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Version abrégée

Dans ce travail, nous considérons une grande classe de systèmes elliptiques quasilinéaires du
2ème ordre de la forme

−
N∑

α,β=1

aαβ(x, u(x),∇u(x))∂2
αβu(x) + b(x, u(x),∇u(x)) = 0,

où x varie dans un domaine Ω non borné de l’espace Euclidien IRN , et u = (u1, . . . , um) est
un vecteur de fonctions inconnues. Ces systèmes engendrent des opérateurs agissant entre les
espaces de SobolevW 2,p(Ω, IRm) et Lp(Ω, IRm) pour p > N . Nous examinons alors les propriétés
de Fredholm et des applications propres, de ces opérateurs, et l’interaction entres elles.

Ces propriétés fonctionnelles jouent des rôles importants dans le domaine des équations
différentielles nonlinéaires, et sont aussi liées à deux degrés topologiques récents.

Une première partie de ce travail constitue une généralisation de résultats récemment obtenus
par Rabier et Stuart qui ont traité le cas scalaire (une seule équation) sur IRN . Notre étude
couvre donc le cas de plusieurs équations (équations couplées) définies sur des domaines plus
généraux. Nous étudions aussi la question de décroissance exponentielle des solutions.

Les résultats obtenus dans notre cadre général nous permettent ensuite d’explorer de nou-
velles situations plus spécifiques: systèmes stationnaires de réaction-diffusion et élasticité non
linéaire, où grâce au degré topologique, nous démontrons de nouveaux résultats d’existence et
de continuation globale.
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Abstract

We consider a large class of quasilinear second order elliptic systems of the form

−
N∑

α,β=1

aαβ(x, u(x),∇u(x))∂2
αβu(x) + b(x, u(x),∇u(x)) = 0,

where x varies in an unbounded domain Ω of the Euclidean space IRN and u = (u1, . . . , um)
is a vector of functions. These systems generate operators acting between the Sobolev spaces
W 2,p(Ω, IRm) and Lp(Ω, IRm) for p > N . We investigate then the Fredholm and properness
properties of these operators and the connections between them.

These functional properties play important roles in the existence theory of nonlinear differ-
ential equations, and they are related to two recent topological degrees.

A first part of this work is an extension of recent results obtained by Rabier and Stuart
who studied the scalar case (a single equation) on IRN . Our results cover the case of several
equations (coupled equations) defined on more general domains. We also study the question of
exponential decay of solutions.

The general results obtained in our framework are then applied to more specific and new
situations: steady reaction-diffusion systems and nonlinear elasticity, where by means of the
topological degree, we prove new existence and global continuation results.
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Chapter 1

Introduction

This work lies in a vast domain of analysis which can be called ”Topological methods in nonlinear
analysis”. We assume that the reader is familiar with the Leray-Schauder degree and some of
its applications to differential equations. Otherwise, there are many textbooks which introduce
to the subject or treat advanced topics of it. A good place to start is the recent book by Brown
[7]. The books of Lloyd [24] and Deimling [11] are now classical in this field.

Before describing the contents of the present thesis, we think it is important to present its
nearest context through a brief survey of some recent works. In doing so, we also try to bring
out progressively the problematic of this research.

1.1 Some recent works

One of the modern approaches for studying differential equations, consists first in formulating
the differential equation together with its boundary conditions, as an operator equation be-
tween function spaces. Once the problem is defined in a functional framework, there are many
methods to analyze it. One of the powerful tools being the topological degree, since it can give
answers to the questions of existence, multiplicity, and bifurcation of solutions. Furthermore
the fundamental work of Rabinowitz [35] showed how a clever use of the degree can lead to
global information about branches of solutions.

For regular boundary-value problems on bounded domains, the compactness of some imbed-
dings (for instance in Sobolev or Hölder spaces) can reduce the problem to a compact pertur-
bation of the identity, and so the Leray-Schauder degree can be used. However the situation is
different when dealing with differential equations on unbounded domains, since the imbeddings
-when they still hold- are no longer compact in general. To overcome this difficulty several
approaches were developed including construction of more general degrees (there are also ’ad
hoc’ constructions for particular problems, see [20] and [42] for a recent example). In this
direction, the research of Fitzpatrick and Pejsachowicz in the 1980’s prepared the way for the
construction of a degree for proper Fredholm maps of index zero. It was presented in a complete
and concise form by Fitzpatrick, Pejsachowicz and Rabier first for mappings of class C2 [13],
and later extended to the C1 setting [29].

A first application of this degree was made by Jeanjean, Lucia and Stuart [21]. In that
paper, they deal with a semilinear problem of the form−∆u+ f(x, u) = λu, x ∈ IRN

lim
|x|→∞

u(x) = 0

where f : IRN × IR → IR satisfies f(x, 0) = 0, and λ is a real parameter.

13



14 CHAPTER 1. INTRODUCTION

They use the Sobolev spaces X = W 2,p(IRN ) and Y = Lp(IRN ) with p ∈ (N2 ,∞), and study
the functional properties of the operator F : IR×X → Y defined by

F (λ, u) = −∆u+ f(x, u)− λu.

They formulate conditions on the nonlinearity f and the location of the parameter λ which
ensure that F is well defined and has all the properties required for the use of the degree (see
§1.3 and below), and subsequently establish global bifurcation results in the spirit of [35].
In that work the maximum principle plays a crucial role in proving the properness of the
operator, and this forces λ to lie in an interval below the essential spectrum of the linearization
−∆u+ ∂2f(x, 0).

The more general case of a quasilinear second order elliptic equation was studied by Rabier
and Stuart. In a series of papers [31], [32], [33], they discuss the problem

−
N∑

α,β=1

aαβ(x, u,∇u)∂2
αβu+ b(x, u,∇u, λ) = 0, x ∈ IRN

lim
|x|→∞

u(x) = 0.

Here again, they work in the Sobolev spaces X = W 2,p(IRN ) and Y = Lp(IRN ) but with
p ∈ (N,∞), and this incorporates the decay to zero of the solutions and their derivatives at
infinity. The problem is formulated as the search of zeros of the operator F : IR × X → Y
defined by

F (λ, u) = −
N∑

α,β=1

aαβ(., u,∇u)∂2
αβu+ b(., u,∇u, λ).

Then, the main goal is to find ways for verifying the conditions required for the use of the
degree, and which are precisely

(a) F ∈ C1(IR×X,Y ).

(b) DuF (λ, u) ∈ Φ0(X,Y ) for all u ∈ X.

(c) F : IR×X → Y is proper on the closed bounded subsets of IR×X.

They concentrate on the situation where the problem is asymptotically periodic as |x| → ∞, in
the sense that there are functions a∞αβ and b∞ such that a∞αβ(., ξ) and b∞(., ξ, λ) are periodic on
IRN with the same period for all ξ and λ and

lim
|x|→∞

∣∣aαβ(x, ξ)− a∞αβ(x, ξ)
∣∣ = 0 and lim

|x|→∞
|∂ξib(x, ξ, λ)− ∂ξib

∞(x, ξ, λ)| = 0.

Setting

F∞(λ, u) = −
N∑

α,β=1

a∞αβ(., u,∇u)∂2
αβu+ b∞(., u,∇u, λ),

the main results of [31], show that under mild smoothness assumptions which imply (a), the
important properties (b) and (c) are equivalent to

(i) DuF (λ, 0) ∈ Φ0(X,Y ).

(ii) {u ∈ X,F∞(λ, u) = 0} = {0}.
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Then, they explore some important situations where condition (i) can be explicitly verified,
essentially by using the spectral theory of Schrödinger operators.

To verify condition (ii) they consider three situations and accordingly give three approaches.
The first is based on the maximum principle. The second is based on integral identities of
Pohozaev-type, and this was carried out in [33] after a study of the exponential decay of
solutions. The third approach deals with the case when F∞(λ, u) is linear in u, so spectral
theory is used. Each situation then leads to a global bifurcation theorem.

A more detailed survey of the works of Rabier and Stuart can be found in [34].

Independently of Fitzpatrick, Pejsachowicz and Rabier, Benevieri and Furi constructed an-
other degree for C1 Fredholm maps of index zero. We introduce these tools in §1.3.2.

1.2 Description of the present report

Many problems in science can be described mathematically as a system of several differential
equations of several unknown functions (consider for instance Navier-Stokes equations, the
equations of 3 dimensional elasticity, reaction-diffusion equations in mathematical ecology and
so on). These equations are sometimes called coupled equations. Suppose that we are given
m quasilinear partial differential equations of second order containing m unknown functions
u1, u2, . . . , um defined on a domain Ω ⊂ IRN , then we can write the system in the compact form

−
N∑

α,β=1

aαβ(x, u,∇u)∂2
αβu+ b(x, u,∇u) = 0, x = (x1, . . . , xN ) ∈ Ω, (1.1)

where

• u is the vector
(
u1, u2, . . . , um

)T , ∇u is the matrix of partial derivatives
∂

∂xj
ui, j =

1, . . . , N, i = 1, . . . ,m.

• aαβ(x, u,∇u) is an m×m matrix.

• b(x, u,∇u) is a vector of height m.

In the physical examples mentioned above, these equations correspond to the stationary case,
and x represents the independent space variables.

The first objective of this research is to extend the approach of Rabier and Stuart [31] to
cover such systems on unbounded domains of IRN , and which are also elliptic in some sense.

The first difficulty is the choice of an ellipticity condition. For a single linear second order
equation, there is essentially one such condition which states that the matrix of the leading
coefficients is positive definite. Indeed, different refinements such as strong or uniform ellipticity
capture different behavior of the coefficients when they are not constant. However, in the case
of a system, even with constant coefficients, there are at least three different conditions of
ellipticity: that of Agmon-Douglis-Nirenberg, the strong Legendre-Hadamard, and the strong
Legendre conditions. After an exploratory investigation of these different conditions and some of
their functional implications, we decided to concentrate on an intermediate condition between
Agmon-Douglis-Nirenberg and the strong Legendre-Hadamard. This condition is known as
ellipticity in the sense of Petrovskii, and for which Lp−a priori estimates due to Koshelev
are available under weak assumptions about the smoothness of the coefficients. Furthermore,
Petrovskii ellipticity enables us to use the same function space for all the components of the
vector u introduced above. The interest in ellipticity stems from its strong connections with the
Fredholm property of linear partial differential operators. For problems on bounded domains,
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an important connection is given by the theorems on complete collections of isomorphisms,
which establish an equivalence between (i) ellipticity (in the sense of Agmon-Douglis-Nirenberg)
together with a boundary condition (known as Lopatinskii condition), (ii) a priori estimates,
and (iii) the Fredholm property, in a scale of function spaces. See Röıtberg [36], Agranovich
[2] or Wloka and al. [43] for precise statements. We mention, however, that these theorems
are stated and proved in the literature under the strong assumptions that the domain has a C∞

boundary and the coefficients of the operator are C∞ on the domain (it is mentioned sometimes
that these assumptions can be weakened, but they are still strong to us in order to exploit them
in the quasilinear problem).

Thus, serious difficulties arise in the transition from the scalar problem to the vectorial one.
Also, the fact that we consider more general domains than IRN , introduces further technical
complications which have to be resolved in order to obtain a complete generalization of the
work of Rabier and Stuart.

Let us now proceed to the presentation of this work. In section 1.3 we introduce the needed
tools from functional analysis and degree theory.

In chapter 2, we consider a large class of quasilinear second order operators

F (u) = −
N∑

α,β=1

aαβ(., u,∇u)∂2
αβu+ b(., u,∇u) (1.2)

where b : Ω×
(
IRm × IRm×N)→ IRm, aαβ : Ω×

(
IRm × IRm×N)→ IRm×m (α, β = 1, . . . , N) is

a family of matrix-valued maps, and Ω is an open subset of IRN , whose boundary is Lipschitz
continuous and bounded.

