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Abstract

We study the spatialization of the sound field in a room, in particular the evolution of room impulse

responses as a function of their spatial positions. We observe that the multidimensional spectrum of the

solution of the wave equation has an almost bandlimited character. Therefore sampling and interpolation

can easily be applied using signals on an array. The decay of the spectrum is studied on both temporal and

spatial frequency axes. We study how this decay influences the performance of the interpolation. Based

on the support of the spectrum, we determine the number and the spacing between the microphones

needed to reconstruct the sound field up to a certain temporalfrequency. The optimal sampling pattern

for the microphone positions is given for the linear and the planar case. Existing techniques usually make

use of room models to recreate the sound field present at some point in the space. Our technique simply

starts from the measurements of the sound field in a finite number of positions and with this information

the total sound field can be recreated. Finally, simulationsand experimental results are presented and

compared with the theory.

Index Terms

Plenoptic function, room impulse response, sampling, interpolation, sound field sampling, acoustic

echo cancellation.

I. INTRODUCTION

Assume you are in a concert hall, and you want to faithfully describe the acoustic experience at any

location in the hall. What is the evolution of the sound field over space? And if you record the acoustic
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event with an array of microphones, how many do you need to be able to reproduce the experience at

any point?

Conversely, assume a virtual acoustical environment, where sources are moving, while the listener is

in a particular spot. How finely do you need to simulate the acoustic impulse response to be able to place

the source at any location?

The answers to the above questions, as well as related ones, lie in the spatio-temporal acoustic sound

field and its properties. We call this field theplenacoustic function(PAF) in reference to the plenoptic

function introduced by Adelson and Bergen [1] and which defines ”all views in a room”. More precisely,

the plenoptic function is given by a seven dimensional function, f(x, y, z, θ,Ω, λ, t) which describes the

intensity of the light field seen at location(x, y, z) when looking in direction(θ,Ω), at wavelengthλ

and timet. Thus, given an acoustic event in a room, we can define the PAFp(x, y, z, t) as the sound

recorded at location(x, y, z) and timet1. The PAF is the solution of the acoustic wave equation (we

chose to give it this particular name referring to the plenoptic function that is the solution of the wave

equation for light).

Often, we will be concerned with the case of a single point source. Namely, for a given sourceS,

we denote the room impulse response (RIR) at location(x, y, z) by h(x, y, z, t), and then, if the source

generates a signals(t), the PAF is

p(x, y, z, t) =

∫ ∞

−∞
s(τ)h(x, y, z, t − τ)dτ.

When the emitted sound is a Dirac pulse, the PAF becomes simply the spatio-temporal RIR. The PAF

is then the Green’s function. By the superposition principle, the total sound field can be regarded as the

sum of all point sources convolved with their spatio-temporal RIRs.

From the view of the physicist, the PAF is simply the solutionof the wave equation with appropriate

boundary conditions, and a given driving function. From thepoint of view of the numerical analyst,

the system would be very complex for any reasonable room, even for very simple cases. For the signal

processor, acoustic RIRs have been studied, measured and simulated for many scenarios, and it is thus

natural to study the PAF globally. A natural question for a signal processor is of course the sampling

question: is there a discrete set of points in time and space from which the full PAF can be reconstructed?

The equivalent question for the plenoptic function was posed and solved by Chai et al [2] with further

results from Zhang et al [3]. For the time dimension, we assume bandlimited sources to allow sampling in

1If we use directional microphones, we can add directionsθ andΩ as well.
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time. The more interesting question is of course sampling inspace, which directly relates to the number of

microphones necessary to acquire the PAF. Interestingly, it is possible to show that the PAF is essentially

bandlimited2 in space, and this to a spatial frequencyφ which is related to the temporal frequencyω in

a linear manner

φ =
ω

c
,

with c being the sound speed propagation. Thus, if the time domain signal is bandlimited toω0, then the

spatial frequency is limited toω0

c , and the PAF can be sampled with a spatial distanced

d =
cπ

ω0
.

For high quality audio,d is quite small (e.g. a sampling frequency of44.1 kHz corresponds tod = 0.8 cm)

and thus not necessarily very practical with current technology. For voice quality audio (8 kHz sampling

frequency corresponding tod = 4.5 cm), the spacing becomes more reasonable. A typical set up for the

measurement of the PAF, as well as the spatio-temporal spectrum of the PAF are shown in Fig. 1.

...
(a) (b)

Fig. 1. Plenacoustic function. (a) Measurement of the PAF. Aloudspeaker emits a propagating wave. This sound wave is

recorded using an array of microphones. (b) Corresponding spatio-temporal spectrum of the PAF. The axesφ andω are spatial

and temporal frequencies, respectively.

The purpose of this paper is to study the characteristics of the PAF in detail, in particular for a

room (including air and wall absorption). The key is to derive the essential support of the spatial-

temporal frequency response of a room, and to derive decay rates beyond the essential support. Given

this characterization, sampling theorems and interpolation formulas can be derived. The results are verified

both through simulation experiments and through measurements in actual rooms.

2The notion of essentially bandlimited will be made more precise, but means that most of the energy is within the bandlimit.



TECHNICAL REPORT, EPFL. 4

Beyond the fundamental interest of characterizing precisely the PAF and its sampling, the results are

useful in spatial audio applications. For example, it indicates to what extent a microphone array can be

used to interpolate any spatial location. Or conversely, how many spatial positions of a source are needed

to synthesize arbitrary positions for a virtual source. A further application can be found in acoustic

echo cancellation. If a frequency domain adaptive filter is used, the essential triangular support of the

spatio-temporal Fourier transform gives an indication of different rates of changes at different temporal

frequencies.

The name of the plenacoustic function3 has been for the first time mentioned in [4]. The first analysis

of the function has been given in [5]–[7]. Previous literature exists on the bandlimited character of the

solution of the wave equation (acoustic or EM case) along thetemporal and spatial frequencies but always

under the far field assumption as well as the infinite character of the array [8]. Recently, and in parallel

to our work, Coleman [9] has investigated the wide-band electromagnetic impulse response in far field,

deriving sampling results under this assumption.

From the knowledge of the PAF in a region of space, extrapolation of the sound field can also be

obtained in other regions of space. This is related to wave field synthesis (WFS) [10] and will not be

discussed in the present paper. The WFS is based on the Huygens principle stating that the propagation of a

wave through a medium can be qualitatively described by adding the contributions of all secondary sources

positioned along a wave front. Measuring the sound field on aninfinite plane of microphones would allow

us to reconstruct the sound field in any point of the source-free half space, which is interesting in a free

field situation. Recent techniques have shown interesting results even using1-dimensional microphone

arrays (mostly circular arrays) but limitations occur whentrying to extrapolate real3-dimensional RIRs

[11].

The outline of the paper is the following. In Section II, we present the PAF and its construction.

Section II-A reminds the reader what RIRs are and how they canbe simulated, while Section II-B

constructs the space-time representation. Section III studies the spectrum of the PAF on a line in the

room. We describe its spatial and temporal frequency decay in Section III-A and III-B respectively.

Section IV studies then the sampling of the PAF. We present the sampling of the PAF in Section IV-A

followed by a sampling theorem in Section IV-B. With the sampled function, we would like to reconstruct

the field in every possible position. This is shown in SectionIV-C. Limitations due to the finite length

3Remark that the plenacoustic and plenoptic functions are expressions mixing Greek and Latin roots. The Latin expression

would be ”the plenaudio function” while the Greek expression would be ”the panacoustic function”.
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of the array are taken in account in Section V. The theory presented in this paper is then verified using

simulations in Section VI-A and measurements done in real environments in Section VI-B. Section VII

is devoted to the generalization of the PAF to multidimensional spatial positions. Different setups are

considered: the lines of microphones and loudspeakers in Section VII-A, the plane of microphones in

Section VII-B and finally the3-dimensional space filled of microphones in Section VII-C. Future work

is discussed in Section VIII. The conclusions are drawn in Section IX.

