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Abstract

This paper deals with multiwavelets which are a recent generalization of wavelets in the context of

multirate �lter banks and with their applications to signal processing and especially compression. By

their inherent structure, multiwavelets are �t for processing multi-channel signals. First, we will recall

some general results on multi�lters by looking at them as time-varying �lters. Then, we will link this

to multiwavelets, looking closely at the convergence of the iterated matrix product leading to them and

the typical properties we can expect. Then, we will de�ne under what conditions we can apply systems

based on multiwavelets to one-dimensional signals in a simple way. That means we will give some natural

and simple conditions that should help in the design of new multiwavelets for signal processing. Finally,

we will provide some tools in order to construct multiwavelets with the required properties, the so-called

`balanced multiwavelets'.

Keywords
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I. Introduction

Wavelet constructions from iterated �lter banks, as pioneered by Daubechies [4], have

become a standard way to derive orthogonal and biorthogonal wavelet bases. The under-

lying �lter banks are well studied, and thus, the design procedure is well understood. By

the structure of the problem, certain issues are ruled out: the impossibility of construct-

ing orthogonal FIR linear phase �lter banks implies that there is no orthogonal wavelet

with compact support and symmetry. Nevertheless, by relaxing the requirement of time-

invariance, it is easy to see that new solutions are possible. As mentioned in [18], such

�lter banks are closely related to some matrix 2-scale equations leading to multiwavelets.

The outline of the paper is as follow. First, we will review material on multi�lter banks

and time-varying �lter banks in Section II. Then, Section III deals with multiwavelets

and their link with multi�lters. Here, we will mostly recall some known results but from

the point of view of signal processing. Finally, in Section IV, we introduce the problems

encountered when using multiwavelets in applications and give some new direction for the

design of multiwavelets.
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II. Multifilter banks

A. Theory

A.1 Time-varying �lter banks

We de�ne time-varying �lter banks as �lter banks where the �lter applied to the signal

varies periodically in time. Here, we are speci�cally interested in time-varying interpola-

tion �lters, that is, an upsampling function (typically by 2) followed by a LPTV (linear

periodically time-varying) interpolation �lter. In time domain, the resulting operator (we

consider the case of two alternating impulse responses for simplicity) is given by

T =

0
BBBBBBBBBBBBBB@

. . .

c[0] d[0] : : :

c[1] d[1] : : :

c[2] d[2] 0 : : :

c[3] d[3] 0 : : :

c[4] d[4] c[0] d[0]

c[5] d[5] c[1] d[1]

1
CCCCCCCCCCCCCCA

(1)

where c[k] and d[k] are the two interpolation �lter impulse responses. Clearly, when T

is applied to a sequence x[n], then x[2n] and x[2n + 1] lead to impulses c[k � 4n] and

d[k� 4n], respectively. That is, even and odd indexed samples lead to di�erent responses,

as to be expected. In z-transform domain, write sequences in terms of even and odd

indexed subsequences, or polyphase components, as

X(z) = X0(z
2) + z�1X1(z

2) (2)

Y (z) = Y0(z
2) + z�1Y1(z

2) (3)

for the input and output, as well as the �lters

C(z) = C0(z
2) + z�1C1(z

2) (4)

D(z) = D0(z
2) + z�1D1(z

2) (5)

February 10, 1997 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 4

Then, the polyphase components of Y (z) can be written in term of the polyphase compo-

nents of the input X(z) as0
@ Y0(z)

Y1(z)

1
A =

0
@ C0(z) D0(z)

C1(z) D1(z)

1
A �

0
@ X0(z

2)

X1(z
2)

1
A (6)

Call the above matrix T(z). Its size is given by the number of di�erent impulse responses,

or period. In the special case when the �lter is time-invariant (d[k] = c[k � 2]), T(z) is

T(z) =

0
@ C0(z)

C1(z)

1
A �

�
1 z�1

�
(7)

A.2 Properties

For convenience, we merge the two 'lowpass' �lters c[n] and d[n] into a single matrix

coe�cients multi�lter M[n] de�ned by

M[k] :=

0
@ c[2k] c[2k + 1]

d[2k] d[2k + 1]

1
A (8)

We then de�ne the z-transform of the `lowpass' analysis multi�lter

H0(z) := T>(z) =
X
k

M[k]z�k (9)

and in exactly the same way, we de�ne H1(z), G0(z) and G1(z) respectively the `highpass'

analysis, `lowpass' synthesis and `highpass' synthesis multi�lters. Then de�ning X(z) :=

[X0(z); X1(z)]
> the input signal, we have the familiar result for the output signal of the

�lterbank

X̂(z) =
1

2
f[G0(z)H0(z) +G1(z)H1(z)]X(z) (10)

+[G0(z)H0(�z) +G1(z)H1(�z)]X(�z)g (11)

Note that unlike the scalar case, the order of the product is very important, since matrix

products do not commute.

