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I. Introduction

Optimal linear transform coding has two striking similarities with optimal �nite impulse re-

sponse (FIR) Wiener �ltering: both (often unrealistically) require knowledge of second-order

moments of signals; and both require a calculation which is considered expensive if it must be

done repeatedly (eigendecomposition and matrix inversion, respectively). In FIR Wiener �lter-

ing, it is well-known that these di�culties can be mitigated by adaptation. This paper establishes

new methods in block transform adaptation that are analagous to some of the standard methods

in adaptive FIR Wiener �ltering.

The basis for many adaptive Wiener �ltering methods is to specify independent parameters,

de�ne a performance surface with respect to these parameters, and to search the performance

surface for the optimal parameter values. The most common method of performance surface

search is gradient descent|which leads to the LMS algorithm [1]|but linear and �xed-step

random searches [2] also fall into this class. This paper de�nes two meaningful performance

surfaces (cost functions) for linear transform coding and analyzes various search methods for

these surfaces. The result is a set of new algorithms for adaptive linear transform coding.

Subject to a Gaussian condition on the source and �ne-quantization approximations,1 �nding

an optimal transform for transform coding amounts to �nding an orthonormal set of eigenvectors

of a symmetric, positive semide�nite matrix; i.e., �nding an optimal transform is an instance of

the symmetric eigenproblem, a fundamental problem of numerical analysis [3]. Thus, in �nding

a method for transform adaptation we are in fact attempting to approximately solve a sequence

of symmetric eigenvalue problems. The idea of using performance surface search (i.e., cost

function minimization) for this problem seems to be new, although the cost function which we

will later call J1 has been used in convergence analyses [3]. The algorithms we develop here

are not competitive with cyclic Jacobi methods for computing a single eigendecomposition of a

large matrix; however, they are potentially useful for computing eigendecompositions of a slowly

varying sequence of matrices.

The novelty and potential utility of these algorithms for transform coding comes from the

following properties: the transform is always represented by a minimal number of parameters,

the autocorrelation matrix of the source need not be explicitly estimated, and the computations

1Without these technical conditions, there is no general principle for determining the optimal transform, so in

the remainder of the paper we revert to using \optimal" without quali�cation. For more details see Appendix A.
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are more parallelizable than cyclic Jacobi methods. In addition, further insights may come from

drawing together techniques from adaptive �ltering, transform coding, and numerical linear

algebra.

The reader is referred to [3] for a thorough treatment of the techniques for computing eigen-

decompositions including the techniques speci�c to the common special case where the matrix

is symmetric. Appendices A and B provide brief reviews of transform coding and adaptive FIR

Wiener �ltering, respectively.

II. Problem Definition, Basic Strategy, and Outline

Let fxngn2Z+ be a sequence of RN -valued random vectors and let Xn = E[xnx
T
n ]. We assume

that the dependence of Xn on n is mild2 and desire a procedure which produces a sequence of

orthogonal transforms Tn such that Yn = TnXnT
T
n is approximately diagonal for each n. The

procedure should be causal, i.e., Tk should depend only on fxngkn=1. Xn will not be known, but

must be estimated or in some sense inferred from fxkgnk=1.
First of all, note that if Xn is known, then a Tn consisting of normalized eigenvectors of

Xn solves our problem [8]. A traditional approach would be to construct an estimate X̂n =

f(fxkgnk=1) for each n, and then use an \o� the shelf" method to compute the eigenvectors of

X̂n. The di�culty with this is that the eigenvector computation may be deemed too complex to

be done for each n.

In analogy to the way the LMS algorithm avoids explicitly solving a linear system of equations

(see Appendix B), we wish to avoid using an explicit eigendecomposition algorithm. The �rst

conceptual step is to replace the problem of �nding a diagonalizing transform Tn for Xn with a

minimization problem for which a diagonalizing transform achieves the minimum. The next step

is to derive a gradient descent iteration for the minimization problem. Note that in these two

steps we assume that Xn is known. The �nal step is to apply the gradient descent iteration with

Xn replaced by a stochastic approximation X̂n. The following three sections address these three

steps. In Section III we give two cost functions which are minimized by a diagonalizing transform.

Section IV gives derivations for gradient descents with respect to the two cost functions along

with step size bounds which ensure local convergence. Linear and �xed-step random searches are

2If the dependence of Xn on n is not mild, then it is rather hopeless to use adaptation in the traditional sense

of learning source behavior based on the recent past. Better strategies might include classi�cation [4], [5] or other

basis selection methods [6], [7].
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also discussed. Section IV contains the linear algebraic computations which underlie the signal

processing algorithms which are ultimately presented in Section V. It is in this �nal section that

we stochastically simulate applications to adaptive transform coding.

III. Performance Criteria

If two orthogonal transforms only approximately diagonalize X, which of the two is better?

In order to use a performance surface search to iteratively �nd optimal transforms, we need a

continuous measure of the diagonalizing performance of a transform. The remainder of the paper

uses two such performance measures.

The most obvious choice for a cost function is the squared norm of the o�-diagonal elements

of Y = TXT T :

J1(T ) =
X
i6=j

Y 2
ij (1)

This cost function is clearly nonnegative and continuous in each component of T . Also, J1(T ) = 0

if and only if T exactly diagonalizes X.

The cost function

J2(T ) =
NY
i=1

Yii: (2)

is intimately connected to transform coding theory but is less obviously connected to the diago-

nalization of X. Under the standard assumptions of transform coding, for a �xed rate, N
p
J2(T )

is proportional to the distortion (see Appendix A, (18)). Thus minimizing J2 minimizes the dis-

tortion and J2(T ) is minimized by the transform which diagonalizes X. A potential disadvantage

of this cost function is that the minimum value is not zero; instead it is
Q

i �i, where �i's are the

eigenvalues of X.

IV. Methods for Performance Surface Search

In Section IV-C we present two new eigendecomposition algorithms based on gradient descent

with respect to the cost functions J1 and J2. These algorithms and the random search algorithm

of Section IV-B are inspired by and parallel the standard methods in adaptive FIR Wiener �lter-

ing [2]. For comparison, standard methods which are computationally attractive for computing

single eigendecompositions are presented in Section IV-D.

The e�ects of the time variation of X and estimation noise are left for subsequent sections.