II. CONSTRUCTION OF THE PLENACOUSTIC FUNCTION

To study the sound field along a line of microphones in a room, we need to study the sound field from

every possible source position in the room to any possible microphone position on the line. For simplicity

we present the technique for a single source but it will be shown later that the technique works as well

for multiple sources. Consider a sourceS emitting a signals(t). The microphones located on the line

will not record exactlys(t). The sound at microphonem1 is s(t) convolved with the RIR corresponding

to the direct path betweenS andm1, followed by a possibly infinite number of reflections on the walls

(each microphone will receive a sum of delayed and attenuated versions ofs(t)). At another microphone

positionm2, the recorded signal will be different since the RIR fromS to m2 is different than the RIR

from S to m1. The only parameter changing between the different spatialpositions is the RIR. Therefore

the rest of the analysis of this paper will be focused on the spatial evolution of the RIRs.

A. Modeling the room

In order to calculate the PAF in a room, we need to know the RIRsat any point in the room. We use

the image method discussed in [12] for the simulations of RIRs. The method is based on the creation of

virtual sources in order to simulate the effect of the reflections on the walls. In the case of a rectangular

rigid-walls room of size(Lx, Ly, Lz), the RIRs are given by [12]:

p(t, S,M) =
7
∑

p=0

∞
∑

v=−∞

δ(t − ‖dp + dv‖/c)
4π‖dp + dv‖

, (1)

wheredp = (xs ± xm, ys ± ym, zs ± zm), dv = (2lLx, 2nLy, 2oLz), (l, n, o) being an integer vector

triplet andc the speed of sound propagation. The RIR is a function of time and is dependent on the

sourceS = (xs, ys, zs) and the microphone positionM = (xm, ym, zm). The first sum shows that in a

3-dimensional field, 7 virtual sources are created in addition to the original source. The second sum shows

that sound between two parallel rigid walls is infinitely reverberated. More general formulas taking into

account the reflection factors of the walls are given in [12].One practical limitation of the method is the
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quantization rounding in the computation of the RIR. Each image contribution is computed exactly but

needs in practice to be rounded to the closest sample in time.This leads to aliasing in time and space.

In our simulations, we have replaced each dirac by sinc functions of appropriate bandwidth delayed with

the exact non integer delay. This removes the aliasing effect. However, as the sinc functions have a very

slow decay in time, one has to consider long enough RIR to allow the sincs to sufficiently vanish.

B. Space time representation

With the RIRs as defined in (1), we construct the PAF for a line in the room. In that case, we can

construct a2-dimensional graph by gathering all the RIRs at any positionon the line, leading to a2-

dimensional continuous function of space and time. Space represents the position, time being the duration

of the RIR. This representation is shown in Fig. 2(a) when a pulse is recorded on a line of microphones

in free field and in Fig. 2(b) for the case of a room.

(a) (b)

Fig. 2. PAF in time and space. (a) In free field. (b) Inside a room.

III. SPECTRUM OF THEPAF ON A LINE

In this section, we study the PAF on a line and its associate spectrum. We give a analytical expression

of 2D-FT of the PAF. Further, the spatial and temporal frequencydecay of the spectrum of the PAF are

studied.

A. Spatial decay of the spectrum of the PAF

We give an analytical expression for the2-dimensional Fourier transform (2D-FT) of the PAF. This is

first reviewed for the free field case, followed by a general formula in the case of a rectangular room.
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1) Free field case:We study the evolution of the RIR along thex-axis. The PAF in space and time

domain is given by the following formula [13]:

p(x, t) =
δ(t −

√
(x−xs)2+(ym−ys)2+(zm−zs)2

c )

4π
√

(x − xs)2 + (ym − ys)2 + (zm − zs)2
. (2)

We only vary thex component of the microphone. For simplicity, we remove the subscript in the variable

xm, denoting it byx. The variablesym, zm, xs, ys andzs are constant. Callingd2 = (ym−ys)
2 +(zm−

zs)
2, we rewrite (2) as

p(x, t) =
δ(t −

√
(x−xs)2+d2

c )

4π
√

(x − xs)2 + d2
. (3)

We calculate the spectrum of this function in Appendix I. Theobtained result forω ∈ R+ andφ ∈ R

is4:

P (φ, ω) = − j

4
e−jφxsH∗

0

(

d

√

(
ω

c
)2 − φ2

)

, (4)

with φ andω being respectively the spatial and temporal frequencies.H∗
0 represents the complex conjugate

of the Hankel function of order zero. This function is infinite in zero. Therefore when eitherd = 0 or

|φ| = ω
c the plenacoustic spectrum becomes infinite5. The values where|φ| > ω

c correspond to the

evanescent mode of the waves. The waves lose their propagating character to become exponentially fast

decaying waves [14]. Remark also that for|φ| ≥ ω
c , (4) becomes:

P (φ, ω) =
1

2π
e−jφxsK0

(

d

√

φ2 − (
ω

c
)2
)

, (5)

whereK0 is a modified Bessel function of the second kind and order zero. The modified Bessel function

of the second kind has the following asymptotical6 behavior7 (see [14]):

K0(x) ∼
√

π

2x
e−x. (6)

4Sincep(x, t) is a real function, we have thatP (−φ,−ω) = P ∗(φ,ω), with P ∗ the complex conjugate ofP . To simplify

the notation, all further derivations are done forω ∈ R+.

5d = 0 corresponds to the situation where the source is located on the line of the microphones.φ is the spatial frequency

of the signal captured on the line of microphones. Consider asinusoid of temporal frequencyω rad/s emitted from a certain

position. The signal acquired by the microphones located atpositions tending to infinity is at one instant an attenuatedsinusoid

of spatial frequencyω
c

rad/m. Remark also that for the microphone positions at infinity the source appears as being on the line.

In the case of the line of microphones, having a source on the line leads to an infinite spectrum.

6f(x) ∼ g(x) means thatlim
x→∞

f(x)

g(x)
= 1.

7Further numerical computations show thatK0(x) ≤
p

π

2x
e−x for x > 0.
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Fig. 3. Theoretical2D spectrum of the PAF according to (4).

For largeφ, (5) can be rewritten using (6) as:

P (φ, ω) ∼ 1

2π
e−jφxs

√

π

2d
√

φ2 − (ω
c )2

e−d
√

φ2−( ω

c
)2 . (7)

For a finiteω = ω0, (7) asymptotically behaves as:

P (φ, ω0) ∼
e−jφxs

2
√

π

√

1

dφ
e−dφ. (8)

We see that the decay along the spatial frequency axis is exponential. Therefore, consideringω, φ ∈ R,

most of the energy is contained in the part of the spectrum satisfying

|φ| ≤ |ω|
c

. (9)

This result will be used later in the sampling of the PAF. As the spectrum is decaying very fast along

the spatial frequency axis, we will be able to derive a sampling theorem to sample and reconstruct the

PAF along the spatial axis (see Section IV).

2) Rectangular room:In the case of a rectangular room of size(Lx, Ly, Lz), we consider all the

reflections as virtual sources as explained in Section II-A and apply the superposition principle. The

expression for the PAF is then given by (1). Each virtual source leads to a spectrum that follows (4).

The total spectrum of the PAF is the sum of the spectra of each virtual source taken separately, leading

to an infinite sum. We would like to know how this sum is decaying for large spatial frequencies.

We present results on the decay of the spatial frequency in the easier case of all the virtual sources

located in the plane. Similar results are obtained in the general case of sources located in space.

We use the image model given in Fig. 4. Our original source iss1 (with coordinates(xs1
, ys1

)) and in

its immediate neighborhood, we can see3 other virtual sources (s2, s3 ands4). These4 mother sources

will create an infinite number of repetitions to form all the virtual sources in the plane. These4 mother

sources will be repeated in thex andy direction with a periodicity of2Lx and2Ly respectively.
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Fig. 4. Image source model with the original sources1 and all the other virtual sources.

As the room has finite size, we cannot consider an infinite lineof microphones. We consider the

microphone line to cover the whole length of the room. In Fig.4, the line is parallel to thex axis.

We define the distances from sourcess1 ands2 to the line of microphones asd1 andd2 respectively

(with d1 ≤ d2). The other distances for the sourcess3 ands4 to the line are in this case alsod1 andd2.

An interesting aspect of this construction is that by the2Lx periodicity of the source positions along

the x axis, the sound recorded on an infinite line is also periodic with period 2Lx. Further, using the

symmetry of the construction, we realize that the sound heard at positionǫ is the same as the one heard

at position2Lx − ǫ with ǫ ∈ [0, Lx].

