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Abstract

The paper contains an analysis of the classical Preisach model from a symmetry and a frequency point of view.
Increasing and decreasing inputs have no fundamental di�erence, which leads to a simpli�ed implementation by changing
indices. Symmetry implies that the fully demagnetised state can be taken into account without approximations. A
frequency analysis demonstrates that all odd and only odd harmonics of the fundamental input frequency are transferred
to the output. As a consequence an estimation method for the Preisach model weighting function from sinusoidal input
is suggested
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I. Introduction

H
YSTERESIS can generally be described as a hysteresis transducer with an input signal u(t) and
an output signal y(t) and is widely modelled with a Preisach model [1]{[2]. It is now used in a

wide range of scienti�c areas to describe hysteresis, and so it is exhaustively discussed in large number
of papers and books, for instance [3]{[7].
In this paper, the classical Preisach model is considered. By remarking that there is no fundamental

di�erence of increasing and decreasing input, a simple change of indices highly simpli�es the coding
of an implementation. Both the output signal y(t) and the instantaneous energetic losses Q(t) are
computed in this fashion. Furthermore, the suggested implementation allows any `magnetisation' as
starting value and takes the the fully `demagnetisation state' into account with no approximation when
symmetry applies.
A frequency analysis is carried out with an arbitrary weighting function. It shows that the out-

put contains all odd harmonics of the fundamental input frequency. A numerical simulation further
demonstrates that the output contains only odd harmonics. These results justify an extraction of all
odd harmonics above noise level as �ltering of time-series measurements with sinusoidal input. As
a consequence, a novel identi�cation method is suggested for the Preisach model weighting function
which uses sinusoids of di�erent amplitudes as input, however di�erent from the identi�cation method
in [4]. It is simpler than the conventional �rst-transition curve identi�cation (described in [3]).
A good description of the classical Preisach model of hysteresis is found in [3]. The notation is here

slightly changed and the simplest hysteresis operator has been given a unit step centred around zero.
Therefore, the paper starts by describing the Preisach model, which also facilitates the comprehension
of the following parts that contain the description of the numerical implementation and the frequency
analysis.

II. The Preisach Model

The Preisach model consists of a superposition of an in�nite number of simplest hysteresis operator
�L�, each representing a rectangular loop in the output-input (y � u) diagram, see Fig. 1. The output
of the simplest hysteresis operator can take values �1=2 only, where � and L correspond to the `up'
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Fig. 1. The output due to the simplest hysteresis operator �L� is a rectangular loop in the output-input diagram which
possesses an `up'-switch at � and a `down'-switch at L.
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Fig. 2. Geometric interpretation of the Preisach model. The half-plane � � L is divided by C(t) into two parts where
�L� is positive and negative respectively.

and `down' switching, respectively. In the sequel, it is assumed that � � L. Each �L� is weighted by
an arbitrary weighting function w(L;�), leading to the following expression for the Preisach model:

y(t) =
ZZ

w(L;�)�L�[u(t)]d�dL (1)

The Preisach model can be interpreted geometrically, since there is a one-to-one correspondence
between the �L� and the point (L;�). The half-plane ��L is only considered. When the output of the
hysteresis transducer has a saturation, the L � � plane has a horizontal and a vertical limiting line,
outside of which the weighting function is equal to zero. This limiting triangle T is bordered by the
line L = � and has a right angle at the vertex (Ls;�s), see Fig. 2.
There is a subdivision of T into S+(t) and S�(t), the two parts where �L� is positive and negative

respectively. This division depends on extrema of past input and on the present input, and consists
of a line C(t). Its last value (L0;�0) corresponds to the present value of the input (u(t); u(t)) and is
attached to the line L = � in the �gure. The subdivision of T is along the line L = �� when the
hysteresis transducer has no memory, but when the input has reached certain levels, C(t) makes a
`stair-case' line. This means that the memory consists of a number of vertices, e.g.

