:

h� � h� = h� (16)

and as we have h�(~x) � ~x

h� = h� (17)

4.3 The closure of the minimum of two operators

In the general case, the closure of the minimum of two operators can be represented from De�nition 2
and the following lemma.

Lemma 1 (Representation of (�1 ^ �2)
(n)
) If � = �1 ^ �2, then for any n � 2

�(n) = �11n ^ �12n ^ �21n ^ �22n (18)

where, for i 2 f1; 2g,

�ii;n = inf
1�p�n; p odd

�
inf

k1+:::+kp=n; k1;::: ;kp�1

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�
(19)

�i(3�i);n = inf
1�p�n; p even

�
inf

k1+:::+kp=n; k1;::: ;kp�1

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
i ��

(k1)
3�i

o�
(20)
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Proof: We will �rst show that the following recurrence relation holds: for any i; j 2 f1; 2g and any
n > 2,

�ij;n = �i �
�
�ij;n�1 ^�(3�i)j;n�1

�
: (21)

We will only consider the case where i = j, as the case where i = 3� j being handled similarly.

Note �rst that, from (19) and (20), we have �ii;2 = �
(2)
i and �i(3�i);2 = �i ��3�i. For n = 3, one easily

veri�es that

�i �
�
�ii;2 ^ �i(3�i);2

�
= �i �

h
�
(2)
i ^ (�3�i ��i)

i
= �

(3)
i ^ [�i ��3�i ��i] = �ii;3:

The recurrence relation is thus veri�ed for iterations 2 and 3. Suppose that we have veri�ed that (21)
holds until iteration (n� 1). Then

�i �
�
�ii;n�1 ^ �(3�i)i;n�1

�
= �i �

�
inf

1�p�n�1; p odd

�
inf

k1+:::+kp=n�1; k1;::: ;kp�1

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�

^ inf
1�p�n�1; p even

�
inf

k1+:::+kp=n�1; k1;::: ;kp�1

n
�
(kp)
3�i ��

(kp�1)
i � : : : ��

(k2)
3�i ��

(k1)
i

o��

= inf
1�p�n�1; p odd

�
inf

k1+:::+kp=n�1; k1;::: ;kp�1

n
�
(kp+1)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�

^ inf
1�p�n�1; p even

�
inf

k1+:::+kp=n�1; k1;::: ;kp�1

n
�i ��

(kp)
3�i ��

(kp�1)
i � : : : ��

(k2)
3�i ��

(k1)
i

o�

= inf
1�p�n�1; p odd

�
inf

k1+:::+k0p=n; k1;::: ;kp�1�1;k
0

p�2

n
�
(k0p)

i ��
(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�

^ inf
1�p�n�1; p even

�
inf

k1+:::+kp+kp+1=n; k1;::: ;kp�1;kp+1=1

n
�
(kp+1)
i ��

(kp)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�

= inf
1�p�n�1; p odd

�
inf

k1+:::+k0p=n; k1;::: ;kp�1�1;k
0

p�2

n
�
(k0p)

i ��
(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�

^ inf
2�p00�n; p00 odd

�
inf

k1+:::+kp00�1+kp00=n; k1;::: ;kp00�1�1;kp00=1

n
�
(kp00 )

i ��
(kp00�1)

3�i � : : : ��
(k2)
3�i ��

(k1)
i

o�
:

If n is odd, the latter expression becomes

�i �
�
�ii;n�1 ^ �(3�i)i;n�1

�
= �

(n)
i ^ inf

2�p�n�1; p odd

�
inf

k1+:::+kp=n; k1;::: ;kp�1�1;kp�2

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�

^ inf
2�p�n�1; p odd

�
inf

k1+:::+kp�1+kp=n; k1;::: ;kp�1�1;kp=1

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�
^f�i ��3�i � : : :�3�i ��ig

= inf
1�p�n; p odd

�
inf

k1+:::+kp=n; k1;::: ;kp�1

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�
= �ii;n

10



whereas if n is even, it becomes

�i �
�
�ii;n�1 ^ �(3�i)i;n�1

�
= �

(n)
i ^ inf

2�p�n�1; p odd

�
inf

k1+:::+kp=n; k1;::: ;kp�1�1;kp�2

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�

^ inf
2�p�n�1; p odd

�
inf

k1+:::+kp�1+kp=n; k1;::: ;kp�1�1;kp=1

n
�
(kp)
i ��

(kp�1)
3�i ��

(kp�2)
i � : : : ��

(k1)
i

o�

= inf
1�p�n�1; p odd

�
inf

k1+:::+kp=n; k1;::: ;kp�1

n
�
(kp)
i ��

(kp�1)
3�i � : : : ��

(k2)
3�i ��

(k1)
i

o�
= �ii;n

which in all cases establishes the desired recurrence.

Now, suppose that (18) holds until iteration step n� 1. Then

�(n) = (�1 ^ �2) ��
(n�1) =

�
�1 ��

(n�1)
�
^
�
�2 ��

(n�1)
�

= (�1 � [�11;n�1 ^�12;n�1 ^ �21;n�1 ^ �22;n�1])

^ (�2 � [�11;n�1 ^ �12;n�1 ^ �21;n�1 ^�22;n�1])

= (�1 � [�11;n�1 ^�21;n�1] ^ �1 � [�12;n�1 ^ �22;n�1])

^ (�2 � [�11;n�1 ^ �21;n�1] ^ �2 � [�12;n�1 ^�22;n�1])

= (�11;n ^ �12;n) ^ (�21;n ^�22;n) = �11;n ^ �12;n ^ �21;n ^�22;n

which establishes the lemma.

Note that following recurrence also holds for any n > 2 and i; j 2 f1; 2g:

�ij;n =
�
�ij;n�1 ^ �i(3�j);n�1

�
��j : (22)

Now in the special case where � = �1 ^ h�, Lemma 1 leads to the following Theorem.

Theorem 2 If � = �1 ^ h� then

� = inf
n�1

�
inf

1�q�(n�1)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
h� ��

(lq)
1 � : : : � h� ��

(l1)
1 � h�

o��
: (23)

Proof: De�ning �ij;0(x) = �(0)(x) = x for any i; j 2 f1; 2g, and applying n times (22), we get

�12;n+1 = [�11;n ^ �12;n] � h� = �11;n � h� ^ �12;n � h�

= �11;n � h� ^ [�11;n�1 ^ �12;n�1] = [�11;n ^ �11;n�1] � h� ^ �12;n�1

= : : : = inf
0�k�n

f�11;kg � h�:

Similarly, we have

�21;n+1 = h� � inf
0�k�n

f�11;kg

�22;n+2 = h� � inf
0�k�n

f�11;kg � h�:

11



The three previous relations together with the fact that h�(~x) � ~x allows us to write that

� = inf
n�0

f�(n)g = inf
n�0

f�11;n ^ �12;n ^ �21;n ^�22;ng

= inf
n�0

f�11;n ^ �12;n+1 ^ �21;n+1 ^�22;n+2g ^ �12;0 ^ �21;0 ^ �22;0 ^ �22;1

= inf
n�0

f�11;n ^ inf
0�k�n

f�11;kg � h� ^ h� � inf
0�k�n

f�11;kg ^ h� � inf
0�k�n

f�11;kg � h�g ^�22;0 ^ �22;1

= inf
n�0

fh� � inf
0�k�n

f�11;kg � h�g ^ �22;0 ^ �22;1

= inf
n�0

f�22;n+2g ^ �22;0 ^ �22;1 = inf
n�0

f�22;ng

= inf
n�0

(
inf

1�p�n; p odd

(
inf

k2+:::+kp�1=n�
p+1
2 ; k2;::: ;kp�1�1

n
h� ��

(kp�1)
1 � : : : � h� ��

(k2)
1 � h�

o))
:

4.4 Examples 1 to 5 as min-plus systems

We now show how Examples 1 to 5 can be represented by the problem in Theorem 1.