By discretizing the spectrum of the PAF on theφ axis, and introducingφ0 = π
Lx

, we exactly obtain the

Fourier series of the sound field recorded on a line from0 to 2Lx when this sound field is2Lx periodic.

Considering the4 mother sources (s1 to s4) with their periodic repetitions along thex axis, the discrete

spectrum of the PAF can be expressed as follows (for largenφ0):

P (nφ0, ω0) ∼
(

e−jnφ0xs1

2
√

π
+

e−jnφ0xs2

2
√

π

)(

e−d1nφ0

√
d1nφ0

+
e−d2nφ0

√
d2nφ0

)

.

We therefore can write

P (nφ0, ω0) ∼ C1(n)

(

e−d1nφ0

√
d1nφ0

+
e−d2nφ0

√
d2nφ0

)

, (10)

with C1(n) a bounded function inn.

Consider now the2Ly periodic repetitions of the sources along they axis. We call the sourcess1,i the

sources with coordinates(xs1
, ys1

+i2Ly) and similarlys2,i the sources with coordinates(xs2
, ys2

+i2Ly).

Call D1,i the distances between the line of microphones and the sources s1,i, and D2,i the distances
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between the line of microphones and the sourcess2,i. We have that

D1,i = |d1 + i2Ly|,

D2,i = |d2 + i2Ly|.

When considering all the source repetitions in thex andy directions, the spectrum becomes:

P (nφ0, ω0) ∼ C1(n)
∞
∑

i=−∞

(

e−D1,inφ0

√

D1,inφ0

+
e−D2,inφ0

√

D2,inφ0

)

. (11)

The right member of (11) can be rewritten as:

C1(n)

∞
∑

i=0

(

e−(d1+i2Ly)nφ0

√

(d1 + i2Ly)nφ0

+
e−(d2+i2Ly)nφ0

√

(d2 + i2Ly)nφ0

+
e−(d

′

1+i2Ly)nφ0

√

(d
′

1 + i2Ly)nφ0

+
e−(d

′

2+i2Ly)nφ0

√

(d
′

2 + i2Ly)nφ0

)

, (12)

with d
′

1 = 2Ly − d1 andd
′

2 = 2Ly − d2.

(12) can be upperbounded by

C1(n)
∞
∑

i=0

(

e−(d1+i2Ly)nφ0

√
d1nφ0

+
e−(d2+i2Ly)nφ0

√
d2nφ0

+
e−(d

′

1+i2Ly)nφ0

√

d
′

1nφ0

+
e−(d

′

2+i2Ly)nφ0

√

d
′

2nφ0

)

. (13)

Finally, for largen, (13) can be rewritten as

C2(n)

1 − e−2Lynφ0

(

e−d1nφ0 + e−d2nφ0

)

+
C2(n)e−2Lynφ0

1 − e−2Lynφ0

(

ed1nφ0 + ed2nφ0

)

, (14)

with C2(n) a bounded function inn. Since d1 ≤ d2 ≤ 2Ly, asymptotically for largen, the above

expression is of the following order8:

P (nφ0, ω0) = O(e−d1nφ0). (15)

This shows that for a reverberant room, the decay is exponential when the line of microphones is parallel

to a wall9.

8f(x) = O(g(x)) means that there are positive constantsc andk, such that|f(x)| ≤ cg(x), ∀x ≥ k.

9The case where the line of microphones is not covering the whole length of the room is discussed in Section V-A. The case

where the line is not parallel to the wall is studied in Appendix IV. There, the line is extended along the periodic repetitions of

the room and it is shown that the measured sound field has an exponentially decaying spectrum. The restriction of this infinite

line inside the room can then be seen as a windowing as explained in Section V-A.
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B. Temporal frequency decay

The study of the temporal frequency decay is of interest to fully characterize the plenacoustic function.

Nevertheless, in most cases we deal with sounds that are bandlimited along the temporal frequency due

to the bandwidth of the emitters and receivers. Therefore, the results of this section will be briefly

presented since they only are interesting from a theoretical point of view. The more detailed analysis

of the presented results can be found in [15]. Similarly to Section III-A, we first present results on the

temporal frequency decay for the free field case and generalize them further for a rectangular room.

1) Free field: The spectrum of the PAF is given by expression (4). The asymptotic behavior of the

Hankel function is given by [14]:

H0(x) ∼
√

2

πx
ej(x−π/4). (16)

For largeω, (4) can be rewritten using (16) as:

P (φ, ω) ∼ − j

2
√

2π
e−j(φxs−π/4) e−jd

√
( ω

c
)2−φ2

√

d
√

(ω
c )2 − φ2

.

Considering a finiteφ = φ0, (4) asymptotically behaves as:

P (φ0, ω) ∼ − j
√

c

2
√

2π
e−j(φ0xs−π/4) e

−jd ω

c√
dω

. (17)

Therefore we have that

P (φ0, ω) ∼ C3(ω)√
ω

, (18)

with C3(ω) a bounded function ofω. This last relation shows that the PAF spectrum along the temporal

frequency decays as1√
ω

.

2) Rectangular room:In the case of a rectangular room, we follow the same construction as in

Section III-A.2. Considering the4 mother sources (s1 to s4) in Fig. 4 with their periodic repetitions

along thex axis, the discrete spectrum of the PAF can be expressed as follows (for largeω and a finite

n = n0):

P (n0φ0, ω) ∼ −jejπ/4

2
√

2π

(

e−jn0φ0xs1 + e−jn0φ0xs2

)

(

e−jd1
ω

c√
d1ω

+
e−jd2

ω

c√
d2ω

)

∼ C4(nφ0)

(

e−jd1
ω

c

√
d1ω

+
e−jd2

ω

c

√
d2ω

)

,

with C4(nφ0) being independent ofω.

Considering the2Ly periodic repetitions of the sources along they axis, we obtain:

P (n0φ0, ω) ∼ C4(nφ0)

∞
∑

i=−∞

(

e−jD1,i
ω

c

√

D1,iω
+

e−jD2,i
ω

c

√

D2,iω

)

.
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It is shown in Appendix V that this sum converges and that

P (n0φ0, ω) ∼ C(ω)√
ω

,

with C(ω) a bounded function ofω. The spectrum of the PAF along the temporal frequency decaysas

1√
ω

in the case of a rectangular room.

IV. SAMPLING AND RECONSTRUCTION

In the previous sections, we have studied the decay of the2D spectrum of the PAF both along the

temporal and the spatial frequency axes. We have observed that the spectrum of the PAF lies on a support

that is almost bandlimited. This result is valid for a singlesource, but also for a finite number of sources

(by superposition principle). In the scope of this paper, weare mostly interested in the sampling of the

sound field along the spatial axis. As we cannot use any spatial anti-aliasing filter in the spatial direction,

the speed of the spatial frequency decay of the2D spectrum of the PAF is the key factor for the quality of

the reconstruction. Along the temporal direction, we are able to filter our signal in the temporal direction

in order to avoid aliasing.

In this section, we present the sampling theorem of the PAF where we derive the quality of the

reconstruction when sampling the sound field in space. Further, interpolation techniques are discussed in

order to reconstruct the signal from the available samples.

A. Plenacoustic Sampling

In order to uniformly sample the PAF along the spatial direction, we consider a uniformly spaced

infinite number of impulse responses. We callφS the spatial sampling frequency defined as2π
∆x where

∆x is the sampling interval between two consecutive positionsof the measured impulse responses. Next

to the spatial sampling, we also need to sample the RIRs at a certain temporal sampling rate depending

on the desired audio bandwidth. We callωS the temporal sampling frequency. We haveωS = 2π
∆t with

∆t the sampling period of the impulse responses.

In the temporal dimension, one can always bandlimit the signal before sampling it in order to avoid

aliasing. Along the spatial dimension, no spatial filteringis possible. Therefore we concentrate first on

the spatial sampling.

The schematic top view of the spectrum of the PAF is shown in Fig. 5(a). When sampling the PAF

along the spatial dimension with a spatial sampling frequency of φS , repetitions of the spectrum occur as
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shown in Fig. 5(b). Considering these spectral repetitionsthe sound field can perfectly be reconstructed

up to ω0 with

ω0 =
cφS

2
=

cπ

∆x
. (19)

Remark that in Fig. 5(b), the region in bold corresponds to the region that is perfectly reconstructed.