Hence, throughout this section we dispense with time indices and consider iterative methods for
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diagonalizing a �xed matrix X.

A. Parameterization of Transform Matrices

An N � N orthogonal matrix has fewer than N2 independent parameters because of the

requirement that the columns (or equivalently the rows) form an orthonormal set. In our search

for the best orthogonal transform it will sometimes be useful to represent the matrix in terms of

the smallest possible number of parameters.

To determine the number of degrees of freedom in the parameterization of an orthogonal

matrix, imagine that one is constructing such a matrix column-by-column. Making the ith

column orthogonal to the earlier columns leaves N � i + 1 degrees of freedom and normalizing

gives N � i degrees of freedom plus a choice of sign. Thus overall there are N(N � 1)=2 degrees

of freedom plus N sign choices. The sign choices have no e�ect on J1(T ) or J2(T ), so we are left

with K = N(N � 1)=2 degrees of freedom. K =
�

N

2

�
matches the number of distinct Givens

rotations, and we will see in Lemma 1 below that the parameters of interest can be taken to be

the angles of Givens rotations.

De�nition 1: A matrix of the form

eGi;j;� =

266666666666666664

1 � � � 0 � � � 0 � � � 0
...

. . .
...

...
...

0 � � � cos � � � � sin � � � � 0
...

...
. . .

...
...

0 � � � � sin � � � � cos � � � � 0
...

...
...

. . .
...

0 � � � 0 � � � 0 � � � 1

377777777777777775

i

j

0 � � � i � � � j � � � 0

; (3)

where ��=2 < � � �=2, is called a Givens (or Jacobi) rotation [3]. It can be interpreted as a

counterclockwise rotation of � radians in the (i; j) coordinate plane.

Since we will be interested in Givens rotations with i < j, it will be convenient to use the

index remapping Gk;� = ~Gi;j;�, where (i; j) is the kth entry of a lexicographical list of (i; j) 2
f1; 2; : : : ; Ng2 pairs with i < j. For example, the matrix below gives the corresponding value of
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k in the (i; j) location for N = 4: 26666664
? 1 2 3

? ? 4 5

? ? ? 6

? ? ? ?

37777775
Lemma 1: Let X 2 R

N�N be a symmetric and let K = N(N � 1)=2. Then there exists

� = [�1; �2; : : : ; �K ]
T 2 [��=2; �=2)K such that T�XT T

� is diagonal, where

T� = G1;�1G2;�2 : : : GK;�K : (4)

Proof: Since X is symmetric, there exists an orthogonal matrix S such that SXST is

diagonal [8]. Any orthogonal matrix can be factored as

S = ( eG1;2;�1;2
eG1;3;�1;3 � � � eG1;N;�1;N )(

eG2;3;�2;3 � � � eG2;N;�2;N ) � � � ( eGN�1;N;�N�1;N )D�;

where D� = diag(�1; : : : ; �N), �i = �1, i = 1; 2; : : : ; N [9]. It is now obvious that we can take

T = SD�1� because D�1� X(D�1� )T = X.

B. Random Search

In light of Lemma 1 and the discussion of Section III, �nding a diagonalizing transform amounts

to minimizing J1 or J2 (written as J where either �ts equally) over � 2 [��=2; �=2)K . Concep-
tually, the simplest way to minimize a function|so simple and naive that it is often excluded

from consideration|is to guess.

We could discretize the range of interest of �, evaluate J at each point on the grid, and take the

minimum of these as an approximation to the minimum. The accuracy of this approximation will

depend on the smoothness of J and the density of the grid. The grid could also be made adaptive

to have higher density of points where J is smaller. This exhaustive deterministic approach is not

well suited to our application with a slowly-varying sequence of X matrices because information

from previous iterations is not easily incorporated. Instead, we present two approaches which

yield a random sequence of parameter vectors with expected drift toward the optimum.

In a �xed-step random search, a small random change is tentatively added to the parameter

vector. The change is adopted if it decreases the objective function; else, it is discarded. Formally,

the update is described by

�k+1 =

8<: �k + ��k if J(�k + ��k) < J(�k);

�k otherwise;
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where � 2 R+ and E[�k�
T
k ] = I.

A �xed-step random search makes no progress on an iteration where �k + ��k is found to be

worse than �k. Another possibility is a linear random search [2]. In this case, instead of taking

no step if �k seems to be a step in the wrong direction, one takes a step in the opposite direction;

the size of each step is proportional to the increase or decrease in J . The update is described by

�k+1 = �k + �[J(�k)� J(�k + ��k)]�k;

where �; � 2 R+ and E[�k�
T
k ] = I.

It is intuitively clear that, using either cost function, for su�ciently small � both random

search algorithms tend to drift toward local minima of J . The �xed-step and linear random

search algorithms were simulated on the problem X = diag([1; 1
2 ;

1
4 ;

1
8 ]) with initial guess

�0 chosen randomly according to a uniform distribution on [��=2; �=2]6. Figure 1 gives the

averaged results of 400 simulations of 400 iterations each for various values of �. Gaussian � was

used for the �xed-step search; for the linear search, � is uniformly distributed on the unit sphere

and � = 0:01.

As shown in Figure 1(a){(b), the �xed-step searches have the undesirable quality that the best

choice of � depends on the number of iterations: for a small number of iterations a large � is

preferred while for a large number of iterations the opposite is true. A simple interpretation of

this is that for large � the �rst few steps are more bene�cial, but as the optimum � is approached,

tentative steps are very unlikely to be accepted; close to the optimum �, small � is more likely

to yield improvements.

While the �xed-step algorithm tends to get stuck when � is large, the performance of the

linear search algorithm degrades in a di�erent way. When � is large, many steps are taken which

increase J ; hence the convergence gets more erratic. For very large � there is no negative drift

in J . This is shown in Figure 1(c){(d).

The conceptual simplicity of random search algorithms comes from utilizing no knowledge of

the function to be minimized. Using gradient descent is one way to utilize knowledge of the

function to be minimized. This is discussed in the following section.

C. Descent Methods

In this section we will explore gradient descent based methods for minimizing J1 or J2. The

idea of a gradient descent is very simple. Suppose we wish to �nd � which minimizes a function

January 8, 1998 Submitted to IEEE Trans. Sig. Proc.
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Fig. 1. Simulations of the random search algorithms. X = diag([1; 1

2
; 1

4
; 1

8
]) and results are averaged

over 400 randomly chosen initial conditions �0.