In Example 1, J = 1 and ' is the operator mapping a(t) to x(t) such that x(t) = '(a)(t) is the maximum
solution of

x � a ^ �0 ^ (� 
 x): (24)

Consider now Example 2. Here J = 1. De�ne � as the operator that maps x(t) to y(t). From Equation
(6), we derive that x(t) is the maximum solution to

x � a ^ (�(x) +K) (25)

The operator � can be assumed to be isotone, causal and upper-semi-continuous, but not necessarily
linear. However, we know that � � C�. We will exploit this formulation in Section 5.

Consider next Example 3. De�ne �f as the one-dimensional operator that maps x(t) to y1(t) and �b

the one-dimensional operator that maps y2(t) to y(t). From equation (9), we derive that (x(t); y2(t)) is
the maximum sequence such that�

x � a ^ (� 
 x) ^ hM1(x) ^ (�b(y2) +K)
y2 � �f (x) ^ hM2(y2):

(26)

In Theorem 1 we have shown the existence of such a maximum. Here we have thus J = 2. Let ~z = (x; y2)

and de�ne the non-linear operator ~�(~z) = (�1(~z);�2(~z)) by�
�1(~z) = (� 
 x) ^ hM1(x) ^ (�b(y2) +K)
�2(~z) = �f (x) ^ hM2(y2):

The problem in Example 3 is thus equivalent to �nding the maximum solution to the problem ~z �
~�(~z) ^ (a; �).

In Example 4, J = 1 again and now all operators are linear. We know that x � a. Combining this
relation with (12) and (13), we derive that x is the maximum solution to

x � a ^ ha(x) ^ (� 
 x+X):

12



Denoting

C�X (x) = (� 
 x) +X; (27)

this inequality becomes

x � a ^ (ha ^ C�X ) (x): (28)

Example 5 is similar to Example 4: J = 1 and combining x � a with (12) and (14), we derive that x is
the maximum solution to

x(t) � a(t) ^ ha(x)(t) ^ (� 
 x)(t+ d): (29)

We can recast this equation using the operator

C�d(x)(t) = inf
0�s�t

f�(t+ d� s) + x(s)g : (30)

and the following lemma.

Lemma 2 For all t � 0
x(t) � (� 
 x)(t+ d)

if and only if for all t � 0
x(t) � C�d(x)(t):

Proof:

()) Note that if x(t) � (� 
 x)(t+ d) for all t � 0 then

x(t) � inf
0�s�t+d

f�(t+ d� s) + x(s)g � inf
0�s�t

f�(t+ d� s) + x(s)g = C�d(x)(t):

(() Suppose now that x(t) � C�d(x)(t). Let

s? = arg inf
0�s�t+d

f�(t+ d� s) + x(s)g :

(i) Suppose that 0 � s? � t. Then

(� 
 x)(t + d) = inf
0�s�t+d

f�(t+ d� s) + x(s)g = inf
0�s�t

f�(t+ d� s) + x(s)g = C�d(x)(t) � x(t):

(ii) Suppose next that t < s? � t + d. Then x(s?) � x(t) because s? > t. Since �(t + d � s?) � 0, this
implies that

(� 
 x)(t+ d) = �(t+ d� s?) + x(s?) � 0 + x(t) = x(t):

Consequently x(t) � (� 
 x)(t+ d) in both cases (i) and (ii).

Equation (29) can therefore be recast as

x � a ^ (ha ^ C�d) (x): (31)
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5 Solution to Examples 1 to 3 (Lossless shaping and window
ow control)

5.1 Example 1

From Theorem 1, the maximal solution to (24) is

x = � 
 (a ^ �0): (32)

As � and �0 are concave and increasing, we can compute that for all t � 0 and n � 1

�(n)(t) = �(t) + (n� 1)�(0)

(� 
 �0)(t) = (�(t) + �0(0)) ^ (�0(t) + �(0)):

Hence (32) becomes

x = inf
n�0

n
�(n) 
 (a ^ �0)

o
= a ^ �0 ^ inf

n�1
f(� + (n� 1)�(0))
 (a ^ �0)g

= a ^ �0 ^ inf
n�1

f(� 
 a) ^ (� ^ �0) + (n� 1)�(0)g

= a ^ �0 ^ � 
 a ^ � 
 �0

= a ^ �0 ^ � 
 a ^ (� + �0(0)) ^ (�0 + �(0)) ^ �0

Now �(t) + �0(0) � �(t) � �0(t) and �0(t) + �(0) � �0(t) so that (32) eventually becomes

'(a) = x = a ^ �0 ^ � 
 a: (33)

We show now that the solution (5), found using reection mappings is identical to (33). Indeed, in (4),
N�(t) can take two values: 0 or � inf0�s�tfz

�(s)g.

If N�(t) = 0, then (5) becomes

'(a)(t) = a(t) ^ inf
��0

f�?0(�) + �tg = a(t) ^ �0(t):

Conversely, if N�(t) = � inf0�s�tfz
�(s)g, then

'(a)(t) = a(t) ^ inf
��0

�
�?0(�) + �t+ inf

0�s�t
f�?(�)� �?0(�) + a(s)� �sg

�

= a(t) ^ inf
��0

�
inf

0�s�t
f�t+ �?(�) + a(s)� �sg

�

= a(t) ^ inf
0�s�t

�
inf
��0

f�?(�) + �(t� s)g+ a(s)

�

= a(t) ^

�
inf

0�s�t
�(t� s) + a(s)

�
= a(t) ^ (� 
 a)(t):

Combining both results, we get (33).
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5.2 Example 2

We know now that (25) has one maximum solution and that it is given by

x(t) = (� +K)(a)(t)

Now from (7) we have �(x) +K � � 
 x+K. From Lemma 1, we have:

x � (� +K)
 a

which is Equation (8).

5.3 Example 3

It follows easily from the problem formulation in (26) and the isotony of the operators that if (x(t); y2(t))
is the maximum solution to (26), then y2(t) is also the maximum the solution to

y2 � �f (x) ^ hM2(y2)

and thus, by application of Theorem 1,

y2 = hM2 ��f (x)

and thus from (17)
y2 = hM2 ��f (x)

and thus x(t) is a solution to the one-dimensional problem

x � a ^ (� 
 x) ^ hM1(x) ^ (�b � hM2 ��f (x) +K) (34)

Thus we can conclude again from Theorem 1 that

x = Q(a)

with the operator Q de�ned by

Q(x) = (� 
 x) ^ hM1(x) ^ (�b � hM2 ��f (x) +K)

>From (10) and (11) we can now bound Q from below by

Q(x) � (G
 x) ^ hM1(x) (35)

with G de�ned as follows [7]. First let G0 = (Sb 
 Ŝ2 
 Sf +K) ^ �. Then de�ne

� = infft � 0 : G0(t) � C1tg

and let G(t) = G0(t) if t � � and G(t) = G0(�) otherwise.

