
Service Specification and Validation for the
Intelligent Network1

Pierre-Alain Etique
etique@vptt.ch

Swiss Telecom PTT
Research & Development

FE324
CH-3000 Bern 29

Jean-Pierre Hubaux
hubaux@tcom.epfl.ch

Swiss Federal Institute of Technology
TCOM Laboratory

Telecommunication Services Group
DE-TCOM

CH-1015 Lausanne
Xavier Logean

logean@tcom.epfl.ch
Swiss Federal Institute of Technology

TCOM Laboratory
Telecommunication Services Group

DE-TCOM
CH-1015 Lausanne

Abstract

We propose an object-oriented specification language, FUS++, for expressing the functional
behaviors and the desired properties of each telecommunications service at the analysis phase.
Our approach is based on Fusion, an object-oriented method that consists of analysis, design, and
implementation phases for software development. Accompanying FUS++ is a tool we developed
for translating FUS++ specifications to Promela statements; validation of service specifications
and detection of feature interactions are thus possible by applying Spin tools to these Promela
statements. To ensure a correct implementation of services with respect to their specifications,
we exercise a novel concept of adding a service modeler and observer (SMO) to the target
system where the execution of these services takes place. Combined with a test scenario
generator, SMO is quite effective in identifying implementation errors on the fly. This paper
presents the FUS++ language, the specification of telecommunications services based on FUS++,
the concept of SMO, and the realization of SMO in a CS-1 (Capability Set No 1) intelligent
network.

Index terms : telecommunication software engineering, validation, software
lifecycle, property verification, intelligent network.

1 This work has been partially funded by Swiss Telecom PTT

- 2 -

1. Introduction

New architectures for telecommunications services, e.g. the Intelligent Network (IN) proposal
[1], provide an easier way to introduce new services into a network. These architectures give
network operators and independent service providers the opportunity to react rapidly to customer
needs. With the deregulation of the telecommunications market in Europe, such opportunities
will become increasingly important, and one can see considerable research and standardization
efforts in the domain of telecommunications services architectures and service life-cycle (from
specification to maintenance): the IN recommendations [1], the TINA initiative [2], and several
RACE projects like SCORE [3], ROSA [4], PRISM [5], CASSIOPEIA [6].

However, these new architectures and the opportunity they provide to rapidly introduce new
services into complex networks make the problem of proving that the services conform to their
specification more acute: in fact, reacting rapidly to customer or market needs requires
introducing new services only a few months after the first specification; such a short interval
makes it quite impossible to go through the tedious and long (several months) tests usually
performed for new services. This difficulty is getting worse since there are always more services
added to the networks, contributing to the overall complexity. Services must all work correctly
without hindering the functionality of other services; this last problem is often referred to as the
“feature interactions problem” [7].

These obstacles on the road towards rapid service introduction call for new approaches to
increasing confidence in the service. In order to address this problem, this paper presents a
method which allows the validation of the service specification thus ensuring that the
implementation is correct with respect to the specification.

We consider that the service development process up to implementation is split into three
different phases. The first one is the analysis. Its goals are twofold: first to allow the analyst to
understand the problem domain correctly and to model it; secondly to produce a document,
called specification, describing the analyst’s understanding of the problem domain and defining
what the system must do. The specification is then used in the next phase, called design, where
one defines how the system realizes the specification. The implementation phase transforms the
result of the design phase in such a way that it can be executed by the target system.

In this paper we propose to use an object-oriented language for the analysis phase. We call this
language FUS++; it is an extended and formal version of the language used in the analysis phase
of Fusion [8]. FUS++ is designed for the specification of telecommunications services; it allows
the specification of an object model defining the problem domain for a given service; then the
behavior of the service can be specified using constructs inspired by the Intelligent Network.
Last but not least, FUS++ allows the specification of properties in linear time temporal logic
(LTL)[18]. A FUS++ specification contains a behavioral part and a property part. It is therefore
possible, using appropriate validation tools, to prove that the specified properties are satisfied by
the behavior part of the specification.

Being convinced of the specification quality is an important first step towards a good
implementation. However, errors can be introduced in the different phases leading to the
implemented service. The traditional way of proving that an implementation conforms to its
specification is to prove that each step leading to this implementation satisfies the properties that

- 3 -

were valid at the preceding step. Such an approach implies that each step in the development
process must conform to some well defined rules which can be complex to use.

In this paper we propose a much more pragmatic solution: the implementation is achieved with
traditional methods and tools, with a constraint that a mapping can be realized between the
objects that are identified in the specification and that in the implementation. When this mapping
is given, we provide tools that automatically transform the correctness requirements (the
properties) of the specification in such a way that they can be checked in the real system. One
can then run automatic tests (for example with random input) until a problem is found. Such
random state exploration corresponds to the strategy advocated by West [9] for the validation of
protocols. In fact our contribution here is to propose a way to detect a problem automatically in a
domain where it can be very difficult for a machine to find out that the system behavior for a
random input is not correct. Concretely we shall show how a special entity can be introduced in
an Intelligent Network [1] to check the properties specified during analysis.

Figure 1: Overview of the approach

Figure 1 presents an overview of the approach described in this paper. Notice that this figure also
shows that we are using Promela [10] as an intermediate language for the validation of FUS++
specifications. Promela is a specification language that serves as input to “Spin”, a formal
validation system. The two advantages of using Spin in the context of our work are the
possibility to validate properties expressed in linear time temporal logic (LTL) and the optimal
memory usage during validation.

This paper is composed of two parts: first FUS++ is presented with an emphasis on extensions to
the Fusion method which allow several service specifications to be merged. The second part is
devoted to the presentation of how our method can be used to increase confidence in the
correctness of the service implementation.

Real Network

FUS++
 Specification

Properties

Implemented
Service Service

Modeler and
Observer

Promela
Specification

is correct

Highly
improved

confidence
in the

service
implementation

translation

Random

execution

validation

Behavior

- 4 -

2. Object-Oriented Service Specification

2.1 Introduction

There exist several service specification methods. The Intelligent Network recommendations [1]
propose a method using Service Independent Building Blocks (SIB). Formal description
techniques (FDTs), used mainly in the protocol engineering world, can be used to specify
services and the network on which they run. Combes and Pickin in [11], and Makarevitch in
[27] present an approach using SDL (Specification and Description Language). The use of
LOTOS in this context is, for example, extensively studied at the University of Ottawa [12]. The
advantage of using such FDTs is obviously the possibility of applying the verification and
validation techniques specific to each language.

Another trend in service specification is the use of object-oriented specification techniques [4]
[28] [3] [13]. The idea behind object oriented approaches is to promote a structured method in
which the concepts of class and encapsulation help the engineers to structure the solution;
inheritance allows a progressive refinement of the specification; object-orientation also
contributes to specification and code reuse. Our specification method belongs to this trend. Our
first goal is to use a methodology well suited to the needs of service specifiers. In a second step,
we shall see how such a specification can be validated.

Many object-oriented analysis methods are available [14] [15] [30]. Our approach is based on
Fusion [8] whose analysis phase borrows several concepts from OMT (Object Modeling
Technique). The main reason for this choice is that it allows a clear separation between analysis
and design in Fusion.

2.2 Formalizing the Analysis Phase of Fusion

2.2.1 Introduction

The Fusion methodology considers that the development cycle is divided into three phases:
analysis, design and implementation (Figure 2). The goals of the analysis are twofold: firstly to
allow the analyst to understand the problem domain correctly and to model it; secondly to
produce a document, called specification, describing the analyst’s understanding of the problem
domain and defining what the system must do. The specification is then used in the next phase,
called design, where one defines how the system does what was specified. Finally,
implementation is the phase where the code is produced.