By requiring that Ω has a bounded boundary, we cover three situations: Ω is bounded (in
this case, we claim to no novelty), Ω is the exterior of a bounded set, and Ω = IRN .

The goal is then the investigation of the Fredholm and properness properties of F in (1.2)
and the interplay between them, in the context of Sobolev spaces. More precisely, we study
these functional properties of the operator F acting between W 2,p(Ω, IRm) ∩W 1,p

0 (Ω, IRm) and
Lp(Ω, IRm), where p is a real number > N .

Indeed, we formulate conditions on the coefficients of F , and the domain Ω which ensure
that F is well defined i.e. maps W 2,p(Ω, IRm) into Lp(Ω, IRm), and is of class C1. This is
done in §2.1, after a preparatory study of some Nemytskii operators. The needed notation are
introduced and fixed on pp. 25-26. The conditions on the coefficients are formulated on p. 33
and they are implicitly assumed in all the relevant theorems of chapter 2.

In §2.2 we introduce two ellipticity conditions for linear systems. The study of the Fredholm
property of F begins in §2.3. The main result there is Theorem 2.3 which states that, if the
coefficients of F satisfy an ellipticity condition (in the sense of Petrovskii), and the Fréchet
derivative DF (u) is semi-Fredholm (with index 6= ∞) for some u ∈W 2,p(Ω, IRm)∩W 1,p

0 (Ω, IRm),
then DF (u) is semi-Fredholm of the same index for every u. Therefore, to prove the Fredholm
property, one should only consider the linearization at a particular point. We end §2.3 by a
result on the factorization of F .

The study of properness begins in §2.4, where we relate - through some technical results -
properness on closed bounded subsets, to the Fredholm property, and to a notion of uniform
decay of sequences of functions. We end that section by proving that if F is proper on the
closed bounded subsets of W 2,p(Ω, IRm)∩W 1,p

0 (Ω, IRm), then F is semi-Fredholm of index 6= ∞
(Corollary 2.2).

In §2.5, we consider the situation where the coefficients of F are asymptotically periodic as
|x| → ∞, in the sense that there are functions a∞αβ and c∞i 1 ≤ α, β ≤ N, 0 ≤ i ≤ N such that
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a∞αβ(., ξ) and c∞i (., ξ) are periodic on IRN with the same period for all ξ ∈ IRm × IRm×N and

lim
|x|→∞

∣∣aαβ(x, ξ)− a∞αβ(x, ξ)
∣∣ = 0 and lim

|x|→∞

∣∣∣∣∫ 1

0
∇ξib(x, tξ) dt− c∞i (x, ξ)

∣∣∣∣ = 0.

The periodicity condition forces the limit coefficients a∞αβ(., ξ) and c∞i (., ξ) to be defined on the
whole space IRN even if the coefficients a∞αβ and c∞i are only defined on Ω 6= IRN (which is
indeed required to be unbounded).

Setting b∞(x, ξ) =
N∑
i=0

c∞i (x, ξ)ξi, we define a limit operator

F∞(u) = −
N∑

α,β=1

a∞αβ(., u,∇u)∂2
αβu+ b∞(., u,∇u).

Then, after a series of technical lemmas, we succeed in finding sufficient conditions for the
properness (on closed bounded subsets) of the operator F in (1.2). Namely, we prove that if (i)
F is semi-Fredholm of index 6= ∞, and (ii) the limit problem F∞(u) = 0 has only the trivial
solution u = 0, then F is proper on the closed bounded subsets of W 2,p(Ω, IRm)∩W 1,p

0 (Ω, IRm).
These conditions are also necessary if Ω = IRN (Theorem 2.7 and Theorem 2.8). We point out
that Lemma 2.18 plays a crucial role in this issue.

The aim of §2.6 is to find verifiable conditions which ensure that a linear elliptic operator L
is an isomorphism or Fredholm of index zero (between our function spaces). We begin with the
case when Ω = IRN and the linear operator is elliptic in the sense of Petrovskii and has constant
coefficients. Using Fourier transforms, we find a simple algebraic condition on the coefficients of
L which implies that L is an isomorphism (Corollary 2.5). When the coefficients are variable, we
assume that they have a limit as |x| → ∞. The resulting limit operator L∞ then has constant
coefficients. We prove that if the limit operator satisfies the mentioned algebraic condition (and
so it is an isomorphism), and furthermore all the operators Lt = tL+ (1− t)L∞ (t ∈ [0, 1]) are
elliptic, then L is Fredholm of index zero (Theorem 2.10). When L is elliptic in the stronger
sense of Legendre-Hadamard, the condition that Lt are elliptic is automatically satisfied. When
Ω 6= IRN , we obtained only a partial result (Theorem 2.11).

§2.7 concerns the question of exponential decay of solutions of F (u) = f , when f has
exponential decay as |x| → ∞. First, we present and complement some results obtained recently
by Rabier in an abstract setting. Then, we consider linear and quasilinear systems. The main
result states that if F is a Fredholm map (of any index) and f ∈ Lp(Ω, IRm) has exponential
decay, then any possible solution in W 2,p(Ω, IRm) ∩ W 1,p

0 (Ω, IRm) of F (u) = f has also an
exponential decay. We give some refinements in Proposition 2.2 and Theorem 2.14.

Chapter 3 and 4 illustrate the use of the previous results and the topological degree in more
specific and new situations.

In chapter 3, we begin by discussing a particular homotopy, and relate the problem of
existence to finding a priori estimates. Then we consider a special case of steady reaction-
diffusion systems, where we are able to find a priori bounds by means of a maximum principle
and obtain a first existence result. A second homotopy is considered in §3.3 leading to a second
existence result. We note that the maximum principle also plays an important role in the
properness issue by proving that the limit problem has only a trivial solution.

Chapter 4 is devoted to a study of a model in three dimensional elastostatics, where the
elastic body fills the whole space IR3. There, we are confronted with a new difficulty concerning
the injectivity and orientation preserving of admissible deformations of the elastic body. We
discuss this issue in §4.1, where we define the mathematical problem and show how it fits in the
general framework of chapter 2. In §4.2, we prove that the elasticity operator acting between
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W 2,p(IR3, IR3) and Lp(IR3, IR3), is Fredholm of index zero and proper on the closed bounded
subsets of W 2,p(IR3, IR3). The Fredholm issue is treated as follows. Using the results of §2.6,
we first show that the linearization at 0 is a compact perturbation of an isomorphism (hence
Fredholm of index zero), then using the results on exponential decay of solutions, we prove
that it has a trivial kernel, and therefore it is an isomorphism. Theorem 2.3 ensures then that
the operator is Fredholm of index zero. For the properness issue, we first establish identities
of Pohozaev type for the limit problem by using the exponential decay of solutions. Then we
prove that the limit problem has only a trivial solution. Together with the Fredholm property,
this implies that the operator is proper on the closed bounded subsets of W 2,p(IR3, IR3).

In §4.3, we introduce a parameter in the problem and obtain global continuation results
using the topological degree.

The appendix contains some more or less known results about sequences and function spaces,
which we used throughout this work.

1.3 Fundamental concepts and notation

1.3.1 Compact, Fredholm and proper maps

In this subsection, we collect some results about compact, Fredholm and proper maps. Although
these concepts are well known, there is no universally accepted terminology for them. For
instance, some authors call Noetherian what we call a Fredholm operator, others call completely
continuous what we call a compact map. Therefore, we think it is important to have a precise
language.

In what follows, X, Y and Z are real Banach spaces. L(X,Y ) is the Banach space of all
linear and bounded operators from X to Y , and GL(X,Y ) is the open subset of isomorphisms.
X ′ = L(X, IR) is the dual of X. X ↪→ Y means that X is continuously imbedded in Y , and
X ↪→

comp
Y means that the imbedding is compact.

A. Let G : X → Y be an operator (not necessary linear or continuous). G is compact if it
maps bounded subsets onto relatively compact ones i.e. with compact closure. G is completely
continuous if it transforms weakly convergent sequences into strongly convergent ones. Then
one can prove the following.

(1) If X is reflexive and G is completely continuous, then G is compact.

(2) If G is weakly continuous and compact, then it is completely continuous (hence continuous).
One can argue by contradiction.

Therefore, when X is reflexive and G is linear and bounded (and therefore weakly continuous),
complete continuity and compactness for G are equivalent.

Remark 1.1 The reflexivity of X is equivalent to the following condition (Eberlein-Smulyan
theorem): every bounded sequence from X contains a weakly convergent subsequence. It is in
this form that reflexivity is used throughout this work.

Remark 1.2 Weak continuity, as continuity relative to weak (non metrizable) topologies, is
not considered in our context, nor Moore-Smith sequences. So to simplify some statements, we
use ’weak continuity’ in the sense of weak sequential continuity.

B. L ∈ L(X,Y ) is called semi-Fredholm, if rgeL is closed and at least one among dim kerL and
codim rgeL is finite. The index of L is µ = dim kerL − codim rgeL ∈ Z ∪ {±∞}. We denote
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by Φµ(X,Y ) the set of semi-Fredholm operators of index µ. In this work, the case µ = +∞ is
not of particular interest, and we set

Φ+(X,Y ) =
⋃

µ∈Z∪{−∞}

Φµ(X,Y ).

When G ∈ C1(X,Y ) is not necessarily linear, it is semi-Fredholm if for every u ∈ X, the Fréchet
derivative DG(u) ∈ L(X,Y ) is semi-Fredholm. A semi-Fredholm operator with finite index is
called Fredholm. We recall two fundamental properties of semi-Fredholm operators. See for
instance [23] pp. 78-79.

(a) The index of semi-Fredholm operators is a locally constant function, or equivalently Φµ(X,Y )
is open in L(X,Y ).

(b) If L ∈ Φµ(X,Y ) and K ∈ L(X,Y ) is compact, then L +K ∈ Φµ(X,Y ) (stability under a
compact perturbation).

C. Let O be a subset of X and G : O → Y be a continuous operator. G is called proper if
for every compact subset C from Y , we have that G

−1
(C) is compact. We are mainly interested

in operators defined on X and which are proper on the closed bounded subsets, that is, their
restriction to any closed bounded subset of X is proper. This condition is clearly equivalent to
the following one.

(i) Every bounded sequence (un) from X, such that (G(un)) converges, contains a convergent
subsequence.

When X is reflexive, properness on the closed bounded subsets is equivalent to the following.

(ii) For every sequence (un) ⊂ X such that un ⇀ u and (G(un)) converges, we have un → u,
where ⇀ denotes weak convergence.

Proof. (ii) ⇒ (i). Let (un) be bounded and (G(un)) convergent. Since X is reflexive, there is
a subsequence (uϕ(n)) 1 converging weakly to some u. But

(
G(uϕ(n))

)
also converges, therefore

uϕ(n) → u.

(i) ⇒ (ii). Let un ⇀ u and (G(un)) converges. If (un) does not converge to u, there
exist ε0 > 0 and a subsequence (uϕ(n)) such that ‖uϕ(n) − u‖ ≥ ε0. But (uϕ(n)) has the same
properties of (un), therefore it contains a convergent subsequence (to u by uniqueness of the
weak limit). But this contradicts the above inequality. �

When the operator depends on one or several parameters, the following result is useful.

Lemma 1.1 Let J be a subset of IRd where d is a positive integer, and consider a continuous
operator G : J ×X → Y , with the following properties.

(a) For each t ∈ J , the partial operator G(t, .) : X → Y is proper on the closed bounded subsets
of X.

(b) For each bounded subset B ⊂ X, the collection (G(., u))u∈B is equicontinuous.

Then, for any compact subset A of J and any closed bounded subset B ⊂ X, the restriction
G|A×B is proper.