Equation (35) can be re-written Q � CG ^ hM1 . Thus, from Lemma 1,

Q � CG ^ hM1 (36)
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and from Lemma 2,

CG ^ hM1 = inf
n�1

�
inf

1�q�(n�1)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
hM1 � C

(lq)
G � : : : � C

(l1)
G � hM1

o��
:

(37)

By using the bound
hM1(x) � Ŝ1 
 x

and the fact that operators CG and CŜ1 are isotone and commute (because they are linear and time-
invariant), the combination of (36) and (37) yields that

Q � CG ^ hM1

� inf
n�1

�
inf

1�q�(n�1)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
CŜ1 � C

(lq)
G � : : : � C

(l1)
G � CŜ1

o��

= inf
n�1

�
inf

1�q�(n�1)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
C
(lq+:::+l1)
G � C

(q+1)

Ŝ1

o��

= inf
n�1

�
inf

1�q�(n�1)=2

n
C
(n�q�1)
G � C

(q+1)

Ŝ1

o�

= inf
k�0

�
inf

0�q�k

n
C
(2k�q)
G � C

(q+1)

Ŝ1

o
^ inf

0�q�k�1

n
C
(2k�q�1)
G � C

(q+1)

Ŝ1

o�

= inf
k�0

�
inf

0�q�k

n
C
(2k�q)
G � C

(q+1)

Ŝ1

o�

= inf
k�0

nn
C
(k)
G � C

(k+1)

Ŝ1

o
^
n
C
(k+1)
G � C

(k)

Ŝ1

o
^ : : : ^

n
C
(2k)
G � C

(1)

Ŝ1

oo
� inf

k�0

nn
C
(k)
G � C

(k+1)

Ŝ1

o
^
n
C
(k+1)
G � C

(k+2)

Ŝ1

o
^ : : : ^

n
C
(2k)
G � C

(2k+1)

Ŝ1

oo
= inf

k�0

n
C
(k)
G � C

(k+1)

Ŝ1

o
:

This shows that a service curve for network element 1 on Figure 2 is given by

S1(t) = inf
k�0

n
G(k) 
 Ŝ

(k+1)
1

o
(t) (38)

which is precisely the service curve found in [7].

We are now also able to derive another bound. Since CG ^ hM1 is linear,

CG ^ hM1(x)(t) = inf
s
fH(t; s) + x(s)g (39)

with, because of equation (37), H(t; s) being such that

H(t; s) � M1(t)�M1(u2q) +G(kq)(u2q � u2q�1) +M1(u2q�1)�M1(u2q�2)

+G(kq�1)(u2q�2 � u2q�3) + : : :+M1(u3)�M1(u2) +G(k1)(u2 � u1) +M1(u1)�M1(s)

for some integer q > 1 and some sequences of times s � u1 � u2 � : : : � u2q � t and of integers
k1; : : : ; kq . Now from (11) we have

M1(t)�M1(u2q) +M1(u2q�1)�M1(u2q�2) + : : :+M1(u1)�M1(s)) �M1(t)�M1(s)� C1u

16



where u = u2q � u2q�1 + : : :+ u2 � u1. This shows that

H(t; s) � Ŝ1(t� s) + inf
n�0;0�u�t�s

fG(n)(u)� C1ug:

De�ne

Se(v) = Ŝ1(v) + inf
n�0;0�u�v

fG(n)(u)� C1ug: (40)

We have shown that a service curve for network element 1 is Se. In general, Se is better if the delay
introduced by the feedback loop in Figure 2 is large compared to the delay parameter of Ŝ1. Figure 4
shows the values of Se and S1 for one example.

5 10 15 20 25 30 350

5

10

15

S1

Se

Figure 4: The service curves Se and S1 on one example. Here K = 1, �(t) = fC1tgwedgefb + rtg,
Ŝ1(t) = C1[t� T1]

+, with T1 = 5, C1 = 1, r = 0:5 and b = 0:5.

6 Solutions to Examples 4 and 5 (Lossy systems)

6.1 Example 4

From Theorem 1, the maximal solution of (28) is

x = ha ^ C�X (a) (41)

Lemma 2 yields that

ha ^ C�X = inf
n�1

�
inf

1�q�(n�1)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
ha � C

(lq)
�X � : : : � ha � C

(l1)
�X � ha

o��

= inf
n�1;nodd

��
inf

l1+:::+l(n�1)=2=(n�1)=2; l1;::: ;l(n�1)=2�1

n
ha � C

(l(n�1)=2)
�X � : : : � ha � C

(l1)
�X � ha

o�

^ inf
1�q�(n�3)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
ha � C

(lq)
�X � : : : � ha � C

(l1)
�X � ha

o��

^ inf
n�1;n even

�
inf

1�q�(n�2)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
ha � C

(lq)
�X � : : : � ha � C

(l1)
�X � ha

o��
:
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In this latter expression, all the indices l1; : : : ; l(n�1)=2 of the �rst term must all be equal to 1, because
their sum is (n � 1)=2. Conversely, at least one index among l1; : : : ; lq in both the second and third
terms must be strictly larger than 1, because their sum always exceeds q. Now, for any integer k � 1,
the sub-additivity of � yields that

C(k)�X (r) = � 
 � 
 : : :
 � 
 r + kX = � 
 r + kX = C�kX (r) � C�X (r)

so that

ha � C
(lq)
�X � : : : � ha � C

(l1)
�X � ha � ha � C�X � : : : � ha � C�X � ha = (ha � C�X )

(q) � ha:

Therefore we have that

x = ha ^ C�X (a) = inf
n�1;n odd

n
(ha � C�X )

((n�1)=2)
� ha

o
(a) = inf

k�0

n
(ha � C�X )

(k)
o
(a) = ha � C�X (a);

where we used the fact that ha(a) = a.

The amount of lost data in the interval [0; t] is therefore given by

L(t) = a(t)� x(t) = a(t)� inf
k�0

n
(ha � C�X )

(k)
o
(a)(t)

= sup
k�0

n
a(t)� (ha � C�X )

(k)
(a)(t)

o

= sup
k�0

�
a(t)� inf

0�s2k�:::�s2�s1�t
fa(t)� a(s1) + �(s1 � s2) +X + a(s2)� : : :+ a(s2k)g

�

= sup
k�0

�
sup

0�s2k�:::�s2�s1�t
fa(s1)� �(s1 � s2)� a(s2) + : : :� a(s2k)� kXg

�

= sup
k�0

(
sup

0�s2k�:::�s2�s1�t

(
kX
i=1

[a(s2i�1)� a(s2i)� �(s2i�1 � s2i)]

)
� kX

)
: (42)

If we know that the arriving tra�c a is constrained by an arrival curve �(�), we can also bound the
amount of lost data by

L(t) � sup
k�0

8<
: sup
u1;::: ;uk�0;

P
k

i=1
ui�t

(
kX
i=1

[�(ui)� �(ui)]

)
� kX

9=
; : (43)

Let us now apply (42) to bound the losses in a bu�ered shaper by the losses in simpler systems. The �rst
application deals with a VBR shaper, which is compared with two CBR shapers. The second application
is the bound of the losses in a shaper by a system that segregates the resources (bu�er, bandwidth)
between a storage system and a policer. For both applications, the losses in the original shaper are
bounded along every sample path by the losses in the simpler systems. For congestion times however,
the same conclusion holds only for the �rst application.

6.1.1 Application 1: Bound on the losses in a VBR shaper

As a particular application we will show how it is possible to bound the losses in a shaper, with a
somewhat complex shaping curve �, by losses in simpler systems. Take the example of a \bu�ered leaky
bucket" shaper [6] with bu�er X , whose output must conform to a VBR shaping curve with peak rate
P , sustainable rate M and burst tolerance B so that �VBR(t) = fPtg ^ fMt + Bg. We will consider
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Figure 5: Two CBR shapers in parallel (a) and in tandem (b).

two systems to bound these losses: �rst two CBR shapers in parallel (Figure 5(a)) and second two CBR
shapers in tandem (Figure 5(b)).

i) Bound by two CBR shapers in parallel

We will �rst show that the amount of losses during [0; t] in this system is bounded by the sum of losses
in two CBR shapers in parallel, as shown in Figure 5(a): the �rst one has bu�er of size X and rate P ,
whereas the second one has bu�er of size X + B and rate M . Both receive the same arriving tra�c a
as the original VBR shaper. All variables without prime refer to the original VBR shaper, variable with
one prime to the �rst CBR shaper and variables with a double prime to the second CBR shaper.

Theorem 3 Let LVBR(t) be the amount of lost data in the time interval [0; t] in a VBR shaper with bu�er
X and shaping curve �VBR(t) = fPtg ^ fMt+Bg, when the data that has arrived in [0; t] is a(t).

Let LCBR0(t) (resp. LCBR00(t)) be the amount of lost data during [0; t] in a CBR shaper with bu�er X (resp.
(X +B)) and shaping curve �CBR0(t) = Pt (resp. �CBR00(t) =Mt) with the same incoming tra�c a(t).