� Biorthogonal multi�lter banks

From (10), we have the conditions for perfect reconstruction

G0(z)H0(z) +G1(z)H1(z) = 2I2 (12)
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and for alias cancelation

G0(z)H0(�z) +G1(z)H1(�z) = O2 (13)

Introducing the modulation matrix

Hm(z) :=

0
@ H0(z) H0(�z)
H1(z) H1(�z)

1
A (14)

then we can include the two conditions into

[G0(z);G1(z)] Hm(z) = 2 [I2;O2] (15)

Because of the non commutativity of matrix products, there is no Smith & Barnwell simple

solution as in the scalar case. However, some straightforward calculation leads to

G0(z) = 2U�1(z) (16)

G1(z) = �2U�1(z)H0(�z)H�1
1 (�z) (17)

where

U(z) := H0(z)�H0(�z)H�1
1 (�z)H1(z) (18)

� Orthogonal multi�lter banks

As usual, we are particularly interested in the case when the operator T in (1) is unitary,

or TTT = I. Expressed in the modulation form, this gives

~Hm(z)Hm(z) = Hm(z) ~Hm(z) = I2 (19)

where ~H(z) := H>(z�1) if we assume real coe�cients for the �lters. ~H(z) is called the

paraconjuguate of H(z) [17]. This gives

H0(z) ~H0(z) +H0(�z) ~H0(�z) = I2 (20)

H1(z) ~H1(z) +H1(�z) ~H1(�z) = I2 (21)

H0(z) ~H1(z) +H0(�z) ~H1(�z) = O2 (22)

H1(z) ~H0(z) +H1(�z) ~H0(�z) = O2 (23)
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We then obtain for perfect reconstruction and alias cancelation

G0(z) = ~H0(z) (24)

G1(z) = ~H1(z) (25)

� Linear phase

We say that the multi�lter T(z) de�ned in (6) has linear phase if there exists c0; c1 real

numbers such that

Tij(z) = �ij z
2ci�cjTij(z

�1) (26)

where �ij is one of the following functions: �ij = 1 or �ij = �1 or �ij = (�1)i+j or

�ij = �(�1)i+j. We could have de�ned linear phase by requiring c[n] and d[n] to be linear

phase, but this isn't enough to ensure symmetry or antisymmetry of the scaling functions

obtained by iteration of the matrix product leading to multiwavelets.

B. Design of multi�lter banks

Algebraically, a 2 channels time-varying �lter bank with 2 phases is equivalent to a

4 channels �lter bank. This is easy to see, since we have 4 distinct impulse responses

that have to generate (with shifts by 4) a basis of `2(Z). More generally, a K channels

multi�lter bank with L phases is equivalent to a K � L channels �lter bank. That is,

all results known for N channels �lter banks can be used immediately in the context of

time-varying or multi�lter banks. For example, it is clear that orthonormal, linear phase

FIR solutions exist for 2 channels, 2 phases multi�lter banks, since such solutions exists

in the 4 channels case.

Let us now consider a speci�c problem: namely that of completion. In several multiwa-

velets constructions [5], [14], [1], scaling functions were constructed �rst, and multiwavelets

were derived some time after. In the usual wavelet case, this is really simple, since the

highpass �lter which is complementary to a given lowpass �lter is easily speci�ed [19]. In

the multi�lter case, the problem can be stated as follows: given a 2 � 4 unimodular or

paraunitary matrix, �nd a unimodular or paraunitary completion. Let us recall that a

unimodular matrix C(z) is an M � N matrix with M � N of Laurent polynomials such

that there exists an N �M right inverse matrix D(z) of Laurent polynomials. The prob-

lem of completion is that of �nding an N �N matrix C0(z) , where the �rst M rows equal
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C(z), such that C0(z) is a square unimodular matrix. Similarly, a M � N with M � N

paraunitary matrix U(z) of Laurent polynomials satis�es U(z) ~U(z) = IM�M . The com-

pletion problem is then to �nd an N � N matrix U0(z), with the �rst M rows given by

U(z), such that U0(z) is a square paraunitary matrix. It turns out that the completion

problem is a standard question in linear system theory and algebraic geometry. We will

thus simply review the state of a�airs.