J(�) and we have an initial guess �0. Assuming a �rst-order approximation of J , changing �0 in

the direction of rJ j�=�0
produces the maximum increase in J , so taking a step in the opposite

direction produces the maximum decrease in J . This leads to the general update formula for

gradient descent:

�k+1 = �k � � rJ j�=�k
; (5)

where � 2 R+ is the step size. We now compute the gradient and the bounds on � for stability

for each of the cost function of Section III.
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C.1 Minimization of J1

We start by computing rJ1 elementwise. Firstly,
@J1
@�k

=
X
i6=j

@

@�k
Y 2
ij =

X
i6=j

2Yij
@Yij
@�k

: (6)

For notational convenience, let U(a;b) = Ga;�aGa+1;�a+1 : : : Gb;�b , where U(a;b) = I if b < a,

Uk = U(k;k), and Vk =
@
@�Uk;�k . De�ne A

(k), 1 � k � K, elementwise by A
(k)
ij = @Yij=@�k. Then

to evaluate @Yij=@�k, write Y = TXT T and use (4) to yield

A(k) = U(1;k�1)VkU(k+1;K)XUT
(1;K) + U(1;K)XUT

(k+1;K)V
T
k U

T
(1;k�1) (7)

Combining (6) and (7),
@J1
@�k

= 2
X
i6=j

YijA
(k)
ij : (8)

Theorem 1: Denote the eigenvalues of X by �1; �2; : : : ; �N and let �? correspond to a diag-

onalizing transform for X. Then for �0 su�ciently close to �? the gradient descent algorithm

described by (5) and (8) converges to �? if

0 < � <

�
2max

i;j
(�i � �j)

2

��1
Proof: Without loss of generality, we can assume that X = diag([�1 �2 � � � �N]). This

amounts to selecting the coordinates such that �? = 0.

The key to the proof is observing that (5) describes an autonomous, nonlinear, discrete-time

dynamical system and linearizing the system. We write

�k+1 = �k � �f(�k);

which upon linearization about 0 gives

�̂k+1 = (I � �F )�̂k;

where Fij =
h

@
@�j

fi(�)
i
�=0

. A su�cient condition for local convergence is that the eigenvalues of

I��F lie in the unit circle. The fact that the local exponential stability of the original nonlinear

system can be inferred from an eigenvalue condition on the linearized system follows from the

continuous di�erentiability of F [10].

We now evaluate F . Di�erentiating (8) gives

@2J1
@�` @�k

= 2
X
i 6=j

 
Yij

@A
(k)
ij

@�`
+A

(k)
ij

@Yij
@�`

!

January 8, 1998 Submitted to IEEE Trans. Sig. Proc.



GOYAL & VETTERLI: ADAPTIVE TRANSFORM CODING USING LMS-LIKE . . . 10

= 2
X
i 6=j

 
Yij

@A
(k)
ij

@�`
+A

(k)
ij A

(`)
ij

!
: (9)

Evaluating (9) at � = 0, Y becomes X (diagonal), so the �rst term makes no contribution;

we need not attempt to calculate
@A

(k)
ij

@�`
. By inspection of (7), A(k) becomes VkX +XV T

k . This

simpli�es further to a matrix which is all zeros except for having �jk � �ik in the (ik; jk) and

(jk; ik) positions, where (ik; jk) is the (i; j) pair corresponding to k in the index remapping

discussed following De�nition 1. Noting now that A(k) and A(`) have nonzero entries in the same

positions only if k = `, we are prepared to conclude that

Fk` =

�
@2J1
@�` @�k

�
�=0

=

8<: 4(�ik � �jk)
2 if k = `;

0 otherwise:
(10)

The eigenvalues of I � �F are 1 � 4�(�ik � �jk)
2. The proof is completed by requiring that

these all lie in the unit circle.

The nonlinear nature of the iteration makes analysis very di�cult without linearization. In

the N = 2 case, the iteration can be analyzed directly; a stronger result is thus obtained. Similar

stronger results may be true for larger N , but the analysis seems di�cult.

Theorem 2: In the case N = 2, the result of Theorem 1 can be strengthened to an \almost

global" exponential stability result, i.e., from any initial condition except a maximum, the iter-

ation will converge exponentially to the desired minimum of J1.

Proof: Without loss of generality, assume X = diag([�1 �2]). First notice that when N = 2,

K = 1, so the set of transforms under consideration are described by a single scalar parameter.

Dropping all unnecessary subscripts, (7) reduces to

A = V XUT + UXV T =

24 (�2 � �1) sin 2� (�2 � �1) cos 2�

(�2 � �1) cos 2� �(�2 � �1) sin 2�

35
and

Y = TXT T =

24 �1 cos
2 � + �2 sin

2 � 1
2 (�2 � �1) sin 2�

1
2(�2 � �1) sin 2� �1 sin

2 � + �2 cos
2 �

35 :
Simplifying (8) gives

@J1
@�

= 2(Y12A12 + Y21A21) = (�2 � �1)
2 sin 4�:

Thus the iteration to analyze is

�k+1 = �k � �(�2 � �1)
2 sin 4�k: (11)
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We immediately see that all multiples of �=4 are �xed points; the even multiples correspond

to the desired transforms and the odd multiples are the only initial conditions for which the

the iteration does not converge to a diagonalizing transform. For convenience, we consider only

0 < j�0j < �=4; other cases are similar. We will show that limk!1 �k = 0. Suppose 0 < �0 < �=4.

Then using sin 4� � 4� and � < (�2 � �1)
�2=2 one can show that �(�2 � �1)

2 sin 4�0 2 (0; 2�0).

Thus j�1j < j�0j. The ��=4 < �0 < 0 case is similar. Since (11) is a strictly contractive mapping

on (��=4; �=4) the iteration must converge to the only �xed point in the interval, zero.

C.2 Minimization of J2

We will continue to use the notation introduced in Section IV-C.2. rJ2 is given elementwise

by

@J2
@�k

=
@

@�k

NY
i=1

Yii =

NX
m=1

0@@Ymm

@�k

NY
i=1; i6=m

Yii

1A =

NX
m=1

0@A(k)
mm

NY
i=1; i6=m

Yii

1A (12)

= J2(T )

NX
m=1

�
1

Ymm
A(k)
mm

�
;

where A(k) was de�ned in (7). As before, the gradient descent update is speci�ed by (5).