Then LVBR(t) � LCBR0(t) + LCBR00(t).

Proof: De�ne

l(k)(t) = sup
0�s2k�:::�s2�s1�t

(
kX
i=1

[a(s2i�1)� a(s2i)� �(s2i�1 � s2i)]

)
� kX (44)
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so that (42) can be rewritten as L(t) = supk�0fl
(k)(t)g. Note that relation (44) can be recast recursively

as
l(k)(t) = sup

0�s2�s1�t

n
a(s1)� a(s2)� �(s1 � s2)�X + l(k�1)(s2)

o
;

which motivates a proof by induction on k, as follows.

We will show by induction that

l
(k)
VBR(t) � LCBR0(t) + LCBR00(t): (45)

Clearly, this relation holds (with equality sign) for k = 0, as in this case the left hand side of (45) is zero.
One easily shows that this relation holds (again with equality sign) for k = 1. Indeed,

l
(1)
VBR(t) = sup

0�s2�s1�t
fa(s1)� a(s2)� �VBR(s1 � s2)�Xg

= sup
0�s2�s1�t

fa(s1)� a(s2)� P (s1 � s2)�Xg

_ sup
0�s2�s1�t

fa(s1)� a(s2)�M(s1 � s2)�B �Xg

� LCBR0(t) + LCBR00(t):

Suppose that (45) holds until iteration k. Then for the VBR system we can be write that

l
(k+1)
VBR (t) = sup

0�s2�s1�t

n
a(s1)� a(s2)� �VBR(s1 � s2)�X + l

(k)
VBR(s2)

o
= sup

0�s2�s1�t

n
a(s1)� a(s2)� P (s1 � s2)�X + l

(k)
VBR(s2)

o

_ sup
0�s2�s1�t

n
a(s1)� a(s2)�M(s1 � s2)�B �X + l

(k)
VBR(s2)

o
� sup

0�s2�s1�t
fa(s1)� a(s2)� P (s1 � s2)�X + LCBR0(s2) + LCBR00(s2)g

_ sup
0�s2�s1�t

fa(s1)� a(s2)�M(s1 � s2)�B �X + LCBR0(s2) + LCBR00(s2)g

�

�
sup

0�s2�s1�t

�
a(s1)� a(s2)� P (s1 � s2)�X + sup

k�0
fl

(k)
CBR0

(s2)g

�
+ sup

0�s2�s1�t
fLCBR00(s2)g

�

_

�
sup

0�s2�s1�t

�
a(s1)� a(s2)�M(s1 � s2)�B �X + sup

k�0
fl

(k)
CBR00

(s2)g

�
+ sup

0�s2�s1�t
fLCBR0(s2)g

�

=

�
sup
k�0

�
sup

0�s2�s1�t
fa(s1)� a(s2)� P (s1 � s2)�X + l

(k)
CBR0

(s2)g

�
+ LCBR00(t)

�

_

�
sup
k�0

�
sup

0�s2�s1�t
fa(s1)� a(s2)�M(s1 � s2)�B �X + l

(k)
CBR0

(s2)g

�
+ LCBR0(t)

�

=

�
sup
k�0

fl
(k+1)
CBR0

(t)g+ LCBR00(t)

�
_

�
sup
k�0

fl
(k+1)
CBR00

(t)g+ LCBR0(t)

�
� LCBR0(t) + LCBR00(t):

Therefore (45) holds for k + 1, so that

LVBR(t) = sup
k�0

fl
(k)
VBR(t)g � LCBR0(t) + LCBR00(t);
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which proves the theorem.

We can not only show that the amount of losses in the VBR system are bounded by the sum of the
amounts of losses in the two CBR systems, but we will also show that the congestion periods in the VBR
system, that is, the time intervals during which the VBR system su�ers losses, is bounded by the sum of
times during which at least one of the two CBR shapers is also congested.

To prove this result, we will make use of the following lemma:

Lemma 3 Let WVBR(t), WCBR
0(t) and WCBR

00(t) denote respectively the bu�er contents of the VBR shaper
and the two CBR shapers at time t. Then

(i) WCBR
0(t) �WVBR(t),

(ii) WCBR
00(t) � sup0�s�tfxVBR(t)� xVBR(s)�M(t� s)g.

Proof: (i) Let t be a given time, and let 0 � v � t be the smallest time such that the VBR system has
no loss in the system in [v; t]. The tra�c that actually entered the VBR system during [v; t] is therefore
identical to the tra�c that arrived during this time interval: xVBR(t)� xVBR(v) = a(t)� a(v).

If v = 0, then the backlogged data in the �rst CBR system at time t is given by

WCBR0(t) = sup
0�s�t

fxCBR0(t)� xCBR0(s)� P (t� s)g � sup
0�s�t

fa(t)� a(s)� P (t� s)g

� sup
0�s�t

fa(t)� a(s)� �VBR(t� s)g = sup
0�s�t

fxVBR(t)� xVBR(s)� �VBR(t� s)g

= WVBR(t):
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If v > 0, it means that the VBR system was congested at time v, and so that WVBR(v) = X . Then

WCBR0(t) = sup
0�s�t

fxCBR0(t)� xCBR0(s)� P (t� s)g

= sup
0�s�v

fxCBR0(t)� xCBR0(s)� P (t� s)g _ sup
v�s�t

fxCBR0(t) � xCBR0(s)� P (t� s)g

= sup
0�s�v

fxCBR0(t)� xCBR0(v)� P (t� v) + xCBR0(v)� xCBR0(s)� P (v � s)g

_ sup
v�s�t

fxCBR0(t)� xCBR0(s)� P (t� s)g

=

�
xCBR0(t)� xCBR0(v) � P (t� v) + sup

0�s�v
fxCBR0(v)� xCBR0(s)� P (v � s)g

�
_ sup
v�s�t

fxCBR0(t)� xCBR0(s)� P (t� s)g

= fxCBR0(t)� xCBR0(v)� P (t� v) +WCBR0(v)g _ sup
v�s�t

fxCBR0(t)� xCBR0(s)� P (t� s)g

� fxCBR0(t)� xCBR0(v)� P (t� v) +Xg _ sup
v�s�t

fxCBR0(t)� xCBR0(s)� P (t� s)g

� fa(t)� a(v)� P (t� v) +Xg _ sup
v�s�t

fa(t)� a(s)� P (t� s)g

= fxVBR(t)� xVBR(v)� P (t� v) +Xg _ sup
v�s�t

fxVBR(t)� xVBR(s)� P (t� s)g

� fxVBR(t)� xVBR(v)� �VBR(t� v) +Xg _ sup
v�s�t

fxVBR(t)� xVBR(s)� �VBR(t� s)g

= fxVBR(t)� xVBR(v)� �VBR(t� v) +WVBR(v)g _ sup
v�s�t

fxVBR(t)� xVBR(s)� �VBR(t� s)g

=

�
xVBR(t)� xVBR(v) � �VBR(t� v) + sup

0�s�v
fxVBR(v)� xVBR(s)� �VBR(v � s)g

�
_ sup
v�s�t

fxVBR(t)� xVBR(s)� �VBR(t� s)g

= sup
0�s�v

fxVBR(t)� xVBR(s)� �VBR(t� v)� �VBR(v � s)g

_ sup
v�s�t

fxVBR(t)� xVBR(s)� �VBR(t� s)g

� sup
0�s�v

fxVBR(t)� xVBR(s)� �VBR(t� s)g _ sup
v�s�t

fxVBR(t)� xVBR(s)� �VBR(t� s)g

= sup
0�s�t

fxVBR(t)� xVBR(s)� �VBR(t� s)g

= WVBR(t);

which proves part (i) of the lemma.

(ii) Let t be a given time, and let 0 � v � t be the smallest time such that the second CBR system (with
service curve �CBR00(t) = Mt) has no loss in the system in [v; t]. The tra�c that actually entered this
system during [v; t] is therefore identical to the tra�c that arrived during this time interval: xCBR00(t)�
xCBR00(v) = a(t)� a(v).