Service
Specification

Software
Architecture

Code

Tested subsystems

Tested and
Validated Service

Service in use
Service

Requirements

Analysis

Implementation

Design

Area of Service
Specification,

Verification and
Validation

Figure 2: Service Development phases considered by Fusion

- 5 -

In this paper we concentrate on the analysis phase and the document produced during this phase,
the specification. We make a distinction between the methodology, which tells the analyst how
to structure its ideas, how to model its system and how the different phases are linked together,
and the notations used to write down in a document the results of the analysis phase. Fusion
provides both a methodology and the corresponding notations. However, these notations are
often informal and based on natural language. As we shall see, we need the possibility to have
formal notations used for the specification in order to be able to validate it. Therefore we propose
a formal notation for a specification resulting from a Fusion analysis; we call this formal
language FUS++.

2.2.2 Analysis with Fusion

The analysis in Fusion produces two models that capture different aspects of a system:

Object model: This model defines the static structure of the information in the system.

Interface model: This model defines the input and output communication of the system. It
uses two models to capture different aspects of behavior. The operation model
characterizes the effect of each system operation in terms of the state change it causes
and the output event it sends. The life-cycle model characterizes the allowable
sequences of system operations and events.

A data dictionary is produced simultaneously with these models. It is “a central repository of
definitions of terms and concepts. Without it, the Fusion models have little semantic content”
[Cole94].

The object model describes graphically the classes and their relationships. A class is represented
by a box with the name of the class at the top and the name of the attributes in the lower part of
the box (Figure 3 is a typical example of an object model). The type of the attributes is given in
the data dictionary.

Relationships are shown as a diamond joined to the participating classes by arcs. The arcs can be
annotated to express cardinality constraints on the relation. A number, a range, an asterisk
(denoting zero or more) or a plus sign (denoting one or more) are allowed cardinality constraints.

When all classes and relationships are described, a system object model is defined as a subset of
the object model that relates to the system to be built. The boundary of the system object model is
represented by a dotted square.

“The operation model is expressed as a series of schemata. There must be at least one schema for
each system operation” [8]. Operations correspond to input events into the system. The events
are produced by external active entities called agents. The environment is the set of agents with
which a system communicates.

An operation schema is composed of different clauses which are described briefly hereafter. The
Reads and the Changes clauses describe all the values that the operation may access or change.
The Sends clause gives a list of all the agents and the events that the operation may send them.
An operation is described as a state transition between an initial state defined by the Assumes
clause and a final state described by the Result clause. Both are predicates: the former defines the
precondition for the operation, and the latter the postcondition.

Finally, the life-cycle model defines the allowed order of input/output events combinations. They
are described using regular expressions syntax.

- 6 -

2.2.3 FUS++

Although some extensions have been proposed [29] in order to even increase the Fusion power
to structure the ideas of the analyst and hence the specification, the analysis phase of Fusion
lacks a well defined formalism allowing the specification to be executed by a computer.

We explained in [16] and [17] that a Fusion specification contains two parts: a constructive part
which describes in terms of a state machine what the system does, and a property-oriented part
which specifies properties that the constructive part must satisfy. Obviously in a Fusion analysis,
the constructive part is given by the operation model, while the property-oriented part
corresponds to cardinality constraints on the relationships, or to explicit properties like
invariants. It is shown in both mentioned papers how the informal notations proposed for Fusion
in [8] can be formalized in order to obtain an executable constructive part, and a formal property-
oriented part so that the specification can be validated. We call the language resulting from this
formalization process FUS++. Its constructive part has a syntax borrowed from C++; it allows
the specifier to define the object model in a textual manner and to write the Assumes and Result
clauses of an operation in an unambiguous and executable way. In fact, in FUS++ the Result
clause is no longer a predicate but a function that executes the transition. Thus in the Result
clause, instead of writing the boolean expression a == 17, one writes the assignment statement
a = 17.

The property-oriented part is used to define invariants or more sophisticated properties in linear
time temporal logic (LTL) [18]. For Instance, LTL is used for specifying open and concurrent
systems [31] and, in [32], applied for the specification of properties in the framework of POTS.

To validate a FUS++ specification means to prove that the behavior of the constructive part does
not violate any properties specified in the property-oriented part. This can be done by translating
the FUS++ specification into a language for which validation tools do exist. We have chosen the
Promela language because its associated validation tool Spin [10] is capable of validating LTL
properties and of handling relatively large state spaces.

In our philosophy an analyst uses the Fusion methodology to structure his ideas and the FUS++
language to write the specification. He can then validate this specification using the appropriate
tools.

Notice that the use of Fusion and hence FUS++, requires that the designer consider the specified
system as one entity reacting to events generated by the agents. These events are treated
sequentially; there is therefore no parallelism within the system. Parallelism is introduced for the
agents: each agent is considered as an independent process, whereby the system is itself one
process.

- 7 -

0..1

User

dials

picks
up

1 1

hangs
up

1 1

Number

theNumberidentifies

Call

status
dialNr

0..1 0..1

0..1

initiates

isCalled

1

1

1 1

Port

ringStat
offHook

Figure 3: Part of the Object Model for Basic Call

Let us consider the system of Figure 3, corresponding to an abstract view of a simple network
where users can be attached to ports that are identified by a number, and where calls can be
placed between these ports. This object model corresponds to a part of the object model we shall
consider for the Basic Call service. The specified system is within the gray/dotted square and
represents the network. The agents are outside this square; they are the users. The semantics of
the FUS++ specification for this system implies that there is one process for each user, and one
single process for the specified system within the dotted square.

Intuitively, the operations defined in the specification correspond to functions that are executed
whenever an event generated by a user (pickup, hangup or dial) is received by the system. All
the events are queued in one input queue which is emptied by the system process. Therefore,
operations are executed sequentially.

FUS++ syntax is provided in the appendix; the detailed of the FUS++ language is described in
[22].

2.3 Merging Services

2.3.1 Introduction

So far, we have a methodology and the corresponding toolset that allow a specification following
the Fusion framework to be written in FUS++ and to be validated. This can already be very
useful for software development. Nevertheless, if one wants to use such an environment in the
context of telecommunications services and more precisely of Intelligent Network services, a
question raises rapidly: how do we merge services?

FUS++ and the associated validation method allow the specification and the validation of a
system which, in the context of telecommunications services, can be a network with a single
service running on it. However, important problems could appear when several services exist
together. Service or feature interactions are recognized to be a serious difficulty on the way
towards rapid introduction of new services in telecommunications networks [19].

If one wants to consider several services, using the subpart of FUS++ described in [16], then
their specifications must be merged manually to obtain one single system which can then be
validated. This approach has several drawbacks:

• Services cannot be specified independently; for each combination of services one may
have to modify the specification of individual services differently.

• Merging several service specifications can be a difficult task.

- 8 -

• It does not correspond to the practice of service implementations in real network. At
this level, dedicated mechanisms are defined which allow services to operate properly
without knowing much of other existing services. This is essential if one accepts that
different services can come from different service providers. Notice that what is
described here corresponds to an ideal situation. Nowadays, reality is often closer to the
manual approach presented above.

All these points call for an automatic merging method of service specifications. We want to be
able to obtain a system which is the result of merging n services:

system = service1 ⊕ service2 ⊕ ... ⊕ servicen

We assume that services can extend other services, like for example IN services extend Basic
Call [1]. Concretely, in FUS++ a system is obtained by including the different files containing
the specification of the services to merge.