Theorem 3: Denote the eigenvalues of X by �1; �2; : : : ; �N and let �? correspond to a diag-

onalizing transform for X. Then for �0 su�ciently close to �? the gradient descent algorithm

described by (5) and (12) converges to �? if

0 < � <

�
Jmin max

i;j

(�i � �j)
2

�i�j

��1
where Jmin =

QN
i=1 �i.

Proof: The method of proof is again to linearize the autonomous, nonlinear, discrete-

time dynamical system that we have implicitly de�ned, and again the analysis is simpli�ed by

assuming that X = diag([�1 �2 � � � �N]).
Di�erentiating (12) gives

@2J2
@�` @�k

=
@

@�`

NX
m=1

0@A(k)
mm

NY
i=1; i6=m

Yii

1A
=

NX
m=1

240@@A
(k)
mm

@�`

NY
i=1; i 6=m

Yii

1A+

0@A(k)
mm

@

@�`

NY
i=1; i6=m

Yii

1A35 : (13)
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When (13) is evaluated at � = 0, the second term does not contribute because the diagonal of

A(k) is zero for all k. Evaluation of @A
(k)
mm

@�`
is somewhat tedious and is left for Appendix D. The

result is summarized as

@A
(k)
mm

@�`
=

8>>><>>>:
2(�jk � �ik) if k = ` and m = ik;

2(�ik � �jk) if k = ` and m = jk;

0 otherwise;

(14)

where (ik; jk) is related to k as before. Combining (13) and (14) gives

Fk` =

�
@2J2
@�` @�k

�
�=0

=

8<:
2Jmin(�ik��jk )

2

�ik�jk
if k = `;

0 otherwise:

Requiring the eigenvalues of I � �F to lie in the unit circle completes the proof.

In the N = 2 case (but not in general) the two gradient descent algorithms that we have

derived are equivalent. Hence Theorem 2 applies to the descent with respect to J2 also. Again,

we expect that the convergence result of Theorem 3 can be strengthened for general N , but the

analysis seems di�cult.

C.3 Comparison of descent methods

The linearizations used in the proofs of Theorems 1 and 3 facilitate easy analysis of the rates of

convergence of the two descent methods. Consider the descent with respect to J1. Using (10) we

can approximate the error in the kth component of � at the nth iteration by c[1�4�(�ik��jk)2]n.
If we assume for the moment that we know (�ik��jk)2, we could choose � to make the bracketed

quantity equal to zero; then modulo the linearization, the convergence is in one step. The problem

is that even if we could do this, the other components of � might not converge quickly or converge

at all. Thus a quantity of fundamental interest in using the descent with respect to J1 is the

variability of (�ik � �jk)
2, which we will call the pseudo-eigenvalue spread (since it is analogous

to the eigenvalue spread in LMS adaptive �ltering [11]):

s1(X) =
maxi;j(�i � �j)

2

mini;j(�i � �j)2

The corresponding quantity for the descent with respect to J2 is

s2(X) =
maxi;j

(�i��j)
2

�i�j

mini;j
(�i��j)2

�i�j

:
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Fig. 2. Simulations of the gradient descent algorithms. In each case � is set to half the maximum value

for stability and results are averaged over 100 randomly chosen initial conditions �0. The relative

performances of descents with respect to J1 and J2 is as predicted by the pseudo-eigenvalue spread.

Parts (a) and (b) are for matrices X1 and X2, respectively. (The curve labels refer to the left and

right y-axes.)

The di�erence between s1(X) and s2(X) suggests that the superior algorithm will depend on X

along with the choice of �. This is con�rmed through the following calculations and simulations.

Consider the matrices X1 = diag([1; 7
8 ;

5
8 ;

1
2 ]) and X2 = diag([1; 1

2 ;
1
4 ;

1
8 ]), for which we have

s1(X1) = 16 < 28 = s2(X1) and s1(X2) = 49 > 49
4 = s2(X2). Based on the pseudo-eigenvalue

spreads we expect a descent with respect to J1 to perform better than a descent with respect

to J2 for diagonalizing X1, and vice versa for X2. Simulations were performed with � at half

the maximum value for stability and 100 randomly selected initial conditions �0. The averaged

results, shown in Figure 2, indicate that the performance is as predicted.

D. Nonparametric Methods

As we have noted, �nding the optimal transform is equivalent to �nding an eigendecomposition

of a symmetric matrix. The best algorithms (rated in terms of the number of oating point opera-

tions) for the symmetric eigenproblem do not use a parameterization of a diagonalizing transform

as we have done in the preceding sections. The best algorithms to date for computing the eigen-

decomposition of a single symmetric matrix are variations of the QR algorithm. However, these

algorithms do not allow one to take advantage of knowledge of approximate eigenvectors, as one
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would have with a slowly-varying sequence of X matrices. In this section we briey introduce

Jacobi methods, which allow this prior information to be e�ectively incorporated. Details on QR

and Jacobi algorithms can be found in [3, x8.5].
The idea of the classical Jacobi algorithm is to at each iteration choose a Givens rotation to

reduce the o�-diagonal energy as much as possible. More speci�cally, the algorithm produces

a sequence fTkg and also keeps track of Ak = TkXT T
k . If the Givens rotation eGi;j;� (see (3))

is chosen in computing Tk+1, the maximum reduction in the o�-diagonal energy (by correctly

choosing �) is (Ak)
2
ij , thus the best choice for (i; j) is that which maximizes (Ak)

2
ij. It is a greedy

minimization of J1, but since Givens rotations do not commute, it is hard to interpret it in terms

of the parameterization we used earlier.

A drawback of the classical Jacobi algorithm is that while each iteration requires only O(N)

operations for the updates to Tk and Ak, choosing (i; j) requires O(N
2) operations. This can be

remedied by eliminating the search step and instead choosing (i; j) in a predetermined manner.

This is called the cyclic Jacobi algorithm and each cycle through the K = N(N � 1)=2 distinct

(i; j) pairs is called a sweep.

To provide a basis of comparison with the results of Sections IV-B and IV-C, simulations of

the cyclic Jacobi algorithm were performed with on X = diag([1; 1
2 ;

1
4 ;

1
8 ]) with random initial

transforms corresponding to the random initial parameter vectors used before. The averaged

results of 400 simulations are shown in Figure 3. Note that the x-axis shows the number of

rotations, not the number of sweeps.