This means that the lowest spatial frequencies can be reconstructed up to a temporal frequency of2ω0.

ω

φ

(a)

0

ω

φ

ω

φs

(b)

Fig. 5. PAF spectrum. (a) Top view of the PAF spectrum. (b) Topview of the PAF spectrum with its repetitions due to the

spatial sampling. The region in bold corresponds to the region of the spectrum that can be perfectly reconstructed.

We consider now the temporal sampling of the PAF. We first bandlimit the signal toω0 = cφS

2 and we

sample it with a temporal sampling frequency ofωS = 2ω0. Repetitions of the spectra occur now also

along the temporal frequency. The obtained spectrum for thePAF sampled in space and time is shown

in Fig. 6(a).

Conversely, by starting the analysis with the temporal sampling, we can say that if the maximal temporal

frequency present in the signal isω0, then by sampling the signal at a temporal sampling frequency of

ωS = 2ω0, we obtain the signal whose spectrum is shown in Fig. 6(b). When we sample this signal along

the spatial dimension, it is necessary to chooseφS ≥ 2ω0

c in order to avoid aliasing. Fig. 6(a) represents

the critical case whereφS = 2ω0

c .

The final expression for our sampled PAF2D spectrum (denoted asPS) becomes:

PS(φ, ω) =
1

∆x∆t

∞
∑

k1=−∞

∞
∑

k2=−∞
P (φ − 2πk1

∆x
, ω − 2πk2

∆t
).

B. A Sampling theorem for the PAF

Consider now the spectrum of the PAF at a particular temporalfrequencyω0. It will have the shape

given in Fig. 7(a). When the PAF is sampled, repetitions of the spectrum occur as shown in Fig. 7(b).
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Fig. 6. PAF spectrum. (a) PAF spectrum with its spectral repetitions along the temporal and the spatial frequencies. (b)PAF

spectrum with its spectral repetitions along the temporal frequencies. In both figures, the region in bold corresponds to the

original spectrum bandlimited along the temporal frequency without spectral repetitions.

φ

|P|

(a)

2

|P  |

φS
φφS

S

(b)

Fig. 7. Magnitude of the spectrum of the PAF. (a) Cut of the spectrum of the PAF for a particular temporal frequency. (b)

Sampled spectrum of the PAF with its spectral repetitions for a particular temporal frequency.

As the spectrum is not perfectly bandlimited, the repetitions will affect the reconstruction. We present a

theorem that quantifies the SNR of the reconstruction of the PAF for one source emitting in free field.

Call SNR(φN , ω0) the SNR of the reconstruction for a sinusoid emitted at frequencyω = ω0 with the

microphones positioned with a spatial sampling frequencyφS = 2φN . In the present case, we define the

SNR as follows:

SNR(φN , ω0) =

∫∞
φ=−∞ ‖P (φ, ω0)‖2dφ

4
∫∞
φ=φN

‖P (φ, ω0)‖2dφ
. (20)

The numerator in (20) corresponds to the energy of the spectrum of the PAF at temporal frequency

ω0. The denominator in (20) corresponds to the energy contained in the spectral repetitions that will
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contaminate the reconstruction in the spectral domain of interest10.

Theorem:

Assume one single source emitting in free field at a frequencyω = ω0. When sampling the2D spectrum

of the PAF at a spatial sampling frequency of2φN , for a particularω = ω0, and reconstructing it using

an ideal interpolator, the SNR of the reconstructed signal in the band[−φN , φN ] can be expressed as

SNR(φN , ω0) =
1

2d
∫∞
φ=φN

H2
0 (d
√

(ω0

c )2 − φ2)dφ
. (21)

When consideringφN > ω0

c , the SNR can be lowerbounded:

SNR(φN , ω0) ≥
π

4Ei

(

2d
√

φ2
N − ω0

c
2

) , (22)

whereEi(·) represents the exponential integral function.

Proof:

The numerator in (20) can be rewritten using the Parseval relation as follows:

2π

∫ ∞

x=−∞
‖p̃(x, ω0)‖2dx,

with p̃(x, ω0) the inverse Fourier transform ofP (φ, ω0) along the spatial axis. We have thatp̃(x, ω0) =

e−j
ω0

√
x2+d2

c

4π
√

x2+d2
, and therefore the numerator in (20) is

2π

16π2

∫ ∞

x=−∞

1

x2 + d2
dx =

1

8d
. (23)

Using (4) and (23) in (20) leads to (21).

When consideringφN > ω0

c , the denominator in (20) is

1

π2

∫ ∞

φ=φN

K2
0

(

d

√

φ2 − (
ω0

c
)2
)

dφ.

Using the fact thatK2
0 (d
√

φ2 − (ω0

c )2) ≤ π
2

e
−2d

√
φ2−(

ω0
c

)2

d
√

φ2−(
ω0
c

)2
, we can upperbound the denominator as

follows:

1

2π

∫ ∞

φ=φN

e−2d
√

φ2−(
ω0
c

)2

d
√

φ2 − (ω0

c )2
dφ =

1

2πd

∫ ∞

z=
√

φ2
N−( ω0

c
)2

e−2dz

√

z2 + (ω0

c )2
dz, (24)

10In the denominator, two different kinds of energy are present: the ”in band” and the ”out of band” energy. The ”in-band”

energy corresponds to the energy of all the spectral repetitions in the domain of interest, namely[−φN , φN ]. The ”out of band

energy” is the energy present in the spectrum that is outsideof the domain of interest. It can be shown that the ”in-band” and

the ”out of band” energies are equal in the case of an infinite line of microphones.
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where the equality is obtained with the change of variablez =
√

φ2 − (ω0

c )2. The right expression in

(24) can again be upperbounded as follows:

1

2πd

∫ ∞

z=
√

φ2
N−(

ω0
c

)2

e−2dz

z
dz =

1

2πd
Ei

(

2d

√

φ2
N − (

ω0

c
)2
)

, (25)

whereEi represents the exponential integral function. Using (25) and (23), we obtain (22). �

We have computed numerically the SNR in function of different Nyquist frequencies denoted asφN .

This has been done for different temporal frequencies ranging from1 rad/s to8000 rad/s. In order to avoid

numerical instability due to the infinite value of the spectrum at the positionφN = ω
c , our simulations

start for eachω at a valueφN = ω
c + ǫ where ǫ is a very small value (e.g.0.1 rad

m ). The results are

shown in Fig. 8 together with the lowerbound obtained in (22). We can observe as expected that the SNR

increases for largerφN . Note that the lowerbound follows tightly the SNR obtained numerically.
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SNR on the reconstruction for different φ
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ω=1  ω=2000 ω=4000 ω=6000 ω=8000  

Fig. 8. In full lines, SNR on the reconstruction signal for different φN for temporal frequencies ranging from1 rad/s to

8000 rad/s. In dotted line, corresponding SNR lower bounds.

Instead of considering the SNR at a specific temporal frequency, we can easily use the previous result

to give the SNR on the reconstruction when the signal is in a frequency band[ω1, ω2] with spectral

characteristicsβ(ω). The SNR on the reconstruction is given by the following formula:

SNR(ω1, ω2, φN ) =

∫ ω2

ω=ω1
β2(ω)dω

2d
∫ ω2

ω=ω1
β2(ω)

(

∫∞
φ=φN

H2
0 (d
√

(ω
c )2 − φ2)dφ

)

dω
. (26)

When consideringφN > max(ω1,ω2)
c , (26) can be lowerbounded as follows:

SNR(ω1, ω2, φN ) ≥
π
∫ ω2

ω=ω1
β2(ω)dω

4
∫ ω2

ω=ω1
β2(ω)Ei

(

2d
√

φ2
N − (ω

c )2
)

dω
. (27)
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Generalization of the sampling theorem for the cases of multiple sources in free field or inside a room

is matter of current research.

C. Reconstruction by interpolation

Knowing the sound field at every point of the sampling grid, weapply usual interpolation techniques

[16] in order to reconstruct the sound field at any location. First, we need to upsample our time domain

signal accordingly to the desired location. We then filter the upsampled PAF with an appropriate2-

dimensional filter. The value at the location of interest is then obtained by interpolation. The interpolation

filter to be used is dependent on the sampling grid, and maybe separable in time and space.