C(t) = f(Ls;�s); � � � ; (L1;�2); (L1;�1); (L0;�1); (L0;�0)g: (2)

It is clear that C(t) constantly changes with time (i.e. if u(t) changes with time) and hence S+(t) and
S�(t) also change. The output of the hysteresis transducer then takes the following form:

y(t) =
1

2

ZZ

S+(t)

w(L;�)d�dL�
1

2

ZZ

S�(t)

w(L;�)d�dL : (3)
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Fig. 3. The triangle that is limited by L=� and the coordinate (l; ) as in the �gure de�nes the surface over which the
weighting function is integrated to form the function W (l; ).

since �L�[u(t)] takes the values +1=2 and �1=2 in S+(t) and S�(t) respectively.
If the input increases beyond a memory vertex in the graph, i.e. u(t) < Li or u(t) > �i, that

particular vertex is wiped out from the history C(t). The model (3) also implies that a periodic input
results in congruent minor hysteresis loops independent of the history C(t). The erasing of extrema
and the congruency of minor loops are the necessary and su�cient properties of a physical hysteresis
to be described by the Preisach model [3].
Instead of the weighting function w(L;�), we can use the function W (l; ) which is the integral of

w(L;�) over a triangular domain T (l; ) as the one presented in Fig. 3,

W (l; )
def
=
ZZ

T (l;)

w(L;�)d�dL ; (4)

with the inverse formula

w(L;�) = �
@2

@�@L
W (L;�) : (5)

By using (3), it is seen that W (l; ) is equal to the di�erence of the output:

W (l; ) = W (u(tl); u(t)) = y(t)� y(tl) ; (6)

for a history C(t) such that �i > ;Li > l 8i, and so W (l; ) can be retrieved directly from measured
output. There are certain advantages for the use of W (l; ), such as the calculation of double integrals
is replaced by the calculation of �nite sums in an implementation, see Section III
On physical grounds (symmetry considerations), it can be expected that the decreasing and increas-

ing transition curves are congruent, which then has the consequence that

W (l; ) = W (�;�l) and w(L;�) = w(��;�L) : (7)

The symmetry relation (7) is used in the numerical implementation in Section III and in the Fourier
analysis in Section IV.
In particular applications the derivative of the output from the Preisach model is the sought measure,

which we denote by

v(t) =
dy(t)

dt
: (8)



A. Energy Losses

It is well known that hysteresis phenomena are associated with some energy dissipation where
hysteretic energy losses are equal to the area enclosed by a loop resulting from a periodic input.
Returning to the simplest hysteresis operator �L� and its representation in the output-input diagram

(Fig. 1), it is realised that the horizontal lines are reversible and hence give no energy loss. There-
fore, the `up' and `down' switching contains all energy dissipation. Symmetry considerations leads to
assigning equal loss per switching [3],

q =
1

2
(�� L) : (9)

The energy losses for a monotonic increase of input u1 ! u2 can therefore be calculated by integrating
q weighted by w(L;�) over a surface S in the �-L diagram,

Q(u1; u2) =
1

2

ZZ

S

w(L;�)(�� L)d�dL : (10)

The energy loss for any closed loop of a monotonically increasing and then monotonically decreasing
input between the values u� and u+ has the following expression

Qc(u
�; u+) =

ZZ

T (u�;u+)

w(L;�)(�� L)d�dL ; (11)

where T (u�; u+) is the triangular surface in the L-� plane swept by the input signal during one cycle,
c.f. Fig. 3. An inverse formula can be derived from (11) by which the weighting function w(L;�) can
be calculated from a known energy loss per cycle [5]:

w(L;�) = �
1

�� L

@2

@L@�
Qc(L;�) (12)

The formula (12) tells us that when the energy losses can be expressed analytically for a loop, the
Preisach model can be derived with exact losses [6]. The derived weighting functions w(L;�) and
W (l; ) then enable simulations of such systems for an arbitrary input.
The use of W (l; ) implies, by partial integration, an expression for the energy loss (10) over the

triangle T (u�; u+) [3] as

QW (u�; u+) =
1

2
(u+ � u�)W (u�; u+)�

1

2

u+Z

u�

W (l; u+)dl �
1

2

u+Z

u�

W (u�; )d : (13)

