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The Plenacoustic Function and its Sampling
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Abstract

We study the spatialization of the sound field in a room, irtipalar the evolution of room impulse
responses as a function of their spatial positions. We gbdhiat the multidimensional spectrum of the
solution of the wave equation has an almost bandlimitedaaitar. Therefore sampling and interpolation
can easily be applied using signals on an array. The decdyeatectrum is studied on both temporal and
spatial frequency axes. We study how this decay influencepénformance of the interpolation. Based
on the support of the spectrum, we determine the number andphcing between the microphones
needed to reconstruct the sound field up to a certain temfreqlency. The optimal sampling pattern
for the microphone positions is given for the linear and tlear case. Existing techniques usually make
use of room models to recreate the sound field present at someip the space. Our technique simply
starts from the measurements of the sound field in a finite enmbpositions and with this information
the total sound field can be recreated. Finally, simulatiang experimental results are presented and

compared with the theory.

Index Terms

Plenoptic function, room impulse response, sampling ririation, sound field sampling, acoustic

echo cancellation.

. INTRODUCTION

Assume you are in a concert hall, and you want to faithfullgaldbe the acoustic experience at any

location in the hall. What is the evolution of the sound fielatiospace? And if you record the acoustic
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event with an array of microphones, how many do you need toblee ta reproduce the experience at
any point?

Conversely, assume a virtual acoustical environment, &Beurces are moving, while the listener is
in a particular spot. How finely do you need to simulate theuatio impulse response to be able to place
the source at any location?

The answers to the above questions, as well as related anés,the spatio-temporal acoustic sound
field and its properties. We call this field thenacoustic functioffPAF) in reference to the plenoptic
function introduced by Adelson and Bergen [1] and which defitall views in a room”. More precisely,
the plenoptic function is given by a seven dimensional fiemctf (x, y, z, 6, 2, A, t) which describes the
intensity of the light field seen at locatiofx, y, z) when looking in direction(¢, ), at wavelength\
and timet. Thus, given an acoustic event in a room, we can define the [RARy, z,t) as the sound
recorded at locatioriz,y, ) and timet!. The PAF is the solution of the acoustic wave equation (we
chose to give it this particular name referring to the plaimofunction that is the solution of the wave
equation for light).

Often, we will be concerned with the case of a single pointre®uNamely, for a given sourc§,
we denote the room impulse response (RIR) at locationy, z) by h(x,y, z,t), and then, if the source
generates a signalt), the PAF is

p(z,y, z,t) =/ s(T)h(x,y, z,t — T)dr.

—o0
When the emitted sound is a Dirac pulse, the PAF becomes withpl spatio-temporal RIR. The PAF
is then the Green’s function. By the superposition prirgiphe total sound field can be regarded as the
sum of all point sources convolved with their spatio-tenap&tIRs.

From the view of the physicist, the PAF is simply the solutadithe wave equation with appropriate
boundary conditions, and a given driving function. From trant of view of the numerical analyst,
the system would be very complex for any reasonable roomm &arevery simple cases. For the signal
processor, acoustic RIRs have been studied, measuredranthtsd for many scenarios, and it is thus
natural to study the PAF globally. A natural question for gnsil processor is of course the sampling
guestion: is there a discrete set of points in time and space Which the full PAF can be reconstructed?
The equivalent question for the plenoptic function was posed solved by Chai et al [2] with further

results from Zhang et al [3]. For the time dimension, we assbandlimited sources to allow sampling in

1If we use directional microphones, we can add directibrad Q as well.
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time. The more interesting question is of course samplirgpace, which directly relates to the number of
microphones necessary to acquire the PAF. Interestirtghy,possible to show that the PAF is essentially
bandlimited in space, and this to a spatial frequenrgyvhich is related to the temporal frequeneyin

a linear manner

o=

C )
with ¢ being the sound speed propagation. Thus, if the time donigiiralsis bandlimited tavy, then the
spatial frequency is limited t¢2, and the PAF can be sampled with a spatial distahce

cm
d=—.
wo

For high quality audiod is quite small (e.g. a sampling frequencyddf1 kHz corresponds td = 0.8 cm)
and thus not necessarily very practical with current tetdgyo For voice quality audio8 kHz sampling
frequency corresponding = 4.5 cm), the spacing becomes more reasonable. A typical setrupdo

measurement of the PAF, as well as the spatio-temporalrsppectf the PAF are shown in Fig. 1.

%{n> .

(a) (b)

Fig. 1. Plenacoustic function. (a) Measurement of the PARoddspeaker emits a propagating wave. This sound wave is
recorded using an array of microphones. (b) Correspondiatjcstemporal spectrum of the PAF. The axeandw are spatial

and temporal frequencies, respectively.

The purpose of this paper is to study the characteristicchefRAF in detail, in particular for a
room (including air and wall absorption). The key is to derithe essential support of the spatial-
temporal frequency response of a room, and to derive dedag keyond the essential support. Given
this characterization, sampling theorems and interpmigtirmulas can be derived. The results are verified

both through simulation experiments and through measurtnie actual rooms.

2The notion of essentially bandlimited will be made more Eecbut means that most of the energy is within the bandlimit
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Beyond the fundamental interest of characterizing précite PAF and its sampling, the results are
useful in spatial audio applications. For example, it iatks to what extent a microphone array can be
used to interpolate any spatial location. Or conversely hany spatial positions of a source are needed
to synthesize arbitrary positions for a virtual source. AtHar application can be found in acoustic
echo cancellation. If a frequency domain adaptive filter sedy the essential triangular support of the
spatio-temporal Fourier transform gives an indication iffecent rates of changes at different temporal
frequencies.

The name of the plenacoustic functfomas been for the first time mentioned in [4]. The first analysis
of the function has been given in [5]-[7]. Previous literatexists on the bandlimited character of the
solution of the wave equation (acoustic or EM case) alondgah®oral and spatial frequencies but always
under the far field assumption as well as the infinite charaxftéhe array [8]. Recently, and in parallel
to our work, Coleman [9] has investigated the wide-bandteletagnetic impulse response in far field,
deriving sampling results under this assumption.

From the knowledge of the PAF in a region of space, extrajpmladf the sound field can also be
obtained in other regions of space. This is related to wave §gnthesis (WFS) [10] and will not be
discussed in the present paper. The WFS is based on the Huggeaiple stating that the propagation of a
wave through a medium can be qualitatively described byragitiie contributions of all secondary sources
positioned along a wave front. Measuring the sound field omfamnite plane of microphones would allow
us to reconstruct the sound field in any point of the souree-fralf space, which is interesting in a free
field situation. Recent techniques have shown interesesglts even usind-dimensional microphone
arrays (mostly circular arrays) but limitations occur whenng to extrapolate rea-dimensional RIRs
[11].

The outline of the paper is the following. In Section Il, weepent the PAF and its construction.
Section 1I-A reminds the reader what RIRs are and how they lmarsimulated, while Section II-B
constructs the space-time representation. Section Iiesuthe spectrum of the PAF on a line in the
room. We describe its spatial and temporal frequency degageiction IlI-A and 11I-B respectively.
Section IV studies then the sampling of the PAF. We presentstimpling of the PAF in Section IV-A
followed by a sampling theorem in Section IV-B. With the sdmajfunction, we would like to reconstruct

the field in every possible position. This is shown in SectiéfC. Limitations due to the finite length

3Remark that the plenacoustic and plenoptic functions apeessions mixing Greek and Latin roots. The Latin expressio

would be "the plenaudio function” while the Greek expreaswould be "the panacoustic function”.
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of the array are taken in account in Section V. The theoryemesl in this paper is then verified using
simulations in Section VI-A and measurements done in rear@mments in Section VI-B. Section VII
is devoted to the generalization of the PAF to multidimenalcspatial positions. Different setups are
considered: the lines of microphones and loudspeakers é¢tioBeVIl-A, the plane of microphones in
Section VII-B and finally the3-dimensional space filled of microphones in Section VII-Qiufe work

is discussed in Section VIII. The conclusions are drawn iotiBe |X.