1) Rectangular sampling:In the case of rectangular sampling, we just sample the PAF intime and

space domain with the sampling grid shown in Fig. 9(a). Convolution of the sampling grid with the

spectrum of the PAF leads to Fig. 9(b). In this figure, we can also see the filter needed for interpolation,

namely a rectangular filter. In Fig. 9(b) we observe that the spatial sampling frequency is2φN . Thus, the

interpolation filter is a lowpass with support[−φN , φN ]. The corresponding spacing between the samples

(or microphones) on the spatial axis is∆x = 2π
2φN

= π
φN

.

2) Quincunx sampling:A tighter packing of the spectrum can be achieved by using quincunx sampling.

In time domain, the grid to be used is shown in Fig. 9(c). In thecorresponding spectrum, the spectral

repetitions are placed such that they fill the whole frequency space as shown in Fig. 9(d). In this case

the filter used for interpolation is a fan filter [3], [17]. Thefilter is shown in Fig. 9(d). In the quincunx

sampling the spatial sampling frequency is now onlyφN . This corresponds to a distance between two

samples on the space axis of2∆x = 2π
φN

. This shows that using quincunx sampling we only need to

sample the even microphones at even times while the odd microphones are sampled at odd times. This

leads to a gain of factor2 in the processing. However it does not reduce the number of necessary

microphones. Similar results have been obtained in [18] in the study of the far field electromagnetic

field.

V. FINITE LENGTH APERTURE

In this section, we do not measure the field along an infinite line but on a finite interval inside the

room. This can be seen as a windowing of the PAF in the spatial domain. Consider a rectangular window

w(x). In our case, the window is simply a function of the spatial position. Calling the windowed PAF

q(x, t), we haveq(x, t) = p(x, t)w(x). In frequency domain this is written as

Q(φ, ω) = P (φ, ω) ∗ W (φ, ω) = P (φ, ω) ∗ (W (φ)δ(ω)) .
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Fig. 9. Sampling of the PAF. (a) Rectangular sampling grid. (b) Plenacoustic spectrum with its repetitions for a rectangular

sampling grid. (c) Quincunx sampling grid. (d) Plenacoustic spectrum with its repetitions for a quincunx sampling grid.

The situation is schematically shown in Fig. 10.

�����
�����
�����
�����

�����
�����
�����
�����

*

AA

ω ω

φ φ

Fig. 10. Effect of the windowing due to the finite length of thearray.

A. Aperture size

We now look at the effect of the size of the aperture. Taking measurements from positions between

−L
2 and L

2 leads to a convolution of the PAF spectrum with the followingsinc function.

W (φ) =

∫ L

2

x=−L

2

e−jφxdx = Lsinc(
φL

2π
). (28)

We therefore see that at a givenφ, the larger the value ofL, the faster the decay will be. This fact can

be observed in Fig. 11. We present a section of the2D spectrum of the PAF at a particular temporal
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frequency. One can observe that for larger aperture sizes the spectrum decays more rapidly as given in

(28).
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Fig. 11. A section of the PAF at a particular temporal frequency. The curves represent data acquired on intervals of different

lengths:50 cm (full line), 100 cm (dotted line) and150 cm (dashed line). One can see that a larger interval leads to afaster

decay.

The decay of the spectrum of the PAF along the spatial frequency will now be slower than the one in

(5). For a particular temporal frequencyω = ω0, the decay is:

Q(φ, ω0) =
1

2π
e−jφxsK0

(

d

√

φ2 − (
ω0

c
)2
)

∗ W (φ). (29)

In the case of a rectangular window, this decay is the convolution of a sinc with an exponentially decaying

function.

Combining the finite aperture effect with the sampling of thePAF, we obtain the following expression

for the 2D-FT of the sampled windowed PAF (denoted asQS):

QS(φ, ω) =
1

∆x∆t

∞
∑

k1=−∞

∞
∑

k2=−∞
Q(φ − 2πk1

∆x
, ω − 2πk2

∆t
).

In the situation of Section III-A.2 considering an infinite number of sources introduced by reflections

following the model in [12], the spatial frequency decay of the sampled spectrum is:

Q(nφ0, ω) = P (nφ0, ω) ∗ W (nφ0), (30)

whereW (nφ0) = Lsinc( nL
2Lx

). Combined with the sampling of the sound field, the sampled windowed

discrete spectrum is11:

QS(nφ0, ω) =
1

∆x∆t

∞
∑

k1=−∞

∞
∑

k2=−∞
Q(nφ0 −

2πk1

∆x
, ω − 2πk2

∆t
).

11For simplicity, we give the expression considering that2Lx is a multiple of∆x.



TECHNICAL REPORT, EPFL. 20

B. Position of the spatial window

We present some results on the shape of the spectrum of the PAFdepending on the relative position

of the source with respect to the spatial window. In the special case of Fig. 12(a), the spatial window

is on the far side of the source. The2D-FT of the PAF has then the very specific shape shown in

Fig. 12(b). This can be explained by the fact that the2D-FT of a functionp(x, t) = f(x)δ(x
c − t) is

P (φ, ω) = F (φ + ω
c ). In our specific case the PAF is still multiplied by the windowfunction (of size

L) as shown in Fig. 12(a) and therefore the spectrum of the PAF is then convolved with the Fourier

transform of the window function. For different setups of spatial windows and source (see Fig. 12), the

shape of the PAF spectrum can change but the support is alwaysessentially given by (9). Note that in

free field, when the source is symmetrically located with respect to the spatial window as in Fig. 12(e),

a symmetric spectrum is obtained (see Fig. 12(f)).

L

t

x

(a) (b)

t

L
x

(c) (d)

t

L
x

(e) (f)

Fig. 12. Top view of PAFs in time and space with their corresponding 2D-FT for different positions of the microphones line

with respect to the source position.
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VI. SIMULATIONS AND MEASUREMENTS

In this section, we present simulation results on the interpolation of RIRs. These results are further

compared with real measurements.

A. Simulation results

We have simulated RIRs on a line in a room using the image source model. For simulation purposes,

we derive a dense set of impulse responses, keep a subset, andinterpolate the missing ones. To compare

the obtained results with the simulated RIRs, we use the normalized mean square error (MSE) criterium

given by the following formula:

MSE =

∑N
i=1 (r[i] − r̂[i])2
∑N

i=1 r2[i]
, (31)

with N the length in samples of the simulated RIRs,r the simulated RIR and̂r the interpolated RIR. In

the following figures, the interpolation error is only shownfor the positions that were removed. Fig. 13

shows for different lengths of the array the MSE for the reconstructed signals. The RIRs were sampled

at 44.1 kHz and simulated everycm. We can observe that using an array of144 microphones leads to
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Fig. 13. Interpolation error for different array sizes. We use the same spacing between the microphones.

a very small error (less than -60 dB) for the interpolation inthe middle of the array. When using the

same spacing between the microphones but reducing the number of RIRs, we observe an increase in the

interpolation error. This is shown for different sizes of the array in Fig. 13.

B. Experimental results

Experimental results were carried out in a partially sound insulated room where we measured RIRs at

different spatial positions. We used one loudspeaker (Genelec 1029A) and a microphone array (composed

of 8 PanasonicWM61A). We used a logarithmic sweep [19] to measure the RIRs. We measured72
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RIRs with a spacing of2 cm. The spectrum of the measured PAF is shown in Fig. 14(a). Using every

other RIR we recreated the whole data set. The MSE on the36 interpolated RIRs measurements is shown

in Fig. 14(b). The MSE shown in Fig. 14(b) is obtained when using only the3000 first samples of the

(a)
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(b)

Fig. 14. Experimental PAF. (a)2D-FT of the measured plenacoustic function. (b) Interpolation error on measured RIRs.

RIRs. When considering the full RIRs, poorer results are obtained (on the order of−20 to −25 dB).