1ϕ is a strictly increasing function from IN to IN.
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Proof. Let K be a compact set of Y and consider a sequence ((tn, un)) from G−1(K)∩(A×B).
We need to show that ((tn, un)) contains a convergent subsequence (the limit belongs then to
G−1(K)∩ (A×B) because this a closed set in IR×X). First, since (tn) belongs to the compact
subset A by assumption, it contains a subsequence (still denoted by (tn)) which converges to
an element t ∈ A. Next, since the sequence (G(tn, un)) belongs to K, it contains a subsequence
G(tϕ(n), uϕ(n)) which converges to an element v of Y . Now,

G(t, uϕ(n)) = G(t, uϕ(n))−G(tϕ(n), uϕ(n)) +G(tϕ(n), uϕ(n)),

and it follows from the equicontinuity assumption that G(t, un) − G(tn, un) → 0 as n → ∞.
Therefore, G(t, uϕ(n)) → v. Since (uϕ(n)) is bounded, it follows from the properness of G(t, .)
that (uϕ(n)) has a convergent subsequence. �

We end this subsection with the following result. See Proposition 9.3 in [11] for a proof.

Yood’s criterion. For a linear operator L ∈ L(X,Y ), the following statements are equivalent.

(i) L is proper on the closed bounded subsets of X.

(ii) L ∈ Φ+(X,Y ).

1.3.2 Degrees for C1 Fredholm maps of index zero

Here, we outline the construction of two recent degrees for C1 Fredholm maps of index zero,
and mention their most important properties. These degrees are defined for operators between
Banach manifolds, but we restrict our brief description to the Banach space setting.

The degree of Fitzpatrick-Pejsachowicz-Rabier

This degree is constructed upon the concept of parity which we first introduce. Let I = [a, b]
be an interval of the real line, and consider a path2 α : I → Φ0(X,Y ). There exists a path
k : I → L(X,Y ) such that k(t) is compact for every t ∈ I and α(t) + k(t) ∈ GL(X,Y )
(see Proposition 2.3 of [12] for a more general statement). Let β(t) = (α(t) + k(t))−1, then
β : I → GL(Y,X) is a path such that for all t ∈ I, β(t)α(t) is a compact perturbation of the
identity in X, and it is called a parametrix of α.

Now suppose that the ends of the path α(a) and α(b) are invertible. For any open neighbor-
hood U of zero in X, the Leray-Schauder degree of β(a)α(a) at zero relative to U is well defined
and takes values in {−1, 1}, independently of U . Accordingly, let degL.S(β(a)α(a)) denote this
degree. Indeed, the same things can be said about β(b)α(b). Given a parametrix β of the path
α, the number

σ(α) = degL.S(β(a)α(a)) degL.S(β(b)α(b))

which is either 1 or −1, does not depend on the choice of the parametrix β as shown in [12].
This number is called the parity of α. It satisfies some important properties such as homotopy
invariance, multiplicativity, and invariance under reparametrizations. Furthermore the parity
is 1 if and only if the path is homotopic to a path of isomorphisms.

Let O be an open connected and simply connected subset of X and F : O → Y be a
C1 Fredholm map of index zero. A base point of F is any point p ∈ O at which DF (p) is
an isomorphism. Assume that there exists a base point p for F , and consider an open subset
B ⊂ O such that F can be extended as a proper map to the closure of B. Then if y /∈ F (∂B) is a

2Let us agree that a path or a curve are continuous by definition.
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regular value of F , the set F
−1

(y)∩B = F
−1

(y)∩B is compact (possibly empty) by properness,
and discrete as it follows from the inverse function theorem. Therefore it is finite. If it is not
empty, let u ∈ F−1

(y) ∩ B and γu be a curve joining p to u (this is possible because O is open
and connected and therefore path connected), then indeed DF ◦γu, has invertible endpoints and
so the parity σ(DF ◦ γu) is well defined. Furthermore it is independent of γu as a consequence
of the homotopy invariance of the parity and the simple connectivity of O. Accordingly, the
degree of F at y relative to B and p is defined by

degp(F,B, y) =
∑

u∈F−1 (y)∩B

σ(DF ◦ γu).

When F
−1

(y) ∩ B is empty, the degree is naturally defined to be zero.
Now, if y /∈ F (∂B) is not necessarily a regular value of F , there exists a ball U centered at y

and contained in Y \F (∂B), and as a consequence of the Quinn-Sard theorem, this ball contains
regular values of F . But then, it is shown that degp(F,B, y1) = degp(F,B, y2) for any regular
values y1, y2 ∈ U . Accordingly, degp(F,B, y) is defined to be this common number.

A change of the base point from p to q, changes the degree by the factor σ(DF ◦θ) ∈ {−1, 1},
where θ is any curve joining p to q.

This degree satisfies the usual properties of existence (called there normalization property),
excision, additivity on domains, while its behavior under homotopy is given by the following
reformulation of Theorem 5.1 and Corollary 5.5 of [29].

Theorem 1.1 Let h ∈ C1 ([0, 1]×O, Y ) be Fredholm of index 1 (this is equivalent to saying
that Duh(t, .) ∈ Φ0(X,Y ) for all t ∈ [0, 1]), and proper on [0, 1]×B. Such a homotopy is called
B−admissible. Suppose that y /∈ h([0, 1] × ∂B) and p0 ∈ O is a base point of h(0, .). Then we
have the following.

(i) If p1 ∈ O is a base point for h(1, .), then

degp0(h(0, .),B, y) = σ(Duh ◦ γ) degp1(h(1, .),B, y),

where γ is any curve joining (0, p0) to (1, p1) in [0, 1]×O.

(ii) If for some t ∈ (0, 1], h(t, .) has no base point or the equation h(t, u) = y has no solution
in B, then degp0(h(0, .),B, y) = 0.

It is sometimes useful to consider the absolute degree of (F,B, y), which is defined to be zero
if F has no base point, and to be the absolute value of degp(F,B, y) whenever p is a base
point. Indeed, this is not a degree because it is not additive, however, it satisfies the excision
property and it is homotopy invariant. And as noticed on p. 24 in [13], these two properties
are sufficient to prove the generalized homotopy invariance as in the Leray-Schauder degree.
For future reference, we state

Lemma 1.2 Let J be an open interval of the real line, Υ ⊂ J × O, G : Υ → Y be C1

Fredholm of index 1, and extendable by continuity to a proper map on the closure of Υ. Set
for t ∈ J, Υt = {u ∈ O, (t, u) ∈ Υ}. Suppose that y 6= G(t, u) for all u ∈ ∂ (Υt). Then, for any
a and b from J ,

|deg |(G(a, .),Υa, y) = |deg |(G(b, .),Υb, y).

Finally, we mention the connection with the Leray-Schauder’s degree. When X = Y , B is
bounded and F is a compact perturbation of the identity, we have

degp(F,B, y) = (−1)n degL.S(F,B, y),

where n is the number of negative eigenvalues of DF (p).



22 CHAPTER 1. INTRODUCTION

The degree of Benevieri-Furi

This degree is based upon an algebraic concept of orientation for linear Fredholm maps of index
zero. Let L : X → Y be a Fredholm operator of index zero between two vector spaces (no
additional structure is needed at this stage). Then, there exists a linear operator A : X → Y
with finite rank, such that L + A is an algebraic isomorphism3. An operator A having this
property is called a corrector of L and the set of correctors of L is denoted by C(L). On C(L)
is defined an equivalence relation in the following way. Given A,B ∈ C(L), the automorphism
of X:

T = (L+B)−1(L+A) = I − (L+B)−1(B −A)

is such that I − T has finite rank. Hence, given any nontrivial finite dimensional subspace
X0 containing rge (I − T ), the restriction of T to X0 is an automorphism of X0. Therefore, its
determinant is well defined and nonzero, and furthermore it can be shown that it is independent
of the choice ofX0. Accordingly, A is said to be L−equivalent to B if det

(
(L+B)−1(L+A)

)
> 0.

This is indeed an equivalence relation on C(L) with just two equivalence classes. An orientation
of L is then one among these two classes, and the elements of the chosen class are called the
positive correctors of L.

When L is an isomorphism, the trivial operator 0 is indeed a corrector of L and therefore
belongs to a class in C(L), this class is called the natural orientation of L . However, if L is
already oriented, the sign of L is defined to be 1 if the trivial operator belongs to the orientation
of L and −1 otherwise.

Now let X and Y be Banach spaces. In this context, it is natural to consider only bounded
correctors of bounded Fredholm operators of index zero. Because GL(X,Y ) is open in L(X,Y ),
it follows that if A is a corrector of L ∈ Φ0(X,Y ), then it is still a corrector of all operators L′

sufficiently close to L. Furthermore, if A is a positive corrector of L, then L′ can be oriented with
the L-class to which A belongs. This stability property permits to define a concept of orientation
for a continuous map h : Λ → Φ0(X,Y ) where Λ is a topological space. An orientation of h is a
continuous choice of an orientation α(λ) of h(λ), where continuity means that for every λ ∈ Λ,
there exists Aλ ∈ α(λ) which is a positive corrector of h(λ′) for all λ′ in a neighborhood of λ.
A map is then called orientable if it admits an orientation and oriented when an orientation is
chosen.

In particular, let O be an open subset of X, and F : O → Y be a C1 Fredholm operator of
index zero. An orientation of F is an orientation (if it exists) of the continuous map DF : O →
Φ0(X,Y ).

With this in mind, we may proceed to the definition of the degree for regular triples. Given
an element y ∈ Y , an open subset B ⊂ O, and an oriented map F : O → Y , the triple (F,B, y)
is called admissible if F−1(y) ∩ B is compact4. If y is a regular value of F then F−1(y) ∩ B is
finite and the degree of (F,B, y) is

degB.F(F,B, y) =
∑

u∈F−1 (y)∩B

signDF (u),

where, as in the general case, signDF (u) = 1 if the trivial operator is a positive corrector of
the oriented isomorphism DF (u), and signDF (u) = −1 otherwise.

The assumption that y is a regular value is then removed by means of the classical Sard’s
theorem, after showing that given two neighborhoods U1 and U2 of F−1(y), one has
degB.F(F,U1, y2) = degB.F(F,U2, y2), for any regular values y1, y2 sufficiently close to y.

3Let A1 be an isomorphism between ker L and some complement of rge L, and let P be a projection from X
onto ker L. Then, one check that L + A1P is an isomorphism. If in addition X and Y are Banach space and L
is bounded, then by taking P continuous, we see that L + A1P is in fact a topological isomorphism.

4It is called strongly admissible if F has a proper extension to the closure of B and y /∈ F (∂B).
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As expected, this degree satisfies the usual properties of existence, additivity and invariance
under oriented homotopies. More precisely,

Definition 1.1 A homotopy of Fredholm maps of index zero from O ⊂ X to Y is a continuous
map h : [0, 1] × O → Y , which is differentiable with respect to the second variable and such
that, for any (t, u) ∈ [0, 1] × O, the partial derivative Duh(t, u) ∈ Φ0(X,Y ), and furthermore
the map Duh : [0, 1]×O → Φ0(X,Y ) is continuous. Then, an orientation of h is an orientation
of the continuous map Duh : [0, 1]×O → Φ0(X,Y ).

The invariance of the degree under oriented homotopies is stated in the following form.
Let h : [0, 1] × O → Y be an oriented homotopy and y : [0, 1] → Y be a path. If the set

{(t, u) ∈ [0, 1]×O | h(t, u) = y(t)} is compact, then degB.F(h(t, .),O, y(t)) is well defined and
does not depend on t ∈ [0, 1].

Note that the requirements on the homotopy are weaker than those in the Fitzpatrick-
Pejsachowicz-Rabier theory, where the homotopy is required to be C1 in both variables, and
this is needed there in order to prove the homotopy variance of the degree at regular values via
an approximation theorem -Theorem 2.1- (see the proof of Theorem 4.1 in [29]).