The loss by such a monotonic increase of the input equals the loss for the corresponding decrease. In
the case when the loop is between two input values that are symmetrically placed around zero, e.g. in
the case of the sinusoidal input signal with peak value U0,

u(t) = U0 cos(!0t) ; (14)

and symmetry (7) applies, the hysteretic losses of a full loop are expressed by

Qc(�U0; U0) = 2U0W (�U0; U0)� 2

U0Z

�U0

W (l; U0)dl : (15)

The above formula is useful when relating a parametrised W (l; ) and measured energy losses, so that
the parameters can be identi�ed as in [7]
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Fig. 4. The numerical implementation of the Preisach model involves integration of a number of surfaces, Qk. In the
case where there exists a hysteresis memory, these surfaces are di�erences of triangles, so that W (l; ) can be used.

III. Numerical Implementation

The Preisach model can be numerically implemented directly by applying the integral (3), or by
using the functionW (l; ) in (4), c.f. [3]. Here the fact that there is no fundamental di�erence between
an increasing (du=dt > 0) or a decreasing input signal (du=dt < 0) is used; it just corresponds to a
change of indices. This is used to simplify an implementation. This technique works for both the
output signal y(t) and the energetic losses Q(t). A fully demagnetised state where the material has
no memory is treated as such, with no approximations when symmetry (7) applies. The following
simpli�cation of notation is applied:

u(ti) = ui ; y(ti) = yi : (16)

A. The Output y(t)

First, assume a situation as in Fig. 4 or 5 where the memory function consists of the vertices

C(t) = f(L3;�2); (L2;�2); (L2;�1); (L1;�1); (L1;�0); (L0;�0)g: (17)

The di�erence of the output at arbitrary times t2 > t1 is then a sum of integrals over the surfaces S1

and S2, or generally:

�y2 = y2 � y1 =
n(t)X
k=1

ZZ

Sk(t)

w(L;�)d�dL : (18)

Henceforth, the dependence of time for n(t) and Sk(t) will not be expressed explicitly. The surface Sk

is equal to the di�erence of two triangular surfaces so that the integrals in (18) can be calculated as
di�erences of integrals over triangular surfaces. But the values of these integrals were de�ned to be
the function W (l; ), and the expression (18) can be simpli�ed to be a sum of di�erences:

�y2 =
n�1X
k=1

� ZZ

T (Lk;�k)

w(L;�)d�dL�
ZZ

T (Lk ;�k�1)

w(L;�)d�dL
�

+
� ZZ

T (Ln;u2)

w(L;�)d�dL�
ZZ

T (Ln;�n�1)

w(L;�)d�dL
�

(19)

=
n�1X
k=1

�
W (Lk;�k)�W (Lk;�k�1)

�

+
�
W (Ln; u2)�W (Ln;�n�1)

�
: (20)
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Fig. 5. When the input signal reaches outside of the memory function C(t), the integration must be between the lines
L=-� and L=�, i.e. S3 in the �gure. The function W (l; ) can only be used in this case if it is assumed that the

integrals over S3 and ~S3 are equal, i.e. symmetry applies.

The model is assumed to have a history described by the memory function C(t) to come to this result.
If the input is increased beyond the last vertex of the memory function, yet not being saturated, it
is here assumed that the material had not yet been `magnetised', i.e. it has no memory. This means
that the last term in (18) is an integral over a surface limited by the lines L=� and L=-�, i.e. S3 in
Fig. 5:

ZZ

Sn

w(L;�)d�dL =

u2Z

�n

�Z

��

w(L;�)dLd� : (21)

This term cannot be expressed with W (l; ) as is, but with the assumption of symmetry (7), the two
integrals

u2Z

�n

�Z

��

w(L;�)dLd� and

LnZ

u2

�LZ

L

w(L;�)d�dL ; (22)

i.e. the integrals over the two surfaces S3 and ~S3 in Fig. 5, are equal, which means that the sought
integral is