An attractive feature of the cyclic Jacobi algorithm is that the updates can be partitioned

into set of \noninteracting" rotations, i.e., rotations involving disjoint sets of rows and columns.

These noninteracting rotations can be done in parallel. All Jacobi algorithms have the advantage

that a good initial transform speeds convergence.

E. Comments and Comparisons

Comments on the relative merits of random search, gradient descent, and Jacobi methods are

in order. By comparing Figures 1{3, it is clear that the cyclic Jacobi method gives the fastest

convergence rate in terms of the number of iterations or rotations. Since the Jacobi method also

has the lowest complexity, for general purpose eigendecomposition the remaining methods seem

to be only of academic interest.

A potential bene�t of the random search and gradient descent methods is that they operate
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Fig. 3. Simulations of the cyclic Jacobi algorithm on X = diag([1; 1

2
; 1

4
; 1

8
]) with randomly chosen initial

transform T0.

directly on a minimal parameterization of the transform matrices of interest. Of course, a

transform matrix could be determined using a Jacobi method and then parameterized afterward.

V. Adaptive Transform Coding Update Methods

In the previous section we established a set of algorithms for iteratively determining the optimal

transform assuming that the source correlation matrix Xn is constant. Recalling our overall

strategy, we would now like to apply these algorithms in an adaptive setting.

The traditional implementation approach would be to calculate a sequence of estimates fX̂ng
using a windowed time average and to use these averages in the adaptive algorithms. The

extreme case of this approach is to use a time average over only one sample, i.e., X̂n = xnx
T
n .

This results in a computational savings and|in the case of gradient descent parameter search|

gives an algorithm very much in the spirit of LMS. Speci�cally in a transform coding application,

it may be desirable to eliminate the need for side information by putting quantization inside the

adaptation loop. These implementation possibilities are described in detail in the the remainder

of this section.

In the interest of brevity, simulation results are not provided for each combination of cost

function, implementation structure, and search algorithm. The greatest emphasis is placed on

stochastic gradient parameter surface search.
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A. Explicit Autocorrelation Estimation

The most obvious way to implement an adaptive transform coding system is to use a windowed

correlation estimate of the form

X̂n =
1

M

nX
k=n�M+1

xkx
T
k : (15)

If the true correlation is constant, then X̂n is elementwise an unbiased, consistent estimator of

X [11]. There will be \estimation noise" (variance in X̂n due to having �nite sample size) which

decreases monotonically with M . If fXng is slowly varying, there will also be \tracking noise"

(mismatch between X̂n and Xn caused by the causal observation window) which increases with

M . Thus in the time-varying case there is a tradeo�, controlled by M , and one can expect there

to be an optimal value of M depending on the rate at which fXng varies.
To illustrate the ability to track a time-varying source and the dependence onM , we construct

the following synthetic source: For each time n 2 Z+, xn is a zero-mean jointly Gaussian vector

with correlation matrix

Xn = UT
n �

26664
1 0 0

0 1
2 0

0 0 1
4

37775 � Un;
where Un is a time-varying unitary matrix speci�ed as

Un = G1;!1n+'1G2;!2n+'2G3;!3n+'3 :

Un is an ideal transform to be used at time n. The !i's are �xed \angular velocities" to be

tracked and the 'i's are independent, uniformly distributed phases. Averaging over randomly

selected phases removes any periodic components from simulation results.

This source was used in simulations of the linear search with respect to J1. For all the

simulations � = 3 and � = 0:01. In the �rst set of experiments (see Figure 4(a)) !1 = !2 =

!3 = 0. Since the source is not time varying, there is no tracking noise and the estimation noise

decreases as M is increased, so the overall performance improves as M in increased. The second

and third sets of experiments use !1 = !2 = !3 = 0:001 and !1 = !2 = !3 = 0:002, respectively.

Now since the source is time varying, the performance does not improve monotonically as M is

increased because as the estimation noise decreases, the tracking noise increases. For the slower

varying source (see Figure 4(b)) the performance improves as M is increased from 5 to 20 and
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then is about the same for M = 40. For the faster varying source (see Figure 4(c)) the tracking

noise is more signi�cant so the best value of M is lower. A faster varying source may also justify

a larger value of �.

The estimate (15) implicitly uses a rectangular window to window the incoming data stream,

so each sample vector is equally weighted. One way to more heavily weight the later sample

vectors is to use a \forgetting factor" � (as in Recursive Least Squares [12]), which is equivalent

to using an exponential window:

X̂n = �X̂n�1 + (1� �)xnx
T
n :

This scheme also reduces memory requirements.

B. Stochastic Update

If we take the autocorrelation estimation of the previous section to its extreme of estimating

the autocorrelation based on a single sample vector, we get

X̂n = xnx
T
n : (16)

The use of this extremely simple estimate simpli�es the calculations associated with parameter

surface search. We refer to this as a stochastic implementation because it is the result of replacing

an expected value by its immediate, stochastic value.

Both random search methods require calculation of J . For a general X 2 RN�N , computing
TXT T = G1G2 � � �GKXGT

K � � �GT
2G

T
1 requires 8KN multiplications and 4KN additions because

each multiplication by a Givens matrix requires 4N multiplications and 2N additions. With the

rank-one X̂n given by (16), we can �rst write

TX̂nT
T = G1G2 � � �GKxnx

T
nG

T
K � � �GT

2G
T
1

= (G1G2 � � �GKxn)(G1G2 � � �GKxn)
T :

Then since multiplying a vector by a Givens matrix requires 4 multiplications and 2 additions,

the bracketed terms can be computed with 4K multiplications and 2K additions. Now J1(T )

can be computed with K additional multiplications and K� 1 additional additions or J2(T ) can

be computed with N additional multiplications. The computation of rJ is similarly simpli�ed.

We have simulated the stochastic implementation of gradient descent parameter search for the

source described in the previous section (see Figure 5). There is a single parameter to choose:
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Fig. 4. Simulations of linear search with respect to J1 with explicit correlation estimation. The source

is slowly varying as described in the text. M is the length of the data window. Fixed parameters:

� = 3, � = 0:01. Results are averaged over 400 randomly chosen initial conditions �0 and source

phases '1, '2, '3.
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the step size �. Using Theorems 1 and 3 gives maximum step sizes of 8
9 and 32

9 for descent with

respect to J1 and J2, respectively. These theorems apply only to iterative computations with

exact knowledge of the correlation matrix; however, they provide rough guidelines for step size

choice in the stochastic setting.