Now the following question arises: how can we check that a Fredholm map or a homotopy
of Fredholm maps is orientable? Benevieri and Furi give the following answer (which is a
consequence of Theorem 3.11 in [4]). Any continuous map h : Λ → Φ0(X,Y ) is orientable
provided that Λ is simply connected and locally path connected. In particular the map DF :
O → Φ0(X,Y ) is orientable if O is simply connected (since O, being an open subset of a Banach
space is locally path connected).

For the orientation of a homotopy, another answer is given by Theorem 4.3 in [4] which
ensures that a homotopy h : [0, 1] × O → Y , is orientable if and only if for some t0 ∈ [0, 1],
h(t0, .) : O → Y is orientable. In this case, an orientation of h(t0, .) is the restriction of a unique
orientation of h.

The two degree theories that we have just sketched are strongly connected to each other,
and an instructive comparison can already be found in [4], §5. We mention, in particular, the
following (Proposition 5.6 in [4]). For an oriented path γ : [0, 1] → Φ0(X,Y ) with invertible
endpoints γ(0) and γ(1) we have

σ(γ) = sign γ(0) sign γ(1).

As a consequence, when (F,B, y) is admissible and regular in both theories, and p is a base
point for F ,

degp(F,B, y) =
∑

u∈F−1 (y)∩B

σ(DF ◦ γu) where γu is a path joining p to u

=
∑

u∈F−1
(y)∩B

signDF (p) signDF (u)

= signDF (p)
∑

u∈F−1 (y)∩B

signDF (u)

= signDF (p) degB.F(F,B, y),

and from the general definition of each degree, this relation continues to hold for any triple
which is admissible in both theories.

Thus, we can draw the following picture. Each of the above degrees is defined on a class
of admissible triples. The two classes are distinct but not disjoint, and on the intersection of
these classes, the degrees coincide up to a sign. The intersection -in which we are interested-
contains the triples (F,B, y) satisfying
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(a) F is a continuously differentiable Fredholm map of index zero from an open connected and
simply connected subset O ⊂ X, with values in Y .

(b) B ⊂ O is open.

(c) F has a proper extension to B.

(d) y /∈ F (∂B).

(e) F has a base point p ∈ O.

In the light of the above, Theorem 1.1 (i) remains true under a weaker assumption on the
homotopy. We see this as a theorem on the base point degree (but from outside the theory).

Theorem 1.2 Let h : [0, 1] × O → Y be a homotopy of Fredholm maps of index 0, which is
proper on [0, 1]×B. Suppose that y /∈ h([0, 1]×∂B) and p0, p1 ∈ O are respectively base points
for h(0, .) and h(1, .), then

degp0(h(0, .),B, y) = σ(Duh ◦ γ) · degp1(h(1, .),B, y),

where γ is any curve joining (0, p0) to (1, p1) in [0, 1]×O.

Proof. Note first that the map h(0, .) : O → Y is orientable in the sense of Benevieri-
Furi because O is simply connected. Therefore h is orientable (Theorem 4.3 in [4])5. Choose
accordingly an orientation of h. Then

degp0(h(0, .),B, y) = sign (Duh(0, p0)) degB.F(h(0, .),B, y).

Now the set

{(t, u) ∈ [0, 1]× B | h(t, u) = y} = h−1(y) ∩
(
[0, 1]× B

)
= h−1(y) ∩

(
[0, 1]× B

)
is compact by the properness assumption on h. Therefore, by the invariance of the Benevieri-
Furi degree under oriented homotopies

degB.F(h(0, .),B, y) = degB.F(h(1, .),B, y).

But degB.F(h(1, .),B, y) = sign Duh(1, p1) degp1(h(1, .),B, y), and so

degp0(h(0, .),B, y) = sign Duh(0, p0) signDuh(1, p1) degp1(h(1, .),B, y)
= σ(Duh ◦ γ) degp1(h(1, .),B, y),

where γ is any curve joining (0, p0) to (1, p1) in [0, 1]×O. �

We end by some remarks. First, we mention that the degree of Fitzpatrick-Pejsachowicz-
Rabier is available for a class of admissible triples larger than we presented. As in the Benevieri-
Furi theory, for the admissibility of a triple (F,B, y), the properness assumption, and the con-
dition y /∈ F (∂B) can be replaced by the requirement that F−1(y) ∩ B is compact. This is
discussed in section 7 of [29].

Another extension is discussed in section 8, where it is shown that the assumption on the
simple connectedness of O can be removed provided that one considers oriented maps (in the
sense of Fitzpatrick-Pejsachowicz-Rabier). See [4] §5 for a comparison.

5This also follows from the fact that [0, 1]×O is simply connected and path connected.



Chapter 2

Fredholm and properness properties
of quasilinear second order elliptic
systems

Before beginning the study of Fredholm and properness properties, we need first to introduce
some notation which will be used in the rest of this work.

Notation

Let N and m be two integers ≥ 1. N will always denote the dimension of the space of the
independent variable i.e. IRN , andm the dimension of the system (m equations withm unknown
functions). The real number p (which appears in the Sobolev spaces Lp and W 2,p) will always
satisfy N < p <∞. The elements of IRm are viewed as columns.

Let Ω be an open subset of IRN , with bounded and Lipschitz continuous boundary ∂Ω.
For a vector-valued function u =

(
u1, u2, . . . , um

)T : Ω → IRm, we denote by ∂iu the vector
(∂iu1, . . . , ∂iu

m) and by ∇u the m×N matrix with columns ∂iu, i = 1 . . . , N . For convenience,
we set ∂0u = u.

If z1, z2 ∈ IRm, and A is an m ×m matrix, z1 · z2 denotes the scalar product of z1 and z2,
and Az1 denotes the usual matrix-vector multiplication. For any integer d ≥ 1, the Euclidean
norm on IRd is denoted by | · |.

In the sequel we deal with functions f : Ω×
(
IRm × IRm×N)→ IR. The arguments of f will

often be denoted by x ∈ Ω and ξ ∈ IRm× IRm×N . Whenever we need to display the components
of ξ ∈ IRm × IRm×N , we shall write ξ = (ξ0, ξ′), where

ξ′ = [ξ1 ξ2 · · · ξN ] , with ξk =

 ξ1k
...
ξmk

 for k = 0, . . . , N.

When we deal with Nemytskii operators, we form the expression f(x, u(x),∇u(x)), in which
u(x) takes the place of ξ0, and ∂1u(x), . . . ∂Nu(x) take the place of ξ1, . . . , ξN respectively.

Remark 2.1 The space IRm×N of m × N matrices is indeed isomorphic to the space IRmN

and therefore it is possible to consider ∇u as an element of IRmN . This notation was used in
[17]. What is important in both cases is the block decomposition of ∇u which simplifies the
subsequent calculations and statements, by avoiding having to handle a lot of indices.

The Nemytskii operator generated by f : u 7→ f(., u,∇u) will be denoted by f i.e.

f(u)(x) = f(x, u(x),∇u(x)).

25
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We denote by
∇ξkf(x, ξ) =

(
∂ξ1k

, . . . , ∂ξm
k

)
f(x, ξ),

the partial gradient with respect to the ξk block variable. ∇ξf is the gradient of f with respect
to ξ.

We use the standard notation for the Lebesgue and Sobolev spaces. Let O ⊂ IRN be
an open set, l ∈ IN, q ∈ [1,∞], the norm in

(
W l,q(O)

)m = W l,q(O, IRm) is the norm in a
Cartesian product of Banach spaces and will be denoted by ‖u‖l,q,O, (i.e. if u = (u1, . . . , um) ∈
W l,q(O; IRm), then ‖u‖l,q,O = ‖u1‖W l,q(O) + · · ·+‖um‖W l,q(O)). To simplify the writing we often
use: Yp(Ω) = (Lp(Ω))m, and Xp(Ω) =

(
W 2,p(Ω)

)m, when Ω = IRN , we write Xp and Yp.

To deal with the Dirichlet problem, we introduce the space Dp(Ω) =
(
W 2,p(Ω) ∩W 1,p

0 (Ω)
)m

.

Note that Dp(Ω) is a closed subspace of Xp(Ω) and so it is also reflexive. Finally Dp(IRN ) =
Xp(IRN ) = Xp.

C1(Ω) is the subspace of C0(Ω) ∩ C1(Ω) of the functions v for which ∇v has a continuous
extension to Ω. We also use the space C1

d(Ω) introduced in [31].

C1
d(Ω) =

{
v ∈ C1(Ω) : lim

x∈Ω,|x|→∞
|v(x)| = lim

x∈Ω,|x|→∞
|∇v(x)| = 0

}
.

This is a Banach space for the norm: max
(
maxx∈Ω |v(x)|, maxx∈Ω |∇v(x)|

)
. Note also that

C1
d(Ω) ⊂ W 1,∞(Ω) and C1

d(Ω) = C1(Ω) when Ω is bounded. Some important properties of the
spaces used here are recalled in the appendix.

Remarks on the domain Ω

Ω will always have a bounded and Lipschitz boundary ∂Ω (possibly empty). So that Ω can be
a bounded domain, an exterior domain, or IRN itself. In the main results of this work, it is
furthermore assumed that Ω has a C2 boundary, and it is explicitly mentioned. This implies
some remarks that will be useful later.

Remark 2.2 We have two cases: either Ω is bounded or not. If Ω is unbounded, then neces-
sarily {Ω is bounded. This is due to the boundedness of the boundary. Indeed, let Br be a ball
containing ∂Ω, we claim that Br contains {Ω. If not, there is a point x ∈ {Ω ∩ {Br . Since Ω is
unbounded, there is y ∈ Ω ∩ {Br . Now recall that {Br is path connected, so we can join x to
y by a path in {Br . This path joining an exterior point to an interior point of Ω, should meet
the boundary, but it does not since the boundary lies inside the ball Br. Therefore K = {Ω is
bounded (compact).

Remark 2.3 Let Ω be unbounded. For every ball Br containing ∂Ω we have

∂ (Ω ∩Br) = ∂Ω ∪ ∂Br.

Proof. We clearly have Ω ∩Br ⊂ Ω∩Br. Let us prove the reverse inclusion. Let x ∈ Ω∩Br.
Then either (i) x ∈ Br or (ii) x ∈ ∂Br. Let first x ∈ Br and V be an open neighborhood of x.
If V ∩ (Ω∩Br) = ∅, then x ∈ V ∩Br ⊂ K := {Ω which means that x is an interior point of K.
But this is impossible since

x ∈ Ω = {K = {
◦
K .

Therefore x ∈ Ω ∩Br. Next if x ∈ ∂Br ⊂ {Br ⊂ Ω, then for all ε > 0 sufficiently small,
B(x, ε) ⊂ Ω. Now clearly B(x, ε) ∩ Br 6= ∅ and so B(x, ε) ∩ (Ω ∩ Br) 6= ∅, and once again
x ∈ Ω ∩Br. Finally Ω ∩Br = Ω ∩Br.
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On the other hand,
{Ω∩Br = {Ω ∪ {Br .

So
∂ (Ω ∩Br) = Ω ∩ {Ω ∩Br

⋃
Br ∩ {Br ∩ Ω = ∂Ω ∩Br

⋃
∂Br ∩ Ω = ∂Ω

⋃
∂Br,

since ∂Ω ⊂ Br ⊂ Br and ∂Br ⊂ {Br ⊂ Ω ⊂ Ω. �

Remark 2.4 The connection between the Dirichlet problem and the space

Dp(Ω) =
(
W 2,p(Ω) ∩W 1,p

0 (Ω)
)m

introduced above is given by the following theorem (see Brézis [6] Théorème IX. 17 for example).
Let Ω have a C1 boundary and u ∈ W 1,q(Ω) ∩ C(Ω) with 1 ≤ q < ∞. Then the following
conditions are equivalent.