If v = 0, then the backlogged data in the second CBR system at time t is given by

WCBR00(t) = sup
0�s�t

fxCBR00(t)� xCBR00(s)�M(t� s)g = sup
0�s�t

fa(t)� a(s)�M(t� s)g

� sup
0�s�t

fxVBR(t)� xVBR(s)�M(t� s)g:
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If v > 0, it means that the Second CBR system was congested at time v, and so that WCBR00(v) = X+B.
Then

WCBR00(t) = sup
0�s�t

fxCBR00(t)� xCBR00(s)�M(t� s)g

= sup
0�s�v

fxCBR00(t)� xCBR00(s)�M(t� s)g _ sup
v�s�t

fxCBR00(t)� xCBR00(s)�M(t� s)g

= sup
0�s�v

fxCBR00(t)� xCBR00(v)�M(t� v) + xCBR00(v)� xCBR00(s)�M(v � s)g

_ sup
v�s�t

fxCBR00(t)� xCBR00(s)�M(t� s)g

=

�
xCBR00(t)� xCBR00(v) �M(t� v) + sup

0�s�v
fxCBR00(v)� xCBR00(s)�M(v � s)g

�
_ sup
v�s�t

fxCBR00(t)� xCBR00(s)�M(t� s)g

= fxCBR00(t)� xCBR00(v)�M(t� v) +WCBR00(v)g _ sup
v�s�t

fxCBR00(t)� xCBR00(s)�M(t� s)g

= fxCBR00(t)� xCBR00(v)�M(t� v) +X +Bg _ sup
v�s�t

fxCBR00(t)� xCBR00(s)�M(t� s)g

= fa(t)� a(v)�M(t� v) +X +Bg _ sup
v�s�t

fa(t)� a(s)�M(t� s)g

� fa(t)� a(v)�M(t� v) +WVBR(v) +Bg _ sup
v�s�t

fa(t)� a(s)�M(t� s)g

� fxVBR(t)� xVBR(v)�M(t� v) +WVBR(v) +Bg _ sup
v�s�t

fxVBR(t)� xVBR(s)�M(t� s)g

=

�
xVBR(t)� xVBR(v)�M(t� v) + sup

0�s�v
fxVBR(v)� xVBR(s)� �VBR(v � s)g+B

�
_ sup
v�s�t

fxVBR(t)� xVBR(s)�M(t� s)g

= sup
0�s�v

fxVBR(t)� xVBR(s)�M(t� v)� �VBR(v � s) +Bg

_ sup
v�s�t

fxVBR(t)� xVBR(s)�M(t� s)g

� sup
0�s�v

fxVBR(t)� xVBR(s)�M(t� v)� (M(v � s) +B) +Bg

_ sup
v�s�t

fxVBR(t)� xVBR(s)�M(t� s)g

= sup
0�s�v

fxVBR(t)� xVBR(s)�M(t� s)g _ sup
v�s�t

fxVBR(t)� xVBR(s)�M(t� s)g

= sup
0�s�t

fxVBR(t)� xVBR(s)�M(t� s)g;

which proves part (ii) of the lemma.

We can now establish the following result.

Theorem 4 Suppose that at time t a VBR shaper with bu�er X and shaping curve �VBR(t) = fPtg ^
fMt+Bg is congested (i.e. is su�ering losses) when the data that has arrived in [0; t] is a(t).

Then at least one of the following CBR systems is also congested at time t when the data that has arrived
in [0; t] is a(t): either a shaper with bu�er X and shaping curve �CBR0(t) = Pt, or a shaper with bu�er
(X +B) and shaping curve �CBR00(t) =Mt.
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Proof: If the VBR system is congested at time t, there exists some time s?, 0 � s? < t, such that

xVBR(t) = xVBR(s
?) + �VBR(t� s?) +X: (46)

Note �rst that the bu�er of the VBR system is empty at time s?. Indeed, suppose that at this time s?,
the backlogged data in the bu�er is nonzero, i.e. that

0 < WVBR(s
?) = xVBR(s

?)� inf
0�u�s?

fxVBR(u)� �VBR(s
? � u)g:

Then, since �VBR(�) is sub-additive,

WVBR(t) = xVBR(t)� xVBR(s
?)� �VBR(t� s?)

< xVBR(t)� inf
0�u�s?

fxVBR(u)� �VBR(s
? � u)g � �VBR(t� s?)

= sup
0�u�s?

fxVBR(t)� xVBR(u)� �VBR(s
? � u)� �VBR(t� s?)g

� sup
0�u�s?

fxVBR(t)� xVBR(u)� �VBR(t� u)g

� sup
0�u�t

fxVBR(t)� xVBR(u)� �VBR(t� u)g =WVBR(t);

a contradiction. Therefore WVBR(s
?) = 0.

We consider now two cases: (i) s? � t�B=(P �M) and (ii) s? < t�B=(P �M).

(i) If s? � t�B=(P �M), one easily checks that �VBR(t� s
?) = P (t� s?). Hence, for all times in [s?; t],

the service curve of the VBR system is identical to the service curve of the of the �rst CBR system:

�VBR(t� s?) = P (t� s?) = �CBR0(t� s?):

The bu�er of the VBR system at time s? is empty, as we have seen above. Because of Part (i) of Lemma 3,
the bu�er of the �rst CBR system must also be empty:

WVBR(s
?) =WCBR0(s

?) = 0:

Finally, both systems receive during [s?; t] an identical amount of tra�c given by (a(t) � a(s?)). Con-
sequently, all variables in the systems are identical in the time interval [s?; t], because the input and
characteristics of both systems are identical during this time interval. In particular,

WCBR0(t) =WVBR(t) = X

which shows that the �rst CBR system is congested.

(ii) If s? < t�B=(P �M), one easily checks that �VBR(t� s?) =M(t� s?) +B.

In this case, by making use of Part (ii) of Lemma 3 and of (46), we can write that,

WCBR00(t) � sup
0�s�t

fa(t)� a(s)� (LVBR(t)� LVBR(s))�M(t� s)g

= sup
0�s�t

fxVBR(t)� xVBR(s)�M(t� s)g

� xVBR(t)� xVBR(s
?)�M(t� s?)

= �VBR(t� s?) +X �M(t� s?)

= M(t� s?) +B +X �M(t� s?) = B +X:
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As WCBR00(t) � B + X , the latter indicates that WCBR00(t) = B + X and shows that the second CBR
system is congested.

ii) Bound by two CBR shapers in tandem

We will now derive another bound on amount of losses during [0; t] in the VBR system by computing the
sum of losses in two CBR shapers in cascade as shown in Figure 5(b): the �rst one has bu�er of size X
and rate P , and receives the same arriving tra�c a as the original VBR shaper, whereas its output is fed
into the second one with bu�er of size B and rate M . All variables without prime refer to the original
VBR shaper, variables with one prime to the �rst CBR shaper and variables with a triple prime to the
second CBR shaper.

Theorem 5 Let LVBR(t) be the amount of lost data in the time interval [0; t] in a VBR shaper with bu�er
X and shaping curve �VBR(t) = fPtg ^ fMt+Bg, when the data that has arrived in [0; t] is a(t).

Let LCBR0(t) (resp. LCBR000(t)) be the amount of lost data during [0; t] in a CBR shaper with bu�er X
(resp. B) and shaping curve �CBR0(t) = Pt (resp. �CBR000(t) = Mt) fed by the same incoming tra�c a(t)
(resp. the output tra�c of the �rst CBR shaper)

Then LVBR(t) � LCBR0(t) + LCBR000(t).

Proof: The proof is very similar to the proof of Theorem 3. With l(k)(t) de�ned by (44), we will show
by induction that

l
(k)
VBR(t) � LCBR0(t) + LCBR000(t): (47)

Clearly, this relation holds (with equality sign) for k = 0, as in this case the left hand side of (45) is zero.