When the source distribution is time-invariant (!1 = !2 = !3 = 0 for the source we are con-

sidering), the e�ect of the step size � is easy to discern. A larger step size reduces the adaptation

time constants, so steady-state performance is reached more quickly. However, because the pa-

rameter vector � is adapted based on each source vector, the steady-state performance has a

\noisy" stochastic component. This \excess" in J increases as the step size is increased. We

have not attempted to characterize this analytically. Qualitatively it is similar to the \excess"

mean-square error in LMS �ltering [2]. Referring to Figure 5(a), the steady-state value of J1

decreases monotonically as � is decreased, but the convergence is slower. Because the source is

time-invariant, there is a conceptually simple alternative to the stochastic gradient descent which

provides a bound to attainable performance. This is to use all the source vectors observed thus

far to estimate the correlation, using (15) withM = n, and computing the eigendecomposition of

the correlation estimate to full machine precision. This bound is the lowest curve in Figure 5(a).

The situation is more complicated when the source distribution is time-varying. Now the

step size e�ects the ability to track the time variation along with determining the steady-state

noise and speed of convergence. Figures 5(b) and (c) show the results of simulations with

!1 = !2 = !3 = 0:001 and !1 = !2 = !3 = 0:002, respectively. In the �rst of these simulations,

the best performance is achieved for � between 8
9=500 and

8
9=200. The larger of these gives slightly

faster convergence and the small gives slightly lower steady-state error. For the faster-varying

source, 8
9=500 is too small for e�ectively tracking the source.

C. Quantized Stochastic Implementation

In adaptive transform coding, if the transform adaptation is based upon the incoming uncoded

data stream, then in order for the decoder to track the encoder state, the transform adaptation

must be described over a side information channel. This situation, which is commonly called

forward-adaptive, is depicted in Figure 6(a). The need for side information can be eliminated

if the adaptation is based on the coded data, as shown in Figure 6(b). This backward-adaptive

con�guration again has an analogy in adaptive FIR Wiener �ltering: In adaptive linear predictive

coding, where the linear predictor is in fact an adaptive FIR Wiener �lter, making the adaptation
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Fig. 5. Simulations of stochastic gradient descent with respect to J1. The source is slowly varying as

described in the text. Step sizes are given by � = �max=, where �max =
8

9
is the maximum step size

for stability predicted by Theorem 1. The curves are labeled by the value of . Results are averaged

over 400 randomly chosen initial conditions �0 and source phases '1, '2, '3. In (a) the performance

is also compared to computing an exact eigendecomposition of a correlation estimate based on all the

sample vectors observed thus far.
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Fig. 6. Structural comparison between forward- and backward-adaptive systems. The backward-adaptive

system does not require a side information channel to convey transform state.

depend on quantized data yields adaptive di�erential pulse code modulation (ADPCM).3

We have simulated the stochastic gradient descent in the backward-adaptive con�guration.

Since quantization is an irreversible reduction in information, it must be at least as hard to

estimate the moments of a signal from a quantized version as it is from the original unquantized

signal. Thus we expect the convergence rate to be somewhat worse in the backward-adaptive

con�guration. Figure 7(a) shows simulation results for a time-invariant source (!1 = !2 = !3 =

0). The lower set of curves is for direct computation as in Figure 5(a) and the upper set of

curves is for stochastic gradient descent with step size � = 8
9=500. With quantization step size

� = 0:125 or 0.25, the rate of convergence is almost indistinguishable from the unquantized case.

3Note that ADPCM is often used to refer to a system with adaptive quantization. However, quantization

adaptation is beyond the scope of this paper.
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Fig. 7. Simulations of stochastic gradient descent with respect to J1. in backward-adaptive con�guration.

Step sizes are given by � = �max=500, where �max = 8

9
is the maximum step size for stability

predicted by Theorem 1. The curves are labeled by the value of the quantization step size �. Results

are averaged over 400 randomly chosen initial conditions �0 and source phases '1, '2, '3. In (a)

the performance is also compared to computing an exact eigendecomposition of a correlation estimate

based on all the (quantized) sample vectors observed thus far.

As the quantization becomes coarser, the convergence slows. Notice that with direct computation,

quantization does not seem to lead to a nonzero steady-state error. This is suggestive of universal

performance of the backward-adaptive scheme [13]; further discussion of this is beyond the scope

of this paper.

For a slowly varying source (!1 = !2 = !3 = 0:001; see Figure 7(b)), we again have that

the performance with � = 0:125 or 0.25 is indistinguishable from the performance without

quantization. The convergence slows as the quantization becomes coarser, but here there may
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also be a small increase in steady-state error.

D. Specialization for a Scalar Source

In many applications with processing of vectors, the vectors are actually generated by forming

blocks a scalar-valued source. The methods developed in this paper are general and hence

applicable to this case. However, a few speci�c re�nements facilitate performance better than in

the general case.

Suppose the original scalar source is a wide-sense stationary process fzng which we observe for
n � 1 and we generate a vector source fxng by forming blocks of length N . Then the correlation

matrix X = E[xnx
T
n ] is a symmetric, Toeplitz matrix with Xij = rz(i� j) = E[zizj ].

One consequence of the symmetric, Toeplitz structure of X is that there are actually less than

K = N(N � 1)=2 independent parameters to estimate to �nd a diagonalizing transform. For

N = 3, for example, one can show that

X =

26664
a b c

b a b

c b a

37775
has always as an eigenvector

h
�1 0 1

iT
and that it su�ces to consider transforms of the

form

T =

26664
�p2=2 0

p
2=2

�
p
1� 2�2 �p

1� 2�2=
p
2 �p2�

p
1� 2�2=

p
2

37775 :
This can be used to derive new performance surface search methods with fewer parameters.