[I. CONSTRUCTION OF THE PLENACOUSTIC FUNCTION

To study the sound field along a line of microphones in a roomneed to study the sound field from
every possible source position in the room to any possib&eaphone position on the line. For simplicity
we present the technique for a single source but it will benshiater that the technique works as well
for multiple sources. Consider a sourSeemitting a signals(¢). The microphones located on the line
will not record exactlys(¢). The sound at microphone; is s(t) convolved with the RIR corresponding
to the direct path betweesi andm,, followed by a possibly infinite number of reflections on thalles
(each microphone will receive a sum of delayed and atteduagesions ofs(¢)). At another microphone
positionms, the recorded signal will be different since the RIR fraifrto ms is different than the RIR
from S to m;. The only parameter changing between the different spatisitions is the RIR. Therefore

the rest of the analysis of this paper will be focused on traiapevolution of the RIRs.

A. Modeling the room

In order to calculate the PAF in a room, we need to know the RiRany point in the room. We use
the image method discussed in [12] for the simulations ofsRIFhe method is based on the creation of
virtual sources in order to simulate the effect of the reftexst on the walls. In the case of a rectangular

rigid-walls room of siz&(L,, Ly, L), the RIRs are given by [12]:

L& 8t |y + dul/e)
PSM=0) 2L Tl v W

p=0v=—00
whered, = (x5 £ Tm,Ys £ Ym, 2s = 2m), do = (2lL,,2nLy,20L;), (I,n,0) being an integer vector
triplet andc¢ the speed of sound propagation. The RIR is a function of time ia dependent on the
sourceS = (zs,ys, zs) and the microphone positioh! = (z,,, Ym, zmm). The first sum shows that in a
3-dimensional field, 7 virtual sources are created in additiothe original source. The second sum shows
that sound between two parallel rigid walls is infinitely egverated. More general formulas taking into

account the reflection factors of the walls are given in [T2}e practical limitation of the method is the
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guantization rounding in the computation of the RIR. Eacldm contribution is computed exactly but
needs in practice to be rounded to the closest sample in fiilms.leads to aliasing in time and space.
In our simulations, we have replaced each dirac by sinc fonstof appropriate bandwidth delayed with
the exact non integer delay. This removes the aliasing teffémvever, as the sinc functions have a very

slow decay in time, one has to consider long enough RIR tavalhe sincs to sufficiently vanish.

B. Space time representation

With the RIRs as defined in (1), we construct the PAF for a limghie room. In that case, we can
construct a2-dimensional graph by gathering all the RIRs at any posibanthe line, leading to &-
dimensional continuous function of space and time. Spamesents the position, time being the duration
of the RIR. This representation is shown in Fig. 2(a) when lagis recorded on a line of microphones

in free field and in Fig. 2(b) for the case of a room.
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Fig. 2. PAF in time and space. (a) In free field. (b) Inside amwoo

[1l. SPECTRUM OF THEPAF ON A LINE

In this section, we study the PAF on a line and its associstetagm. We give a analytical expression
of 2D-FT of the PAF. Further, the spatial and temporal frequestwyay of the spectrum of the PAF are
studied.

A. Spatial decay of the spectrum of the PAF

We give an analytical expression for thedimensional Fourier transforn2D-FT) of the PAF. This is

first reviewed for the free field case, followed by a generainida in the case of a rectangular room.
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1) Free field case:We study the evolution of the RIR along theaxis. The PAF in space and time

domain is given by the following formula [13]:

5(t _ \/(I—$5)2+(ym—y5)2+(zm—25)2)

c

p(l’,t) = (2)

/(@ = 2)% + WY — ys)? + (2m — 26)7
We only vary ther component of the microphone. For simplicity, we remove thigssript in the variable
T, denoting it byz. The variables),,, z,, xs, ys andz, are constant. Calling? = (y,, — vs)% + (2m —
25)%, we rewrite (2) as

5(t — (m—zzs)2+d2)
A/ (x — x5)? + d?

We calculate the spectrum of this function in Appendix |. Tdigained result forv € RT and¢ € R

p($7 t) = (3)

is*:
Plow) = ey (a2 - o). @

with ¢ andw being respectively the spatial and temporal frequenéigsepresents the complex conjugate
of the Hankel function of order zero. This function is infeniin zero. Therefore when eithér= 0 or

|¢| = ¢ the plenacoustic spectrum becomes inffit€he values whereg| > £ correspond to the
evanescent mode of the waves. The waves lose their propggdtaracter to become exponentially fast

decaying waves [14]. Remark also that fof > <, (4) becomes:

Po.w) = g (ayfor— (21), ®)

where K| is a modified Bessel function of the second kind and order.ZB1e modified Bessel function

of the second kind has the following asymptotichéhaviof (see [14]):

Ko(x) ~ /57" (6)

Sincep(z,t) is a real function, we have thdt(—¢, —w) = P*(¢,w), with P* the complex conjugate aP. To simplify
the notation, all further derivations are done forc R*.

5d = 0 corresponds to the situation where the source is located@rirte of the microphoness is the spatial frequency
of the signal captured on the line of microphones. Considsinasoid of temporal frequenay rad/s emitted from a certain
position. The signal acquired by the microphones locatgabaitions tending to infinity is at one instant an attenuaiedsoid
of spatial frequency? rad/m. Remark also that for the microphone positions atitgfime source appears as being on the line.
In the case of the line of microphones, having a source onitieeléads to an infinite spectrum.

f(x)

6f(z) ~ g(x) means thatlim ——% =1.
f(z) ~g(z) thm @)

"Further numerical computations show tig§(z) < \/=e * for z > 0.
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Fig. 3. TheoreticalD spectrum of the PAF according to (4).

For large¢, (5) can be rewritten using (6) as:
1 . s =
~ —pdbms [T —dy /¢ (%)?
For a finitew = wy, (7) asymptotically behaves as:
e_j(bxs 1
2y \ do

We see that the decay along the spatial frequency axis isnexpial. Therefore, considering, ¢ € R,

P(¢,wo) ~ e . (8)

most of the energy is contained in the part of the spectruisfgiy
ol < 2 ©

C

This result will be used later in the sampling of the PAF. As #pectrum is decaying very fast along
the spatial frequency axis, we will be able to derive a samgptheorem to sample and reconstruct the
PAF along the spatial axis (see Section V).

2) Rectangular room:In the case of a rectangular room of sigk,, L, L.), we consider all the
reflections as virtual sources as explained in Section |IF8l apply the superposition principle. The
expression for the PAF is then given by (1). Each virtual seueads to a spectrum that follows (4).
The total spectrum of the PAF is the sum of the spectra of eatlnalsource taken separately, leading
to an infinite sum. We would like to know how this sum is decayiar large spatial frequencies.

We present results on the decay of the spatial frequencyere#isier case of all the virtual sources
located in the plane. Similar results are obtained in theegdrcase of sources located in space.