Call yCBR0(t) the output of the �rst shaper system. Note that for any s � 0

a(s)� LCBR0(s)�X = xCBR0(s)�X � yCBR0(s) � xCBR0(s) = a(s)� LCBR0(s)

Suppose that (45) holds until iteration k.
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Then for the VBR system we can be write that

l
(k+1)
VBR (t) = sup

0�s2�s1�t

n
a(s1)� a(s2)� �VBR(s1 � s2)�X + l

(k)
VBR(s2)

o

= sup
0�s2�s1�t

n
a(s1)� a(s2)� P (s1 � s2)�X + l

(k)
VBR(s2)

o

_ sup
0�s2�s1�t

n
a(s1)� a(s2)�M(s1 � s2)�B �X + l

(k)
VBR(s2)

o
� sup

0�s2�s1�t
fa(s1)� a(s2)� P (s1 � s2)�X + LCBR0(s2) + LCBR000(s2)g

_ sup
0�s2�s1�t

fa(s1)� a(s2)�M(s1 � s2)�B �X + LCBR0(s2) + LCBR000(s2)g

� sup
0�s2�s1�t

fa(s1)� a(s2)� P (s1 � s2)�X + LCBR0(s2) + LCBR000(s2)g

_ sup
0�s2�s1�t

f(y(s1) +X + LCBR0(s1))� (y(s2) + LCBR0(s2))

�M(s1 � s2)� B �X + LCBR0(s2) + LCBR000(s2)g

�

�
sup

0�s2�s1�t

�
a(s1)� a(s2)� P (s1 � s2)�X + sup

k�0

n
l
(k)
CBR0

(s2)
o�

+ sup
0�s2�s1�t

fLCBR000(s2)g

�

_

�
sup

0�s2�s1�t

�
y(s1)� y(s2)�M(s1 � s2)�B �X + sup

k�0

n
l
(k)
CBR000

(s2)
o�

+ sup
0�s2�s1�t

fLCBR0(s1)g

�

=

�
sup
k�0

�
sup

0�s2�s1�t

n
a(s1)� a(s2)� P (s1 � s2)�X + l

(k)
CBR0

(s2)
o�

+ LCBR000(t)

�

_

�
sup
k�0

�
sup

0�s2�s1�t

n
y(s1)� y(s2)�M(s1 � s2)�B + l

(k)
CBR000

(s2)
o�

+ LCBR0(t)

�

=

�
sup
k�0

n
l
(k+1)
CBR0

(t)
o
+ LCBR000(t)

�
_

�
sup
k�0

n
l
(k+1)
CBR000

(t)
o
+ LCBR0(t)

�
� LCBR0(t) + LCBR000(t):

Therefore (45) holds for k + 1. By taking the supremum over all k, the theorem is proven.

None of the two systems in Figure 5 gives a better bound for any tra�c pattern. For example, suppose
that the VBR system parameters are P = 4, M = 1, B = 12 and X = 4, and that the tra�c is a single
burst of data sent at rate R during 4 time units, so that

a(t) =

�
R � t if 0 � t � 4
4R if t � 4

(48)

If R = 5, both the VBR system and the parallel set of the two CBR0 and CBR00 systems are lossless,
whereas the amount of lost data after 5 units of time in the tandem of the two CBR0 and CBR000 systems
is equal to 3.

On the other hand, if R = 6, the amount of lost data after 5 units of time in the VBR system, the parallel
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system (CBR0 and CBR00) and the tandem system (CBR0 and CBR000) are respectively equal to 4, 8 and
7.

6.1.2 Application 2: Bound of losses by segregation between bu�er and policer

As second application, we will compare the losses in two systems, having the same input ow a(t).

The �rst system is the shaper of Figure 3 with shaping curve � and bu�er X , whose losses L(t) are
therefore given by (42).

The second system is made of two parts, as shown in Figure 6(a). The �rst part is a system with storage
capacity X , that realizes some mapping �(�) of the input which is not explicitly given. We know however
that a �rst controller discards data as soon as the total backlogged data in this system exceeds X . This
operation is called bu�er discard, the amount of bu�er discarded data in [0; t] is denoted by LBuf(t). The
second part is a policer without bu�er, and with shaping curve �. Similarly, a second controller discards
data as soon as the total output ow of the storage system exceeds the maximum output allowed by the
policer. This operation is called policing discard, the amount of discarded data by policing in [0; t] is
denoted by LPol(t).

Theorem 6 Let L(t) be the amount of lost data in a shaper with shaping curve �(t) and bu�er X.

Let LBuf(t) (resp. LPol(t) be the amount of data lost in the time interval [0; t] by bu�er (resp. policing)
discard, as de�ned above.

Then L(t) � LBuf(t) + LPol(t).

Proof: Let x and y denote respectively the admitted and output ows of the bu�ered part of the second
system. They are linked by the following constraints: for any s � 0,

a(s)� LBuf(s)�X = x(s)�X � y(s) � x(s) = a(s)� LBuf(s)

which, together with the fact that LBuf(t) is non decreasing, implies that

LPol(t) = sup
k�0

(
sup

0�s2k�:::�s2�s1�t

(
kX
i=1

[y(s2i�1)� y(s2i)� �(s2i�1 � s2i)]

))

� sup
k�0

(
sup

0�s2k�:::�s1�t

(
kX
i=1

[(a(s2i�1)� LBuf(s2i�1)�X)� (a(s2i)� LBuf(s2i))� �(s2i�1 � s2i)]

))

= sup
k�0

(
sup

0�s2k�:::�s1�t

(
kX
i=1

[a(s2i�1)� a(s2i)� �(s2i�1 � s2i)]�
kX
i=1

[LBuf(s2i�1)� LBuf(s2i)]

)
� kX

)

� sup
k�0

(
sup

0�s2k�:::�s1�t

(
kX
i=1

[a(s2i�1)� a(s2i)� �(s2i�1 � s2i)]� LBuf(t)

)
� kX

)

= sup
k�0

(
sup

0�s2k�:::�s1�t

(
kX
i=1

[a(s2i�1)� a(s2i)� �(s2i�1 � s2i)]

)
� kX

)
� LBuf(t)

= L(t)� LBuf(t);

which establishes the desired result.

Such a separation of resources between \bu�ered system" and \policing system" is used in the estimation
of loss probability for devising statistical CAC (Call Acceptance Control) algorithms as proposed by Lo
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Figure 6: A storage/policer system with separation between losses due to bu�er discard and to policing
discard (a) A virtual segregated system for 2 classes of tra�c, with bu�er discard and policing discard,
as used by Lo Presti et al [13] (b)

Presti et al. [13] (see also Elwalid et al [14]). The incoming tra�c is separated in two classes. All variables
relating to the �rst (resp. second) class are marked with a index 1 (resp. 2), so that a(t) = a1(t) + a2(t).
The shaper is of CBR type (�(t) = Ct) and the storage system is a virtually segregated system as in
Figure 6(b), made of 2 shapers with rates Cv

1 and Cv
2 and bu�ers Xv

1 and Xv
2 . The virtual shapers are

large enough to ensure that no loss occurs for all possible arrival functions a1(t) and a2(t). The total
bu�er space (resp. bandwidth) is larger than the original bu�er space (resp. bandwidth): Xv

1 +Xv
2 � X

(Cv
1 +Cv

2 � C). However, the bu�er controller discards data as soon as the total backlogged data in the
virtual system exceeds X and the policer controller discards data as soon as the total output rate of the
virtual system exceeds C.

