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Abstract 
The performance of many color science and imaging algorithms 
are evaluated based on their mean errors. However, if these errors 
are not normally distributed, statistical evaluations based on the 
mean are not appropriate performance metrics. We present a non-
parametric method, called the Wilcoxon signed-rank test, which 
can be used to evaluate performance without making any 
underlying assumption of the error distribution. When applying the 
metric to the performance of chromatic adaptation transforms on 
corresponding color data, we can derive a new CAT that 
statistically significantly outperforms CAT02 at the 95% 
confidence level. 

Introduction 
Chromatic Adaptation Transforms (CATs) are used in color 
science and color imaging to model illumination change. 
Specifically, they provide a means to map XYZ under a reference 
source to XYZ under a target light such that the corresponding XYZ 
produce the same perceived color.  

The color science and imaging community has mostly adopted the 
linear von Kries adaptation model to compute this illumination 
change [2, 3, 8, 10]. This model states that the color responses of 
corresponding colors under two illuminants are simple scalings 
apart [12]. For example, if RGB and R'G'B' denote the color 
responses for an arbitrary surface viewed under two lights, then the 
von Kries model predicts that R'=aR, G'=bG, and B'=cB. In 
modern CATs, the scaling coefficients a, b, and c are the ratios of 
the color responses of the illuminants, i.e. a=Rw/R’w, b=Gw/G’w, 

and c=Bw/B’w. However, the CATs differ in the color space in 
which this scaling is applied.  

It is well known that the von Kries model operating in XYZ color 
space poorly describes corresponding color data (applying the 
scaling on XYZ tristimulus values is often referred to as the “wrong 
von Kries”). Thus, most modern CATs proposed in the literature 
are based on colorimetric color spaces [6], i.e. color spaces that are 
derived as a linear transformation of XYZ: 
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where M is a nonsingular (3x3) matrix linearly transforming XYZ 
values to RGB responses, M-1 its inverse and D the diagonal 
matrix containing the scaling coefficients.   

The color space in which the scaling takes place, i.e. the linear 
transformation from XYZ to RGB, is usually derived based on 
some error minimization. Li et al. [8] iteratively optimized the 
coefficients of matrix M to produce minimum CIELAB color 

differences between predicted and observed results over a set of 
eight corresponding color data sets [9]. A modified version called 
CAT02 that excluded some of the successive haploscopic 
experimental data in the minimization was chosen for the 
CIECAM02 color appearance model [10]. Fairchild [2] used 
Munsell samples to calculate corresponding colors under 
illuminants A and D65 using the non-linear Bradford CAT [7] of 
CIECAM97s. He then developed a linear CAT by minimizing the 
CIELAB differences to the predictions of the Bradford CAT on 
this corresponding color data set. Finlayson and Süsstrunk [3] used 
spectral sharpening that minimizes XYZ leat-square errors to derive 
a linear CAT from Lam's corresponding color data set [7].   

Several studies evaluated the different linear CATs mentioned 
above to find if one outperforms the other [1, 8, 10, 11]. In these 
studies, the performance criterion is based on the mean CIELAB 
prediction error. However, a single summary statistic does not 
always adequately summarize the underlying distribution. Having 
a lower mean does not necessarily imply that one algorithm is 
always better than the other.  

In section 2, we discuss the underlying assumptions made when 
using a performance metric based on a mean error and propose a 
more appropriate statistical evaluation, namely the Wilcoxon 
signed-rank test, for populations that are not normally distributed. 
In section 3, we derive a new linear CAT that outperforms CAT02 
at the 95% confidence level when tested on Lam's corresponding 
color data set. Section 4 concludes the article with a summary and 
some guidelines for evaluating color experiments. 

Color Error Analysis 
When evaluating chromatic adaptation transforms, we are 
interested in which transform best maps illumination change. A 
number of psychophysical experiments, collected by Luo and 
Rhodes [9], provide us with corresponding color data. 
Corresponding colors are pairs of tristimulus values, based on one 
physical stimulus, which appear to be the same color when viewed 
under two different illuminants. A “good” CAT's prediction of the 
tristimulus values of a corresponding color under a test illuminant, 
obtained by mapping the tristimulus values under the reference 
illuminant to the test illuminant, is thus (close to) identical with the 
actual corresponding color obtained by the psychophysical 
experiment. 