First, in one dimension (single variable polynomials), the questions are well understood,

and can be found in textbooks. If the original matrix contains Laurent polynomials, one

can �rst use a change of variable to reduce it to a matrix with polynomials only. Then,

standard factorization procedures for unimodular or paraunitary matrices can be used.

This leads to cascades of N � N matrices followed by a left most matrix of size M � N .

The problem is then reduced to complete this �nal M � N matrix into a square matrix,

either a full rank matrix (unimodular case) or an orthogonal matrix (paraunitary case).

It can be shown that this covers the whole range of possible completions.

The multidimensional case (multiple variable polynomials) has been addressed only

recently, in particular in H.J.Park's thesis [11], [12]. The situation is then the following:

� The transformation of Laurent polynomial into regular polynomial can be done as in the

one variable case.

� Unimodular completion is solvable, in a similar way as in one dimension. It is based on

a factorization procedure for multivariable unimodular matrices [11].

� Paraunitary completion is an open problem in the multidimensional case. One compli-

cation is that factorization is not always possible, and thus, the one dimensional approach

to completion cannot be generalized.

C. Iterated multi�lter banks

Now, it is easy to study iterated LPTV interpolators. Calling the n-times cascade

transfer matrix T(n)(z)
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T(n)(z) =
n�1Y
i=0

T(z2
i

); (27)

we get the output, after n-times upsampling and interpolation, as

Y (n)(z) =
�
1 z�1

�
T(n)(z2)

0
@ X0(z

4)

X1(z
4)

1
A : (28)

Note that there are two impulse responses, given by

C(n)(z) = T00(z
2) + z�1T10(z

2); (29)

D(n)(z) = T01(z
2) + z�1T11(z

2): (30)

� Orthogonality

If T is unitary, so is T(n). The important point is that c(n)[k] and d(n)[k] (the impulse

responses of C(n)(z) and D(n)(z) from (29)) are of unit norm and orthogonal with respect

to shifts by 2(n+1).

� Linear phase

It is easily seen that the linear phase property of multi�lter as de�ned in Section II.B

is maintained during the iterations. For example, one easily proves that T(z2)T(z) has

linear phase with coe�cients 3c0; c1 � 2c0.

Note that in the above, we concentrated on the lowpass channel of a time-varying �lter

bank. For a unitary transformation, we also need a time-varying highpass channel that

is orthogonal to the time-varying lowpass, as well as to its own translates. However, for

all discussions concerning regularity or iteration, the lowpass channel is the key element

(since that is the channel involved in the in�nite iteration, while the highpass channel is

only applied once).

III. Multiwavelets

Similar to the wavelet case, the multiscaling function �(t) := [�0(t); : : : ; �r�1(t)]
> is

solution of a 2-scale equation

�(t) =
NX
k=0

M[k]�(2t� k) (31)
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where M[k] are r � r matrices of real coe�cients. The properties of the scaling function

are strongly dependent on the spectral behavior of the re�nement mask

M(!) :=
1

2

NX
k=0

M[k]e�j!k (32)

By de�ning the Fourier transform componentwise for matrix-valued functions, the 2-scale

equation converts to the equivalent form

�̂(2!) =M(!)�̂(!) (33)

and we can then derive the behavior of the scaling function by iterating this product [2].

Once more, for simplicity and without loss of generality, we will concentrate on the case

r = 2.

A. Convergence

In the wavelet case, M(!) is a trigonometric polynomial satisfying the following two

necessary constraints: (i)M(0) = 1 and (ii)M(�) = 0 for the iterated product to converge.

The multiwavelet case is more tedious. As in [18], we de�neD(!) the determinant ofM(!),

and f�0(!); �1(!)g the eigenvalues of M(!). We also de�ne

�(n)(!) :=M(!=2) �M(!=4) : : :M(!=2n) ��(!) (34)

where �(!) is the normalized interpolation function

�(!) := e�j!=2
n+1 � sin(!=2

n+1)

!=2n+1
(35)

Note that �(n)(!) satis�es

k�(n)
i0 (!)k22 + k�(n)

i1 (!)k22 = 1 (36)

given that we have orthogonalityX
k

M[k]M[2l + k]> = 2�0lI 8l (37)

Also, �(!) ! 1 for any �nite ! and large n, and can thus be ignored. In the following,

we will be interested in the limit

�(!) := lim
n!1

�(n)(!) =
1Y
i=1

M(!=2i) (38)
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Note that

�(!) =M(!=2) ��(!=2) (39)

or 0
@ �00(!) �01(!)

�10(!) �11(!)