ZZ

Sn

w(L;�)d�dL =
1

2

�
W (�u2; u2)�W (Ln;�n�1)

�
: (23)

This completes the description how to calculate the di�erence of two outputs for an increasing input
signal, and the total formula is given by

�y2 = G(u1; u2; C(t))

=
n�1X
k=1

�
W (Lk;�k)�W (Lk;�k�1)

�

+

8<
:
�
W (Ln; u2)�W (Ln;�n�1)

�
; Ln 6= ��n�1

1
2

�
W (u2; u2)�W (Ln;�n�1)

�
; Ln = ��n�1

(24)

So far the case when the input is increasing, du=dt > 0, has only been considered. With the same



reasoning as above, the di�erence of two outputs with decreasing input, du=dt < 0, is

y2 � y1 = �
n�1X
k=1

�
W (Lk;�k)�W (Lk�1;�k)

�

�

8<
:
�
W (u2;�n)�W (Ln�1;�n)

�
; Ln�1 6= ��n

1
2

�
W (u2;�u2)�W (Ln�1;�n)

�
; Ln�1 = ��n

(25)

The similarities between (24) and (25) are obvious, which can be used to simplify an implementation.
First, we need some new relations to be de�ned. The lower right part of the L � � plane (� < L) is
not used by the Preisach model so far. Therefore it is allowed to de�ne W (l; ) in that region to be
the negative function value mirrored in L = �:

W (l; ) = �W (; l) : (26)

(This implies that w(L;�) = �w(�;L).) Further, an alternative memory function C 0(t) is de�ned to be
equal to C(t), except that the coordinates (Lk;�k) change places. For the example in (17) this means

C 0(t) = f(�2;L3); (�2;L2); (�1;L2); (�1;L1); (�0;L1); (�0;L0)g : (27)

A general expression for the di�erence of two outputs then takes the following form:

�y2 =

8>><
>>:

G(u1; u2; C(t)) ; du=dt > 0

0 ; du=dt = 0

G(u1; u2; C
0(t)) ; du=dt < 0 :

(28)

The output from the numerical Preisach model is a number of sampled data yk = y(tk) whose time
instants coincide with the ones of the sampled input uk = u(tk). The di�erence of the output from
one time instant to another is calculated according to (24) and (28), so that the actual output is a
cumulative sum of these di�erences

yk = y0 +
kX

p=1

�yp : (29)

The starting values y0 and u0 can be selected to any desired instant, such as demagnetised or saturated
state. For the demagnetised state y0 = u0 = 0, but for the saturated state, y0 must be calculated. It is
then equal to the integral over S0+ and S0� in Fig. 6 for positive and negative saturation, respectively.

y0 =

8>>>>>><
>>>>>>:

�sR
0

�R
��

w(L;�)dLd� = 1
2
W (Ls;�s) ; pos. sat.

�
0R

Ls

�LR
L
w(L;�)d�dL = �1

2
W (Ls;�s) ; neg. sat.

0 ; demagn.

(30)

The expression above makes use of the assumptions that Ls = ��s and that the symmetry (7) applies.
A simple and straightforward estimate of v(t) in this simulation context becomes

vi = �yi � fs (31)

if the sampling frequency fs is large enough.
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Fig. 6. The starting value y0 can be chosen to any instant. The fully demagnetised state implies y0 = 0, whereas positive
and negative saturation corresponds integration over the surfaces S0+ and S0�, respectively.

B. Energy Losses

The energy loss between two input values with a memory function C(t) such that the integration
area is triangular can be implemented directly by taking half the value of (11) or by applying (13). In
the case when an arbitrary memory function C(t) [and hence an arbitrary input signal] is to be applied,
those methods cannot be used. A way to calculate the losses in the general case is to apply (10). By
noting that the surface S corresponds to the sum of Sk's in Fig. 4, the calculation of the losses can be
numerically implemented by applying

Q(u�; u+) =
1

2

n(t)X
k=1

ZZ

Sk(t)

w(L;�)(�� L)d�dL : (32)