2.3.2 Merging the Data Part

Merging object models can be done with existing constructs, namely inheritance or addition of
relationships between classes. See example below, where Basic Call and Call Forwarding are
merged (paragraph 2.3.3.3).

7. T_Null & Authorize
Termination_Attempt

10. T_Active

12

11. T_Exception

Term._Attempt_Authorized

T_Answer

Key: Transition

Detection Point (DP)

Point In Call (PIC)

figure 4-4/Q.1214

8. Select_Facility &
Present_Call13

14

15

16

17

18

T_Called_Party_Busy

T_No_Answer

T_Mid_Call

T_Disconnect

T_Abandon

9. T_Alerting

Figure 4: Terminating Basic Call State Model (BCSM) for Capability Set 1 (CS-1)

2.3.3 Merging Behavior

It is easy in FUS++ to add an operation for a new input event. Thus there is no special difficulty
if the services to be merged handle different input events. However, this is rarely the case,

- 9 -

especially in a telephony context where the set of possible input events is rather small. Therefore
we incorporate the technique proposed in the IN recommendations for the extension of Basic
Call. Figure 4 shows the terminating basic call state model (BCSM) for capability set 1 (CS-1)
[1]. One can see that call handling is split into different PICs (points in call) where the necessary
actions are undertaken. On the transitions between these PICs, there are so called detection
points (DP) where an extended service can interrupt call handling and take control. When
returning control to basic call handling, the service can either decide to let Basic Call resume
from where it was interrupted or to let it jump to another PIC.

2.3.3.1 Detection Points in FUS++

2.3.3.1.1 Intuitive

In FUS++, we designate places in the service handling where control can be passed to another
service requesting it (FUS++ does not enforce that only Basic Call can transfer control; any
service could do so). A service must send a signal when it is willing to transfer control. Another
service can then respond to this signal in order to take control. A service sending a signal
(transferring control) is called an s-service, while a service responding to a signal is called an r-
service.

Remember that FUS++, does not model parallelism within the specified system. Services are
therefore similar to functions that are executed either as operations reacting to external events
generated by the agents, or as responses to signals generated by other services. Basic Call is the
service defining the operations for the POTS events (pickup, hangup and dial). Basic Call sends
signals to which other services can respond.

Intuitively, the semantics of sending a signal and responding to it can be understood as follows:

The response statement can be considered as declaring a “function” for the given signal.
Several distinct responses can be declared for the same signal. Each response corresponds to an
r-service.

When the signal statement is executed (i.e., the signal is sent) two scenarios can occur:

1. No explicit response was declared: in this case, the s-service simply proceeds with the
default behavior for the signal (a default behavior has to be defined for each signal
statement). Notice that this default behavior can be considered as the response to the signal
provided by the s-service.

2. Responses are declared: A priority number can be associated to each response. The
response with the lowest priority number is executed first. If several responses have the
same priority, the execution sequence is defined randomly between these responses. The
default behavior is considered as the response with the highest priority number, i.e., it is
the last one executed. A response without an explicit priority gets the default priority
number 1000.

 A response can either return control to the s-service as a traditional function would do or
jump to a point in call (gotoPIC statement); the latter possibility corresponds to a goto
statement in a traditional programming language. In this case, control is never returned to
the point where signal was executed.

- 10 -

 If a response returns control normally (i.e., no gotoPIC), the next response is executed.

We have seen that when a response returns normally, the next response is executed. There are
however cases where it would be wrong to execute a response, namely when the previous
response modified the state of the system in such a way that the considered response does no
more make sense. This can occur for example if a response is supposed to perform a service
when a call is in a given state, but the previous response cleared the call, i.e., put it in an other
state. In order to catch such situations, a special variable, called reference variable, is considered
in the signal statement. As long as this variable is not modified, responses are executed. If it is
modified, no more response is considered and execution proceeds with the statement following
signal.

Formal syntax and semantics of these constructs are given below.

2.3.3.1.2 Formal

We introduce two new statements in FUS++, one for sending the signal (SignalStmnt) and the
other for the response (SigResp). The syntax in EBNF of these constructs is given below.

SignalStmnt = "signal" ident [ActualParams]
 "refValue" varRef
 "default" CompoundStmnt.

Notice that a signal can contain parameters which can be used by the r-services responding to the
signal. The CompoundStmnt placed after the keyword default contains the normal behavior of
the s-service which must be executed if an r-service responding to the signal does not force
another behavior (see example in Figure 6 below).

SigResp = "response" ident "to" "signal" ident FormalParams
 ["prio" number] CompoundStmnt.

The first ident in the SigResp construct identifies the r-service responding to a given signal. Of
course there can be several r-services responding to the same signal. In this case they must all
have a different name. The number following the keyword prio can be used to give a priority to
each response. If several r-services respond to the same signal, r-services with the smallest
priority number will be served first. If several responses have the same priority, they are chosen
randomly (see below for more details on the semantics of this construct). The default priority
value is 1000. Notice that using FUS++ does not require any particular policy for
assigningpriority. The only assumption we make concerning priorities is that there are used to
solve interactions problems.Let us now define the semantics associated with these new
constructs. Assume that for a given signal we have N responses. We call these responses services.
We identify each of these services by a number ranging from 1 to N. For each service k, 1 ≤ k
≤ N, we define

servkResp as a boolean variable indicating if the service k has got its chance to
respond to the considered signal.,

priok the priority of service k.

To define the semantics of the signal construct we give an equivalent program in a Promela like
syntax. Note that semantically, the signal statement contains all the response statements for
the considered signal.

Let

• SetPrioi be the set of all services of which the priority is i, which can be written

- 11 -

k ∈ SetPrioi � priok == i

• MaxPrio be the largest priority value of any service responding to the considered
signal. MaxPrio is formally defined as follows:

(∃k, 1 ≤ k ≤ N : priok == MaxPrio) ∧ (∀k, 1 ≤ k ≤ N : priok ≤ MaxPrio)

We use three temporary variables to define the desired semantics:

• "prio" which ranges over the possible priority values

• "previous" which stores the original value of the variable identified by the keyword
refValue in the signal statement.

• "finished" which indicates if the default behavior has been executed or not.

Thus a signal statement in a FUS++ specification can be replaced by the piece of program,
expressed in a Promela like syntax, presented in Figure 5:

bool finished = false;
prio = 0;
previous = refValue; /* variable reference identified by
 the keyword "refValue" in the
 signal statement */

∀k, 1 ≤ k ≤ N: servkResp = false;
do
:: true ->
 if

 :: ∧ servkResp == true ->
k, 1 ≤ k ≤ N

 /* default behavior, identified by the keyword "default"
 in the signal statement */
 finished = true;

 :: !servkResp && prio = priok ->
 servkResp = true;
 /* Parameter passing */
 /* Service k’s behavior, specified in the "response"
 statement */

 /* ∀k, 1 ≤ k ≤ N <=> this clause appears once for each
 of the N services. */

 :: (prio == i) && ((∧ servkResp) || (SetPrioi == ∅)) ->
k, k ∈ SetPrioi

 prio = prio + 1;

 /* ∀i, 0 ≤ i ≤ MaxPrio <=> this clause appears once for
 each value of i between 0 and
 MaxPrio */
 fi;

 if
 :: (!VALIDREF(refValue)
 || refValue != previous
 || finished) -> break

 :: (VALIDREF(refValue)
 && refValue == previous
 && !finished) -> skip
 fi
od

Figure 5: Semantics of the signal statement

- 12 -

The function VALIDREF (varRef) returns false if the referenced variable belongs to a non-
existing object, and true if the object exists.