We have shown that the losses in this system are indeed an upper bound on the losses in the original
CBR shaper with rate C and bu�er X . However, contrary to the �rst application, this is no longer true
for congestion times, at least along all sample paths of the process. Ross [15] has indeed provided an
example where the sum of congestion times in the virtual system due to bu�er and policing discards are
not an upper bound to the sum of congestion times in the original system.
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6.2 Example 5

Equation (31) for the last example is very similar to (31), with the operator C�X replaced by C�d . >From
Theorem 1, its solution is

x = ha ^ C�d(a) (49)

Lemma 2 yields that

ha ^ C�d = inf
n�1

�
inf

1�q�(n�1)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
ha � C

(lq)

�d
� : : : � ha � C

(l1)

�d
� ha

o��

= inf
n�1;n odd

��
inf

l1+:::+l(n�1)=2=(n�1)=2; l1;::: ;l(n�1)=2�1

n
ha � C

(l(n�1)=2)

�d
� : : : � ha � C

(l1)

�d
� ha

o�

^ inf
1�q�(n�3)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
ha � C

(lq)

�d
� : : : � ha � C

(l1)
�d

� ha

o��

^ inf
n�1;n even

�
inf

1�q�(n�2)=2

�
inf

l1+:::+lq=n�q�1; l1;::: ;lq�1

n
ha � C

(lq)

�d
� : : : � ha � C

(l1)
�d

� ha

o��
:

In this latter expression, all the indices l1; : : : ; l(n�1)=2 of the �rst term must all be equal to 1, because
their sum is (n�1)=2. Conversely, at least one index among l1; : : : ; lq in both the second and third terms
must be strictly larger than 1, because their sum always exceeds q.

Now, for any integer k � 1, note that

C
(k)

�d
(r) � C�kd(r) � C�d(r) (50)

Indeed, since � is sub-additive, we have that

fC�d � C�dg (r)(t) = inf
0�s2�s1�t

f�(t + d� s1) + �(s1 + d� s2) + r(s2)g

� inf
0�s2�s1�t

f�(t + 2d� s2) + r(s2)g = C�2d(r)(t) � C�d(r):

Relation (50) easily follows by induction for any k > 2, and yields that

ha � C
(lq)

�d
� : : : � ha � C

(l1)
�d

� ha � ha � C�d � : : : � ha � C�d � ha = (ha � C�d)
(q)
� ha;

and so that

x = ha ^ C�d(a) = inf
n�1;n odd

n
(ha � C�d)

((n�1)=2)
� ha

o
(a) = inf

k�0

n
(ha � C�d)

(k)
o
(a) = ha � C�d(a):

Making similar computations as in Example 4, the amount of lost data in the interval [0; t] is found to be

L(t) = sup
k�0

(
sup

0�s2k�:::�s2�s1�t

(
kX
i=1

[a(s2i�1)� a(s2i)� �(s2i�1 + d� s2i)]

))
: (51)

If we know that the arriving tra�c a is constrained by an arrival curve �(�), we can also bound the
amount of lost data by

L(t) � sup
k�0

8<
: sup
u1;::: ;uk�0;

P
k

i=1
ui�t

(
kX
i=1

[�(ui)� �(ui + d)]

)9=
; : (52)

Note that for a CBR shaping curve �(t) = Pt, (42) and (51) are identical if X = Pd. In other words,
the losses in a CBR shaper, with output rate P and bu�er X , are identical to the losses a CBR shaper
(with the same output rate) discarding any piece of data that would su�er a delay larger than d = X=P
units of time. This is no longer true for a VBR shaper.
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Application: Bound on the losses in a VBR shaper

Let us return to the application of the bound on losses in a VBR shaper. In the previous example, we
had shown how it is possible to bound the losses in a \bu�ered leaky bucket" shaper by losses in two
CBR systems.

We now show that a dual result holds when the losses are caused not by a �nite bu�er overow, but by
the enforcement of a maximum delay tolerance d. We take the same leaky bucket shaper, whose output
must conform to a VBR shaping curve with peak rate P , sustainable rate M and burst tolerance B, but
where the bu�er is now in�nite. Instead, any data that would not exit the VBR system after at most d
unit of time is discarded.

We will show that the amount of losses during [0; t] in this system is bounded by the sum of losses in two
CBR shapers: the �rst one, having a rate P enforces the same maximum delay tolerance d as the original
VBR system, whereas the second one, having rate M , enforces a looser maximum delay tolerance equal
to d+B=M . Both receive the same arriving tra�c a as the original VBR shaper. All variables without
prime refer to the original VBR shaper, variable with one prime to the �rst CBR shaper and variables
with a double prime to the second CBR shaper.

Theorem 7 Let LVBR(t) be the amount of losses in the time interval [0; t] due a delay constraint of d in
a VBR shaper with shaping curve �VBR(t) = fPtg ^ fMt+Bg, when the data that has arrived in [0; t] is
a(t).

Let LCBR0(t) (resp. LCBR00(t)) be the amount of lost data during [0; t] due a delay constraint of d (resp.
d + B=M) in a CBR shaper with shaping curve �CBR0(t) = Pt (resp. �CBR00(t) = Mt) with the same
incoming tra�c a(t).

Then LVBR(t) � LCBR0(t) + LCBR00(t).

Proof: De�ne

l(k)(t) = sup
0�s2k�:::�s2�s1�t

(
kX
i=1

[a(s2i�1)� a(s2i)� �(s2i�1 + d� s2i)]

)
(53)

so that (42) can be rewritten as L(t) = supk�0fl
(k)(t)g. Note that relation (44) can be recast recursively

as
l(k)(t) = sup

0�s2�s1�t

n
a(s1)� a(s2)� �(s1 + d� s2) + l(k�1)(s2)

o
:

We will show by induction that

l
(k)
VBR(t) � LCBR0(t) + LCBR00(t): (54)

Clearly, this relation holds (with equality sign) for k = 0, as in this case all terms are zero (l(0)(t) = 0).
One easily shows that this relation holds (again with equality sign) for k = 1. Indeed,

l
(1)
VBR(t) = sup

0�s2�s1�t
fa(s1)� a(s2)� �VBR(s1 + d� s2)g

= sup
0�s2�s1�t

fa(s1)� a(s2)� P (s1 + d� s2)g

_ sup
0�s2�s1�t

fa(s1)� a(s2)�M(s1 + d� s2)�X �Bg

� LCBR0(t) + LCBR00(t):
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Suppose that (45) holds until iteration k. Then for the VBR system we can be write that

l
(k+1)
VBR (t) = sup

0�s2�s1�t

n
a(s1)� a(s2)� �VBR(s1 + d� s2) + l

(k)
VBR(s2)

o

= sup
0�s2�s1�t

n
a(s1)� a(s2)� P (s1 + d� s2) + l

(k)
VBR(s2)

o

_ sup
0�s2�s1�t

n
a(s1)� a(s2)�M(s1 + d� s2) + l

(k)
VBR(s2)

o
� sup

0�s2�s1�t
fa(s1)� a(s2)� P (s1 + d� s2) + LCBR0(s2) + LCBR00(s2)g

_ sup
0�s2�s1�t

fa(s1)� a(s2)�M(s1 + (d+B=M)� s2) + LCBR0(s2) + LCBR00(s2)g

�

�
sup

0�s2�s1�t

�
a(s1)� a(s2)� P (s1 + d� s2) + sup

k�0
fl

(k)
CBR0

(s2)g

�
+ sup

0�s2�s1�t
fLCBR00(s2)g

�

_

�
sup

0�s2�s1�t

�
a(s1)� a(s2)�M(s1 + (d+B=M)� s2) + sup

k�0
fl

(k)
CBR00

(s2)g

�

+ sup
0�s2�s1�t

fLCBR0(s2)g

�

=

�
sup
k�0

�
sup

0�s2�s1�t
fa(s1)� a(s2)� P (s1 + d� s2)�X + l

(k)
CBR0

(s2)g

�
+ LCBR00(t)

�

_

�
sup
k�0

�
sup

0�s2�s1�t
fa(s1)� a(s2)�M(s1 + (d+B=M)� s2) + l

(k)
CBR0

(s2)g

�
+ LCBR0(t)

�

=

�
sup
k�0

fl
(k+1)
CBR0

(t)g+ LCBR00(t)

�
_

�
sup
k�0

fl
(k+1)
CBR00

(t)g+ LCBR0(t)

�
� LCBR0(t) + LCBR00(t):

Therefore (45) holds for k + 1, and similarly to the proof of Theorem 3, we have LVBR(t) � LCBR0(t) +
LCBR00(t).