(i) u = 0 on ∂Ω.

(ii) u ∈W 1,q
0 (Ω).

2.1 Smoothness of some Nemytskii operators

Our first task is to make sure that the operator in (1.2) maps W 2,p(Ω, IRm) to Lp(Ω, IRm) and
has enough smoothness for the subsequent discussion. Therefore it is necessary to study the
smoothness of the Nemytskii operators u 7→ b(., u,∇u) and u 7→ aαβ(., u,∇u), entering in F .
This leads us to consider maps of the type f : Ω ×

(
IRm × IRm×N) → IRd. Note that if f =

(f1, . . . , fd) and each component f j gives rise to a Nemytskii operator f j , then the Nemytskii
operator associated with f is f = (f1, . . . ,fd), and any smoothness property of f is equivalent
to the same property of each component. So it is sufficient to study scalar-valued maps. It is
clear that the smoothness of a Nemytskii operator generated by f : Ω ×

(
IRm × IRm×N) → IR

should be derived from smoothness assumptions on f . In this work as in [31], the following
property of equicontinuity plays an important role (M and d are two integers ≥ 1).

Definition 2.1 We say that f : Ω × IRM → IRd is an equicontinuous C0−bundle map if f is
continuous and the collection (f(x, .))x∈Ω is equicontinuous at every point of IRM . If k ≥ 0 is
an integer, we say that f is an equicontinuous Ckξ−bundle map if the partial derivatives Dγ

ξ f ,
|γ| ≤ k, exist and are equicontinuous C0−bundle maps.

We recall that equicontinuity of (f(x, .))x∈Ω at a point η0 ∈ IRM means that for all ε > 0
there is δ = δ(η0 , ε) > 0 such that |η − η0 | ≤ δ ⇒ |f(x, η)− f(x, η0)| < ε for all x ∈ Ω. When δ
can be chosen independently of η0 for η0 in some set B, we have uniform equicontinuity on B.

Note that f = (f1, . . . , fd) is an equicontinuous Ckξ−bundle map if and only if each com-
ponent f j is an equicontinuous Ckξ−bundle map. Note also that a sum of equicontinuous
Ckξ−bundle maps, is an equicontinuous Ckξ−bundle map.

Now we give some important properties and examples of equicontinuous Ckξ−bundle maps.

Lemma 2.1 Let f : Ω× IRM → IRd be an equicontinuous C0−bundle map. Then we have the
following.

(i) The collection (f(x, .))x∈Ω is uniformly equicontinuous on the compact subsets of IRM .
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(ii) If A is a measurable subset of Ω and f(., 0) ∈ L∞(A), the collection (f(x, .))x∈A is equi-
bounded on the bounded subsets of IRM .

Proof. (i) If not, there exist a compact set K ⊂ IRM , ε0 > 0, and 3 sequences (xn) ⊂ Ω,
(ξn), (ηn) ⊂ K such that for all n ∈ IN,

|ξn − ηn| ≤
1
n

and |f(xn, ξn)− f(xn, ηn)| ≥ ε0.

But (ξn) belongs to a compact set, so it contains a subsequence (ξϕ(n)) converging to some ξ,
which also implies that ηϕ(n) → ξ. By the equicontinuity of (f(x, .))x at ξ we have, for all n
large enough,

|f(xϕ(n), ξϕ(n))− f(xϕ(n), ξ)| <
ε0
4

and |f(xϕ(n), ηϕ(n))− f(xϕ(n), ξ)| <
ε0
4
,

and therefore |f(xϕ(n), ξϕ(n))− f(xϕ(n), ηϕ(n))| <
ε0
2

, a contradiction.

(ii) Let K be a bounded subset of IRM , and B be a closed ball in IRM containing 0 and K.
By part (i), there is δ > 0 such that, for all x ∈ Ω, |f(x, ξ)− f(x, η)| < 1 whenever |ξ − η| ≤ δ
and ξ, η ∈ B. For any ξ ∈ K, one can divide the segment joining 0 to ξ into [|ξ|/δ]+1 segments
of length not greater than δ. Thus for x ∈ A,

|f(x, ξ)| ≤ |f(x, 0)|+ |f(x, ξ)− f(x, 0)| < ‖f(., 0)‖L∞(A) +
[
|ξ|
δ

]
+ 1.

But |ξ| is bounded by the diameter of B, so the proof is complete. �

Remark 2.5 Let g : Ω ×
(
IRm × IRm×N) → IRm be an equicontinuous C0−bundle map, such

that g(., 0) ∈ L∞(Ω, IRm). Then, for i = 0, . . . , N , (x, ξ) 7→ g(x, ξ) · ξi is a scalar-valued
equicontinuous C0−bundle map.

Proof. Fix η ∈ IRm × IRm×N . Then

g(x, ξ) · ξi − g(x, η) · ηi = g(x, ξ) · (ξi − ηi) + (g(x, ξ)− g(x, η)) · ηi.

The result follows from the equicontinuity of (g(x, .))x∈Ω at η, and its equiboundedness on
bounded subsets of IRm × IRm×N (Lemma 2.1 (ii)). �

Remark 2.6 Let f : Ω×
(
IRm × IRm×N)→ IR be an equicontinuous C1

ξ−bundle map. Define
g : Ω×

(
IRm × IRm×N)→ IRm by

g(x, ξ) =
∫ 1

0
∇ξif(x, tξ) dt.

Then g is an equicontinuous C0−bundle map.

Proof. Fix η ∈ IRm × IRm×N . Then

g(x, ξ)− g(x, η) =
∫ 1

0
(∇ξif(x, tξ)−∇ξif(x, tη)) dt.

If |ξ − η| ≤ 1 then tξ and tη belong to the closed ball with center 0 and radius |η| + 1. Thus
the conclusion follows from Lemma 2.1 (i) applied to ∇ξif . �
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Remark 2.7 If f is of class Ck and f(., ξ) is periodic in x with period T = (T1, . . . , TN ) for
every ξ ∈ IRm × IRm×N , then f is an equicontinuous Ckξ−bundle map. This follows from the
uniform continuity of Dγ

ξ f on [0, T1] × . . . × [0, TN ] ×K for every compact K ⊂ IRm × IRm×N

and |γ| ≤ k (see §2.5).

Lemma 2.2 Let f : Ω × IRm × IRm×N → IR be an equicontinuous C0−bundle map. Suppose
that f(., 0) ∈ L∞(Ω). Then the Nemytskii operator f has the following properties.

(i) It is well defined and continuous from
(
C1
d(Ω)

)m
to L∞(Ω).

(ii) It is well defined and continuous from
(
W 2,p(Ω)

)m
to L∞(Ω) and maps bounded subsets

onto bounded subsets.

(iii) If Ω is bounded, it is completely continuous from
(
W 2,p(Ω)

)m
to L∞(Ω) (hence also to

Lq(Ω), 1 ≤ q ≤ ∞).

(iv) The multiplication (u, v) ∈
(
W 2,p(Ω)

)m×Lp(Ω) 7→ f(., u,∇u)v ∈ Lp(Ω) is weakly sequen-
tially continuous.

Proof. (i) If u ∈ C1
d(Ω, IR

m), the function x ∈ Ω → f(x, u(x),∇u(x)) is continuous and hence
measurable. From the boundedness of u and ∇u on Ω, there is a bounded subset K ⊂ IRm ×
IRm×N containing (u(x),∇u(x)) for all x ∈ Ω. Therefore by Lemma 2.1 (ii) there is a constant
MK > 0 such that |f(x, u(x),∇u(x))| ≤MK ∀x ∈ Ω. This means that f(., u,∇u) ∈ L∞(Ω).

To prove the continuity, let un, u ∈ C1
d(Ω, IR

m) and un → u in C1
d(Ω, IR

m). Then since
{u} ∪ {un, n ∈ IN} is compact and hence bounded in C1

d(Ω, IR
m), there is a compact K ⊂

IRm × IRm×N containing (u(x),∇u(x)) and (un(x),∇un(x)) for all x ∈ Ω and n ∈ IN. But
|(un(x),∇un(x))− (u(x),∇u(x))| can be made arbitrary small uniformly in x ∈ Ω, for n large
enough, so by Lemma 2.1 (i), given ε > 0, we have

|f(x, un(x),∇un(x))− f(x, u(x),∇u(x))| ≤ ε ∀x ∈ Ω.

Lastly if B ⊂ C1
d(Ω, IR

m) is bounded, there is a bounded subset K ⊂ IRm × IRm×N containing
(u(x),∇u(x)) for all x ∈ Ω and u ∈ B. The boundedness of f(B) follows from Lemma 2.1 (ii).

(ii) Follows from the imbedding W 2,p(Ω, IRm) ↪→ C1
d(Ω, IR

m).

(iii) The above imbedding is compact when Ω is bounded.

(iv) Let un ⇀ u in W 2,p(Ω, IRm) and vn ⇀ v in Lp(Ω). From part (ii), the sequence (f(un))
is bounded in L∞(Ω), and hence (f(un)vn) is bounded in Lp(Ω). Let Ω′ ⊂ Ω be any open ball.
By part (iii), f(un)|Ω′ → f(u)|Ω′ in L∞(Ω′), which implies f(un)vn|Ω′ ⇀ f(u)v|Ω′ in Lp(Ω′).
Now if a subsequence of (f(un)vn) converges weakly to w in Lp(Ω) and hence in Lp(Ω′), we
have w|Ω′ = f(u)v|Ω′ , and therefore w = f(u)v since the ball is arbitrary. This means that
(f(un)vn) has a unique weak cluster point, which yields f(un)vn ⇀ f(u)v in Lp(Ω), by Note
A1 of the appendix. �

Lemma 2.3 Let f : Ω× IRm × IRm×N → IR have the form

f(x, ξ) = f0(x) +
N∑
i=0

gi(x, ξ) · ξi (2.1)

where gi is a C0−bundle map, with gi(., 0) ∈ L∞(Ω, IRm), 0 ≤ i ≤ N . Suppose that f0 ∈ Lp(Ω).
In particular, the above conditions hold if f is a C1

ξ−bundle map with f(., 0) ∈ Lp(Ω) and
∇ξf(., 0) bounded in Ω. Then the Nemytskii operator has the following properties.
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(i) It is well defined and continuous from W 2,p(Ω, IRm) to Lp(Ω) and maps bounded subsets
onto bounded subsets.

(ii) It is weakly sequentially continuous from W 2,p(Ω, IRm) to Lp(Ω).

Proof. To see the ”in particular”, note that for an equicontinuous C1
ξ−bundle map f , one

can write

f(x, ξ)− f(x, 0) =
∫ 1

0

∂

∂t
f(x, tξ) dt

=
∫ 1

0

N∑
i=0

∇ξif(x, tξ) · ξi dt

=
N∑
i=0

(∫ 1

0
∇ξif(x, tξ) dt

)
· ξi. (2.2)

Take

gi(x, ξ) =
∫ 1

0
∇ξif(x, tξ) dt,

then by Remark 2.6, gi is an equicontinuous C0−bundle map. Furthermore gi(., 0) = ∇ξif(., 0) ∈
L∞(Ω, IRm).

(i) Applying Lemma 2.2 (ii) to each component of gi, we have that gi : W 2,p(Ω, IRm) →
L∞(Ω, IRm) is continuous and maps bounded subsets onto bounded ones. As a result, the
operator (recall that ∂0u = u)

u 7→
N∑
i=0

gi(u) · ∂iu ∈ Lp(Ω) (2.3)

is continuous and maps bounded subsets onto bounded ones. By (2.1), this is f − f0, and the
conclusion follows from the assumption f0 ∈ Lp(Ω).