There are two ways to exit the loop in Figure 5:

• All r-services have responded to the signal and the default behavior of the s-service was
executed. In this case the variable finished is set to true.

• An r-service has modified the variable or attribute identified by refValue.

The refValue parameter of the signal statement is a variable or an object attribute, the value of
which is monitored during the execution of the program in Figure 5. An r-service modifying the
monitored variable, indicates that no other r-service should be activated on behalf of the
considered signal, which means that one should exit of the do loop of Figure 5. In an Intelligent
Network service, the refValue would typically be the status of the call. Modifying the call status
implies that the situation where the signal was sent is no more valid, which means that the call
handling is no more at the considered detection point. Thus the other r-services (plus the default
behavior) responding to the signal should not be activated.

The semantics presented here for the signal construct allows the use of FUS++ for the
specification of IN services. Yet this semantics is not bounded to a specific capability set.
Therefore it does not completely match the detection point handling foreseen in the capability set
1 (CS-1) (see Q.1214 in [1]). If one wants to have this detection point handling exactly, one
needs to include a definition of the corresponding behavior in the specification.

2.3.3.2 Points In Call in FUS++

An IN service taking control at a given detection point in Basic Call can return control to another
location in call handling than the one where the service was started. Concretely, the service
orders Basic Call to go to a defined PIC. To obtain similar possibilities in FUS++ we introduce
the possibility to define a location in the code corresponding to a PIC and to transfer control to
such a location. Therefore, two new constructs are defined:

Marking a place in the code is done with the following syntax:

PICDecl = ":" ident FormalParams.

This looks very like a function declaration, however it is important to notice that it is only the
labeling of a given place in the code. The formal parameters must be all the variables that are in
the scope of the operation at the place where the PIC is defined. They must all be present in the
formal parameters list. Such a list could theoretically be generated automatically by an
appropriate tool. Its role is to allow type checking when a gotoPic (see below) statement is
encountered.

Ordering control to go to a location marked by a PIC is done with the following statement:

GotoStmnt = "gotoPic" ident ActualParams.

The statement gotoPic changes the control variable of the process executing the statement to be
equal to the value identified by the corresponding PIC definition. The variables identified in the
formal parameter list are set to the value given in the actual parameter list. This corresponds to a
by value parameter passing and is different from the by reference mechanism used for procedure
calls in FUS++ (see [16]).

- 13 -

2.3.3.3 Example

Let us consider the operation corresponding to the dial event for the POTS Basic Call service
within the network presented in the object model of Figure 3. Figure 6 presents the interesting
part of this operation in this context. Skipped parts are represented by the characters <…>.

1 Operation:
2 dial
3
4 Description:
5 The user indicates with which partner he/she would like to
6 establish a connection
7
8 Reads:
9 supplied Port thePort;
10 supplied DialNumber dialNr;
11
12 <...>
13 Assumes: {
14 assert (initiates has (Port: thePort));
15 Call call;
16 call = relatant of (Port : thePort) in initiates;
17 assert (thePort.offHook == true && call.status == overlapRec);
18 } // Assumes
19
20 Result: {
21 Call call;
22 call = relatant of (Port : thePort) in initiates;
23 call.dialNr = dialNr;
24 signal Collected_Info(thePort, call)
25 refValue call.status default {
26 :PIC3 (Port thePort, Call call); // Analyse_Info
27 signal Analyzed_Info(thePort, call)
28 refValue call.status default {
29 Number number;
30 select number where number.theNumber == call.dialNr;
31 :PIC4 (Port thePort, Call call, Number number); // Routing & Alerting
32 call.status = callProc;
33 if (number != NIL) {
34 Port destPort;
35 destPort = relatant of (Number : number) in identifies;
36 :PIC7 (Port thePort, Call call, Number number, Port destPort);
37 // T_Null & Authorize Termination_Attempt
38 signal T_Attempt_Auth(destPort, call, thePort)
39 refValue call.status default {
40 :PIC8 (Port thePort, Call call, Port destPort);
41 // Select Facility & Present_Call
42 <...>
43 } // Result

Figure 6: Operation dial

In Figure 6 the different clauses necessary to define an operation in FUS++ are presented:
Description, Reads, Assumes and Result. Let us look at the Result clause which contains
the statements executed when the dial event arrives in the system. Notice the progression
through the different PICs corresponding to call setup as defined for CS1 [1]: PIC3 (line 26) and
PIC4 (line 31) which correspond to the originating BCSM and the PIC7 (line 36) and PIC8 (line
40) corresponding to the terminating BCSM presented in Figure 4. Between PIC 7 and 8, a
detection point is foreseen (DP 12 Term._Attempt_Authorized see Figure 4); i.e., control can
be transmitted to a service wanting to do something when a call arrives at the considered port. In
FUS++ this is represented by the signal statement on line 38.

Call Forwarding Unconditional (CFU) is a service that will take control of call processing when
DP 12 is encountered. Figure 7 presents the additions to the object model for the CFU service.
There is a new relationship forwards indicating if a call was forwarded by a given port. A
new class CfuData is included in Number to contain the settings of the service for a given port
(activated or not and the destination number calls must be forwarded to).

- 14 -

*

Number

CfuData

act
destNr

1

Call

*
forwards

Port

identifies1 1

Figure 7: Object Model for Call Forwarding Unconditional

Figure 8 shows the FUS++ code for the response corresponding to the CFU service. In the case
that no forwarding is necessary, the response returns normally (line 14), but if the call has to be
forwarded a gotoPIC statement is used (line 13), which implies that control will never return to
the signal statement in Basic Call. The test on line 8avoids forwarding loops.

1 response CFU to signal T_Attempt_Auth (Port destPort, Call call, Port thePort)
2 {
3 Number theNumber;
4 theNumber = relatant of (Port : destPort) in identifies;
5 CfuData cfuData;
6 cfuData = relatant of (Number : theNumber) in Number_Incl_CfuData;
7 if (cfuData.act
8 && !forwards has (Port : destPort, Call : call)) {
9 // forward the call
10 forwards with (Port : destPort, Call : call);
11 call.dialNr = cfuData.destNr;
12 Forwarding:
13 gotoPic PIC3 (thePort, call);
14 } // else just continue
15 } // response CFU to signal T_Attempt_Auth

Figure 8: Response for the Call Forwarding Unconditional service

2.4 Summary

FUS++ gives a powerful framework for the specification and validation of an object-oriented
service analysis. With the constructs presented in the previous sections it can be used to specify
and validate combinations of telecommunications services and thus address the problem of
detecting feature interactions at the specification level. It belongs to the category of detection
methods called satisfaction approach in [20].

We have developed a compiler, called F2P, which translates a FUS++ specification into a
Promela specification according to the FUS++ semantics presented, in [16] and with all the
details presented in [22]. The Spin tool can then be used to validate the system2.

As we have seen, FUS++ supports the modeling of sophisticated services. The described
merging technique is especially well suited for Intelligent Network services; nevertheless, the
approach is generic enough to take into account a more general family of services, including
services on data networks. The F2P compiler provides a straightforward conversion of FUS++
into Promela; this conversion allows the specifier to take advantage of a rich set of existing
validation tools.

Of course, the constructs for merging services offered by FUS++ are well adapted to IN service
specification. However, even if they are not exploited, the generic nature of the FUS++ tool
means that it can be used for any object-oriented specification. Moreover we believe that the

2 Spin allows the validation of LTL properties by translating them into Büchi automata. We shall see in the next
section that we are also using Büchi automata for checking properties in the implemented system. The automata
used by Spin can then be reused.