This expression contains a number of double integrals which makes it computationally cumbersome.
An alternative is to proceed in a similar way as for the output signal y(t) above. Such an analysis

leads to that the losses between two input values u1 and u2 with an arbitrary C(t) as in (17) can be
calculated by

Q(u1; u2) = M(u1; u2; C(t))

=
n�1X
k=1

�
QW (Lk;�k)�QW (Lk;�k�1)

�

+

8<
:
�
QW (Ln; u2)�QW (Ln;�n�1)

�
; Ln 6= ��n�1

1
2

�
QW (u2; u2)�QW (Ln;�n�1)

�
; Ln = ��n�1

(33)

when the input is increasing, du=dt > 0 and where QW (�) is de�ned in (13). Note that each term of the
sum in (33), (QW (Lk;�k)�QW (Lk;�k�1)), involves only three integrations, since two of the integrals
have the same integration variable.
Analogously to the analysis for the signal output y(t) a general expression of the losses is found to

be

Q(u1; u2) =

8>><
>>:

M(u1; u2; C(t)) ; du=dt > 0

0 ; du=dt = 0

M(u1; u2; C
0(t)) ; du=dt < 0

(34)

Mathematically these proposed implementations may seem complicated, but the formulae (28)
and (34) witness that a code can be very concise.



IV. Frequency Analysis

When the Preisach model is subject to a sinusoidal input signal, conclusions can be drawn about
the frequency distribution of the output signal. A general expression of the Fourier transform of the
output signal is derived here, and then a numerical simulation presented, from which we draw the
conclusion that the Preisach model has a frequency contribution at all odd and only at odd harmonics
of the fundamental input frequency.
Assuming a sinusoidal input signal (14) with an amplitude inferior to the saturation level,

U0 < min(jLsj; j�sj) ; (35)

gives two di�erent expressions for the output signal, depending on the the derivative of u(t),

y(t) =

8<
:
y(�U0) +W (�U0; u(t)) ; du=dt � 0

y(U0)�W (u(t); U0)) ; du=dt < 0 ;
(36)

where y(U0) and y(�U0) are the outputs at maximum and minimum of the input u(t), respectively.
These extreme values are the negative of each other, since the input signal and the function W (l; )
both are symmetric. Furthermore, they are retrieved by using the equations derived for the numerical
implementation in Section III [Use (30) with Ls=-U0 and �s=U0.]

y(U0) = �y(�U0) =
1

2
W (�U0; U0) (37)

Again using the symmetry (7), the output signal from the Preisach model in (36) can be merged into

y(t) = sgn(�
du

dt
)
h
y(U0)�W (sgn(�

du

dt
) u(t); U0)

i
; (38)

where the function sgn(�) is de�ned as

sgn(x) =

8>><
>>:

1 ; x > 0

0 ; x = 0

�1 ; x < 0 :

(39)

It is now possible to apply the Fourier transform on the output:

Y (!) =

1Z

�1

y(t)e�j!t : (40)

As can be seen in (38), the output consists of a part that depends on the output at the input extrema
exclusively, here denoted yA(t), and another part that depends on W (l; ), denoted yW (t). The same
subscript is used for their corresponding Fourier transforms:

y(t) = yA(t)� yW (t); (41)

Y (!) = YA(!)� YW (!) (42)

By this separation, it is realised that yA(t) is in fact a square wave with amplitude y(U0). The Fourier
transform for such a square wave is straight forward to calculate and takes the following form:

YA(!) = �j
2y(U0)

!

1X
k=�1

�(
!