The reason is that in a room, one can observe fluctuations of the temperature. As given in [20], we know

that the speed of sound propagationc is proportional to the squared root of the temperature

c ≈ 20.03
√

273.15 + Tc, (32)

with Tc the temperature in Celsius. In a room, fluctuation of the temperature is very usual due to the

presence of outside elements (measurement equipment, computers,...). The effect of temperature changes

causes an effect on RIRs due to the change of sound speed propagation. This effect will be the most

severe for waves traveling over a wider area. Therefore, thereverberant part of the RIRs undergoes the

largest relative timing changes. It is shown in [20] that a variation of 0.1◦ can create a misalignment

between RIRs of more that25dB. Further, for a fixed microphone position we observed thatby repeating

the same RIR measurement100 times in a row, the MSE between the measurement and a reference

one (e.g. the first measurement) increased over time. The MSEis of the order of−25 dB after 100

measurements when considering the whole RIR while it of the order of−40 dB when considering only

the first3000 samples. This indicates us that our experimental results can be explained by the fluctuations

in temperature.

Remark that due to the limit of our8 inputs microphone array, we had to move the array to the

next positions in order to measure the72 RIRs (our intrusion in the room probably modified greatly
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the temperature field between two sets of measurements). Better results would be obtained if all the

measurements could be captured simultaneously, which was not possible due to hardware limitations.

VII. PLENACOUSTIC FUNCTION FOR MULTIDIMENSIONAL SPATIAL POSITIONS

The previous sections were devoted to the detailed study of the sampling and interpolation of the sound

field on the line. This study can obviously be generalized to other spatial positions of the microphones

and loudspeakers. Therefore, we want to study the shape of spectra associated with different microphones

and loudspeakers setups. In Section VII-A, we consider a line of loudspeakers emitting in free field and

recorded on a line of microphones. Section VII-B studies thespectrum of the PAF associated to a plane

of microphones. Optimal sampling patterns for positioningthe microphones is also studied. Finally the

3-dimensional space filled of microphones is presented in Section VII-C.

Due to lack of space, these different setups are analyzed in less details than the line of microphones.

Temporal and spatial decay analysis in rooms as well as spatial windowing are not presented but can be

generalized from the study of the line of microphones.

A. Lines of microphones and loudspeakers

Consider a continuous line of loudspeakers emitting sound in free field. The sound field is recorded

by a continuous line of microphones. The lines are parallel to the x axis. Thex coordinates of the

microphones and loudspeakers arexm and xs respectively. For one fixed loudspeaker positionxs, the

free field impulse responses associated to the microphone line areh(xs − xm, t) with

h(xm − xs, t) =
δ(t −

√
(xm−xs)2+(ym−ys)2+(zm−zs)2

c )

4π
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2
. (33)

Consider now an excitation functionS(xs, t) giving for each positionxs the signal to be emitted. The

sound heard on the microphone line is:

p(xm, t) =

∫ ∞

xs=−∞

∫ ∞

τ=−∞
h(xm − xs, τ)S(xs, t − τ)dτdxs. (34)

Taking the2D-FT of this expression gives

P (φx, ω) = H(φx, ω)S(φx, ω), (35)

whereφx corresponds to the spatial frequency of the microphone positions.P (φx, ω) represent the2D-FT

spectrum of the sound heard at the microphone positions,H(φx, ω) is the2D spectrum of the impulse

responses as given by (4) andS(φx, ω) is the2D-FT of the excitation function.
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B. Plenacoustic function on a plane

1) Study of the spectrum:In Section III, we studied the shape and the properties of thePAF on a line

in the room. In this section, we consider a more general case where the RIRs are studied on a plane.

Consider a plane in the space filled with receivers in thex and they directions. Further, a source is

located at position(xs, ys, zs). We know that at any receiver position(xm, ym, zm) the direct path coming

from the source is

p(xm, ym, t) =
δ(t − a

c )

4πa
, (36)

with a =
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. Calculating the3D-FT of (36) is done in Ap-

pendix II. The result is:

P (φx, φy, ω) =















−j
2 e−j(φxxs+φyys) e

−j|zm−zs|

√
( ω

c
)2−φ2

q√
( ω

c
)2−φ2

q

for |φq| ≤ ω
c

1
2e−j(φxxs+φyys) e

−|zm−zs|

√
φ2

q−( ω
c

)2√
φ2

q−( ω

c
)2

for ω
c ≤ |φq|.

(37)

with φ2
q = φ2

x + φ2
y. Note thatφx andφy represent the spatial frequencies for the microphones in the x

andy directions respectively. The obtained spectrum has a conical shape as shown in Fig. 15. The size

y

ω

φ

φ

x

Fig. 15. Scheme for the3-dimensional spectrum of the PAF.

of the circle follows the following rule:

ω

c
=
√

φ2
x + φ2

y. (38)

Similarly to the results obtained with the line of microphones, we see that the decay of the spectrum is

also exponential outside of the conical shape12.

12Remark that in the specific case of the source located on the plane of the microphones, the decay becomes slower and is,

up to a constant, asymptotic to1
φq

.
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2) Optimal sampling pattern:Similarly to the analysis presented in Section IV-C, we study the optimal

sampling pattern for the positioning of the microphones on the plane. The first approach is to use the

rectangular sampling as shown in Fig. 16(a). We use a spacing∆x1 and∆y1 for the spacing between

the microphones in thex andy directions. Fig. 16(b) shows the corresponding packing of the circles in

the Fourier spectrum for one temporal frequency (typicallythe highest frequency present in the emitted

signal).

The conical shape of the spectrum allows us to obtain a tighter packing of the circles. The use of an

hexagonal sampling pattern leads to a reduction of about15% in the number of necessary microphones.

Fig. 16(c) shows the new positions of the microphones on the plane. In our case,

∆x2 =
2√
3
∆x1 , ∆y2 = ∆y1.

Fig. 16(d) shows the corresponding spectrum with its spectral repetitions. Other packings of the cones

∆y1

∆x1

(a)

φ

φy

x

(b)

∆x2

∆y2

(c)

φ

φ

x

y

(d)

Fig. 16. Sampling of the PAF on a plane. (a) Placement of the microphones on the plane on a rectangular sampling grid.

(b) Plenacoustic spectrum with its repetitions for a rectangular sampling grid. (c) Hexagonal sampling grid. (d) Plenacoustic

spectrum with its repetitions for a hexagonal sampling grid.
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can be realized to lower the temporal sampling frequency of the A/D converters but do not reduce further

the number of microphones needed to sample the sound field on aplane [9].

3) Simulation Results:We simulated RIRs on a plane in a room using the image source model. We

took the3-dimensional Fourier transform of the gathered data. By looking at sections of this spectrum

for ω = 1500 rad/s andω = 3000 rad/s, we obtain respectively Fig. 17(a) and (b). We can see that with

growing temporal frequencies, the support of the PAF spectrum also increases as given by (38).
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Fig. 17. Spectrum of the PAF obtained by simulations at different temporal frequencies. (a)ω = 1500 rad/s. (b)ω = 3000 rad/s.

C. Plenacoustic function in space

In this section we consider microphones located in the3-dimensional space. Similarly to the setup

presented in Section VII-B, a source is located at position(xs, ys, zs) and microphones at positions

(xm, ym, zm). The PAF is also given by (36). Note that in the present setup also zm is a variable. We

also introduceφz as the spatial frequency of the microphone positions in thez direction. Calculating the

4D-FT of (36) is done in Appendix III. The result is:

P (φx, φy, φz , ω) =
e−j(φxxs+φyys+φzzs)

φ2
x + φ2

y + φ2
z − (ω

c )2
. (39)

(39) represents a cone in4 dimensions. For a particular temporal frequency, the section of this cone is

a sphere13. The size of the sphere obeys the following rule:

ω

c
=
√

φ2
x + φ2

y + φ2
z. (40)

At a particular temporal frequency, the optimal packing of the spheres is given by face-centered cubic

lattice packing [21]. It allows to reduce the number of samples by a factor of about29.3%.

13Remark that the decay outside of the sphere is not exponential as was for the plane and line of microphones. This is due

to the presence of the source at one of the microphone positions.
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VIII. F UTURE WORK

Similarly to the work presented in this paper, we are studying sampling and interpolation of the sound

field along circular microphone and loudspeaker arrays. These arrays are widely used in wave field

synthesis and beamforming systems [11]. An application of our technique can be found in the sampling

and interpolation of Head Related Transfer Functions (HRTFs) [22]. HRTFs are measured in anechoic

chambers using circular arrays of loudspeakers. The representation of the2D spectrum of the plenacoustic

function also allows to derive in that case a sampling theorem to exactly define the number and necessary

angular spacing between consecutive loudspeakers to reconstruct the HRTFs up to a particular temporal

frequency [23].