- 15 -

merging techniques presented here are generic enough to model behavior of non-IN
telecommunications services.

FUS++ has been used to specify IN services like Call Forwarding and Originating Call
Screening at a high abstraction level. In the validation phase we were able to detect errors in a
specification: both errors that we introduced willingly in order to test the method and real errors
made by the specifier. We also demonstrated that our approach is capable of detecting feature
interactions while validating a combination of several services. A very important problem for the
success of our approach lies in the choice of the specified properties for a given service. This has
already been pointed out by other authors, for example in [20]. The approach proposed by Lin
and Lin in [21] which allows a systematic derivation of temporal properties from textual
requirements could be integrated into our method in order to help the specifier to find relevant
properties.Other teams are working on applying LTL for the detection of feature interactions. For
instance, at Uppsala University, they propose a method for the automatic detection of feature
interactions in temporal logic[32].

As we will see in the next section, our method also covers the implementation and testing phase
on a real network; we will detail the way by which we can check that the run time behavior on
the target systems is compliant with the specification.

3. Improving Confidence in the Service Implementation

3.1 Introduction

We saw how a service can be specified in FUS++ and how properties can then be validated for
this specification. We are now going to show how a FUS++ specification can be used to increase
confidence in a service implementation.

The traditional way to increase one’s confidence in the correctness of a service implementation is
to make long manual functional tests. Some work has been done to help the testing team to
define test scenarios in order to increase the coverage of the tests [23]. Another approach
proposes to let a machine generate test scenarios randomly; this produces a random state
exploration of the system [9]. However, many of these only detect errors when the system under
test crashes, though this in general is not the type of errors found in the implementation of
telecommunications services. To overcome that difficulty, we propose to add an observer module
on the target system executing the service. This software piece will then be able to check on the
fly the service properties contained in the FUS++ specification; when a property is violated, an
error is discovered. Of course, such a mechanism is not a formal validation, because it can never
be guaranteed that all possible states have been visited. However, it can be really helpful
discover errors [9].

We shall present in this section how such an observer module can be realized for a service
implementation in a CS-1 intelligent network.

Similar approaches, consisting in on-line checking of properties, are undertaken at the University
of Rennes. For example in the “Véda” project [34] [25] [26] a method is developed for the
dynamic verification of protocols or in [35] for the detection of unstable properties in distributed
computations.

- 16 -

The observer concept presented here is similar to what is proposed in [25] or even in [26].

3.2 Service Modeler and Observer

The method proposed here is based on the hypothesis that there is a mapping between each state
in the implemented system (implementation state) and a corresponding state in the specification
of this system (model state). There is therefore a mapping function, called the µ function, which
can at any time be used to know the state in the specification corresponding to the current
implementation state.

45

7

1

6

9

8

2

3

Implemented System
9 implementation states

Specified System
(model)

4 model states

a

c

d

b

Figure 9: Example of the different state spaces at specification and implementation levels

Figure 9 gives a very simple example of the different state spaces resulting from the FUS++
specification of a service (4 states) and its implementation (9 states). Figure 10 shows the
corresponding mapping function.

Implementation States 1 2 3 4 5 6 7 8 9

Model States a b a b b c b d c

Figure 10: Mapping function for the example of Figure 9

A new entity, called Service Modeler and Observer (SMO), is introduced in the implementation.
It is split into two subsystems:

1. The model manager, which is responsible for the computation of the mapping function. It
must be able to provide the current “equivalent model state” at any moment.

2. The observer considers the properties present in the FUS++ specification and checks that
they are valid for the model presented by the model manager.

Figure 11 shows the context in which we consider the SMO: it is an entity added to the
implemented system but which should, as long as possible, act only as an observer for this
system, without any influence on the observed system. Notice that in Figure 11, the input to the
implemented system is generated by a test generator which can either be a machine running
programmed or even random test scenarios, or a person doing manual tests. Random test
sequences correspond to a random walk in the system. Colin West showed how such an approach
can be efficient [9].

- 17 -

Model State
Manager

Observer

System
Interface

Service Modeler and Observer

Model Manager

Properties
Manager

Temporal
Property
Handler

...

FUS++
Properties

Test Generator

Implemented
System

Figure 11: General structure of the “Service Modeler and Observer” and its logical position in the
implementation

3.2.1 The Model Manager

The model manager is responsible for the computation of the mapping function. To achieve this
goal, it can use two different strategies:

1. Each time it has to give the value of a data variable it can read the values of the
different variables in the implementation necessary to compute the expected result. This
approach features several drawbacks:

a) it implies that most of the variables in the implementation can be read from the
SMO, which is not obvious at all;

b) the number of queries to the variables of the implemented system can be very
high, because the SMO cannot know if a variable has changed its value since the
last query.

2. The model manager stores a data structure containing all the data variables of the
specification. It updates the model state each time something has happened in the
system, implying a state modification visible at the abstraction level of the
specification. Therefore, it must be informed of each transition in the implementation
that can have an impact on the model state.

As we shall see, the temporal property handlers in the observer need to be informed of each
transition in the abstract system managed by the model manager. To achieve this, the SMOF
must be informed of each transition in the implementation that can have an impact on the model
state. This information flow corresponds exactly to what is needed for solution 2; therefore we
chose approach 2 and reject the first proposition.

As shown in Figure 11, the model manager is itself composed of a model state manager and a
system interface. The former is responsible for the data that represent the system at the
abstraction level of the FUS++ specification. It offers a set of operations on the model that can be
used to update the model’s state. Of course these operations depend on the considered
specification and correspond to events that can occur in the implemented system or that can be
deduced from what is observed in the implemented system.

- 18 -

The system interface is responsible for:

1. the detection of the relevant events in the real system (in fact an event corresponds to a
transition in the system);

2. the invocation of the corresponding operations on the model state manager.

The SMO must be designed in such a way that the system interface is informed of all the relevant
transitions in the system. Several solutions can be considered in order to achieve this goal. Let us
present three possible design choices:

� The SMO has access to the messages exchanged between the objects in the

system; this information is sufficient to decide which operations must be invoked on
the model state manager. This solution is probably realistic in a pure object oriented
implementation where the SMO can work in collaboration with the run-time system
responsible for the transportation of the inter-objects messages.

Advantages: the system is not aware of the SMO. If it is well designed, the SMO could
induce very few or even no modification at all on the system behavior.

� The SMO can use existing functions to request the system to send notification

messages when interesting events occur. This could for example be realized with
existing management procedures, if they are complete enough.

Again, with this solution, the system does not need to be aware of the SMO. However,
as new messages are sent, the presence of the SMO has an influence on the system,
especially on timing aspects.

� The system is modified, in order to send notification messages when necessary to

the SMO. Disadvantage: the design of the system is influenced by the presence of the
SMO.

The appropriate choice between possible solutions �, �, and � or any combination, heavily

depends on the considered system. We shall see that for the concrete case of IN CS-1, all three
solutions are needed to achieve the best result.

The model manager, and thus the way the mapping function is computed, is very dependent on
the considered service and on the platform it is implemented on. Notice that although we believe
that in pure object-oriented networks as proposed by TINA [2] important parts of the model
manager could be generated automatically from the specification, we consider in this paper that
the model manager is designed by hand.

3.2.2 The Observer

The observer takes as input the properties of the FUS++ service specification and checks their
validity on the computations (state sequences) shown by the model manager. The properties of
the FUS++ specification [16] that are not expressed in linear time temporal logic (LTL) like
invariants or absence of non-progress cycles are translated into LTL; thus the observer has only
to implement a solution for the checking of LTL formulas. Note that assertions can be taken as
they are in the model state manager.