We use the image model given in Fig. 4. Our original sourcg iGwith coordinategz,,ys,)) and in
its immediate neighborhood, we can skether virtual sourcess¢, s; ands4). These4 mother sources
will create an infinite number of repetitions to form all thigtwal sources in the plane. Theganother

sources will be repeated in theandy direction with a periodicity oRL, and2L, respectively.
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Fig. 4. Image source model with the original sourgeand all the other virtual sources.

As the room has finite size, we cannot consider an infinite dhenicrophones. We consider the
microphone line to cover the whole length of the room. In RBigthe line is parallel to the axis.

We define the distances from souregsand s, to the line of microphones a$ andd, respectively
(with d; < ds). The other distances for the souregsands, to the line are in this case alsh andd,.

An interesting aspect of this construction is that by #ie. periodicity of the source positions along
the = axis, the sound recorded on an infinite line is also periodib weriod 2L,. Further, using the
symmetry of the construction, we realize that the sounddchaapositione is the same as the one heard
at position2L, — e with € € [0, L,].

By discretizing the spectrum of the PAF on theixis, and introducing, = /-, we exactly obtain the
Fourier series of the sound field recorded on a line ffbto 2L, when this sound field i& L, periodic.

Considering thel mother sourcess{ to s4) with their periodic repetitions along theaxis, the discrete
spectrum of the PAF can be expressed as follows (for lakgg:

e~ indoTs, e~ InPoTs, > ( e—d1ingo e—dando >
+ + .
2ﬁ 2ﬁ \/dlngbo \/dgnqbo

P(ngo,wo) ~ (

We therefore can write

(10)

e—dindo  g—dango
Plngo,wo) ~ Ciln) <\/d1n<250 " \/d2n¢0> 7
with C(n) a bounded function im.

Consider now th@L, periodic repetitions of the sources along thaxis. We call the sources ; the
sources with coordinatés, , y,, +i2L,) and similarlys, ; the sources with coordinates,,, y,, +i2L,).

Call D, ; the distances between the line of microphones and the sourge and D, ; the distances
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between the line of microphones and the sourggs We have that
Dy; = |di +142L,],
Dy; = |dy+1i2L,).

)

When considering all the source repetitions in thandy directions, the spectrum becomes:

e e_Dl,in¢0 e—D2,iTL¢0
P(ngo,wo) ~ Ci(n) > NONCT + JDrnge ) (11)

The right member of (11) can be rewritten as:
00 —(d1+i2Ly )no —(d2+i2Ly Yo —(d;+i2L, )neo —(dy+i2Ly o
€ (& (& (&
Ci(n) Y . + . + —— +—— [(12)
P V(di +i2Ly)ngy  /(d2 +i2Ly)ngg  +/(d] +i2Ly)nge  +/(dy + i2Ly)ngy
with d; = 2L, — d; andd, = 2L, — d».

(12) can be upperbounded by

O [ o—(di+i2Ly)ngo  p—(da+i2Ly)ndo  p—(dy+i2Ly)ndo o (daFi2Ly )ndo
Ci(n) ) + + , +—F (13)
P Vdingg Vdangg Vdindo Vdyneo
Finally, for largen, (13) can be rewritten as
Cs(n) —dingo —dzneo 02(n)6—2Lyn¢o dingo dando
1 — e—2Lyngo (6 Te ) + 1 — e—2Lynoo (6 +e ) ’ (14)

with Cy(n) a bounded function im. Sinced; < d» < 2L,, asymptotically for largen, the above

expression is of the following ordér
P(no,wo) = O(e™"%). (15)

This shows that for a reverberant room, the decay is exp@iavtien the line of microphones is parallel

to a walP.

8f(x) = O(g(z)) means that there are positive constannd k, such that f(z)| < cg(z), Vz > k.

®The case where the line of microphones is not covering thdemeogth of the room is discussed in Section V-A. The case
where the line is not parallel to the wall is studied in Append/. There, the line is extended along the periodic repmii of
the room and it is shown that the measured sound field has amenpally decaying spectrum. The restriction of this iiéin

line inside the room can then be seen as a windowing as erpglamSection V-A.
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B. Temporal frequency decay

The study of the temporal frequency decay is of interest ltg fiharacterize the plenacoustic function.
Nevertheless, in most cases we deal with sounds that ardil@ad along the temporal frequency due
to the bandwidth of the emitters and receivers. Therefdre, results of this section will be briefly
presented since they only are interesting from a theotgbicet of view. The more detailed analysis
of the presented results can be found in [15]. Similarly tat®e IlI-A, we first present results on the
temporal frequency decay for the free field case and gemertiliem further for a rectangular room.

1) Free field: The spectrum of the PAF is given by expression (4). The asyticpbehavior of the

Hankel function is given by [14]:

2
Ho(z) ~ (] —el @7/, (16)

™

For largew, (4) can be rewritten using (16) as:

i ' —jd\/(%)*=¢*
P(p,w) ~ ——Temildm.—m/2) €

e .
2V 2w d (%)2 — 2
Considering a finitep = ¢q, (4) asymptotically behaves as:
IVE _itdora—mjn € %
P(¢g,w) ~ — eI (Pozemm/4) : 17
Therefore we have that
Cs(w)
P ~ 18
(¢07 w) \/a ) ( )

with Cs(w) a bounded function ab. This last relation shows that the PAF spectrum along theteat
frequency decays %

2) Rectangular room:In the case of a rectangular room, we follow the same corgtru@s in
Section IlI-A.2. Considering thé mother sourcess( to s4) in Fig. 4 with their periodic repetitions

along thex axis, the discrete spectrum of the PAF can be expressedlawdoffor largew and a finite

n = np):
—jelm/t » e—ih2  o—jdz%
P(n , W 4 <e Jnogos, +e jno¢0ms2> 4
(nogo,w) ors — —
—jd, —jdy
~ Cy(ndo) ‘ 4 € ,
\/dlw \/dgw

with C4(n¢p) being independent ab.

Considering theL,, periodic repetitions of the sources along thexis, we obtain:

[ o=iDii®  o—iDa®
P(no¢o,w) ~ Ca(ngo) » NI + NIYE

1=—00
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It is shown in Appendix V that this sum converges and that

P(nogg,w) ~ %7

with C'(w) a bounded function of. The spectrum of the PAF along the temporal frequency deaays

—L in the case of a rectangular room.

w

IV. SAMPLING AND RECONSTRUCTION

In the previous sections, we have studied the decay oREhespectrum of the PAF both along the
temporal and the spatial frequency axes. We have obseraéethtnspectrum of the PAF lies on a support
that is almost bandlimited. This result is valid for a singtairce, but also for a finite number of sources
(by superposition principle). In the scope of this paper,ame mostly interested in the sampling of the
sound field along the spatial axis. As we cannot use any $jgatigaliasing filter in the spatial direction,
the speed of the spatial frequency decay ofabBespectrum of the PAF is the key factor for the quality of
the reconstruction. Along the temporal direction, we are &b filter our signal in the temporal direction
in order to avoid aliasing.

In this section, we present the sampling theorem of the PAEravtwe derive the quality of the
reconstruction when sampling the sound field in space. Egrihterpolation techniques are discussed in

order to reconstruct the signal from the available samples.

A. Plenacoustic Sampling

In order to uniformly sample the PAF along the spatial dimttwe consider a uniformly spaced
infinite number of impulse responses. We cadl the spatial sampling frequency defined%@ where
Az is the sampling interval between two consecutive positmihie measured impulse responses. Next
to the spatial sampling, we also need to sample the RIRs attaircéeemporal sampling rate depending
on the desired audio bandwidth. We cal} the temporal sampling frequency. We have = % with
At the sampling period of the impulse responses.