IX. CONCLUSION

In this paper, we have introduced and studied the plenacoustic function. It characterizes the sound field

at any point in space. We have studied this function and calculated its spectrum for the linear and the

planar case without making any far field assumption. The decay of the spectrum has been studied along

both the temporal and spatial frequency axis. Based on the support of the spectrum, we have determined

the number and the spacing between the microphones needed toreconstruct the sound field up to a certain

temporal frequency. The optimal sampling pattern for the microphone positions has also been given for

the linear and the planar case. We analyzed how the decay of the spectrum influences the interpolation

quality after sampling and reconstruction of the PAF. Finally, we presented simulations and experimental

results and compared them with the theoretical results.

APPENDIX I

DERIVATION OF THE 2D-FT OF THE PAF ON A LINE

Consider

p(x, t) =
δ(t −

√
(x−xs)2+d2

c )

4π
√

(x − xs)2 + d2
. (41)

The 2D-FT of (41) is

P (φ, ω) =

∫ ∞

x=−∞

∫ ∞

t=−∞

δ(t −
√

(x−xs)2+d2

c )

4π
√

(x − xs)2 + d2
e−j(φx+ωt)dtdx
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We call u = x − xs, therefore

P (φ, ω) =
e−jφxs

4π

∫ ∞

u=−∞

e−j(φu+ ω

c

√
u2+d2)

√
u2 + d2

du

=
e−jφxs

4π

{

∫ ∞

u=0

e−j(φu+ ω

c

√
u2+d2)

√
u2 + d2

du +

∫ ∞

u=0

e−j(−φu+ ω

c

√
u2+d2)

√
u2 + d2

du

}

=
e−jφxs

2π

{

∫ ∞

u=0

e−j ω

c

√
u2+d2

cos(φu)√
u2 + d2

du

}

=
e−jφxs

2π

{

∫ ∞

u=0

cos(ω
c

√
u2 + d2) cos(φu)√

u2 + d2
du − j

∫ ∞

u=0

sin(ω
c

√
u2 + d2) cos(φu)√

u2 + d2
du

}

.

Using existing formula in [24], we obtain:

P (φ, ω) = − j

4
e−jφxsH∗

0

(

d

√

(
ω

c
)2 − φ2

)

.

APPENDIX II

DERIVATION OF THE 3D-FT OF THE PAF ON A PLANE

Consider

p(xm, ym, t) =
δ(t − a

c )

4πa
,

with a =
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. We can calculate the spectrum of this function

P (φx, φy, ω) =

∫ +∞

xm=−∞

∫ +∞

ym=−∞

∫ +∞

t=−∞

δ(t − a
c )

4πa
e−j(φxxm+φyym+ωt)dxmdymdt

=

∫ +∞

xm=−∞

∫ +∞

ym=−∞

1

4πa
e−j(φxxm+φyym+ω a

c
)dxmdym.

We call x = xm − xs, y = ym − ys andz = zm − zs. With these changes of variable we have that

P (φx, φy, ω) = e−j(φxxs+φyys)

∫ +∞

x=−∞

∫ +∞

y=−∞

1

4πa
e−j(φxx+φyy+ω a

c
)dxdy.

We have thata =
√

x2 + y2 + z2. We callr2 = x2 +y2, andφ2
q = φ2

x +φ2
y. The integral can be rewritten

as [25]:

P (φx, φy, ω) =
1

2
e−j(φxxs+φyys)

∫ +∞

r=0

r√
r2 + z2

J0(φqr)e
−j(ω

√
r2+z2

c
)dr.

Call m =
√

r2 + z2, we have thatr =
√

m2 − z2, and also dm = r√
r2+z2

dr. The integral becomes

P (φx, φy, ω) =
1

2
e−j(φxxs+φyys)

∫ +∞

m=|z|
J0(φq

√

m2 − z2)e−j(ω m

c
)dm.

Using existing formulas in [24], we obtain that

P (φx, φy, ω) =















−j
2 e−j(φxxs+φyys) e

−j|z|

√
( ω

c
)2−φ2

q√
( ω

c
)2−φ2

q

for |φq| ≤ ω
c

1
2e−j(φxxs+φyys) e

−|z|

√
φ2

q−( ω
c

)2√
φ2

q−( ω

c
)2

for ω
c ≤ |φq|.
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APPENDIX III

DERIVATION OF THE 4D-FT OF THE PAF IN SPACE

Consider

p(xm, ym, zm, t) =
δ(t − a

c )

4πa
,

with a =
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. We can calculate the spectrum of this function

P (φx, φy, φz , ω) =

∫ +∞

xm=−∞

∫ +∞

ym=−∞

∫ +∞

zm=−∞

∫ +∞

t=−∞

δ(t − a
c )

4πa
e−j(φxxm+φyym+φzzm+ωt)dxmdymdzmdt

=

∫ +∞

xm=−∞

∫ +∞

ym=−∞

∫ +∞

zm=−∞

1

4πa
e−j(φxxm+φyym+φzzm+ω a

c
)dxmdymdzm.

We call x = xm − xs, y = ym − ys andz = zm − zs. With these changes of variable we have that

P (φx, φy, ω) = e−j(φxxs+φyys+φzzs)

∫ +∞

x=−∞

∫ +∞

y=−∞

∫ +∞

z=−∞

1

4πa
e−j(φxx+φyy+φzz+ω a

c
)dxdydz.

We have thata =
√

x2 + y2 + z2. We callφ2
s = φ2

x + φ2
y + φ2

z. The integral can be rewritten as [25]:

P (φx, φy, φz, ω) = e−j(φxxs+φyys+φzzs)

∫ +∞

a=0
sin(φsa)e−ja ω

c da

=
e−j(φxxs+φyys+φzzs)

φ2
s − (ω

c )2
.

APPENDIX IV

SPATIAL FREQUENCY DECAY OF THEPAF FOR LINES OF MICROPHONES NOT PARALLEL TO A WALL.

In this section, we consider the case of a line of microphonesnot parallel to a wall. The line of

microphones is included in a plane that is parallel to the floor and the ceiling of the room. Two possible

configurations will be studied: the case where the coefficient of direction of the line is rational or non-

rational. For simplicity we consider in the rest of this section that Ly

Lx
∈ Q.

1) The case of a line that has a rational coefficient of direction is first considered. In Fig. 18 a room

is shown with all the virtual sources. The line where the fieldis to be studied follows a direction

ḡ = [gx, gy], with gy

gx
a rational number. It can be observed that the sound pressuremeasured on

the distance denoted asL along ḡ is enough to know the pressure on the whole line. This follows

from the periodicity of the sources as shown in Fig. 18. To study the spatial decay of the spectrum

of the PAF corresponding to this line, the same formalism as in Section III-A.2 is followed. Due to

the periodicityL of the scheme, the spatial frequency of the spectrum is only defined for discrete

valuesnφ0, with φ0 = 2π
L .
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Fig. 18. a room is shown with its virtual sources. In the middle of the figure, the original room is shown in bold. A line with

direction ḡ is shown.

To obtain the spatial decay of the spectrum, one still needs to study the effect of the infinite

number of sources in the region ranging from abscissa0 to L along ḡ. One can remark that due

to the rational character of̄g, there exists a periodicity in the sources along the direction ḡ⊥ being

orthogonal tōg. This periodicity depends on the directionḡ but also on the size of the room. This

periodicity is Lp =
√

(2αLx)2 + (2βLy)2, with α and β the smallest possible integer numbers

satisfying the relation

α

β
=

−gyLy

gxLx
.

Knowing this periodicity, the spectrum can easily be obtained similarly to the derivation of Sec-

tion III-A.2. The only difference is that here more than fourvirtual sources need to be considered

and that the periodicityLy needs to be replaced byLp. The final result is here also that

P (nφ0, ω) = O(e−d1nφ0),

with d1 the distance between the closest source and the line of microphones.

Note that if the line passes through a source,d1 = 0 and there is no more decay. This results

corresponds to the fact that the Hankel function in (4) also goes to infinity in that case.