!0
� 2p+ 1) (43)
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Fig. 7. Digital Fourier transform of simulated output from the Preisach model. The output y(t) and v(t) contain
frequencies at all and only at odd harmonics of the fundamental input frequency, here 50 Hz.

where �(�) is the Dirac �-function. The expression reveals that the square wave has sinusoidal contri-
butions at all odd harmonics of the input frequency !0.
A general expression for the Fourier transform of the second part of the output signal, yW (t), cannot

be retrieved without further information about W (l; ). However, it can be somewhat simpli�ed by
noting that the integral can be divided into a sum of partial integrals whose signs are determined by
the negative derivative of the input signal, c.f. (38),

YW (!) =
1X

k=�1

h
�

2k �

!0Z

(2k�1) �

!0

W (�u(t); U0)e
�j!tdt+

(2k+1) �

!0Z

2k �

!0

W (u(t); U0)e
�j!tdt

i
(44)

and that the negative input signal is equal to a time-delay of itself:

� u(t) = U0 cos(!0t+ �) = u(t+
�

!0
) : (45)

The most general expression of YW (!) without any assumptions on W (l; ) is then retrieved by com-
bining (44) and (45) and applying a variable substitution:

YW (!) = (1� e
j� !

!0 )
1X

k=�1

(2k+1) �

!0Z

2k �

!0

W (u(t); U0)e
�j!tdt : (46)

With a known weighting function W (l; ), the integral in (46) is still di�cult or even impossible to
calculate analytically. A simulation with a sinusoidal input though gives us some useful information.
Fig. 7 shows the digital Fourier transform of the output y(t) and its derivative v(t) of such a numerical
simulation, which hence correspond to their frequency distribution,

Y (!) and V (!) = j!Y (!) : (47)

From the simulation, we conclude that Y (!) and V (!) have contributions only at odd harmonics of
the input,

Y (!) =
1X
k=0

Y ((2k + 1)!0) : (48)
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This means that in a noisy time-series measurement, we can extract these frequencies as long as their
components are larger than the noise. A disadvantage with truncating the sum in (48) is that the
signal cannot be fully reconstructed, but has some anomalies at the singularities, as seen in Fig. 8.

A. Identi�cation of weighting function from time-series

The identi�cation of weighting functions w(L;�) or W (l; ) from �rst order transition curves sug-
gested in [3] is tedious and in some cases not applicable, since some applications have not got a
saturation mode. An alternative method is suggested here, where a number of sinusoids of di�erent
amplitude is used as input u(t) and the weighting function is estimate from the output y(t) or its
di�erentiated version v(t). Often data are full of noise so that their quality must be enhanced by some
�ltering technique. In view of the frequency analysis above (48), it is suggested here that only the odd
harmonics are extracted from the output, for instance by a numerical lock-in method. This greatly
enhances the signal to noise ratio. The resulting data yodd(t) can then be used to give raw estimates
of the weighting functions w(L;�) and W (l; )

^̂
W (�U0; i(t)) = y(t)� y(t�U0) =

tZ

t
�U0

v(�)d� ;
di(t)

dt
> 0 (49)

and

^̂
W (i(t); U0) = y(tU0)� y(t) = �

tZ

tU0

v(�)d� ;
di(t)

dt
< 0 : (50)

with an amplitude below the saturation as in (35). Fig. 9 depicts the result of such an estimation
applied to high temperature superconductors [6], where several measurements of di�erent input peak
values U0 were used to cover many values of the L{� plane.
The weighting function w(L;�) can be computed directly with (5). However, di�erentiation of a

signal containing noise gives an unreliable result, and it is, therefore, advantageous to use W (l; )
instead of w(L;�) for time-series, since it gives less inuence of the noise.
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Fig. 9. Raw estimate of the weighting function W (l; ). The linear part of this estimates is dominant.

V. Conclusions

The classical Preisach model of hysteresis has been analysed. A simpli�ed implementation using that
there is no fundamental di�erence in increasing and decreasing inputs has been suggested. Solutions
for both output signal, its di�erentiated version and instantaneous energetic losses have been derived.
The initial `magnetisation' can be taken to any value and there are no approximations for the fully
`demagnetised' state when symmetry applies.
A frequency analysis has shown that the output from a single frequency input contains all odd and

only odd harmonics of the fundamental input frequency. A �ltering technique by extracting only odd
harmonics with amplitudes larger than the noise can, therefore, improve signal to noise ratio, even if
the hysteresis cannot be fully reconstructed by a �nite number of frequencies. A method that uses a
number of sinusoids of di�erent amplitude as input has been suggested for identi�cation of the Preisach
model weighting function.
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