In the temporal dimension, one can always bandlimit theaditpefore sampling it in order to avoid
aliasing. Along the spatial dimension, no spatial filteringpossible. Therefore we concentrate first on
the spatial sampling.

The schematic top view of the spectrum of the PAF is shown @ 5{a). When sampling the PAF

along the spatial dimension with a spatial sampling fregyef ¢, repetitions of the spectrum occur as
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shown in Fig. 5(b). Considering these spectral repetititvessound field can perfectly be reconstructed
up to wg with

chg cm
Wo == = A (19)
Remark that in Fig. 5(b), the region in bold corresponds ® riegion that is perfectly reconstructed.

This means that the lowest spatial frequencies can be rnotexd up to a temporal frequency afy.

(a) (b)

Fig. 5. PAF spectrum. (a) Top view of the PAF spectrum. (b) Vagw of the PAF spectrum with its repetitions due to the

spatial sampling. The region in bold corresponds to theoregif the spectrum that can be perfectly reconstructed.

We consider now the temporal sampling of the PAF. We first biamitdthe signal towg = “‘% and we
sample it with a temporal sampling frequencyw§ = 2w,. Repetitions of the spectra occur now also
along the temporal frequency. The obtained spectrum foPfieé sampled in space and time is shown
in Fig. 6(a).

Conversely, by starting the analysis with the temporal demgpwve can say that if the maximal temporal
frequency present in the signaldg, then by sampling the signal at a temporal sampling frequerfc
wg = 2w, We obtain the signal whose spectrum is shown in Fig. 6(b)elilue sample this signal along
the spatial dimension, it is necessary to chogpse> 2% in order to avoid aliasing. Fig. 6(a) represents
the critical case whergg = 2.

The final expression for our sampled PAB spectrum (denoted aBs) becomes:

I S 27k: 27ks

1=—00 ky=—00

B. A Sampling theorem for the PAF

Consider now the spectrum of the PAF at a particular tempoeguencywy. It will have the shape

given in Fig. 7(a). When the PAF is sampled, repetitions ef $hectrum occur as shown in Fig. 7(b).
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(a) (b)

Fig. 6. PAF spectrum. (a) PAF spectrum with its spectral tidpes along the temporal and the spatial frequencies P&}
spectrum with its spectral repetitions along the temporagjdencies. In both figures, the region in bold correspondghe

original spectrum bandlimited along the temporal freqyewithout spectral repetitions.

P

(a) (b)

Fig. 7. Magnitude of the spectrum of the PAF. (a) Cut of thectpen of the PAF for a particular temporal frequency. (b)

Sampled spectrum of the PAF with its spectral repetitiomsafparticular temporal frequency.

As the spectrum is not perfectly bandlimited, the repeigiovill affect the reconstruction. We present a
theorem that quantifies the SNR of the reconstruction of & r one source emitting in free field.
Call SNR ¢, wp) the SNR of the reconstruction for a sinusoid emitted at feeqyw = wy with the
microphones positioned with a spatial sampling frequepgy= 2¢x. In the present case, we define the

SNR as follows:

12 P60 200
SNRON-0) = 4 = [P (w20 20)

The numerator in (20) corresponds to the energy of the gpactf the PAF at temporal frequency

wp. The denominator in (20) corresponds to the energy cordaimehe spectral repetitions that will
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contaminate the reconstruction in the spectral domain teféstC.

Theorem:

Assume one single source emitting in free field at a frequeneyw,. When sampling theD spectrum
of the PAF at a spatial sampling frequency2afy, for a particularw = wg, and reconstructing it using

an ideal interpolator, the SNR of the reconstructed sigmahé band—¢y, x| can be expressed as

1
SNR(qu»wO) = 0 ] (21)
2df¢:¢N H02(dw /(70)2 — ¢2)do
When consideringdy > %, the SNR can be lowerbounded:
SNR(¢, wp) > “ : (22)

E; <2d, [$3r — %2>
where E; () represents the exponential integral function.

Proof:
The numerator in (20) can be rewritten using the Parsevatioal as follows:

o0
o / 5, wo)|Pdlr,
T

=—00

with p(z,wp) the inverse Fourier transform d?(¢,w,) along the spatial axis. We have that, wy) =
“’OV 1-2+d2

QW’ and therefore the numerator in (20) is
27 & 1 1
— ———dr = —. 23
1672 /z:_oo 212 TR (23)

Using (4) and (23) in (20) leads to (21).

When consideringgy > =2, the denominator in (20) is

o[ KR (ayfer - (2] e

Using the fact thatK2(d./¢? — (=2)?) %? “;((_0)) we can upperbound the denominator as

follows:
1 [e%e) —2d P2 — (“)0) —2dz
/ = / - (24)
. d /¢2 wWo 2 27Td \/d)z—i /22 0
In the denominator, two different kinds of energy are prestiie "in band” and the "out of band” energy. The "in-band”
energy corresponds to the energy of all the spectral repegiin the domain of interest, namely ¢, ¢n]. The "out of band

energy” is the energy present in the spectrum that is outsidee domain of interest. It can be shown that the "in-banad a

the "out of band” energies are equal in the case of an infiiite &f microphones.
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where the equality is obtained with the change of variable \/¢? — (£2)2. The right expression in

(24) can again be upperbounded as follows:

/ P <2d,/¢ (“’0)2) (25)
27d Nz e e 27rd N c ’

where E; represents the exponential integral function. Using (2&) €3), we obtain (22). |

We have computed numerically the SNR in function of différBiyquist frequencies denoted ag;.
This has been done for different temporal frequencies rgnfgom 1 rad/s to8000 rad/s. In order to avoid
numerical instability due to the infinite value of the spanirat the positionpy = %, our simulations
start for eachv at a valuegpy = % + ¢ wheree is a very small value (e.g).1 %). The results are
shown in Fig. 8 together with the lowerbound obtained in (22 can observe as expected that the SNR

increases for largedy. Note that the lowerbound follows tightly the SNR obtainadnerically.

SNR on the reconstruction for different N

=1 ®w=2000 w=4000 w=6000 w=8000

. . . . 1 1 1 .
5 10 15 20 25 30 35 40
(pN

Fig. 8. In full lines, SNR on the reconstruction signal foffglient ¢ for temporal frequencies ranging froinrad/s to
8000 rad/s. In dotted line, corresponding SNR lower bounds.

Instead of considering the SNR at a specific temporal freceme can easily use the previous result
to give the SNR on the reconstruction when the signal is ineguency bandw,,ws] with spectral

characteristicg’(w). The SNR on the reconstruction is given by the following fafm

JoZ,, B (w)dw

SNR(w1, w2, pN) = (26)
2 [, 8w) (J32,, HA(dV/E = 32)dg ) o
When consideringyy > M , (26) can be lowerbounded as follows:
™ wwiw (% (w)dw
SNR(w1,wa, ¢n) > (27)

A, BB (246} - (2)°) do
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Generalization of the sampling theorem for the cases ofiptelsources in free field or inside a room

is matter of current research.

C. Reconstruction by interpolation

Knowing the sound field at every point of the sampling grid, apply usual interpolation techniques
[16] in order to reconstruct the sound field at any locatianstFwe need to upsample our time domain
signal accordingly to the desired location. We then filteg tipsampled PAF with an appropriate
dimensional filter. The value at the location of interestisrt obtained by interpolation. The interpolation
filter to be used is dependent on the sampling grid, and magparable in time and space.