1
A =

0
@ M00(

!
2
) M01(

!
2
)

M10(
!
2
) M11(

!
2
)

1
A �

0
@ �00(

!
2
) �01(

!
2
)

�10(
!
2
) �11(

!
2
)

1
A (40)

A.1 Unconstrained convergence

Following the terminology developed in [6], we say that `unconstrained' solutions occur

when the in�nite matrix product

�(!) := lim
n!1

�(n)(!) =
1Y
i=1

M(!=2i) (41)

converges for every !. Following closely what was already developed by one of this paper's

authors in [18], we get then that �rst, �(0) has to be �nite, and thus, neither eigenvalue

of M(0) can be larger than 1 in absolute value. If both are smaller than 1 in absolute

value, �(0) will be the zero matrix, which contradicts the requirement that it represents

scaling functions, or lowpass �lters. Thus, either j�0(0)j = j�1(0)j = 1 or j�0(0)j = 1 and

j�1(0)j < 1. For convergence of the in�nite product at ! = 0, it is further necessary that

eigenvalues of absolute value 1 are actually equal to 1, since otherwise, at least one of the

entries will not be a Cauchy sequence. Thus, for pointwise convergence at ! = 0, M(0)

has either (i) �0(0) = �1(0) = 1, that is M(0) = I or (ii) �0(0) = 1 and j�1(0)j < 1.

Let us now investigate conditions on M(�). We assume that the in�nite product con-

verges pointwise, and want to see what condition it imposes on M(!). Write

M(!) =Me(2!) + e�j!Mo(2!) (42)

where Me(2!) and Mo(2!) correspond to even and odd polyphase components of M(!).

Also, call M(n)(!) the n-times iteration. Then

M(n)(!) = M(2n�1!) �M(2n�2!) : : :M(!)

= M(n�1)(2!)[Me(2!) + e�j!Mo(2!)] (43)

Consider the even and odd polyphase components of M(n)(!),

M(n)
e (!) = M(n�1)(!) �Me(!) (44)
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M(n)
o (!) = M(n�1)(!) �Mo(!) (45)

Associate piecewise constant approximations with unit elements of length 1=2n in the usual

manner, and take the limit as n ! 1. That is, ! is divided by 2n. Then, M
(n)
e (!=2n)

goes towards �(!=2), as do M
(n)
o (!=2n) and M(n�1)(!). On the other hand, Me(!=2

n)

goes towards Me(0), and Mo(!=2
n) towards Mo(0) for any �nite !. Therefore, (44-45)

become

�(!=2) = �(!=2) �Me(0) (46)

�(!=2) = �(!=2) �Mo(0) (47)

and we get

�(!=2) �Me(0) = �(!=2) �Mo(0): (48)

There are two cases:

(i) �(!) has full rank for some !

Me(0) =Mo(0),M(�) = 0: (49)

(ii) �(!) has rank 1 for some !

�(!) � [Me(0)�Mo(0)] = �(!) �M(�) = 0: (50)

Consider case (i). M(!) satis�es the matrix Smith-Barnwell condition:

M(!)MT (�!) +M(! + �)MT (�! + �) = I: (51)

At ! = 0, since M(�) = 0, we get

M(0)MT (0) = I: (52)

that is, M(0) is unitary, or orthonormal since we assume real �lters. That is, it is a

rotation matrix, and in order for M(n)(0) to converge, M(0) has to be the identity.

Consider case (ii) and (50) at ! = 0,

�(0) �M(�) = 0: (53)
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Thus, �(0) is of rank 1, and its rows are colinear with the left eigenvector r0 attached to

the eigenvalue �0(0) = 1 (since �(0) = limn!1M
(n)(0)). Therefore, a necessary condition

is

r0 �M(�) = 0: (54)

We can summarize our �ndings so far.

Proposition III.1

Given an in�nite matrix product of size 2 by 2

�(!) =
1Y
i=1

M(!=2i) (55)

where M(!) satis�es a matrix Smith-Barnwell condition (51), a necessary condition for

convergence to a scaling matrix �(!) such that �(0) is non-zero and bounded is

(i) M(0) = I, M(�) = 0 (note: �(!) has rank 2)

(ii) M(0) has eigenvalue �0(0) = 1 and j�1(0)j < 1, M(�) has rank 1 and satis�es

r0 �M(�) = 0 (note: �(!) has rank 1)

A.2 Constrained convergence

Following [6], we de�ne `constrained' convergence when the matrix product

�(!) := lim
n!1

�(n)(!) =
1Y
i=1

M(!=2i) (56)

does not converge (for example, if 1 is not the unique largest eigenvalue ofM(0)). However,

we have the convergence of the matrix product

g(!) := lim
n!1

(�(n)(!)u) = lim
n!1

"
nY
i=1

M(!=2i)

#
u (57)

converges nevertheless for u some 1-right eigenvector of M(0). We have then the result

given in [10] with k:k standing for the spectral norm (norm-2) of vector or matrix.