The checking of temporal properties is based on the same ideas as are used in Spin [10]. An LTL
formula can be translated into a Büchi automaton; a Büchi automaton is a finite automaton
accepting infinite words [24]. In the context of the verification of temporal properties, the
alphabet is the set of states of the considered system, and the words are computations of this

- 19 -

system. To prove that a given program P satisfies a formula ���the method used here consists in
constructing the Büchi automaton accepting computations satisfying ¬� and prove that there is no
computation of P that is accepted by this automaton. In our context such a proof cannot be
complete, because we shall never be able to be sure that all possible computations of the
implementation have been checked. However, we can run the automaton on the computations
generated during our tests, and check that these computations satisfy the desired properties.

Figure 11 shows how an observer is composed of several temporal property handlers (TPH), one
for each temporal property to check. In fact, each TPH implements the Büchi automaton
corresponding to the negation of the property it has to check. The TPHs are triggered by the
properties manager to execute a transition each time the model state manager fires a transition.
Thus it can be guaranteed that the observed computations satisfy the desired properties.

3.3 An SMO for IN Capability Set no 1 (CS-1)

3.3.1 Introduction

A physical Intelligent Network may consist of physical entities coming from different
manufacturers. It might be difficult to make modifications in these entities in order to bring some
special information to the SMO. Concretely, we should like to be able to realize the SMO using
only the solutions � and � presented above. Solution � means that we want the SMO to

be able to intercept all Intelligent Network Application Protocol (INAP) messages [1]. Solution
� means that the SMO must be able to arm detection points itself, i.e. act as a Service Control

Function (SCF). However, this might not be enough. We shall see that to get some information
one may need to modify either the SCF or even the Service Switching Function (SSF), i.e. use
solution � . Such modifications may depend on information considered as “network operator

specific” by the recommendations.

We introduce a new functional entity in the Distributed Functional Plane (DFP) which we call
the Service Modeler and Observer Function (SMOF). Figure 12 shows how the SMOF is
inserted in the DFP.

Notice that the SMOF sees the information flows on the D, E and F relationships (see Q.1211 in
[1]). However, this is transparent to the SCF, SRF, SDF and SSF. This corresponds to solution
� .

The SMOF can play the role of an SCF for the SSF. It can do so through the D-relationship. This
corresponds to solution �.

SCF

SDF

SSF SSF

SRF

SMOF

D

F

D D

D

E

E F

N N

O SCF: Service Control Function

SRF: Specialized Resources
Function

SDF: Service Data Function

SSF: Service Switching Function

SMOF: Service Modeler and
Observer Function

Figure 12: The SMOF in the CS-1 DFP and the related reference points

- 20 -

To address the situation where solution � is needed, we introduce two new reference points:

the relationship between the SSF and the SMOF, where the SSF could communicate some
specific information to the SMOF, coincides with the reference point N; the corresponding
relationship between the SCF and the SMOF is the reference point O.

Details on the analysis and design steps of the implementation of an SMOF can be found in [33].

3.3.2 The Model State Manager

We have seen that the mapping function must be written by hand; it heavily depends on the
model of the service and the network on which this service is implemented. We consider here a
simple model for the Basic Call service, where the network is represented by ports between
which calls can be established. Each port is identified by a number which can be used as the dial
number to reach the port (see Figure 3).

The behavior of our Basic Call service is inspired by the CS-1 call model as presented in
recommendation Q.1214 [1] (see also Figure 4). In order to be able to present the abstract
behavior of the implemented service, the model state manager needs to be informed of all
transitions in the basic call state model (BCSM). It must even know when the handling of a
given detection point terminated. Therefore we introduce the concept of “proceeded
notifications” (PN) corresponding to notifications which are sent to the model state manager just
after a detection point was completely handled, i.e., just before the next point in call (PIC) is
entered (see

Figure 13).

Figure 13 shows the terminating BCSM as it is seen by the model state manager. The latter must
be informed of the occurrence of each DP and each PN. It is the responsibility of the system
interface to find the necessary information in the network where the service is implemented, in
order to be able to inform the model state manager of all relevant events. This information can
be collected by observing the INAP messages exchanged between the SCF and the SSFs. In
order to be sure that INAP messages are sent for all the detection points, the system interface can
play the role of an SCF, arming necessary DPs.

- 21 -

7. T_Null & Authorize
Termination_Attempt

9. T_Alerting

10. T_Active

T_Answer

8. Select_Facility &
Present_Call

15

T_Called_Party_Busy

T_Mid_Call

T_T_Disconnect

T_Abandon

13

12 18

16

19’

18’ T_Abandon_proceeded

13’

T_CPB_proceeded

T_Called_Party_Not_Busy

15’T_Answer_proceeded

T_O_Disconnect

17a

17b

17b’

T_O_Disconnect_
proceeded

17a’

T_T_Disconnect_
proceeded

20’
T_Exception_occured

Key: Transition

Detection Point (DP)

Point In Call (PIC)

Proceeded Notification (PN)

Term._Attempt_

Authorized

12’
Term_Att_Auth_
proceeded

11. T_Exception

Figure 13: The terminating BCSM seen by the model state manager

Notice in

Figure 13 PN 19’ (T_Called_Party_Not_Busy) which corresponds to an event which cannot be
deduced by observing standardized INAP messages. To be able to inform the model state
manager of the occurrence of PN 19’, the system interface must either have access to non
standardized information flowing between the functional entities in the IN, or use method �

presented above, i.e., modify the SSFs so that they send special notifications between PICs 8 and
9 in the terminating BCSM.

3.4 Conclusion

We have shown how an entity called the Service Modeler and Observer (SMO) can be
introduced into a real network in order to check the properties of a service specified during the
analysis phase. We have shown how an SMO can be introduced into a CS-1 intelligent network.
The basic ideas for function µ, which computes for each state of the real system the
corresponding state of the specification, were briefly presented. This function has been
completely specified in FUS++ which allowed us to validate it. We are currently implementing
these concepts on a simulated intelligent network platform which we developed for Swiss
Telecom PTT [33].

- 22 -

Combined with a good test scenarios generator, the SMO can be an invaluable aid in increasing
the implementation quality of a given set of services.

4. Conclusion

The goal of this work has been to address the problem of the validation of IN services at the
specification and implementation levels. To support this approach, an object-oriented method
coming from the software engineering world has been selected: Fusion. Our claim is that this
kind of environment is better suited for our purpose than techniques borrowed from the protocol
engineering community such as LOTOS or SDL. In fact, we believe that the most important
issue for service specification is to help the specifier to structure his or her ideas; the acceptance
of a given specification environment is of crucial importance, and we consider validation as
being an interesting additional function, rather than being the primary target.

However, the analysis phase of Fusion, during which the specification is produced, is not formal
enough to allow validation. Therefore, it has been necessary to formalize the notations used in
the specification in order to obtain a specification language with well defined semantics. We
have called this language FUS++. In Addition to the formalization aspect, FUS++ offers two
enrichments with respect to Fusion:

• the possibility of specifying several services independently from each other, and of
merging them automatically in order to obtain a system containing several services; this
possibility is of high interest for the study of feature interactions;

• the possibility of specifying properties that the system must satisfy in linear time
temporal logic (LTL).