(ii) Let un ⇀ u in W 2,p(Ω, IRm). By part (i), (f(un)) is bounded in Lp(Ω). Let Ω′ ⊂ Ω
be an open ball. Since f − f0 is an equicontinuous C0−bundle map (see Remark 2.5) and
vanishes when ξ = 0, Lemma 2.2 (iii) applies and yields f(un)|Ω′ → f(u)|Ω′ in Lp(Ω′). Now if
a subsequence of (f(un)) converges weakly to some w in Lp(Ω) and hence in Lp(Ω′), we have
w|Ω′ = f(u)|Ω′ , and therefore w = f(u) since the ball is arbitrary. This means that (f(un))
has a unique weak cluster point, and thus f(un) ⇀ f(u) in Lp(Ω). �

Theorem 2.1 Let f : Ω× IRm× IRm×N → IR be an equicontinuous C1
ξ−bundle map. Suppose

that f(., 0) ∈ L∞(Ω) (resp. f(., 0) ∈ Lp(Ω)) and that ∇ξf(., 0) is bounded on Ω. Then the
Nemytskii operator f is of class C1 from W 2,p(Ω, IRm) to L∞(Ω), (resp Lp(Ω)) with derivative

Df(u)v =
N∑
i=0

∇ξif(., u,∇u) · ∂iv. (2.4)

Furthermore Df is bounded on the bounded subsets of W 2,p(Ω, IRm), and hence f is uniformly
continuous on these subsets.
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Proof. Define for u ∈W 2,p(Ω, IRm),

Tuv =
N∑
i=0

∇ξif(., u,∇u) · ∂iv.

By Lemma 2.2 (ii) applied to each component of ∇ξif , we have ∇ξif(., u,∇u) is bounded on
Ω. Thus

‖Tuv‖0,p,Ω ≤
N∑
i=0

‖∇ξif(., u,∇u)‖0,∞,Ω‖∂iv‖0,p,Ω ≤ const.× ‖v‖2,p,Ω

and

‖Tuv‖0,∞,Ω ≤ const.× ‖v‖1,∞,Ω ≤ const.× ‖v‖2,p,Ω.

Therefore Tu is linear and bounded from W 2,p(Ω, IRm) to Lp(Ω) and to L∞(Ω).
Note that

f(., u+ v,∇(u+ v))− f(., u,∇u) =
∫ 1

0

∂

∂t
f(., u+ tv,∇u+ t∇v) dt

=
N∑
i=0

(∫ 1

0
∇ξif(., u+ tv,∇u+ t∇v) dt

)
· ∂iv.

So

f(., u+ v,∇(u+ v))− f(., u,∇u)− Tuv

=
N∑
i=0

(∫ 1

0
∇ξif(., u+ tv,∇u+ t∇v)−∇ξif(., u,∇u) dt

)
· ∂iv.

Thus if we define

ku,i(x, ξ) :=
∫ 1

0
(∇ξif(x, u(x) + tξ0,∇u(x) + tξ′ )−∇ξif(x, u(x),∇u(x))) dt

where ξ′ = [ξ1 · · · ξN ], we get

f(., u+ v,∇(u+ v))− f(., u,∇u)− Tuv =
N∑
i=0

ku,i(., v,∇v) · ∂iv. (2.5)

Now, one can check as in Remark 2.6, that ku,i is an equicontinuous C0−bundle map satisfying
ku,i(., 0) = 0 ∈ L∞(Ω, IRm). Therefore by Lemma 2.2 (ii) applied to each component of ku,i we
have that ku,i is continuous from W 2,p(Ω, IRm) to L∞(Ω, IRm). So, given ε > 0, we have that
‖ku,i(v)‖0,∞,Ω ≤ ε provided ‖v‖2,p,Ω is small enough.

Now, if f(., 0) ∈ L∞(Ω), f maps W 2,p(Ω, IRm) to L∞(Ω) (Lemma 2.2 (ii)). By (2.5), we
obtain

‖f(u+ v)− f(u)− Tuv‖0,∞,Ω ≤ const.× ε‖v‖1,∞,Ω ≤ const.× ε‖v‖2,p,Ω,

which means that f is differentiable and Df(u) = Tu.
If f(., 0) ∈ Lp(Ω), f maps W 2,p(Ω, IRm) to Lp(Ω) (Lemma 2.3 (i)). By (2.5), we obtain

‖f(u+ v)− f(u)− Tuv‖0,p,Ω ≤ const.× ε‖v‖1,p,Ω ≤ const.× ε‖v‖2,p,Ω,
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which means that f is differentiable and Df(u) = Tu.
To prove the continuity of Df , note that from (2.4), we get

‖Df(u)−Df(u0)‖ ≤ ‖∇ξf(., u,∇u)−∇ξf(., u0,∇u0)‖0,∞,Ω

where ‖Df(u) − Df(u0)‖ denotes either the norm in L(Xp(Ω), L∞(Ω)) if f(., 0) ∈ L∞(Ω), or
the norm in L(Xp(Ω), Lp(Ω)) if f(., 0) ∈ Lp(Ω). The result then follows from Lemma 2.2 (ii)
applied to each component of ∇ξf , and which also ensures that Df is bounded on the bounded
subsets of W 2,p(Ω, IRm) . �

Remark 2.8 If f takes values in IRm, the derivative of the Nemytskii operator generated by
f is just:

Df(u)v =
(
Df1(u)v, . . . ,Dfm(u)v

)
with for k = 1, . . . ,m

Dfk(u)v =
N∑
i=0

∇ξif
k(., u,∇u) · ∂iv

 (2.6)

Similarly if f =
(
fk,j

)
k,j=1,...,m

is an m×m matrix, the derivative of the Nemytskii operator f
is the matrix

Df(u)v =
(
Dfk,j(u)v

)
k,j=1,...,m

with

Dfk,j(u)v =
N∑
i=0

∇ξif
k,j(., u,∇u) · ∂iv

 (2.7)

Lemma 2.4 (Lemma 2.9 of [31]) Let X, Y and Z be normed spaces with X ↪→ Y and let
f : X → Z be uniformly continuous on the bounded subsets of X. Suppose that there is a
dense subset D ⊂ X such that whenever u ∈ D and (un) ⊂ X is a bounded sequence with
un → u in Y, we have f(un) → f(u) in Z. Then the restriction of f to the bounded subsets of
X remains continuous for the topology induced by Y .

Lemma 2.5 Let f : Ω × IRm × IRm×N → IR be an equicontinuous C1
ξ−bundle map. Suppose

that f(., 0) ∈ Lp(Ω) and that ∇ξif(., 0) ∈ (Lp(Ω) ∩ L∞(Ω))m , 0 ≤ i ≤ N . Then the restriction
of the Nemytskii operator to any bounded subset of W 2,p(Ω, IRm) is continuous into Lp(Ω) for
the topology of C1

d(Ω, IR
m).

Proof. Recall that f is uniformly continuous on the bounded subsets of W 2,p(Ω, IRm) by
Theorem 2.1. Note also that if

D =
{
u ∈ C∞(Ω, IRm) | ∃ v ∈ C∞

0 (IRN , IRm) such that v|Ω = u
}
,

then D is dense in W 2,p(Ω, IRm) (Adams [1] Theorem 3.18). We show that if u ∈ D and (un) is
a bounded sequence from Xp(Ω) converging to u in C1

d(Ω, IR
m), then f(un) → f(u) in Lp(Ω).

The result will follow from Lemma 2.4 with X = W 2,p(Ω, IRm), Y = C1
d(Ω, IR

m), Z = Lp(Ω)
and D defined above.

In Lemma 2.3 we have already established that

f(u) = f(., 0) +
N∑
i=0

gi(u) · ∂iu,

where

gi(x, ξ) =
∫ 1

0
∇ξif(x, tξ) dt,
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and by Remark 2.6, the gi are equicontinuous C0−bundle maps. Hence by Lemma 2.2 (i),
applied to each component of gi, gi : C1

d(Ω, IR
m) → L∞(Ω, IRm) is continuous.

Clearly the problem reduces to showing that gi(un)·∂iun → gi(u)·∂iu in Lp(Ω), 0 ≤ i ≤ N .
To see this we write

gi(un) · ∂iun − gi(u) · ∂iu = (gi(un)− gi(u)) · ∂iun + gi(u) · ∂i(un − u). (2.8)

The first term tends to zero in Lp(Ω) because gi(un) → gi(u) in L∞(Ω, IRm), and (∂iun) is
bounded in Lp(Ω, IRm). On the other hand (un − u) → 0 in C1

d(Ω, IR
m) which is continuously

imbedded in W 1,∞(Ω, IRm). The last term of (2.8) tends to zero if we show that gi(u) ∈
Lp(Ω, IRm). And this is true for the following reason: let Ω′ ⊂ Ω be the support of u ∈ D. Then
first gi(u) ∈ L∞(Ω, IRm) ⊂ L∞(Ω′, IRm) ⊂ Lp(Ω′, IRm), and secondly, when x ∈ Ω\Ω′, we have
gi(u)(x) = gi(x, u(x),∇u(x)) = gi(x, 0) = ∇ξif(x, 0) . But ∇ξif(., 0) ∈ Lp(Ω, IRm), therefore
gi(u) ∈ Lp(Ω\Ω′, IRm). And thus gi(u) ∈ Lp(Ω, IRm) as claimed. �

Lemma 2.6 Let f : Ω × IRm × IRm×N → IR be an equicontinuous C1
ξ−bundle map. Suppose

that f(., 0) ∈ Lp(Ω) and that ∇ξf(., 0) is bounded on Ω (so that the Nemytskii operator f
is of class C1 from W 2,p(Ω, IRm) to Lp(Ω) by Theorem 2.1). If (un) ⊂ W 2,p(Ω, IRm) is a
bounded sequence and u ∈ W 2,p(Ω, IRm) is such that un → u in C1

d(Ω, IR
m) (hence un ⇀ u in

W 2,p(Ω, IRm), by Note A2 in the appendix), we have

f(un)− f(u)−Df(u)(un − u) → 0 in Lp(Ω). (2.9)

Proof. Let vn = un − u so that vn ⇀ 0 in W 2,p(Ω, IRm), and vn → 0 in C1
d(Ω, IR

m).
Then the left hand side of (2.9) is f(u + vn) − f(u) − Df(u)vn = g(vn) − g(0) where g(v) :=
f(u + v) − Df(u)v for v ∈ W 2,p(Ω, IRm). Note that g is the Nemytskii operator associated
with (see (2.4))

g(x, ξ) := f(x, u(x) + ξ0,∇u(x) + ξ′)−
N∑
i=0

∇ξif(x, u(x),∇u(x)) · ξi

where ∇ξif(., u,∇u) is continuous and bounded (Lemma 2.2 (ii)). So one can check using
Lemma 2.1 (i), that g is an equicontinuous C1

ξ−bundle map with

∇ξig(x, ξ) = ∇ξif(x, u(x) + ξ0,∇u(x) + ξ′)−∇ξif(x, u(x),∇u(x)).

Furthermore g(0) = f(u) ∈ Lp(Ω) (Lemma 2.3 (i)), and ∇ξig(., 0) = 0 ∈ Lp(Ω, IRm) ∩
L∞(Ω, IRm). Thus g verifies the conditions of Lemma 2.5, and therefore g(vn) → g(0) in
Lp(Ω), which completes the proof. �

Smoothness of F

Let the coefficients of F in (1.2) satisfy the following assumptions:

aαβ are equicontinuous C1
ξ−bundle maps, 1 ≤ α, β ≤ N (2.10)

aαβ(., 0) and ∇ξaαβ(., 0) are bounded on Ω, 1 ≤ α, β ≤ N (2.11)

b is an equicontinuous C1
ξ−bundle map (2.12)

b(., 0) ∈ Lp(Ω, IRm), ∇ξb(., 0) is bounded on Ω. (2.13)
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Lemma 2.7 The operator F in (1.2) is both continuous and weakly sequentially continuous
from W 2,p(Ω, IRm) to Lp(Ω, IRm) and it maps bounded subsets onto bounded subsets.