1) Rectangular samplingin the case of rectangular sampling, we just sample the PAtimia and
space domain with the sampling grid shown in Fig. 9(a). Carian of the sampling grid with the
spectrum of the PAF leads to Fig. 9(b). In this figure, we c&o ake the filter needed for interpolation,
namely a rectangular filter. In Fig. 9(b) we observe that thetial sampling frequency . Thus, the
interpolation filter is a lowpass with suppdrtéy, o). The corresponding spacing between the samples
(or microphones) on the spatial axisdsr = 2377; = ¢iN.

2) Quincunx samplingA tighter packing of the spectrum can be achieved by usingayuix sampling.

In time domain, the grid to be used is shown in Fig. 9(c). In ¢beresponding spectrum, the spectral
repetitions are placed such that they fill the whole frequespace as shown in Fig. 9(d). In this case
the filter used for interpolation is a fan filter [3], [17]. THiéer is shown in Fig. 9(d). In the quincunx
sampling the spatial sampling frequency is now oaly. This corresponds to a distance between two
samples on the space axis DAz = z—’; This shows that using quincunx sampling we only need to
sample the even microphones at even times while the odd piiorees are sampled at odd times. This
leads to a gain of facto? in the processing. However it does not reduce the number oéssary
microphones. Similar results have been obtained in [18]hin study of the far field electromagnetic

field.

V. FINITE LENGTH APERTURE

In this section, we do not measure the field along an infinite lbut on a finite interval inside the
room. This can be seen as a windowing of the PAF in the spatialaih. Consider a rectangular window
w(z). In our case, the window is simply a function of the spatiasipon. Calling the windowed PAF

q(z,t), we haveg(x,t) = p(z, t)w(z). In frequency domain this is written as

Q(¢,w) = P(¢,w) x W(¢,w) = P(p,w) x (W(¢)d(w)) .
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Fig. 9. Sampling of the PAF. (a) Rectangular sampling giij. Rlenacoustic spectrum with its repetitions for a rectieny

sampling grid. (¢) Quincunx sampling grid. (d) Plenacausfectrum with its repetitions for a quincunx sampling grid
The situation is schematically shown in Fig. 10.
A A
; ® /E/ W
* IV/Zav
% @ ¢

Fig. 10. Effect of the windowing due to the finite length of theay.

A. Aperture size

We now look at the effect of the size of the aperture. Takin@soeements from positions between
—L and L leads to a convolution of the PAF spectrum with the followsigc function.

W(p) = / ) e 1%y = Lsinc(%). (28)

2

We therefore see that at a giventhe larger the value of, the faster the decay will be. This fact can

be observed in Fig. 11. We present a section of 2Bespectrum of the PAF at a particular temporal
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frequency. One can observe that for larger aperture sizesghctrum decays more rapidly as given in

(28).

slice of the spectrum of the PAF for 3 different array sizes

, Amplitude [dB]

50 0 50

Fig. 11. A section of the PAF at a particular temporal frequyeThe curves represent data acquired on intervals ofrdiite

lengths:50 cm (full line), 100 cm (dotted line) and50 cm (dashed line). One can see that a larger interval leadsfaster

decay.

The decay of the spectrum of the PAF along the spatial freguesill now be slower than the one in

(5). For a particular temporal frequency= wy, the decay is:

Q(p,wy) = %e_ijKo (d, [$2 — (%)2> * W (o). (29)

In the case of a rectangular window, this decay is the cotiemof a sinc with an exponentially decaying

function.
Combining the finite aperture effect with the sampling of Bfg=, we obtain the following expression
for the 2D-FT of the sampled windowed PAF (denoted@sg):
27‘1’]{71 27‘1’]{72
T Az At Z Z YT AL

ki=—o00 ky=—00

In the situation of Section IlI-A.2 considering an infinitember of sources introduced by reflections

QS((ZS? w

following the model in [12], the spatial frequency decay loé sampled spectrum is:
Q(ngo,w) = P(ngo,w)* W (neo), (30)

where W (ngg) = Lsinc(%). Combined with the sampling of the sound field, the sampletiauwed

discrete spectrum i&

2k 2k
Qs(ndo,w) ANZ S Qe - T, 2k

k1=—00 ko=—00

1For simplicity, we give the expression considering that, is a multiple of Az.
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B. Position of the spatial window

We present some results on the shape of the spectrum of thel®¢nding on the relative position
of the source with respect to the spatial window. In the sdexase of Fig. 12(a), the spatial window
is on the far side of the source. Ti®-FT of the PAF has then the very specific shape shown in
Fig. 12(b). This can be explained by the fact that #i2FT of a functionp(xz,t) = f(z)é( —t) is
P(¢,w) = F(¢+ %). In our specific case the PAF is still multiplied by the windéwwction (of size
L) as shown in Fig. 12(a) and therefore the spectrum of the RAfRén convolved with the Fourier
transform of the window function. For different setups oasal windows and source (see Fig. 12), the
shape of the PAF spectrum can change but the support is abgsgntially given by (9). Note that in
free field, when the source is symmetrically located wittpees to the spatial window as in Fig. 12(e),

a symmetric spectrum is obtained (see Fig. 12(f)).

Amplitude (dB)
oo
808

50

i Y
(a) (b)
g
t $9
Z-50
£ 1
<
0.5
x10‘ \
0
-0.5 - 50
}_T,‘ X o [rad/s] o ° ¢ [radim]
(©) (d)
)
t ng
é—wo
<! " e
08 /
10 0
§ 50
"T" X o [rad/sim_1 = ° ¢ [rad/m]
(e) V)

Fig. 12. Top view of PAFs in time and space with their corregog 2D-FT for different positions of the microphones line
with respect to the source position.
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VI. SIMULATIONS AND MEASUREMENTS

In this section, we present simulation results on the imtlepn of RIRs. These results are further

compared with real measurements.

A. Simulation results

We have simulated RIRs on a line in a room using the image sauadel. For simulation purposes,
we derive a dense set of impulse responses, keep a subséttenpolate the missing ones. To compare
the obtained results with the simulated RIRs, we use the aliwed mean square error (MSE) criterium
given by the following formula:

N A2
wse = 2 (i 7l
> iz 7]
with N the length in samples of the simulated RIRghe simulated RIR and the interpolated RIR. In

: (31)

the following figures, the interpolation error is only shofam the positions that were removed. Fig. 13
shows for different lengths of the array the MSE for the retaucted signals. The RIRs were sampled

at44.1 kHz and simulated everym. We can observe that using an arrayldfl microphones leads to

10 20

30 40 50 60 70
spatial positions

Fig. 13. Interpolation error for different array sizes. Weeithe same spacing between the microphones.

a very small error (less than -60 dB) for the interpolatiortiie middle of the array. When using the
same spacing between the microphones but reducing the mwohBdRs, we observe an increase in the

interpolation error. This is shown for different sizes oé thrray in Fig. 13.

B. Experimental results

Experimental results were carried out in a partially sourgliiated room where we measured RIRs at
different spatial positions. We used one loudspeaker (l8en629A) and a microphone array (composed

of 8 PanasonidV M61A). We used a logarithmic sweep [19] to measure the RIRs. Wesuned72
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RIRs with a spacing o2 ¢m. The spectrum of the measured PAF is shown in Fig. 14(a).dJsirery
other RIR we recreated the whole data set. The MSE on@heterpolated RIRs measurements is shown

in Fig. 14(b). The MSE shown in Fig. 14(b) is obtained whemgsonly the3000 first samples of the

-
o
o

2

,Amplitude (dB)

MSE [dB]

<100, :
5000
v,
@ o — 40
o 6/ T 20
o o 5 10 15 20 25 30 35
-5000 _49 spatial positions

(@) (b)

Fig. 14. Experimental PAF. (&)D-FT of the measured plenacoustic function. (b) Interpotaerror on measured RIRs.