As yet, no validation tool has been designed for the validation of FUS++ specifications.
However, using the semantics of a specification that we have defined, it is possible to translate a
FUS++ specification into another language for which validation tools do exist; this is the
principle of the F2P compiler, which converts a FUS++ specification into Promela code. This
approach makes it possible to use validation tools which are regularly updated and thus to
integrate new ideas from the specific domain of validation algorithms.

Through our preliminary experiments, we have been able to draw some conclusions from the
usage of FUS++:

• it is a powerful method for the specification of services;

• it facilitates the detection of both internal contradictions within each service and
interactions between services;

• the validation phase helps the specifier to get a deeper understanding of the service,
which can be very useful in the following phases (design and implementation).

One of the most challenging problems in formal approaches is to maintain the coherence
between the specification and the implementation. The method we have proposed here is quite
pragmatic: a dedicated entity, called the Service Modeler and Observer, is in charge of
computing the mapping function between the events observed in the implemented system and the
executable specification. In this way, it is possible to check at run time whether what happens at
the implementation level is compliant or not with the properties expressed during the analysis
phase.

- 23 -

The work presented in this paper is currently continuing in the framework of the ErnesTINA
project. In the ErnesTINA project [36] we propose an integrated approach to facilitate the
validation of TINA (Telecommunications Information Networking Architecture) services by
verifying at run-time that the service implementation is not violating certain predefined
properties [37]. In the ErnesTINA project, there is no mapping to a formal specification of the
system (such as the mapping of FUS++ to Promela). Only the properties are specified, based on
LTL. Therefore there is no Model Manager and the events retrieved from the implemented
system by the observation are directly used to feed the different properties checkers.

5. Acknowledgments

The authors would like to thank Yow Jian Lin,Thierry Cattel and Shawn Koppenhoefer for their
help and their very useful and constructive comments.

6. Bibliography

[1] ITU-T General Recommendations on Telephone Switching and Signalling, “Intelligent Network” – Q-
Series Intelligent Network Q.1200 - Q.1290, ITU 1993.

[2] William J. Barr, Trevor Boyd, and Yuji Inoue. “The TINA Initiative”. IEEE Communications Magazine, pp.
70 - 76, March 1993.

[3] Service Creation in an Object-oriented Reuse Environment, SCORE, RACE Ref: 2017. “Report on Methods
and Tools for Service Creation” (First Version) Part I: Summary. Deliverable D203 - R2017 / SCO / WP2 /
DS / P / 027 / b2. SCORE Identifier D2031. January 27th, 1994.

[4] Race Project R1068, RACE Open Service Architecture, ROSA, 2nd Deliverable, “Specifying Services using
Objects”, 1989.

[5] Linda Strick and Jens Meinköhn. “Enterprise Modelling for the Design of Telecommunication Management
Systems”. TINA’95, Conference Proceedings, Vol. 2, pp. 359 - 369,1995.

[6] J. Insulander, P. Schoo, I. Tönnby, S. Trigila. “An Architectural Approach to Integrated Service
Engineering for an Open Telecommunication Service Market”. Proceedings of the International RACE
IS&N Conference on Intelligence in Broadband Services and Networks, November 23-25, Paris,
France,1993.

[7] T.F. Bowen, C.H. Chow, F.S. Dworak, G.E. Herman, N. Griffeth and Y. J. Lin. “The Feature Interaction
Problem in Telecommunications Systems”. Proceedings of the Seventh International Conference on
Software Engineering for Telecommunications Switching Systems, pages 59 - 62, Burnemouth, United
Kingdom, July 1989.

[8] Derek Coleman et al. Object-Oriented Development – The Fusion Method. Prentice Hall International, 1994.

[9] Colin H. West. “Protocol validation – principles and applications”. Computer Networks and ISDN Systems ,
pp. 219 - 242, May 1992.

[10] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[11] Pierre Combes, Simon Pickin. “Formalisation of a User View of Network and Services for Feature
Interaction Detection”. Feature Interactions in Telecommunications Systems, IOS Press, pp. 120 - 135,
1994.

[12] Mohammed Faci. “Detecting Feature Interactions in Telecommunications Systems Designs”. PhD Thesis,
Department of Computer Science, University of Ottawa. 1995.

[13] Subodh Bapat. “Object-Oriented Networks. Models for Architecture”, Operations and Management.
Prentice Hall, 1994.

[14] P. Coad and E. Yourdon. “Object-Oriented Analysis”. 2nd ed. Yourdon Press, Engelwood Cliffs, NJ, 1991.

[15] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. “Object-Oriented Modeling and
Design”. Prentice Hall International, Englewood Cliffs, NJ, 1991.

- 24 -

[16] Pierre-Alain Etique, Tuncay Saydam, Jean-Paul Gaspoz and Jean-Pierre Hubaux. “Validation of an Object-
Oriented Service Specification for the Intelligent Network”. Proceedings of TINA’95, Melbourne, February
13 - 16, 1995.

[17] Pierre-Alain Etique, Jean-Pierre Hubaux et Tuncay Saydam. “Vérification et validation de services de
télécommunications spécifiés par une méthode orientée objets”. Actes de CFIP’95, Colloque Francophone
sur l’Ingénierie des Protocoles, Rennes, 9 - 12 mai 1995.

[18] Zohar Manna, Amir Pnueli. “The Temporal Logic of Reactive and Concurrent Systems – Specification”.
Springer-Verlag, 1992.

[19] E. Jane Cameron, Nancy D. Griffeth, Yow-Jian Lin, Margaret E. Nilson, William K. Schnure and Hugo
Velthuijsen. “A Feature Interaction Benchmark for IN and Beyond”. Feature Interactions in
Telecommunications Systems, IOS Press, pp. 1 - 23, 1994.

[20] SCORE-Methods and Tools. “Report on Method and Tools for Service Creation” (Second Version) Volume
I: Service Interaction Analysis. Deliverable D204 - R2017/SCO/WP2/DS/P/028/b2. RACE project 2017
(SCORE). December 16th 1994.

[21] F.Joe Lin, Yow-Jian Lin. “A Building Block Approach to Detecting and Resolving Feature Interactions”.
Feature Interactions in Telecommunications Systems, IOS Press, pp. 86 - 119, 1994.

[22] Pierre-Alain Etique. “Service Specification Verification and Validation for the Intelligent Network”. PhD
Thesis, Swiss Federal Institute of Technology Lausanne, 1995

[23] Kristofer Kimbler and Claes Wohlin. “A Statistical Approach to Feature Interaction”. TINA’95, Conference
Proceedings, Vol. 1, pp. 219 - 230, 1995.

[24] Pascal Gribomont and Pierre Wolper. Chapter 4 Temporal logic. “From Modal Logic to Deductive
Databases”, A. Thayse Editor, Wiley, pp. 165 - 233, 1989.

[25] Roland Groz. “Vérification de propriétés logiques des protocoles et systèmes répartis par observation de
simulations”. Ph.D. Thesis from l’Université de Rennes, November 1988.

[26] Refik Ahmet Molva. “Conception et réalisation d’un observateur d’architectures multicouches dans les
réseaux d’ordinateurs”. Thèse de doctorat, Université Paul Sabatier, Toulouse, 1986.

[27] Boris Makarevitch, ”Resolving Service Interactions by Service Components”, Feature Interaction In
Telecommunications Systems III, K.E. Cheng and T. Ohta (Eds.), IOS Press, 1995.

[28] C. Abarca, P. Farley, J. Forsloew, T. Hamada, et. al., “Service Architecture”, TINA-C Document, Version
4.0, October 1996.

[29] Ruth Malan, Reed Letsinger and Derek Coleman, “Object-Oriented Development at work, Fusion in the
Real World”, Prentice Hall, 1996.