Theorem III.1 (Massopust)

If there exists C > 0 and 0 < � � 1 such that for large k

ku�M(2�k!)uk � Cj2�k!j� (58)
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and if M(0) has spectral radius 1, then

g(!) := lim
n!1

"
nY
i=1

M(!=2i)

#
u (59)

converges pointwise and g(!) satis�es

(i) g(!) =M(!=2)g(!=2)

(ii) g(0) = u

Furthermore , if g0; g1 2 L2(R) then there exists � with �0; �1 2 L2(R) such that �̂(0) = u

and �̂ = g

This provides a way to construct iteratively � as shown by the following theorem from

[10]

Theorem III.2 (Massopust)

Assume M(!) veri�es the hypotheses of theorem III.1 and suppose 9 f 2 L2(R) such

that f̂(0) = 1 and f is continuous at 0. Then de�ning �[0](!) := f̂(!) u and assuming

9C > 0; � > 0 such that 8n; !�����
nY
i=1

M(2�i!)�̂[0](2
�n!)

����� � C

(1 + j!j)� (60)

Then de�ning

�[n](x) :=
NX
k=0

M[k]�[n�1](2x� k) (61)

we get 8x
lim
n!1

�[n](x) = �(x) (62)

with uniform convergence.

B. Properties

B.1 Support

De�ning supp � := supp�0 [ supp �1, we have as a direct consequence of theorem III.2,

that if �[0] has compact support, then � has compact support. A more general result from

[1] gives also
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Proposition III.2

Let � be a solution of

�(t) =
NX
k=0

M[k]�(2t� k)

then � is compactly supported with supp � � [0;N] Moreover

1. if M[0] is nilpotent, then supp � � [1
3
;N]

2. if M[N] is nilpotent, then supp� � [0;N� 1
3
]

3. if both M[0] and M[N] are not nilpotent, then supp � = [0;N]

B.2 Symmetry

A proposition given in [1] links symmetry of the scaling functions with the property of

linear phase of the re�nement mask.

Proposition III.3 (Chui)

Let � be a scaling functions satisfying (31) with the re�nement maskM such that supp �i =

[ai; bi] � [0;N]. Then �0 is symmetric and �1 antisymmetric i.e. for i = 0; 1

�i(x) = (�1)i�i(ai + bi � x) (63)

if and only if the re�nement mask M veri�es

Mij(z) = (�1)i+j z2(ai+bi)�(aj+bj)Mij(z
�1) (64)

B.3 Approximation power

One says that � has approximation power m if one can exactly decompose polynomials

up to degree m � 1 using only �0; �1 and their translates. Calling M(k)(!) := dk

d!k
M(!),

we have the following theorem

Theorem III.3 (Plonka)

Let � be a integrable scaling functions satisfying (31) with the re�nement mask M such

that the integer translates of �0; �1 are independent. Then � has approximation powerm if

and only if there exist vectors y0; : : : ;y(m�1) 2 C
2 with y0 6= 0 such that for l = 0; : : : ; m�1

lX
k=0

0
@ l

k

1
A(2j)k�lykM(l�k)(0) = 2�nyl (65)
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lX
k=0

0
@ l

k

1
A(2j)k�lykM(l�k)(�) = 0 (66)

B.4 Smoothness

In [2], an interesting result shows some link between the approximation power and the

smoothness (number of continuous derivatives) of the scaling functions.

Theorem III.4

Assume that M can be decomposed in the form

M(!) =
1

2m
Trm�1(2!) : : :Tr0(2!)M0(!)Tr0(!)

�1 : : :Trm�1(!)
�1 (67)

with M0(!), M(!) and Trk(!) k = 0; : : : ; m � 1 satisfying the Plonka conditions [13].

Furthermore, suppose that the spectral radius veri�es �(M0(0) < 2 and that infk�1 
k <

m� d where


k :=
1

k
log2 sup

!
kM0(2

�1!) : : :M0(2
�k!)k (68)

Let g(t) be de�ned by

ĝ(!) := lim
n!1

"
nY
i=1

M(!=2i)

#
u (69)

where u is a right eigenvector ofM(0) for the eigenvalue 1. Then g(t) has compact support

and is a d � 1 times continuously di�erentiable solution of the 2-scale equation with the

re�nement mask M(!). Moreover, g has an approximation power of at least m.