Proof. By Lemma 2.2 (ii) applied to each component of aαβ , the Nemytskii operators aαβ are
continuous from W 2,p(Ω, IRm) to L∞(Ω, IRm×m) and they map bounded subsets onto bounded
subsets. By Lemma 2.3 (i) (applied to each component of b), b is continuous from W 2,p(Ω, IRm)
to Lp(Ω, IRm) and maps bounded subsets onto bounded ones. This proves the continuity and
the boundedness properties.

Now if (un) ⊂ W 2,p(Ω, IRm) converges weakly to u, we have ∂2
αβun ⇀ ∂2

αβu in Lp(Ω, IRm)1.
By Lemma 2.2 (iv), aαβ(un)∂2

αβun ⇀ aαβ(u)∂2
αβu in Lp(Ω, IRm). Next by Lemma 2.3 (ii),

b(un) ⇀ b(u) in Lp(Ω, IRm). This proves the weak continuity of F . �

Remark 2.9 Note that the proof of the above lemma requires only the following weaker as-
sumptions: aαβ are equicontinuous C0−bundle maps, with aαβ(., 0) bounded, and

b(x, ξ) = b0(x) +
N∑
i=0

ci(x, ξ)ξi

where b0 ∈ Lp(Ω, IRm), and ci are equicontinuous C0−bundle maps with ci(., 0) bounded. This
will be used in §2.5.

Theorem 2.2 The operator F in (1.2) is of class C1 from Xp(Ω) = W 2,p(Ω, IRm) to Yp(Ω) =
Lp(Ω, IRm), with derivative

DF (u)v = −
N∑

α,β=1

aαβ(u)∂2
αβv + Db(u)v −

N∑
α,β=1

(Daαβ(u)v) ∂2
αβu (2.14)

where Db(u) and Daαβ(u) are given by (2.6) and (2.7) respectively.

In particular, the restriction of F to the subspace Dp(Ω) =
(
W 2,p(Ω) ∩W 1,p

0 (Ω)
)m

is C1

from Dp(Ω) to Lp(Ω, IRm).

Proof. Recall that

F (u) = −
N∑

α,β=1

aαβ(u)∂2
αβu+ b(u).

By Theorem 2.1, b ∈ C1(Xp(Ω), Yp(Ω)), and aαβ ∈ C1
(
Xp(Ω), L∞(Ω, IRm×m)

)
. Now let

G(u) := aαβ(u)∂2
αβu, and B : L∞(Ω, IRm×m)×Yp(Ω) → Yp(Ω) be the bounded bilinear operator

defined by B(M,X ) = MX . Then G = B ◦ (aαβ , ∂2
αβ), and the result follows from the chain

rule. �

2.2 Ellipticity and examples

Ellipticity is defined in general for linear systems. In the nonlinear case, one formulates a
condition which implies that the linearization is elliptic in some sense. Here we introduce two
ellipticity conditions for linear systems of second order.

1∂2
αβ : Xp(Ω)→ Yp(Ω) is linear and bounded and therefore weakly continuous.
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Let Aαβ , Bα, C (α, β = 1, . . . , N) be (matrix-valued) functions from Ω to IRm×m. Define a
second order linear differential operator L by

Lv := −
N∑

α,β=1

Aαβ(x)∂2
αβv +

N∑
α=1

Bα(x)∂αv + C(x)v, (2.15)

where v : Ω → IRm.

For the majority of our results in this chapter, the following condition of ellipticity is suffi-
cient.

Definition 2.2 (Petrovskii) An operator L of the form (2.15) is said to be elliptic at x in
the sense of Petrovskii, if there exists a positive constant γ(= γ(x)) such that

det

 N∑
α,β=1

ηαηβ
Aαβ(x)

 ≥ γ|η|2m ∀ η ∈ IRN . (2.16)

We say that L is strictly elliptic on a subset K ⊂ Ω, if in the above definition one can choose
the same γ for all x ∈ K.

We mention right away that the (linear) Stokes system is not elliptic in the sense of Petrovskii.
But a study of the Fredholm and properness properties of the Navier-Stokes operator on un-
bounded domains, was already carried out by Galdi and Rabier [15], [16]. The two physical
examples we have in mind are steady reaction diffusion systems and elasticity, and these satisfy
a stronger condition of ellipticity known as the strong Legendre-Hadamard (see [8], [25]).

Definition 2.3 (The Strong Legendre-Hadamard ellipticity) An operator of the form
(2.15) is called strongly elliptic at x in the sense of Legendre-Hadamard, if there is γ = γ(x) > 0,
such that

ζT

 N∑
α,β=1

ηαηβAαβ(x)

 ζ ≥ γ|η|2|ζ|2 for all η ∈ IRN , ζ ∈ IRm. (2.17)

We say that L is strongly elliptic on a subset K ⊂ IRN in the sense of Legendre-Hadamard, if
(2.17) holds with the same γ > 0 for all x ∈ K.

Indeed this is stronger than Petrovskii ellipticity, since (2.17) means that the matrix

N∑
α,β=1

ηαηβAαβ(x)

is positive definite for η 6= 0 (and so all its real eigenvalues are positive), whereas Petrovskii
condition means that it has a positive determinant. Note that the strong Legendre-Hadamard
condition is ”convex” in the sense that all operators on the segment joining two elliptic operators
(in the sense of Legendre-Hadamard) are elliptic. However, this is not true for Petrovskii-
ellipticity. On the other hand, both conditions concern only the higher order coefficients of
the system, and furthermore they are stable under small enough perturbation of the leading
coefficients. We mention finally that the Petrovskii condition is available for higher order
systems (see [22]).



36 CHAPTER 2. FREDHOLM AND PROPERNESS PROPERTIES

Steady reaction-diffusion of particles in a fluid flow

For N ≤ 3, let v : IRN → IRN denote the velocity field of a stationary flow containing m types
of particle in suspension. Let uk(x, t) denote the density of particles of type k at time t and
position x ∈ IRN . The particles move with the fluid, diffuse with diffusion coefficients Dk > 0
and take part in a chemical reaction. According to [14], the evolution of the particle densities
in the fluid is governed by the system

∂

∂t
uk =

Dk

2
∆uk + v(x).∇uk + fk(x, u1, ..., um) for k = 1, 2...,m.

In a matrix-vector form, steady states of this system satisfy

−
N∑

α,β=1


D1
2 δαβ 0 · · · 0

0 D2
2 δαβ · · · 0

...
...

. . .
...

0 0 · · · Dm
2 δαβ



∂2
αβu

1

...

...
∂2
αβu

m

−


v · ∇u1 + f1(x, u)

...

...
v · ∇um + fm(x, u)

 = 0,

which indeed is a system of the form (1.1) with

aijαβ(x, ξ0, [ξ1 · · · ξN ]) =
Di

2
δijδαβ for α, β = 1, . . . , N and i, j = 1, . . . ,m,

bj(x, ξ0, [ξ1 · · · ξN ]) = −

{
N∑
α=1

vα(x)ξjα + fj(x, ξ0)

}
.

Now the linearization of the above system is of the form (2.15) with Aαβ = aαβ . Indeed

N∑
α,β=1

ηαηβaαβ =
N∑
α=1

η2
αaαα =

|η|2

2
diag (D1, . . . , Dm),

and therefore

ζT

 N∑
α,β=1

ηαηβaαβ

 ζ ≥ minDk

2
|η|2|ζ|2.

Thus the system is strongly elliptic in the sense of Legendre-Hadamard.
Our conditions (2.10)−(2.13) are satisfied provided that

(i) vα ∈ C(IRN ) ∩ L∞(IRN ), and

(ii) fj : IRN × IRm → IR is an equicontinuous C1
ξ − bundle map with

fj(x, 0) = 0 and ∇ξfj(·, 0) is bounded on IRN .

2.3 Fredholmness

We now begin the investigation of the Fredholmness of the second order differential operator
(1.2). To the hypotheses (2.10)−(2.13), we add an ellipticity condition, which implies that the
linearization DF (u) is Petrovskii-elliptic.

For all η ∈ IRN , (x, ξ) ∈ Ω×
(
IRm × IRm×N)

det
( N∑
α,β=1

ηαηβ
aαβ(x, ξ)

)
≥ γ(x, ξ)|η|2m

 (2.18)
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where γ : Ω×
(
IRm × IRm×N)→ (0,∞) is bounded from below by a positive constant on every

compact subset of Ω×
(
IRm × IRmN

)
.

Note that in the case of a single equation (m = 1), this condition reduces to

N∑
α,β=1

aαβ(x, ξ)ηαηβ ≥ γ(x, ξ)|η|2 ∀ η ∈ IRN , (x, ξ) ∈ Ω× IRN+1,

and this is the ellipticity condition used in [31] with Ω = IRN . In the remainder of this chapter,
the coefficients of the operator F in (1.2) will satisfy the hypotheses (2.10)−(2.13) and (2.18).

Note that

DF (u)v = L(u)v −
N∑

α,β=1

(Daαβ(u)v) ∂2
αβu,

where

L(u)v := −
N∑

α,β=1

aαβ(u)∂2
αβv + Db(u)v (2.19)

and clearly L(u) ∈ L (Xp(Ω), Yp(Ω)).

Lemma 2.8 Let u ∈ Xp(Ω). Then the difference DF (u)−L(u) is compact between Xp(Ω) and
Yp(Ω). Therefore, given µ ∈ Z ∪ {±∞}, and any closed subspace E of Xp(Ω), we have

DF (u) ∈ Φµ(E, Yp(Ω)) ⇐⇒ L(u) ∈ Φµ(E, Yp(Ω)).

Proof. If we show that the difference is compact, the second statement will follow from the
stability of Φµ(E, Yp(Ω)) under compact perturbations.

By (2.19) we have

DF (u)v − L(u)v = −
N∑

α,β=1

(Daαβ(u)v) ∂2
αβu.

Clearly it suffices to show that each (Daαβ(u)v) ∂2
αβu, is compact, and again for that it suffices

to show that each component
m∑
j=1

(Daαβ(u)v)k,j ∂
2
αβu

j (k = 1, . . . ,m), is compact. Now each

term of this sum is by (2.7) (
N∑
i=0

∇ξia
k,j
αβ(., u,∇u) · ∂iv

)
∂2
αβu

j .

Once again writing the components, we deal with the terms
(
∂ξl

i
ak,jαβ(., u,∇u)∂

2
αβu

j
)
∂iv

l, k, j, l =

1, . . . ,m. Now indeed ∂ξl
i
ak,jαβ(., u,∇u)∂

2
αβu

j ∈ Lp(Ω). But since N < p <∞, the multiplication
by a fixed function of Lp(Ω) is a compact operator from W 1,p(Ω) to Lp(Ω) (see the appendix).
Thus w 7→ Tw :=

(
∂ξl

i
ak,jαβ(., u,∇u)∂

2
αβu

j
)
∂iw is compact from W 2,p(Ω) to2 Lp(Ω). Now going

back through the steps, we see that DF (u)−L(u) is a compact operator from Xp(Ω) to Yp(Ω),
and therefore also from Dp(Ω) to Yp(Ω). �

2wn ⇀ w in W 2,p ⇒ ∂iwn ⇀ ∂iw in W 1,p ⇒ Twn → Tw in Lp.
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Fix u and let Aαβ(x) = aαβ(u)(x), Bα(x) be the matrix with lines ∇ξαb
k(x, u(x),∇u(x)),

k = 1, . . . ,m, and C(x) be the matrix with lines ∇ξ0b
k(x, u(x),∇u(x)), k = 1, . . . ,m. Then

L(u)v = −
N∑

α,β=1

Aαβ(x)∂2
αβv +

N∑
α=1

Bα(x)∂αv + C(x)v

is a linear second order differential operator, with continuous and bounded coefficients. Now
condition (2.18) implies

det

 N∑
α,β=1

ηαηβAαβ(x)

 ≥ γ(x, u(x),∇u(x))|η|2m.