[30] Grady Booch, James Rumbaugh, “Unified Method for Object-Oriented Development”, Rational Software
Corporation, Santa Clara, USA, 1995.

[31] L. Lamport,”The Temporal Logic of actions”, ACM Transactions on Programming Languages and
Systems, vol 16, no 3, pp 872-923, May 1994.

[32] Johan Blom, Roland Bol and Lars Kempe, ”Automatic Detection of Feature Interactions in Temporal
Logic“, Feature Interactions in Telecommunications Systems III, K.E. Cheng and T. Ohta (Eds.), IOS Press,
1995.

[33] Xavier Logean, “Improving Confidence Service Implementation in an Intelligent Network”, EUNICE’96,
Swiss Federal Institute of Technology, 1996.

[34] C. Jard, J.F. Monin and R. Groz, “Development of VEDA: a Prototyping Tool for Distributed Algorithms”,
IEEE trans. on Software Engineering, Vol. 14 , no 3, March 1988.

[35] E. Fromentin, “Détection de propriétés instables dans les exécutions réparties, application à la mise au point
des programmes répartis”, Ph. D: Thesis from l’Université de Rennes, 1996.

[36] X. Logean, F. Dietrich and J.-P. Hubaux, ”TINA service Validation: the ErnesTINA project”, Technical
Report No SSC/1997/028, Communication Section Division, Swiss Federal Institute of Technology,
Lausanne, 1997.

[37] F. Dietrich, X. Logean, J.-P. Hubaux, “Testing Temporal Logic Properties in Distributed Systems”,
Technical Report No SSC/1997/027, Communication Section Division, Swiss Federal Institute of
Technology, Lausanne, 1997.

- 25 -

7. Appendix: FUS++ Syntax
System = {ObjectModel | InitPart | OperModel | InvDecl | TempProp}.

ObjectModel = {Class | Relation | TypeDef | ExtensionDef | Agent}.

Typedef = "typedef" type ident ";".
type = BasicType | SubrangeType | SetType | enumeration.
BasicType = ident.
SubrangeType = "range" "{"number ".." number "}".
SetType = "set" "of" BasicType.
enumeration = "enum" EnumContent.
EnumContent = "{"ident {"," ident} "}".
ExtensionDef = "typeExtension" [ident] enumeration ident ";".

Agent = "AGENT" ident ";".

Class = "CLASS" ident ClassDef.
ClassDef = "["number"]" [":" ident {"," ident}] [NonDet] [Attributes].
Attributes = "ATTRIBUTES" AttrDecl {AttrDecl}.
NonDet = "[˜]".

AttrDecl = BasicType ident [AttrInit] {"," ident [AttrInit]} ";".
AttrInit = NonDet | "=" expression.

InvDecl = "SYSTEM" "INVARIANTS" CompoundStmnt.
CompoundStmnt = [ident "::"] "{" {stmnt} "}".
stmnt = FinalStmnt
 | IfStmnt
 | WhileStmnt
 | ForEachStmnt
 | CompoundStmnt
 | SignalStmnt
 | AttrDecl
 | ident ":" stmnt.
FinalStmnt = [Assignement
 | WithStmnt
 | WithoutStmnt
 | AssertStmnt
 | ProcCall
 | SelectStmnt
 | SendStmnt
 | ReturnStmnt
 | DelStmnt
 | RunStmnt
 | UIStmnt
 | PICDecl
 | GotoStmnt] ";".

Assignement = varRef "=" expression.
WithStmnt = ident "with" "(" Roles ")".
WithoutStmnt = ident "without" "(" Roles ")".
AssertStmnt = "assert" expression.
SelectStmnt = "select" varRef "where" expression.
ForEachStmnt = "foreach" varRef ["where" expression] "do" stmnt.
UIStmnt = "UserInteraction" varRef "->" margs "<-" ident.
PICDecl = ":" ident FormalParams.
GotoStmnt = "gotoPic" ident ActualParams.
SignalStmnt = "signal" margs
 "refValue" varRef
 "default" CompoundStmnt.

ProcCall = ClassicCall | hasOp | RelatantFnc | NewFnc | ChanCheck
 | AtPred | InvalidPred.
ClassicCall = ident ActualParams.
ActualParams = "(" [ExprList] ")".
ExprList = expression {"," expression}.
hasOp = ident "has" "(" Roles ")".
Roles = OneRole {"," OneRole}.
OneRole = ident ":" expression.
RelatantFnc = [ident] "relatant" "of" "(" Roles ")"
 "in" ident ["[" expression "]"].
NewFnc = "new" ident ["(" expression ")"].
ChanCheck = varRef "?" "[" margs "]".
AtPred = "at" ident.
InvalidPred = "invalid" varRef.

SendStmnt = varRef "!" margs.
margs = ident [ActualParams].
ReturnStmnt = "return" expression.
DelStmnt = "delete" expression.
RunStmnt = "run" ident "(" expression ")".

IfStmnt = "if" "(" expression ")" stmnt ["else" stmnt].

- 26 -

WhileStmnt = "while" "(" expression ")" stmnt

Relation = "RELATION" ident RolesDecl.
RolesDecl = RoleDecl {RoleDecl}.
RoleDecl = "ROLE" [ident] ident "[" Cardinality "]" ";".
Cardinality = "*" | "+" | RangeEnum.
RangeEnum = OneRange {"," OneRange}.
OneRange = number [".." number].

number = digit {digit}.
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".
ident = letter {letter | digit}.
letter = "a" | .. | "z" | "A" | .. | "Z" | "_".
expression = "(" expression ")"
 | expression binop expression
 | unop expression
 | expression "cum" CompoundStmnt.
 | terminalExp
 | ProcCall.
binop = "==" | "!=" | "in" | "<" | "<=" | ">" | ">=" | "<<" | ">>"
 | "+" | "-" | "||" | "|" | "*" | "/" | "%" | "&&" | "&"
 | "U" | "W" | "=>" | "isMemberOf" | "isKindOf".
unop = "~" | "-" | "!" | "O" | "[]" | "<>".
terminalExp = ident | number | boolVal | set | varRef | "NIL".
boolVal = "true" | "false".
set = [ident] "{" [ExprList] "}".
varRef = [ident "::"] ident ["." ident].

TempProp = "TEMPORAL" "PROPERTY" "{"
 {SpecVarDecl} AssertStmnt [";"] "}".
SpecVarDecl = BasicType ident {"," ident} ";".

InitPart = "INIT" CompoundStmnt.

OperModel = {MsgType | IntEvDecl | Function | SigResp | Oper}.
MsgType = "mtype" "=" MsgEnum [“;”].
MsgEnum = "{"ident [MsgContent] {"," ident [MsgContent]} "}".
MsgContent = "(" BasicType {"," BasicType} ")".
IntEvDecl = "InternEvents" "=" MsgEnum [“;”].
Function = "FUNCTION" BasicType ident FormalParams CompoundStmnt.
FormalParams = "(" [BasicType ident {"," BasicType ident}] ")"
SigResp = "response" ident "to" "signal" ident FormalParams
 ["prio" number] CompoundStmnt.
Oper = Operation [Description] [Reads] [Changes] [Sends] Assumes
 Result.
Operation = "Operation" ":" ident.
Description = "Description" ":" garbage.
Reads = "Reads" ":" {"supplied" BasicType ident ";"} garbage.
Changes = "Changes" ":" garbage.
Sends = "Sends" ":" garbage.
Assumes = "Assumes" ":" CompoundStmnt.
Result = "Result" ":" CompoundStmnt.