However, this result is not really practical to evaluate the smoothness of the scaling

functions given the re�nement mask M. In the scalar case, a simple way was to use the

method of invariant cycles of the mapping ! ! 2! (mod 2�) to �nd upper bounds on

smoothness [4]. This method is now based on the eigenvalues of the matrix products in

the cycle. For example, with the matrix M and ! = 2�=3, we have the invariant cycle

f2�=3; 4�=3g. Computing the eigenvalues of M(4�=3) �M(2�=3) can be used to show

upper bounds on the smoothness of the scaling functions by low bounding the decay of

the Fourier transforms.
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IV. Balanced multiwavelets

A. Introduction

An important point to remember is that a multiwavelet �lter bank (often abbreviated

multi�lter bank) is fundamentally a MIMO (multi-input multi-output) system that re-

quires vectorization of the input signal which is usually one-dimensional to produce an

input signal which is 2-dimensional. However, due to some di�erences in the spectral be-

havior of the components of the scaling function vector, the `lowpass' multi�lter may have

`unbalanced' channels that complicate this vectorization. In that case, simple methods

for the vectorization like splitting the input signal into blocks of size 2 lead to a mixing

of coarse resolution and details creating strong oscillations in the reconstructed signal af-

ter compression as seen in Fig. 2. Namely, one of the important issues with wavelets in

signal compression is the behavior of truncated series, i.e. robustness to truncation of

the `details' subbands. One would then expect some class of smooth signals to be well

reproduced, i.e. one expect some kind of `eigensignals' for the coarse approximation. For

example, de�ning

L :=

0
BBBBBBBB@

: : :

: : : M [1] M [0]

: : : M [3] M [2] M [1] M [0]

: : : M [5] M [4] M [3] M [2] : : :

: : :

1
CCCCCCCCA

(70)

it would be reasonable to require [1; 1; : : : ; 1; : : :]> to be preserved by the operator L i.e.

L [: : : ; 1; 1; : : : ; 1; : : :]> = [: : : ; 1; 1; : : : ; 1; : : :]> (71)

However, most of the multiwavelets constructed so far don't even verify this simple re-

quirement as illustrated in Fig. 1.

B. Pre�ltering

A solution proposed in [16] and generalized in [20] is to add some pre/post �ltering of

the input/output signal to adapt it to the spectral imbalance of the �lter bank.
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1

1.5
DGHM: [1,sqrt(2),1,sqrt(2),..]*L‘

Fig. 1. Left: Reproduction of the input signal [1; 1; : : : ; 1] by a GHM (Geronimo, Hardin, Masso-

pust) multiwavelet [5] based �lter bank without pre�ltering, Right: reproduction of the eigensignal

[1;

p
2; 1;

p
2; : : : ; 1]

B.1 Critical sampling

A natural way of pre�ltering is to partition the input signal into size 2 vectors chunks

and apply on the sequence of vectors the re�nement mask A(!) :=
P

kA[k]e�j!k where

A[k] are 2 � 2 matrices in order to get some adapted input sequence of vectors. In that

case, we maintain critical sampling, with the only restriction that the input signal must

be of size 2K for some K. The reconstruction is easily processed applying the re�nement

mask B inverse of A onto the output signal. A simple way of understanding pre�ltering

is then to see it as a transform such that the eigensignal [1; 1; : : : ; 1] is mapped into some

genuine vector eigensignal associated to the eigenvalue 1 of M, for example, in the GHM

case we have

L [: : : ; 1;
p
2; 1;

p
2; : : : ; 1; : : :]> = [: : : ; 1;

p
2; 1;

p
2; : : : ; 1; : : :]> (72)

The results obtained (Fig. 2) using this `trick' are of the same order as the ones obtained

using a plain Daubechies �lter bank with 4 taps. However, the new system constructed

that way is no more orthogonal.

B.2 Non-critical sampling

Another way of doing pre/post �ltering is to allow non critical sampling and to construct

some projection of the input signal on V0. A simple way of doing so in the case of the
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DGHM + prefiltering

Fig. 2. Truncation of the expansion associated to the details in a level 1 �lter bank based on GHM

multiwavelet. It shows on the left the poor robustness of systems based on GHM without pre/post

�ltering. The results are greatly enhanced with some pre/post �ltering as seen on the graph on the

right.

GHM multiwavelet is starting from an input signal [x[0]; : : : ; x[2K ]] to transform it into

some vector-valued input sequence

[

0
@ x[0]
p
2x[0]

1
A ;

0
@ x[1]
p
2x[1]

1
A ; : : : ;

0
@ x[2K ]
p
2x[2K ]

1
A] (73)

This preprocessing is often called the 'repeated signal' approach. It doubles the size of

the input signal, but allows to maintain the orthogonality of the system. However, by the

redundancy it creates, one can't use this approach in the case of signal compression.