RIRs. When considering the full RIRs, poorer results araioled (on the order of-20 to —25 dB).
The reason is that in a room, one can observe fluctuationsedkthperature. As given in [20], we know

that the speed of sound propagatiors proportional to the squared root of the temperature
¢~ 20.034/273.15 4+ 1¢, (32)

with T, the temperature in Celsius. In a room, fluctuation of the tmajure is very usual due to the
presence of outside elements (measurement equipmentutensp..). The effect of temperature changes
causes an effect on RIRs due to the change of sound speedyptigpa This effect will be the most
severe for waves traveling over a wider area. Thereforerdiaerberant part of the RIRs undergoes the
largest relative timing changes. It is shown in [20] that aiateon of 0.1° can create a misalignment
between RIRs of more th&bdB. Further, for a fixed microphone position we observed biyatepeating
the same RIR measurememi0 times in a row, the MSE between the measurement and a reéerenc
one (e.g. the first measurement) increased over time. The NS the order of—25 dB after 100
measurements when considering the whole RIR while it of tigemoof —40 dB when considering only
the first3000 samples. This indicates us that our experimental resuttdbeaexplained by the fluctuations
in temperature.

Remark that due to the limit of ou$ inputs microphone array, we had to move the array to the

next positions in order to measure thi2 RIRs (our intrusion in the room probably modified greatly
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the temperature field between two sets of measurementderBesults would be obtained if all the

measurements could be captured simultaneously, which wapassible due to hardware limitations.

VIl. PLENACOUSTIC FUNCTION FOR MULTIDIMENSIONAL SPATIAL POSITONS

The previous sections were devoted to the detailed studyeodampling and interpolation of the sound
field on the line. This study can obviously be generalizedtteiospatial positions of the microphones
and loudspeakers. Therefore, we want to study the shapesofragssociated with different microphones
and loudspeakers setups. In Section VII-A, we consideradinloudspeakers emitting in free field and
recorded on a line of microphones. Section VII-B studiesgpectrum of the PAF associated to a plane
of microphones. Optimal sampling patterns for positioniihg microphones is also studied. Finally the
3-dimensional space filled of microphones is presented ini@e¥II-C.

Due to lack of space, these different setups are analyzessmdetails than the line of microphones.
Temporal and spatial decay analysis in rooms as well asa$petidowing are not presented but can be

generalized from the study of the line of microphones.

A. Lines of microphones and loudspeakers

Consider a continuous line of loudspeakers emitting soanfileie field. The sound field is recorded
by a continuous line of microphones. The lines are parafiethe = axis. Thex coordinates of the
microphones and loudspeakers atg and zs respectively. For one fixed loudspeaker positian the

free field impulse responses associated to the microphoaeatieh(xs — x,,,t) with

5t — Vn = =y 4G =)
Mo = 1) = 2 — 2 (33)
47T\/($m - l's) + (ym — ys) + (zm — zs)

Consider now an excitation functiofi(xs, t) giving for each positionc, the signal to be emitted. The

sound heard on the microphone line is:

p(Tm,t) = /OO /O_O_ h(zpy — zs,7)S(xs,t — 7)d7Td2s. (34)

s=—00

Taking the2D-FT of this expression gives

P(¢p,w) = H(py,w)S(¢z,w), (35)

whereg, corresponds to the spatial frequency of the microphoneiposi P(¢,,w) represent theD-FT
spectrum of the sound heard at the microphone positifiig,.,w) is the 2D spectrum of the impulse

responses as given by (4) afdey,,w) is the2D-FT of the excitation function.
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B. Plenacoustic function on a plane

1) Study of the spectrumn Section Ill, we studied the shape and the properties oPthie on a line
in the room. In this section, we consider a more general cdsranvthe RIRs are studied on a plane.
Consider a plane in the space filled with receivers in thand they directions. Further, a source is
located at positiorizs, ys, z5s). We know that at any receiver positidn,,,, .., 2z, ) the direct path coming

from the source is
6(t—2)

4ma

with @ = /(2 — 25)2 + (Ym — ys)2 + (2m — 25)2. Calculating the3D-FT of (36) is done in Ap-

p(xmayrmt) = ’ (36)

pendix Il. The result is:

—ilem—zsly/(£)2-02

__je_j(¢zxs+¢yy5) €
2

(£)2_¢2
P(s:éy,0) = VEEa
Lo ity VA

V(%)
with ¢3 = ¢ + qﬁz. Note thaty, and¢, represent the spatial frequencies for the microphonese th

(37)

for £ <|g,|.

andy directions respectively. The obtained spectrum has a absltape as shown in Fig. 15. The size

w

Fig. 15. Scheme for th8-dimensional spectrum of the PAF.

of the circle follows the following rule:

== \/e2+ b (38)

Similarly to the results obtained with the line of micropesnwe see that the decay of the spectrum is

also exponential outside of the conical shiZpe

12Remark that in the specific case of the source located on #repif the microphones, the decay becomes slower and is,

up to a constant, asymptotic tgq
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2) Optimal sampling patternSimilarly to the analysis presented in Section IV-C, we gt optimal
sampling pattern for the positioning of the microphones lom plane. The first approach is to use the
rectangular sampling as shown in Fig. 16(a). We use a spatingand Ay, for the spacing between
the microphones in the andy directions. Fig. 16(b) shows the corresponding packinghefdircles in
the Fourier spectrum for one temporal frequency (typictily highest frequency present in the emitted
signal).

The conical shape of the spectrum allows us to obtain a tigigeking of the circles. The use of an
hexagonal sampling pattern leads to a reduction of ab®¥tin the number of necessary microphones.
Fig. 16(c) shows the new positions of the microphones on theep In our case,

i
V3

Fig. 16(d) shows the corresponding spectrum with its speotipetitions. Other packings of the cones

Ary = —=Awxy, Ays = Ay1.

(Py
A
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Fig. 16. Sampling of the PAF on a plane. (a) Placement of theraphones on the plane on a rectangular sampling grid.
(b) Plenacoustic spectrum with its repetitions for a regtdar sampling grid. (c) Hexagonal sampling grid. (d) PtEmsstic
spectrum with its repetitions for a hexagonal sampling.grid
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can be realized to lower the temporal sampling frequench@f/D converters but do not reduce further
the number of microphones needed to sample the sound fieldptana [9].

3) Simulation ResultsWe simulated RIRs on a plane in a room using the image sourceimd/e
took the 3-dimensional Fourier transform of the gathered data. Bilup at sections of this spectrum
for w = 1500 rad/s andv = 3000 rad/s, we obtain respectively Fig. 17(a) and (b). We can Isaewith

growing temporal frequencies, the support of the PAF spettilso increases as given by (38).

w=1500 [rad/s] w=3000 [rad/s]

Amplitude
Amplitude
w a 8
oo oo

Fig. 17. Spectrum of the PAF obtained by simulations at diffie temporal frequencies. (@)= 1500 rad/s. (b} = 3000 rad/s.