7 A solution to Skorokhod's reection problem with two bound-
aries

Not only Example 1, but Examples 4 and 5 can also be studied using reection mappings [11]. However,
the latter study, restricted to a speci�c set of shaping functions (such as CBR shaping curve, but excluding
a VBR shaping curve like �(t) = fPtg ^ fMt+Bg), does not result in explicit formulas such as (42) or
(51). On the contrary, by formulating the problem in the network calculus framework, and by applying
methods from min-plus algebra, an explicit and more general solution has been obtained. We will see
that, in fact, an explicit solution to the general problem of reection mapping known as Skorokhod's
reection problem can be obtained as a by-product of network calculus, for a large class of processes and
2 �xed boundaries [20, 11, 19, 17]

Let us �rst review this reection mapping problem following the exposition of [11]. We are given a lower
boundary that will be taken here as the origin, an upper boundary X > 0 and a free process z(t) such
that 0 � z(0�) � X . Skorokhod's reection problem looks for functions N(t) (lower boundary process)
and L(t) (upper boundary process) such that
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1. The reected process

W (t) = z(t) +N(t)� L(t) (55)

is in [0; X ] for all t � 0.

2. Both N(t) and L(t) are non decreasing with N(0�) = L(0�) = 0, and N(t) (resp. L(t)) increases
only when W (t) = 0 (resp. W (t) = X), i.e., with 1A denoting the indicator function of AZ 1

0

1fW (t)>0gdN(t) = 0 (56)Z 1

0

1fW (t)<XgdL(t) = 0 (57)

The solution to this problem exists and is unique. When only one boundary is present, explicit formulas
are available. For instance, if X ! 1, then there is only one lower boundary, and the solution is easily
found to be

N(t) = � inf
0�s�t

fz(s)g

L(t) = 0:

If X < 1, then the solution can be constructed by successive approximations but no explicit solution
exists to our knowledge. The following theorem gives such explicit solutions for a continuous VF functions
z(t). A VF function (VF standing for Variation Finie [17, 18]) z(t) on R+ is a function such that for all
t > 0

sup
n�1

sup
0=sn<sn�1<:::<s1<s0=t

(
n�1X
i=0

jz(si)� z(si+1)j

)
<1:

VF functions have the following property [18]: z(t) is a VF function on R+ if and only if it can be written
as the di�erence of two increasing functions on R+ .

Theorem 8 Let the free process z(t) be a continuous VF function on R
+ . Then the solution to Sko-

rokhod's reection problem on [0; X ] is

N(t) = sup
k�0

(
sup

0�s2k+1�:::�s2�s1�t

(
2k+1X
i=1

(�1)iz(si)

)
� kX

)
(58)

L(t) = sup
k�0

(
sup

0�s2k�:::�s2�s1�t

(
2kX
i=1

(�1)i+1z(si)

)
� kX

)
: (59)

Proof: As z(t) is a VF function on [0;1), there exist two increasing functions a(t) and b(t) such that
z(t) = a(t) � b(t) for all t � 0. As z(0) � 0, we can take b(0) = 0 and a(0) = z(0). Note that
a(t); b(t) 2 F1.

Let (x(t); y(t)) be the maximal solution of the following system of inequalities:

x(t) � inf
0�s�t

fa(t)� a(s) + x(s)g (60)

x(t) � y(t) +X (61)

y(t) � x(t) (62)

y(t) � inf
0�s�t

fb(t)� b(s) + y(s)g: (63)
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De�ne

N(t) = b(t)� y(t)

L(t) = a(t)� x(t)

and let us show that these two functions are indeed the solutions to Skorokhod's reection problem.

First note that

W (t) = z(t) +N(t)� L(t) = (a(t)� b(t)) + (b(t)� y(t))� (a(t)� x(t)) = x(t)� y(t)

is in [0; X ] for all t � 0 because of (61) and (62).

Second, because of (63), note that N(0) = b(0) � y(0) = 0 and that for any t > 0 and 0 � s < t,
N(t) � N(s) = b(t) � b(s) + y(s) � y(t) � 0, which shows that N(t) is non decreasing. The same
properties can be deduced for L(t) from (60).

Finally, ifW (t) = x(t)�y(t) > 0, there exists some s? 2 [0; t] such that y(t) = y(s?)+b(t)�b(s?) because
y is the maximal solution satisfying (62) and (63). Therefore for all s 2 [s?; t],

0 � N(t)�N(s) � N(t)�N(s?) = b(t)� b(s?) + y(s?)� y(t) = 0

which shows that N(t) �N(s) = 0 and so that N(t) is non increasing if W (t) > 0. A similar reasoning
shows that L(t) is non increasing if W (t) < X .

Consequently, N(t) and L(t) are the lower and upper reected processes that we are looking for. We will
now use the methods developed in this paper to compute these two functions explicitly. It is worth noting
at this point that all variables de�ned above can be represented as in Figure 7 by a storage system of
limited capacity X , with an arrival process a(t), a departure process b(t), the adjunction of a ow N(t)
if the bu�er of the storage system is empty and the removal (loss) of a ow L(t) if the storage system is
full. The reected process W (t) is then the backlog in the storage system.

a(t) Storage 
system

y(t)

L(t)

x(t)
Controller 1

N(t)

b(t)

Controller 2

Figure 7: A storage system representing the variables used to solve Skorokhod's reection problem with
two boundaries

Let us now recast (60) to (63) in a framework well suited for applying Theorem 1. From (62) and (63),
we get y � x ^ hb(y) whose solution reads y = hb(x) = hb(x) because of Theorem 1 and of (16). Hence
(61) is equivalent to x � hb(x) +X . Noting that x � a and de�ning hbX = hb +X , we then get

x � a ^ (ha ^ hbX ) (x):

One easily checks that h
(k)
bX

= hbkX � hbX so that a similar development as the one made for Example 4
yields that

x = (ha � hbX )(a)

y = hb � (ha � hbX )(a)
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and after some manipulations that

N(t) = sup
k�0

(
sup

0�s2k+1�:::�s2�s1�t

(
2k+1X
i=1

(�1)i(a(si)� b(si))

)
� kX

)

L(t) = sup
k�0

(
sup

0�s2k�:::�s2�s1�t

(
2kX
i=1

(�1)i+1(a(si)� b(si))

)
� kX

)

which establishes (58) and (59) since a(si)� b(si) = z(si).

8 Conclusion

We have proposed a methodology for solving a number of problems arising in communication networking
using min-plus system theory. We have given an explicit expression of the sub-additive closure of the
minimum of two operators, and we have introduced a new family of idempotent, linear and time-varying
operators. These results enable us to compute service curves for lossless nonlinear systems with feedback
control and to compute bounds for losses in linear systems.

In the lossless case, we have obtained in a systematic way the same service curves for two window ow
control models [8, 7], while having new results for the second one. We have also obtained an explicit
formulation of the optimal tra�c shaper as de�ned in [12].

We have also modelled a lossy shaper by introducing a controlling device, and we have provided an
explicit representation for the losses in a shaping device with either �nite bu�er or delay constraints.
We have applied it for bounding the losses in a VBR shaper by those in two CBR systems, in series or
in parallel. We have shown that the two CBR systems in parallel not only bound the amounts of lost
data but also the congestion times of the VBR system. We have then shown that a separation between
bu�er and policer, as used in connection admission control (CAC) algorithms proposed in [13], also gives
a bound on the losses in a bu�ered shaper. However, this is no longer true for congestion periods.

Finally, as a by-product of our method, we have obtained a closed-form solution of Skorokhod's deter-
ministic reection problem with two boundaries.
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