As mentioned in [20], [21], an issue is then to maintain orthogonality and critical sam-

pling at the same time in the case of pre�ltering. Thus, one may rather directly design

orthogonal multiwavelets with good balance between the two scaling functions.

C. Balancing

In [18], [2], a necessary condition for the balancing of the scaling functions has been

given: in the case r = 2, we need [1; 1]> to be a right eigenvector associated to the

eigenvalue 1 of M(0). This is easily understood by looking closely at (71). Furthermore,

this implies that �̂(0) = [1; 1]> i.e. �0; �1 are bona-�de lowpass scaling functions, and so
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the approximation rule on which the Mallat algorithm [4] is based apply:Z
x(t)�i(t� n) dt � x(n) (74)

C.1 Direct construction

A simple way to construct balanced multiwavelets of arbitrary order is to derive them

from the complex Daubechies �lters. Daubechies �lters are constructed using the halfband

�lter:

P (z) := c(1 + z�1)N (1 + z)NR(z) (75)

such that P (z) + P (�z) = 1 with R(ej!) � 0 and R(ej!) = R(e�j!). One gets the usual

Daubechies lowpass �lters: DN(z) := (1 + z�1)NB(z) where B(z) is a spectral factor

of R(z) with real coe�cients. We can't achieve orthogonality and symmetry with real

coe�cients, however by allowing complex coe�cients in the spectral factorization, one can

construct symmetric, orthogonal FIR �lters [9]. Writing [a[0]; : : : ; a[N ]; a[N ]; : : : ; a[0]] for

the lowpass �lter, we construct the matrix coe�cients:

A[i] :=

0
@ �Im(a[i]) Re(a[i])

Re(a[i]) Im(a[i])

1
A (76)

and the re�nement mask is then with z = ej!

M(!) :=
1

2

 
NX
i=0

A[i]z�i + z�(N+1)

NX
i=0

A[N � i]z�i

!
(77)

The multi�lter bank is clearly orthogonal and it is easily seen that the smoothness and

approximation power of the Daubechies complex scaling functions and wavelets transfer

to the multiscaling functions and multiwavelets. Namely, by de�ning

'(x) := �1(x) + j�0(x) (78)

where [�0; �1] is the multiscaling function associated to M(!), we get that ' veri�es the

2-scale equation

'(x) =
NX
k=0

a[k]'(2x� k) +
2N+1X
k=N+1

a[2N + 1� k]'(2x� k) (79)
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Fig. 3. Highly regular Daubechies based Multiwavelets (same approximation power and smoothness as

D14). Left: scaling functions, Right: multiwavelets.
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Fig. 4. Robustness to truncation of the �rst order details subband of a 6 2x2 taps complex Daubechies

based multiwavelet �lter bank and the Chui based balanced multiwavelet with 8 2x2 taps �lter bank.

so ' is the scaling function associated to the complex Daubechies �lters, hence we get

the same smoothness and approximation power for the multiscaling functions and the

multiwavelets. Using proposition III.3, we also easily derive that the multiscaling functions

and multiwavelets are symmetric/antisymmetric as seen in Fig.3. However, this re�nement

mask when iterated doesn't converge properly because M(0) has eigenvalues 1;�1 with

eigenvectors [1; 1]>; [1;�1]>. Then, we get only constrained convergence as de�ned in

theorem III.1, hence the poor behavior of this multiwavelet in applications as seen in

Fig 4.
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C.2 Balancing the non-balanced

Another interesting way of constructing balanced multiwavelets is to balance already

existing multiwavelets like the ones constructed in [1] or [5]. The point is that we want

[1; 1]> to be a right eigenvector associated with eigenvalue 1 of M(0). The way to achieve

this is to use the unitary matrix R such that

R>M(0)R

0
@ 1

1

1
A =

0
@ 1

1

1
A (80)

De�ning the new re�nement mask

P(!) := R>M(!)R (81)

and the new 2-scale equation

'̂(2!) = P(!)'̂(!) (82)

we then verify that

'̂(0) =

0
@ 1

1

1
A (83)

We notice that in the iteration, R> and R cancel, except for the �rst and last term. The

convergence of the matrix product forM imply the convergence for P and the smoothness

and approximation power are therefore unchanged. However the symmetry of the scaling

functions is usually lost. Nevertheless, the symmetry/antisymmetry of the multiwavelets

can be maintained, by taking for the highpass re�nement mask

Q(!) := N(!)R (84)

where N(!) is the highpass re�nement mask associated to M(!). Namely

(N(!)R
1Y
i=1

(R>M(!=2i)R))

0
@ 1

1

1
A) = (N(!)

1Y
i=1

M(!=2i))u =

0
@ '̂0(!)