C. Plenacoustic function in space

In this section we consider microphones located in 3kdimensional space. Similarly to the setup
presented in Section VII-B, a source is located at position ys, zs) and microphones at positions
(Zm, Ym, 2m ). The PAF is also given by (36). Note that in the present setsp &, is a variable. We
also introducey, as the spatial frequency of the microphone positions inztd&ection. Calculating the

4D-FT of (36) is done in Appendix Ill. The result is:

e~ I (PzTs+dyyst¢:2s)
Pl 0000 = G e

(39) represents a cone ihdimensions. For a particular temporal frequency, the seatif this cone is

(39)

a spher&. The size of the sphere obeys the following rule:

==\ + i+t (40)

At a particular temporal frequency, the optimal packing feé spheres is given by face-centered cubic

lattice packing [21]. It allows to reduce the number of saespby a factor of abou9.3%.

3Remark that the decay outside of the sphere is not expohastizas for the plane and line of microphones. This is due

to the presence of the source at one of the microphone pasitio
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VIIl. FUTURE WORK

Similarly to the work presented in this paper, we are stughgampling and interpolation of the sound
field along circular microphone and loudspeaker arrays.sé@harrays are widely used in wave field
synthesis and beamforming systems [11]. An applicationusftechnique can be found in the sampling
and interpolation of Head Related Transfer Functions (HRTE22]. HRTFs are measured in anechoic
chambers using circular arrays of loudspeakers. The reptation of the2D spectrum of the plenacoustic
function also allows to derive in that case a sampling theae exactly define the number and necessary
angular spacing between consecutive loudspeakers tostaonthe HRTFs up to a particular temporal

frequency [23].

IX. CONCLUSION

In this paper, we have introduced and studied the plenaicdusiction. It characterizes the sound field
at any point in space. We have studied this function and ke its spectrum for the linear and the
planar case without making any far field assumption. The yle€dhe spectrum has been studied along
both the temporal and spatial frequency axis. Based on thpostiof the spectrum, we have determined
the number and the spacing between the microphones needszbttstruct the sound field up to a certain
temporal frequency. The optimal sampling pattern for theraphone positions has also been given for
the linear and the planar case. We analyzed how the decay afpiactrum influences the interpolation
guality after sampling and reconstruction of the PAF. Hinale presented simulations and experimental

results and compared them with the theoretical results.

APPENDIX |

DERIVATION OF THE 2D-FT OF THE PAF ON A LINE

Consider

(z—z5)2+d?
ot — Y— =
plat) = — (41)

- drn/(x — 252 + d2

The 2D-FT of (41) is

(x—xs)2+d?
o oo (g — Mzt
P = [ [ e ) sesrangyg,
r=—00 Jt=—00 47T (.Z' — .Z'S)Z + d2
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We callu = z — z,, therefore

e—i¢ts oo o—j(¢utEVui+d?)
P(¢7w) = A /u__oo ,7u2 T d2 d’LL
e—JdTs —j(pu+2/u?+d?) 00 p—i(—dute Vultd)
- du +/ du
in Vit & - VT &
. 6_j¢-’Es e—j;\/mcos((bu) du
T Noere
e I °° cos(# Vu? + &) cos(gu) | /oo sin(2va? + &) cos(gu)
- U = du .
2m u2 + d2 ] u=0 \/u2 + d2

Using existing formula in [24], we obtain:
P(g,w) = T By (d (£) - ¢2> .

APPENDIX Il

DERIVATION OF THE 3D-FT OF THE PAF ON A PLANE

Consider
St —2)
t) = ———<
P(Tm, Ym, t) pP—
with ¢ = \/(acm —25)2 4+ (Ym (zm — 25)%2. We can calculate the spectrum of this function

+oo 5 t— ¢
P(6r.0y0) = / / / )eitoan bt gy, dy,
Ty =—00 m=—00 J 1t

= / / —J(d>zrm+¢yym+w )z, g,

We callz = z,, — x5, y = ym — ys aNd z = z,,, — z5. With these changes of variable we have that

P(pg, by, w) = J(bzs +¢>yys/ / 3 (@ert byt D) dpdy.

We have thatt = /22 + y2 + 22. We callr? = 22 + 32, and¢q ¢2 +¢2. The integral can be rewritten
as [25]:

1 . +oo T V2422
— Z oI (@emstdyys) —j(w——)
(¢:E7 ¢y7 ) 26 /r—O T2 + 252 (ﬁbqr) .

Call m = v/r? + 22, we have that = vm? — 22, and also ¢h = —=—=dr. The integral becomes

; +oo .
P((bx’(by’w) — %6_](¢wxs+¢yys) / _I IJO(¢q1 /m2 _ 22)6_](WT)dm.

Using existing formulas in [24], we obtain that

214/ (2)2 =92
—2] eI (pus +oyy)e VT
w2

(£)°—97
P(qu,qby,W): /Cz w’j
%6_j(¢zms+¢ny)M

(27

for |, <<
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APPENDIX I

DERIVATION OF THE 4D-FT oF THE PAF IN SPACE

Consider
6(t—2)

p(xmaymazm7t) = dra

)

with ¢ = \/(;n —5)%2 + (Ym — ys)? + (zm — 25)%. We can calculate the spectrum of this function

oo gt ay
R S iy
Ty =—00 m=—00 v 2y, =—00 J t= dma

/ / / (¢mxm+¢yym+¢zzm+w )dw dymdzm
Zm=—00 Jym=—00 J 2, =—00 47Ta

We callz = z,, — x5, y = ym — ys and z = z,,, — z5. With these changes of variable we have that

. +00 +oo +o0 1
p(%’%’w) — e—J(¢IxS+¢>yys+¢>2z5)/ / / = e i(bartyytoztws )dxdydz
Yy

r=—o00 Jy=—o0 J 2= —o0 4Ta

We have that: = \/z2 + 32 + 22. We call¢? = ¢2 + ¢2 + ¢2. The integral can be rewritten as [25]:

+oo

P, by, fzyw) = e IOtttz / sin(¢sa)e™/* = da

=0
e_]((brxs"'(byys"'(bzzs)

o5 — (2)°

APPENDIX IV

SPATIAL FREQUENCY DECAY OF THEPAF FOR LINES OF MICROPHONES NOT PARALLEL TO A WALL

In this section, we consider the case of a line of microphamatsparallel to a wall. The line of
microphones is included in a plane that is parallel to therflow the ceiling of the room. Two possible
configurations will be studied: the case where the coefficddrirection of the line is rational or non-
rational. For simplicity we consider in the rest of this mnhatﬁ—z € Q.

1) The case of a line that has a rational coefficient of dioecis first considered. In Fig. 18 a room

is shown with all the virtual sources. The line where the fisldo be studied follows a direction

g = [gz, gy], With g—z a rational number. It can be observed that the sound presseasured on
the distance denoted dsalongg is enough to know the pressure on the whole line. This follows
from the periodicity of the sources as shown in Fig. 18. Talgtihe spatial decay of the spectrum
of the PAF corresponding to this line, the same formalisrmaSdction 111-A.2 is followed. Due to
the periodicity L of the scheme, the spatial frequency of the spectrum is osfined for discrete

valuesndgy, with ¢ = 2.
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Fig. 18. aroom is shown with its virtual sources. In the méddf the figure, the original room is shown in bold. A line with

directiong is shown.

2)

To obtain the spatial decay of the spectrum, one still needstudy the effect of the infinite
number of sources in the region ranging from abscis$a L alongg. One can remark that due
to the rational character @f, there exists a periodicity in the sources along the divegji, being

orthogonal tog. This periodicity depends on the directigrbut also on the size of the room. This

periodicity is L, = /(2aL,)? + (28L,)?, with o and 3 the smallest possible integer numbers
satisfying the relation

@ —gyly

B gola
Knowing this periodicity, the spectrum can easily be olgdisimilarly to the derivation of Sec-

tion 1lI-A.2. The only difference is that here more than faditual sources need to be considered

and that the periodicity., needs to be replaced ky,. The final result is here also that
P(ngo,w) = O(e” %),

with d; the distance between the closest source and the line of phiores.