Deviations from actual and predicted values can be expressed with 
some error measure. As we are interested in color appearance, a 
perceptual measure seems the most appropriate. ∆E, which is 
calculated as the Euclidian distance in CIELAB, is indeed such a 
metric. As CIELAB is not perfectly perceptually uniform, ∆E94, 
∆ECMC, ∆E2000 were later derived that add different weights 
depending on hue, saturation, and/or lightness of the color samples 
to be evaluated.  



 

 

These error measures can tell us how accurately a particular CAT 
maps a color to a different illuminant, and they allow us to easily 
compare the relative performance of different CATs on a single 
corresponding color pair. However, we are generally more 
interested in the performance over a large set of corresponding 
colors, as a CAT should predict many corresponding colors under 
many different illuminants. Often, a single summary statistic is 
chosen, such as the mean (or root mean square) ∆E, averaged over 
the data sets. If the mean error for one CAT is found to be lower 
than the mean error for the other CAT, then the conclusion is 
drawn that the first CAT is better than the second. 

There are two potential problems with using the mean as a single 
summary statistic. First, the mean value is not an appropriate 
statistic when the errors are not normally distributed [13]. Figure 1 
shows the histogram of CAT02 [10] prediction errors (∆E94) on 
Lam's corresponding color data [7]. Figure 2 plots the quantiles of 
this error distribution against quantiles of a standard normal 
distribution. It is clear from the histogram (Figure 1) that the errors 
are not normally distributed. If they were, then the plot of the 
quantiles would follow a straight line (Figure 2).  

 
Figure 1: The distribution of CAT02 prediction errors (∆E94) on Lam's 
corresponding color data. 

If the error distribution is not normal, the error median is a better 
measure to reflect the central tendency of the samples, as it is not 
influenced by extreme values [13]. 

Second, the fact that one CAT has a lower mean (or median) value 
than another is not sufficient information for drawing the 
conclusion that one CAT outperforms the other. An alternative is 
to use the whole error distribution. We can use the mean 
performance of the CATs to formulate a hypothesis and then test 
this hypothesis, as was done by Finlayson and Süsstrunk [4], who 
employed a student t-test and found an infinite number of CATs 
that perform equally well for a given confidence interval. 
However, if the error distribution is not normal, we need to use a 
nonparametric (or distribution-free) method to test the hypothesis 
that a better median predicts a better CAT performance. A non-
parametric alternative to the student t-test is the Wilcoxon signed-

rank test, which makes no assumptions about the nature of the 
underlying error distributions, but takes into account the sign and 
rank of the error difference.  

 
Figure 2: Quantiles of the error distribution plotted against the quantiles of a 
standard normal distribution. 

Suppose we want to compare the performance of two CATs. We 
use each CAT to predict the corresponding colors under the test 
illuminant of a given data set. We calculate the error, using one of 
the error measures described above, between the actual and 
predicted corresponding colors. Let A and B be random variables 
representing the prediction error, and µA and µB their respective 
median. The Wilcoxon signed-rank test can be used to test the 
hypothesis that µA=µB, i.e. we hypothesize that both CATs have 
the same performance. We call this the null hypothesis H0. To test 
this hypothesis, we consider the difference of the independent 
error pairs (A1-B1)...(AN-BN) for N different corresponding color 
pairs. We rank the error pairs according to their absolute 
differences, and then assign a plus (+) or minus (-) sign to the 
ranks depending if Ai>Bi or Ai<Bi. If H0 is correct, then the sum of 
the ranks W will approximate zero. If W is much larger (or much 
smaller) than zero, the alternative hypothesis H1, namely that 
µA>µB or µA<µB is true. We can test the null hypothesis H0 

against the alternative hypothesis H1 at a given significance level 
α. We reject the null hypothesis and accept the alternate 
hypothesis if the probability of observing the error differences we 
obtained is less than or equal to α. For example, if α =0.05 and the 
probability p we calculate is 0.04, then we can reject H0 at the 0.05 
significance level. That amounts to rejecting the null hypothesis 
95% of the time. 