A second consequence is that estimates better than (15) can be used. Having observed M

N -tuples from the source, (15) gives

X̂ij =
1

M

MX
n=1

(xn)i(xn)j =
1

M

MX
n=1

zN(n�1)+izN(n�1)+j : (17)

Each of the terms of (17) has expected value rz(i � j) and by averaging over M observations

we clearly get an unbiased, consistent estimate. However, with MN samples we can actually

average over MN � (i� j) terms to get a much lower variance estimate:

X̂ij = brz(i� j) =
1

MN � (i� j)

MN�(i�j)X
n=1

znzn+(i�j):

For a time-varying source, either a �nite window or a forgetting factor could be used.
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VI. Conclusions

This paper has introduced a new class of algorithms for computing the eigenvectors of a

symmetric matrix. These algorithms are potentially useful for adaptive transform coding or

online principal component analysis. The development is conceptually summarized as follows:

A matrix of eigenvectors forms an orthogonal diagonalizing similarity transformation; it su�ces

to consider orthogonal matrices which are parameterized as a product of Givens rotations; and

appropriate parameter values can be found as an unconstrained minimization.

The key is the formulation of unconstrained minimization problems over a minimal number of

parameters. Borrowing from the adaptive �ltering literature, we have applied linear and �xed

step random search and gradient descent to the resulting minimization problems. In the gradient

descent case we derived step size bounds to ensure convergence in the absence of estimation noise.

Through simulations we demonstrated that in the presence of estimation noise, the gradient

descent converges when the step size is chosen small relative to the bound.

In a transform coding application, one may want to use a backward-adaptive con�guration in

which the adaptation is driven by quantized data so that the decoder and encoder can remain

synchronized without the need for side information. As long as the quantization is not too coarse,

the algorithms presented here seem to converge.

Appendices

I. Brief Review of Transform Coding

The fundamental purpose of source coding is to remove redundancy. One elementary form of

redundancy is correlation between components of a vector. Intuitively, transform coding (and

the choice of the transform therein) is based on removing this simple form of redundancy.

Let fxngn2Z+ be a sequence of RN -valued random vectors.4 A complete transform coding

system for this source is shown in Figure 8. Applying the orthogonal transform Tn 2 RN�N to

xn gives yn, which is quantized with the quantization function Qn to give ŷn. The encoding is

completed by applying an entropy code En to ŷn. The entropy coder may operate with memory

and/or delay in order to improve its performance. The corresponding inverse operations are

4All quantities are real throughout the paper; some results could easily be extended to the complex case.

Depending on the context, the time index n may be suppressed and a subscript may be used to distinguish

between components of a vector.
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Fig. 8. Basic transform coding system.

performed at the decoder.

In classical transform coding theory, as introduced in [14] and analyzed in detail in [15], the

source vectors are assumed to have identical distributions and are treated independently.5 The

problem is to �nd the orthogonal6 transform T and quantizer Q such that for a �xed bit rate R

(bits per scalar coe�cient) the distortion D = Ekxn � x̂nk2 is minimized.
Denote the autocorrelation of x by X = E[xxT ].7 The autocorrelation of y is given by Y =

E[yyT ] = E[TxxTT T ] = TXT T . We arrive at the optimality of the Karhunen-Lo�eve Transform

(KLT) as follows (see [16] for more details). Because of the orthogonality of T , kxn � x̂nk2 =
kyn � ŷnk2, so the distortion in x is exactly the distortion in quantizing y. Assuming optimal

scalar quantization and that the high rate approximation holds, the distortion in quantizing the

coe�cient yi is Di = hiY
2
ii2
�2Ri , where Ri is the bit rate for that component and the constant

hi depends on the p.d.f. fi(t) of the normalized random variable yi=Yii:

hi =
1

12

�Z 1

�1

[fi(t)]
1=3 dt

�3
Then assuming that the hi's are equal,

8 hi = h, i = 1; 2; : : : ; N , the optimal bit allocation among

the transform coe�cients results in an overall distortion of

D = Nh�22�2R; (18)

where

�2 =

 
NY
i=0

Y 2
ii

!1=N

: (19)

5Transform coding is often introduced in the case where xn is N consecutive samples of a stationary (scalar)

source. This is one case in which the xn's are identically distributed.
6The reasons for constraining the transform T to be orthogonal are somewhat subtle. It is often said that

otherwise the inverse transform will enhance quantization errors, but detailed justi�cation is di�cult. For a

Gaussian signal, it was shown in [15] that T should be orthogonal and that the decoder should use T�1.
7We have used X in place of the usual Rx in order to reduce the need for multiple subscripts.
8This is the case when the source is Gaussian.

January 8, 1998 Submitted to IEEE Trans. Sig. Proc.



GOYAL & VETTERLI: ADAPTIVE TRANSFORM CODING USING LMS-LIKE . . . 26

m- - -
?

d(n)

f(n)
y(n)

x(n) e(n)

Fig. 9. Canonical con�guration for Wiener �ltering. The objective is to design the �lter f(n) such that

the power of e(n) is minimized.

An orthogonal T that minimizes (19) (and hence (18)) is one that diagonalizesX; i.e., Y = TXT T

is diagonal. (A simple proof based on the arithmetic/geometric mean inequality is given in [16].)

Among such transforms, one that leaves the diagonal of Y sorted in nonincreasing order is called

a Karhunen-Lo�eve Transform (KLT) for the source. The KLT is unique (up to a choice of signs

for each row) if the eigenvalues of X are distinct.

The optimality of the KLT as established above only applies to high rate coding of Gaussian

sources. However, the KLT is believed to be a good transform for transform coding in other

situations as well because the principle of decorrelating as a means of reducing redundancy is

generally applicable. The reader is referred to [16] for more details on transform coding.

II. Brief Review of Adaptive FIR Wiener Filtering

The canonical Wiener �ltering9 problem is described as follows. Let x(n) and d(n) be jointly

wide-sense stationary, zero-mean, scalar random processes. Design a linear �lter f(n) such that

the mean-squared error between the desired signal d(n) and the output of the �lter y(n) =

x(n) � f(n) is minimized (see Figure 9). Two common applications are separating signal from

noise and channel equalization. For denoising, x(n) = d(n) + w(n) where w(n) is unknown, but

has known spectral density and is uncorrelated with d(n). For equalization, x(n) = d(n) � c(n),
where c(n) is a channel impulse response.

We consider here the case where f(n) is constrained to be a causal, L-tap FIR �lter. This and

other cases are discussed in detail in [11].