Note that if the line passes through a sourée,= 0 and there is no more decay. This results
corresponds to the fact that the Hankel function in (4) algesgto infinity in that case.

The case of a line having a non-rational coefficient of aice is now considered. In order to

study the decay of the spectrum of the PAF on that line, ondieduhe decay of the spectrum of

the plane that contains this line and that is also paralleh¢oceiling and the floor of that room.
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Further, by using the slice-projection theorem [25], one study the spectrum corresponding to a
specific line of the PAF (our line of interest). By observitng trepetitions of the sources, one can
observe that the PAF on the plane is periodic both inatfad in they directions with periodicity
2L, and2L, respectively. Therefore, the spectrum of the PAF is onlynaefifor discrete values
m andn with ¢g, = Ll and ¢g, = LLJ P(meos, ndoy,w). Without considering the periodicity,
one can remark that the PAF spectrum can also be rewritten as:

P(ba,dyw) = D > 8¢ — mos)d(dy — ndoy) P(meos, ndoy,w). (42)

m=—0o0 N=—0o0

In order to study the spectrum of the PAF along the line ofrede one needs to apply the
projection-slice theorem. This theorem says that to studjice of the PAF in time domain (in
this case along the line of interest), one needs to projecsiectrum along the corresponding line
in frequency. Consider that the line of interest has a dwac = [g,, g,], the projection in the
frequency domain will happen along the directipn= [—g,, 9] as shown in Fig. 19. Further, call
¢4 the abscissa along the li@. Also, consider the line& | (¢,) orthogonal tog and at positions

¢4 On G. The spectrum of the PAF along the line of interest is given by

Fig. 19. Top view of the spectrum of the PAF for the plane ofnmptiones. The spectrum is only defined for discrete values.

The spectrum of the line of interest corresponds to the ptioje the spectrum of the PAF along directiofis .

Pylog) = [ Plonoyw)ds 43)

G. (d)y)
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with s the abscissa along' | (¢,).

As % is a non-rational value, it can be observed that every sawiptee spectrum of the plane
will be projected on distinct positions alorfg. When the source is in the same plane as the line
of microphones, it was shown in (37) that the decay is not amgrexponential but becomes only
linear. Therefore, in this case, the decay of the PAF specinill decay at least linearly. This
decay is much slower than the one obtained in the case ofanahitilirection.

Nevertheless, when generalizing this study imensions, whith sources also repeated alongthe
axis, the decay of the spectrum will be shown to become exgi@at the condition that no sources
would be located inside the plane of the microphones. Weidena plane of microphones parallel
to the floor and the ceiling containing the liGéand the original source with all its virtual sources
outside of that plane. As shown in the image method [12], thigir@al source is first repeated to
create ther first virtual sources. Then, thesesources are further repeated with periodidiy,.,

2L, and 2L, in the z, y and z directions respectively. Similarly to th2-dimensional case, the
PAF will be periodic along the: andy directions and therefore the PAF spectrum will be discrete
in ¢, and ¢,. What differs from the2-dimensional case, is that each of tReoriginal sources

to be considered is now repeated along thaxis with periodicity2L,. For the simplicity of the
calculations, we will only consider one of tigeoriginal sources and calculate the spectrum of the
PAF for that source repeated in tBedirections. It will then be shown that the other sources will
be negligible when studying the decay for large spatialdfesgies.

Due to the construction of the virtual sources, we have thadrey the8 first sources4 will be
located at distance; from the plane of interest, witky < L,. The otherd sources will be located

at a distanceL, — z; from the plane. Calk; one of the sources that is separated from the plane
by a distance;;. The spectrum of the PAF along the plane in the presenee without repetitions

is (for large spatial frequencies):
e—zll"(m,n)

P(maos, ndoy,w) = eI (Mmdoss+ndoyys) m,

(44)

with T(m,n) = \/(m¢oz)? + (ngoy)?.
When considering; with all its repetitions along the axis, we obtain
e—\zl+2in\F(m,n)

2I'(m,n)

P(moz, ndoy,w) = e Imoozatnéo,y.) Z

1=—00

_ o= Moz s +ndoyys) i (e_(z1+2in)F(m,n) + e—(zi—l—Zin)F(m,n))
2I'(m,n)

I

1=0
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with 2] = 2L, — z;. We therefore can write that

eI (M@oax4+ndoyys) e—xl(mn) o(z1—2L)T(m,n)
QF(’I’)’L, ’I’L) 1 — e—2L.T(m,n) + 1 — e—2L-T(m,n)

P(m¢0$7 nqb()yv W) =

Considering now, the other sources, we can observe thatpastioally for largem and n, the

decay of the spectrum is of the following order:

P(meo,, ngoy,w) = O <%> . (45)
It is thus shown that the PAF spectrum decays exponentiaigrnwstudied in a-dimensional
environment.

Here again, asii; is a non-rational value, it can be observed that every sawipthe spectrum
of the plane will be projected on distinct positions alogig Call ¢,(mg,n0) the abscissa of the
projection of a specific point of the spectrum with coordasding, ng). We have thab, (mg, ng) <
I'(mg,ng). As given by (45), we also know that the further we are from ¢hater of the circle,
the smaller is the value of the spectrum. This leads to thelosion that|P(¢,(mo, no),w)| <

| P(modoz, nodoy,w)|. Therefore we have that the projection of the PAF spectrurtyamill decay

at least as fast as (45).
Finally, once the spectrum of the infinite line is studiede areeds to perform a windowing of the
spectrum to consider the fact that the sound field is onlyistuchside the room. This part happens

similarily to the windowing in Section V.

APPENDIXV

TEMPORAL FREQUENCY DECAY OF THEPAF IN A RECTANGULAR ROOM.

We have

—3D1:% e_jD2,i%

c

Pt ) = Cilnoo) 2 (?Dl = /D w)

1=—00

We call S1(w) = Ca(ngo) > oo @ﬁ andSs(w) = Cy(ndo) > oo % Sp can be rewritten
as:
Siw) = Ca(néo) [ —ja,= n Z i Z e IelhrRl
\/5 w/dl—l—QLZ \/|d1+2LyZ

C4(n¢0) —jd1— N Z d1+2Lyz) Z e I% (d +2L,1)
\/5 \/d1+2LZ \/d —|—2Lyz
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with d; = 2L, —d;. Call the second and fourth terms of the previous expredsgjgn) andUs (w) respec-
tively. These two expression are shown to converge usindthiehlet convergence te’$t Considering

U, (w), the Dirichlet convergence test can be appfesith {a,} = e77%(@+2Lv9) and{p,} = ——L

\Jdi+2L,i°
This proves the convergence©f(w). Similarily, it can also be shown thékh (w) converges. Furthermore,
Ui (w) and Uz (w) are periodic function ofu. Therefore, they can be upperbounded and are converging
for all possible values ob. This leads us to the conclusion thét(w) behaves asymptotically as
_ G(w)
Vo
with Cs(w) a bounded function ob. We obtain the same result fék(w) and therefore we have that

P(nogg,w) ~ %7

S1(w)

with C(w) a bounded function of.
Similarly to the derivations of Appendix IV, the derivatiaten be generalized when the line of

microphones is not parallel to a wall.
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