'̂1(!)

1
A (85)

Using Chui multiwavelets [1], we obtained orthogonal, compactly supported multiscaling

functions / multiwavelets with symmetry and good approximation for the multiwavelets

and also verifying the [1; 1]> right eigenvector condition (Fig. 5). These balanced mul-

tiwavelets (Bat) have shown very good robustness in compression algorithm without any

pre/post �ltering (Fig. 4).
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Fig. 5. Balanced multiwavelet with 2nd order of approximation. Left: scaling functions, Right: multiwa-

velets.

C.3 Higher order balancing

One can generalize what was previously done for balancing non-balanced multiwavelets

to higher order polynomial input signals. Namely, in the case of GHM, we have approxi-

mation power of order 2

1 =
X
k

(
p
2�0(t� k) + �1(t� k) (86)

t =
X
k

(
p
2(k +

1

2
)�0(t� k) + (k + 1)�1(t� k)) (87)

So if we want to preserve the sampled version of 1 and t as input signals, we should

transform them into some eigensignals of the GHM based �lter bank. So we get the

equations

A

0
@ 1

1

1
A =

0
@ p

2

1

1
A and A

0
@ n

n + 1
2

1
A =

0
@ p

2(n + 1
2
)

n+ 1

1
A (88)

We then get

A =

0
@ 0

p
2

�1 2

1
A (89)

De�ning the new re�nement mask

P(!) := A�1M(!)A (90)
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Fig. 6. Balanced GHM multiwavelets (order 2), Left: scaling functions, Right: multiwavelets.

and the new 2-scale equation

'̂(2!) = P(!)'̂(!) (91)

the multi�lter bank based on this re�nement mask keeps unchanged constant and linear

input signal. Once more, the convergence of the matrix product for M imply the con-

vergence for P and the smoothness and approximation power are therefore unchanged.

However, this time not only the symmetry but also the orthogonality of the scaling func-

tions are lost. Nevertheless, the symmetry/antisymmetry of the multiwavelets can again

be maintained (Fig. 6), by taking for the highpass re�nement mask

Q(!) := N(!)A (92)

where N(!) is the highpass re�nement mask associated to M(!).

A more general issue is then to describe some general design method for constructing

bona-�de multiwavelets with all the desired properties. Recently Plonka and Strela pro-

posed in [13], [15] a method to increase the approximation order of a given scaling function

by what they called the 2-scale similarity transform. This transform applied to the re-

�nement mask M(!) determines a new scaling function with higher approximation order.

This last one is derived from the new re�nement mask MT (!) given by

MT (!) := T(2!)M(!)T�1(!) (93)

where T(!) is the transform matrix. Although this method showed some good results, as

mentioned in [15], it is not clear how to maintain orthogonality and compact support at
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Fig. 7. Highly regular scaling functions obtained from the Bat multiwavelet (support is [0; 8]).

the same time. Moreover, this transform is not preserving the eigenvectors or even the

eigenvalues of M(0). So, we made some modi�cation of this method by de�ning the new

re�nement mask P(!) as

P(!) := T(!)M(!)T(!) (94)

where now the transform matrices

T(!) := T�11 (!)T2(2!) (95)

veri�es some weaker conditions than the ones required in [13]. This enables greater free-

dom in the design of the new re�nement mask and allows especially to maintain the [1; 1]>

eigenvector associated to the 1 eigenvalue condition on P(0). As seen in Fig. 7, we con-

structed this way some highly regular biorthogonal balanced multiwavelets with compact

support and symmetry starting from Chui's 1st order balanced multiwavelet and using for

example

T1(!) = T2(!) =

0
@ (1� z)2 �z(1� z)

(1� z)2 (1� z)2

1
A (96)

where z = e�j!. Nevertheless, the issue of maintaining the orthogonality during this

process remains open.

V. Conclusion

After recalling some basic facts about multiwavelets, we introduced some of the prob-

lems we face applying multiwavelets in signal processing. We gave a new way to solve these
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problems: the balanced multiwavelets. However, some questions remain open. We still

have to develop some systematic and simple way to construct orthogonal balanced multi-

wavelets with the desired approximation power. An important issue is also the preservation

of higher order polynomial signals by orthogonal multiwavelet based system. This will cer-

tainly bring some further developments and applications in the �elds of one dimensional

signal processing.
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