Finding the optimal �lter is conceptually simple once we select a convenient vector notation.

Let �f = [f(0); f(1); : : : ; f(L� 1)]T and �xn = [x(n); x(n� 1); : : : ; x(n�L+ 1)]T . Then e(n) =

d(n)� �xTn
�f . The power of e(n) is a quadratic function of the �lter vector:

J(f) = E[e(n)2]

9The anonymous designation of \optimal least-squares �ltering" is also used.
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It is this function which we call the performance surface, and �nding the optimal �lter is to �nd

the parameter vector which yields the minimum of the performance surface.10 It can be shown

that the gradient of J with respect to �f is given by

rJ = 2(X �f � �rdx);

where (consistent with the previous section) X = E[�xn�x
T
n ] and �rdx = E[�xnd(n)]. From this we

can conclude that the optimal �lter is described by

�fopt = X�1�rdx: (20)

There are two practical problems in applying the analytical solution (20). The �rst is that X

and �rdx may be unknown and may depend on n. A remedy would be to estimate these moments

as the incoming data is processed, giving X(n) and �rdx(n). This leads to the second problem,

which is that each update of the �lter requires solving a linear system X(n) �f = �rdx(n).

The LMS or stochastic gradient algorithm addresses both of these problems. There are two

main ideas. Firstly, instead of exactly minimizing J by using (20), iteratively update �f by adding

��rJ , where � > 0 is called the step size. As long as � is chosen small enough, this procedure

will converge to �fopt; however, as long as we still require knowledge of X and �rdx this is not

very useful. The second main idea is to replace X and �rdx by the simplest possible stochastic

approximations: X(n) � �xn�x
T
n and �rdx � �xnd(n). This yields the update equation for LMS:

�f(n+ 1) = �f(n)� 2�(y(n) � d(n))�xn (21)

One normally studies the stability and rate of convergence of (21) by analyzing

�f(n+ 1) = �f(n)� 2�(X �f � �rdx):

This can be interpreted as ignoring the stochastic aspect of the algorithm or as looking at the

mean of �f and applying the so-called \independence assumption" [1].

III. Alternative Gradient Expressions

The gradient expressions given in Section IV-C were intended to facilitate Theorems 1 and 3.

Alternative expressions for rJ1 and rJ2 are given in this appendix.

10Under some technical conditions, the minimum is unique.
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We will use the chain rule to compute rJ`, ` = 1; 2, through

@J`
@�k

=
X
i;j

@J`
@Tij

@Tij
@�k

:

Recalling the de�nitions of U(a;b) and Vk;� from Section IV-C.1, if we de�ne B
(k)
ij = @Tij=@�k,

then di�erentiating (4) gives

B(k) = U(1;k�1)VkU(k+1;K):

For both ` = 1 and ` = 2, the following intermediate calculation is useful:

@Yab
@Tij

=
@

@Tij

NX
r=1

NX
s=1

TasXsr(T
T )rb = �i�aTb�X�j + �i�bTa�X�j ;

where Tb� is the bth row of T and X�j is the jth column of X.

Now

@J1
@Tij

=
X
a6=b

2Yab
@Yab
@Tij

=
X
a6=b

2Yab(�i�aTb�X�j + �i�bTa�X�j) = 4eTi Y (I � eie
T
i )TXej ;

where ei is the column vector with one in the ith position and zeros elsewhere.

For J2 we have

@J2
@Tij

=
@

@Tij

NY
`=1

Y`` =

NX
a=1

@Yaa
@Tij

NY
`=1;` 6=a

Y`` =

NX
a=1

J

Yaa
2�i�aTa�X�j = 2

J

Yii
Ti�X�j ;

IV. Evaluation of @A
(k)
mm=@�`

In this appendix we derive (14). First consider the case ` = k. Let Wk =
@
@�Vk. Di�erentiating

(7) gives

@

@�k
A(k) = U(1;k�1)WkU(k+1;K)XUT

(1;K) + U(1;k�1)VkU(k+1;K)XUT
(k+1;K)V

T
k U

T
(1;k�1)

+U(1;K)XUT
(k+1;K)W

T
k U

T
(1;k�1) + U(1;k�1)VkU(k+1;K)XUT

(k+1;K)V
T
k U

T
(1;k�1);

which upon evaluation at � = 0 reduces to

@

@�k
A(k)

����
�=0

=WkX + VkXV T
k +XW T

k + VkXV T
k :

January 8, 1998 Submitted to IEEE Trans. Sig. Proc.



GOYAL & VETTERLI: ADAPTIVE TRANSFORM CODING USING LMS-LIKE . . . 29

The simple structures of Vk and Wk allow one to now easily show that

@

@�k
A(k)

����
�=0

=

266666666666666664

0 � � � 0 � � � 0 � � � 0
...

. . .
...

...
...

0 � � � 2(�jk � �ik) � � � 0 � � � 0
...

...
. . .

...
...

0 � � � 0 � � � 2(�ik � �jk) � � � 0
...

...
...

. . .
...

0 � � � 0 � � � 0 � � � 0

377777777777777775

ik

jk

0 � � � ik � � � jk � � � 0

:

Now consider the case ` < k. Di�erentiating (7) and evaluating at � = 0 gives

@

@�`
A(k)

����
�=0

= V`VkX + VkXV T
` +XV T

k V
T
` + V`XV T

k : (22)

To satisfy (14) we would like to show that the diagonal of (22) is zero.

Lemma 2: For ` < k and � = 0, the diagonal of V`Vk is zero.

Proof: Because ` < k, we have either

(a) i` < ik; or

(b) i` = ik and j` < jk.

Recall also that i` < j` and ik < jk.

The only potentially nonzero elements of V`Vk are in the (i`; ik), (i`; jk), (j`; ik), and (j`; jk)

positions. The (i`; jk) element can not be on the diagonal because either i` < ik < jk or

i` = ik < jk; similarly for the (j`; ik) element. The (i`; ik) element is ��(j`� jk) and hence when

this element is on the diagonal, it is zero; similarly for the (j`; jk) element.

Corollary 1: For ` < k and � = 0, the diagonals of VkV
T
` , V T

k V
T
` , and V`V

T
k are zero.

Since X is diagonal, Lemma 2 and Corollary 1 can be combined to show that the diagonal of

(22) is zero.

The ` > k case is similar to the ` < k case.
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