2) The case of a line having a non-rational coefficient of direction is now considered. In order to

study the decay of the spectrum of the PAF on that line, one studies the decay of the spectrum of

the plane that contains this line and that is also parallel tothe ceiling and the floor of that room.
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Further, by using the slice-projection theorem [25], one can study the spectrum corresponding to a

specific line of the PAF (our line of interest). By observing the repetitions of the sources, one can

observe that the PAF on the plane is periodic both in thex and in they directions with periodicity

2Lx and2Ly respectively. Therefore, the spectrum of the PAF is only defined for discrete values

m and n with φ0x = π
Lx

and φ0y = π
Ly

, P (mφ0x, nφ0y, ω). Without considering the periodicity,

one can remark that the PAF spectrum can also be rewritten as:

P (φx, φy, ω) =

∞
∑

m=−∞

∞
∑

n=−∞
δ(φx − mφ0x)δ(φy − nφ0y)P (mφ0x, nφ0y, ω). (42)

In order to study the spectrum of the PAF along the line of interest, one needs to apply the

projection-slice theorem. This theorem says that to study aslice of the PAF in time domain (in

this case along the line of interest), one needs to project the spectrum along the corresponding line

in frequency. Consider that the line of interest has a direction ḡ = [gx, gy], the projection in the

frequency domain will happen along the directionḡ⊥ = [−gy, gx] as shown in Fig. 19. Further, call

φg the abscissa along the lineG. Also, consider the linesG⊥(φg) orthogonal tōg and at positions

φg on G. The spectrum of the PAF along the line of interest is given by:

G

y

xφ

φ

g g

φg

G ( φ    )g

Fig. 19. Top view of the spectrum of the PAF for the plane of microphones. The spectrum is only defined for discrete values.

The spectrum of the line of interest corresponds to the projection the spectrum of the PAF along directionsG⊥.

Pḡ(φg, ω) =

∫

G⊥(φg)
P (φx, φy, ω)ds, (43)
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with s the abscissa alongG⊥(φg).

As gy

gx
is a non-rational value, it can be observed that every sampleof the spectrum of the plane

will be projected on distinct positions alongG. When the source is in the same plane as the line

of microphones, it was shown in (37) that the decay is not anymore exponential but becomes only

linear. Therefore, in this case, the decay of the PAF spectrum will decay at least linearly. This

decay is much slower than the one obtained in the case of a rational direction.

Nevertheless, when generalizing this study to3 dimensions, whith sources also repeated along thez

axis, the decay of the spectrum will be shown to become exponential at the condition that no sources

would be located inside the plane of the microphones. We consider a plane of microphones parallel

to the floor and the ceiling containing the lineG and the original source with all its virtual sources

outside of that plane. As shown in the image method [12], the original source is first repeated to

create the7 first virtual sources. Then, these8 sources are further repeated with periodicity2Lx,

2Ly and 2Lz in the x, y and z directions respectively. Similarly to the2-dimensional case, the

PAF will be periodic along thex andy directions and therefore the PAF spectrum will be discrete

in φx and φy. What differs from the2-dimensional case, is that each of the8 original sources

to be considered is now repeated along thez axis with periodicity2Lz. For the simplicity of the

calculations, we will only consider one of the8 original sources and calculate the spectrum of the

PAF for that source repeated in the3 directions. It will then be shown that the other sources will

be negligible when studying the decay for large spatial frequencies.

Due to the construction of the virtual sources, we have that among the8 first sources,4 will be

located at distancez1 from the plane of interest, withz1 ≤ Lz. The other4 sources will be located

at a distance2Lz − z1 from the plane. Calls1 one of the sources that is separated from the plane

by a distancez1. The spectrum of the PAF along the plane in the presence ofs1 without repetitions

is (for large spatial frequencies):

P (mφ0x, nφ0y, ω) = e−j(mφ0xxs+nφ0yys) e
−z1Γ(m,n)

2Γ(m,n)
, (44)

with Γ(m,n) =
√

(mφ0x)2 + (nφ0y)2.

When considerings1 with all its repetitions along thez axis, we obtain

P (mφ0x, nφ0y, ω) = e−j(mφ0xxs+nφ0yys)
∞
∑

i=−∞

e−|z1+2Lzi|Γ(m,n)

2Γ(m,n)

=
e−j(mφ0xxs+nφ0yys)

2Γ(m,n)

∞
∑

i=0

(

e−(z1+2Lzi)Γ(m,n) + e−(z′
1+2Lzi)Γ(m,n)

)

,
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with z′1 = 2Lz − z1. We therefore can write that

P (mφ0x, nφ0y, ω) =
e−j(mφ0xxs+nφ0yys)

2Γ(m,n)

(

e−z1Γ(m,n)

1 − e−2LzΓ(m,n)
+

e(z1−2Lz)Γ(m,n)

1 − e−2LzΓ(m,n)

)

.

Considering now, the other sources, we can observe that asymptotically for largem and n, the

decay of the spectrum is of the following order:

P (mφ0x, nφ0y, ω) = O

(

e−z1Γ(m,n)

Γ(m,n)

)

. (45)

It is thus shown that the PAF spectrum decays exponentially when studied in a3-dimensional

environment.

Here again, asgy

gx
is a non-rational value, it can be observed that every sampleof the spectrum

of the plane will be projected on distinct positions alongG. Call φg(m0, n0) the abscissa of the

projection of a specific point of the spectrum with coordinates(m0, n0). We have thatφg(m0, n0) <

Γ(m0, n0). As given by (45), we also know that the further we are from thecenter of the circle,

the smaller is the value of the spectrum. This leads to the conclusion that|P (φg(m0, n0), ω)| ≤
|P (m0φ0x, n0φ0y, ω)|. Therefore we have that the projection of the PAF spectrum onG will decay

at least as fast as (45).

Finally, once the spectrum of the infinite line is studied, one needs to perform a windowing of the

spectrum to consider the fact that the sound field is only studied inside the room. This part happens

similarily to the windowing in Section V.

APPENDIX V

TEMPORAL FREQUENCY DECAY OF THEPAF IN A RECTANGULAR ROOM.

We have

P (n0φ0, ω) ∼ C4(nφ0)

∞
∑

i=−∞

(

e−jD1,i
ω

c

√

D1,iω
+

e−jD2,i
ω

c

√

D2,iω

)

.

We callS1(ω) = C4(nφ0)
∑∞

i=−∞
e−jD1,i

ω
c√

D1,iω
andS2(ω) = C4(nφ0)

∑∞
i=−∞

e−jD2,i
ω
c√

D2,iω
. S1 can be rewritten

as:

S1(ω) =
C4(nφ0)√

ω

(

e−jd1
ω

c +
∞
∑

i=1

e−j ω

c
(d1+2Lyi)

√

d1 + 2Lyi
+

−1
∑

i=−∞

e−j ω

c
|d1+2Lyi|

√

|d1 + 2Lyi|

)

=
C4(nφ0)√

ω

(

e−jd1
ω

c +

∞
∑

i=1

e−j ω

c
(d1+2Lyi)

√

d1 + 2Lyi
+ e−jd

′

1
ω

c +

∞
∑

i=1

e−j ω

c
(d

′

1+2Lyi)

√

d
′

1 + 2Lyi

)
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with d
′

1 = 2Ly−d1. Call the second and fourth terms of the previous expressionU1(ω) andU2(ω) respec-

tively. These two expression are shown to converge using theDirichlet convergence test14. Considering

U1(ω), the Dirichlet convergence test can be applied15 with {an} = e−j ω

c
(d1+2Lyi) and{bn} = 1√

d1+2Lyi
.

This proves the convergence ofU1(ω). Similarily, it can also be shown thatU2(ω) converges. Furthermore,

U1(ω) andU2(ω) are periodic function ofω. Therefore, they can be upperbounded and are converging

for all possible values ofω. This leads us to the conclusion thatS1(ω) behaves asymptotically as

S1(ω) =
C5(ω)√

ω
,

with C5(ω) a bounded function ofω. We obtain the same result forS2(ω) and therefore we have that

P (n0φ0, ω) ∼ C(ω)√
ω

,

with C(ω) a bounded function ofω.

Similarly to the derivations of Appendix IV, the derivationcan be generalized when the line of

microphones is not parallel to a wall.
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