CAT Experiment 
We used a spherical sampling technique [4] to evaluate if we can 
find a chromatic adaptation transform that outperforms CAT02, 
using the Wilcoxon signed-rank test as performance metric. In the 
case of trichromatic (RGB and XYZ) imaging applications, the 
basis functions span a three-dimensional space. If the lengths of 
the vectors are normalized to unity, then different vector 
combinations can be illustrated with their end-points that lie on the 
surface of a sphere. Trying all possible combinations of three 



 

 

points distributed over the surface of the sphere allows us to find 
all possible solutions to a given problem. The advantage over other 
optimization techniques is that spherical sampling assures a global 
minimum is found, and that not only one, but a set of solutions can 
be retained if so desired.  

We used Lam's corresponding data set and an error measure of 
∆E94. While it is obvious that the choice of error measure could 
influence the results, two studies have found that for the 
corresponding color data sets considered, which ∆E error measure 
was chosen did not change the overall trends [8, 11].  

Table 1 summarizes the mean values and the p-values found using 
the Wilcoxon signed-rank test as performance metric. The 
prediction errors of the best CAT found through spherical 
sampling was compared to CAT02 [10] and the Sharp CAT [3]. As 
can be seen from the results, the best CAT (W-CAT) outperforms 
CAT02 at the 95% confidence level (p<0.05). However, the 
difference in median between W-CAT and the Sharp CAT are not 
statistically significant. Figure 3 shows the corresponding RGB 
color matching functions. 

Table 1: Median ∆E94 values for Lam's data set, and probability 
p-values resulting from the Wilcoxon signed-rank test. 
CAT Median ∆E94 p-value 
W-CAT  
CAT02 
Sharp 

2.61 
2.67 
2.69 

 
0.04 
0.60 

 

 
Figure 3: The RGB color matching functions of W-CAT (solid line), Sharp CAT 
(--), and CAT02 (-.-). 

Conclusions 
Many color algorithms are evaluated using the mean error as a 
statistically relevant performance metric. However, the underlying 
assumption that the error distribution is normal was shown to not 
always be true [5]. Thus, we believe that using the median as a 
singular quality indicator, and the Wilcoxon signed-rank test as a 
performance metric that also takes into account the underlying 
error distribution, is more applicable to many performance 
evaluations in color science and color imaging. Thus, the 

distribution of errors should first be analyzed before the statistical 
evaluation method is chosen. 

We analyzed the error distribution of the predicted corresponding 
colors using CAT02, the chromatic adaptation transform chosen 
for CIECAM02, applied to Lam's corresponding color data set. We 
found that the errors do not follow a standard normal distribution. 
Using the Wilcoxon signed-rank test as performance metric and a 
spherical sampling technique, we derived a chromatic adaptation 
transform W-CAT that outperforms CAT02 at the 95% confidence 
level. 

We are not claiming here that W-CAT outperforms CAT02 in all 
instances; this still needs to be evaluated. However, it is interesting 
to note that a performance metric more suited to the error 
distributions challenges the assumption that all modern CATs 
perform equally well.  

When comparing W-CAT to Sharp CAT, we cannot find a 
statistically significant difference in performance between the two. 
Looking at the corresponding color matching functions in Figure 
3, we notice that W-CAT is “sharper” in the red, i.e. more 
narrowband than CAT02. While not quite as sharp as the Sharp 
CAT, the peaks in the red are approximately at the same 
wavelength, while CAT02's peak is at shorter wavelength. Recall 
that the Sharp CAT is derived through XYZ error minimization of 
Lam's corresponding colors [3] and not through optimization of a 
perceptual ∆E error. This leads to the conclusion that at first 
approximation, sharpening is well suited to derive transforms that 
can predict corresponding colors. 
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