As x varies over a compact set, the continuity of u and ∇u ensures that (x, u(x),∇u(x)) remain
in a compact set K. Therefore by (2.18) there exists γK > 0 such that

det

 N∑
α,β=1

ηαηβAαβ(x)

 ≥ γK |η|2m.

Thus, for each fixed u ∈ Xp(Ω) the differential operator L(u) is strictly Petrovskii-elliptic on
the compact subsets of Ω.

Lemma 2.9 (Koshelev [22], Theorem 17 pp. 150-151) Let Ω′ ⊂ IRN be a bounded do-
main with C2 boundary, and 1 < q < ∞. Let the linear operator L in (2.15) be strictly
Petrovskii-elliptic in Ω′, with continuous coefficients on Ω′. If v ∈W 2,q(Ω′, IRm)∩W 1,q

0 (Ω′, IRm),
then v satisfies the a priori estimate

‖v‖2,q,Ω′ ≤ c
(
‖Lv‖0,q,Ω′ + ‖v‖0,1,Ω′

)
, (2.20)

where c is a positive constant.

Lemma 2.10 Assume that ∂Ω is of class C2. Let L be a second order linear differential
operator, strictly Petrovskii-elliptic on the compact subsets of Ω, with continuous bounded
coefficients3. If (un) ⊂ Dp(Ω), is a sequence converging weakly to zero in Dp(Ω), and Lun → 0
in Yp(Ω), then un → 0 in Xp(Ω′) for all open and bounded subsets Ω′ ⊂ Ω.

Proof. We distinguish between two cases.

Case 1 (Ω is bounded). Since un ⇀ 0 in W 2,p(Ω, IRm) ↪→
comp

L1(Ω; IRm), we have un → 0

in L1(Ω, IRm). On the other hand Lun → 0 in Lp(Ω, IRm). Note that (un), L and Ω satisfy
the conditions of Lemma 2.9. So by letting q = p and v = un in (2.20), we get: un → 0 in
W 2,p(Ω, IRm).

Case 2 (Ω is unbounded). For every r > 0, set Br = {x ∈ IRN ; |x| < r}, and Ωr = Ω∩Br.
Clearly it is equivalent to show that the result hold when Ω′ = Ωr for r > 0 large enough4.

So let Br be a ball containing ∂Ω, and R > r. It follows from the remarks made about Ω at
the beginning of this chapter, that ∂ΩR = ∂Ω ∪ ∂BR so that ∂ΩR is C2 since ∂Ω ∩ ∂BR = ∅.

3The boundedness of the coefficients ensures that L maps continuously W 2,p(Ω, IRm) into Lp(Ω, IRm).
4Because Ωr is open and bounded, and every open and bounded subset of Ω is contained in a subset of the

form Ωr.
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Now define ϕ : IRN → IR to be a C∞ function with compact support such that ϕ = 1 on Br,
ϕ = 0 outside BR, and ‖ϕ‖0,∞ ≤ 1. Define a new sequence (vn) by vn = ϕun, so that un = vn
on Ω ∩Br, and vn ∈ Dp(ΩR).

Now recall that un ⇀ 0 in Dp(Ω) ↪→
comp

W 1,p(ΩR, IRm) ↪→ L1(ΩR, IRm), so that un → 0 in

W 1,p(ΩR, IRm) as well as in L1(ΩR, IRm). And therefore also vn → 0 in L1(ΩR, IRm) since ϕ
is bounded.

On the other hand a direct calculation leads to

Lvn = ϕLun +
∑
α,β

(
∂2
αβϕAαβ

)
un +

∑
α,β

(∂αϕAαβ) ∂βun +
∑
α,β

(∂βϕAαβ) ∂αun +
∑
α

(∂αϕBα)un.

Thus due to the boundedness of ϕ, of its derivatives and of the coefficients of L, we get Lvn → 0
in Lp(ΩR, IRm).

Estimate (2.20) now gives that vn → 0 in Xp(ΩR), and therefore also in Xp(Ωr). This finally
implies that un → Xp(Ωr). �

For the next results, we need the following concept introduced in [31].

Definition 2.4 Let X and Y be real Banach spaces with X reflexive and let T,L ∈ L(X,Y )
be given. We say that T is compact modulo L if, for every sequence (un) ⊂ X, we have
{un ⇀ 0 in X, Lun → 0 in Y } ⇒ Tun → 0 in Y .

Lemma 2.11 (Lemma 3.7 of [31]) Let X and Y be real Banach spaces with X reflexive
and let L0, L1 ∈ L(X,Y ) be given. Suppose L0−L1 is compact modulo both L0 and L1. Then
we have the following.

(i) If (un) ⊂ X is a sequence converging weakly to zero, we have L0un → 0 in Y if and only
if L1un → 0.

(ii) L0 ∈ Φ+(X,Y ) if and only if L1 ∈ Φ+(X,Y ).

For t ∈ [0, 1] define Lt := tL1 + (1− t)L0. If L0 − L1 is compact modulo Lt ∀ t ∈ [0, 1], then

(iii) Lt ∈ Φ+(X,Y ) for all t ∈ [0, 1] if and only if this holds for some t0 ∈ [0, 1], and in this
case, the index of Lt is independent of t.

Lemma 2.12 Assume that ∂Ω is C2. For L(u) defined by (2.19), the relation

L(u) ∈ Φ+ (Dp(Ω), Yp(Ω))

holds for every u ∈ Dp(Ω), if and only if it holds for some u0 ∈ Dp(Ω).

Proof. We shall prove that L(u)−L(u0) is compact modulo L(u). By exchanging the roles of
u and u0, this shows that L(u)−L(u0) is compact modulo both L(u) and L(u0), the conclusion
follows from Lemma 2.11 (ii).

Let then (vn) ⊂ Dp(Ω) be such that vn ⇀ 0 in Dp(Ω) and L(u)vn → 0 in Yp(Ω). From the
equicontinuity of aαβ and Dξb at ξ = 0, we have that, given ε > 0, there is a δ > 0 such that

|aαβ(x, ξ)− aαβ(x, 0)| < ε

2
and |∇ξb(x, ξ)−∇ξb(x, 0)| < ε

2
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for |ξ| < δ and all x ∈ Ω. Now due to the embedding W 2,p(Ω, IRm) ↪→ C1
d(Ω, IR

m) and the
definition of C1

d(Ω), there is r > 0 such that |(u(x),∇u(x))| < δ, and |(u0(x),∇u0(x))| < δ for
|x| ≥ r (we can choose r such that ∂Ω ⊂ Br). Therefore

|aαβ(x, u(x),∇u(x))− aαβ(x, u0(x),∇u0(x))| < ε

and

|∇ξb(x, u(x),∇u(x))−∇ξb(x, u0(x),∇u0(x))| < ε

whenever |x| ≥ r. Now let Ωr = {x ∈ Ω | |x| < r}, Ω̃r = {x ∈ Ω | |x| > r}, and recall that

(
L(u)− L(u0)

)
v = −

N∑
α,β=1

(
aαβ(u)− aαβ(u0)

)
∂2
αβv+

N∑
i=0

(
∇ξib(., u,∇u)−∇ξib(., u

0,∇u0)
)
∂iv.

Therefore

‖
(
L(u)− L(u0)

)
v‖0,p,Ω̃r

≤ m2(N2 +N + 1)ε‖v‖2,p,Ω̃r
for v ∈ Dp(Ω).

Hence

‖
(
L(u)− L(u0)

)
vn‖0,p,Ω̃r

≤ m2M(N2 +N + 1)ε (2.21)

where M is a bound for ‖vn‖2,p,Ω.
As already observed L(u) verifies the conditions required in Lemma 2.10, thus vn → 0 in

Xp(Ωr), so L(u0)vn and L(u)vn converge to zero in Yp(Ωr)5, which means that for any ε > 0
and n large enough,

‖
(
L(u)− L(u0)

)
vn‖0,p,Ωr ≤ ε. (2.22)

Together (2.21) and (2.22), yield that ‖
(
L(u)− L(u0)

)
vn‖0,p,Ω can be made arbitrary small for

n large enough. This completes the proof. �

Theorem 2.3 Let ∂Ω be of class C2. The operator F in (1.2) is semi-Fredholm of index
µ ∈ Z ∪ {−∞} (i.e. DF (u) ∈ Φµ (Dp(Ω), Yp(Ω)) for every u ∈ Dp(Ω)), if and only if there is
some u0 ∈ Dp(Ω) such that DF (u0) ∈ Φµ (Dp(Ω), Yp(Ω)).

Proof. By Lemma 2.8 and 2.12,

DF (u0) ∈ Φ+ (Dp(Ω), Yp(Ω)) ⇐⇒ L(u0) ∈ Φ+ (Dp(Ω), Yp(Ω))
⇐⇒ L(u) ∈ Φ+ (Dp(Ω), Yp(Ω)) ∀u ∈ Dp(Ω)
⇐⇒ DF (u) ∈ Φ+ (Dp(Ω), Yp(Ω)) ∀u ∈ Dp(Ω).

Now by Theorem 2.2, DF is continuous as a map from Dp(Ω) into L(Dp(Ω), Yp(Ω)). Recall
also that the index of a semi-Fredholm operator is locally constant, whence u 7→ index DF (u)
is locally constant and therefore constant since Dp(Ω) is connected. �

5L(u) ∈ L(Xp(Ωr), Yp(Ωr)) by Theorem 2.2 with Ω replaced by Ωr.
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A useful factorization of F

Theorem 2.4 There exists an operator G : Xp(Ω) → L (Xp(Ω), Yp(Ω)), having the following
properties.

(a) F (u)− F (0) = G(u)u, for every u ∈ Xp(Ω).

(b) For every µ ∈ Z ∪ {−∞} and u ∈ Dp(Ω), we have DF (u) ∈ Φµ (Dp(Ω), Yp(Ω)) if and only
if G(u) ∈ Φµ (Dp(Ω), Yp(Ω)).

(c) G is continuous and maps bounded subsets ofXp(Ω) into bounded subsets of L (Xp(Ω), Yp(Ω)).

Proof. (a) Recall that

F (u) = −
N∑

α,β=1

aαβ(u)∂2
αβu+ b(u), (2.23)

and b(u) can be written as

b(u) = b(0) +
N∑
i=0

ci(u)∂iu (2.24)

where ci is the Nemytskii operator generated by the (matrix-valued) equicontinuous C0−bundle
map

ci(x, ξ) =
∫ 1

0
∇ξib(x, tξ) dt.

By Theorem 2.2,

DF (u)v = −
N∑

α,β=1

aαβ(u)∂2
αβv + Db(u)v −

N∑
α,β=1

(Daαβ(u)v) ∂2
αβu

= −
N∑

α,β=1

aαβ(u)∂2
αβv +

N∑
i=0

bi(u)∂iv +K(u)v (2.25)

where indeed K(u) is compact as already observed in Lemma 2.8, and bi is the Nemytskii
operator associated with ∇ξib(x, ξ). In particular when v = u we obtain

DF (u)u = −
N∑

α,β=1

aαβ(u)∂2
αβu+

N∑
i=0

bi(u)∂iu+K(u)u. (2.26)

Combining (2.23), (2.24) and (2.26) we get since F (0) = b(0),

F (u)− F (0) = DF (u)u−K(u)u−
N∑
i=0

(bi(u)− ci(u)) ∂iu. (2.27)

Letting

T (u)v =
N∑
i=0

(bi(u)− ci(u)) ∂iv, (2.28)

and
G(u) = DF (u)−K(u)− T (u) = L(u)− T (u), (2.29)

where L(u) is defined in (2.19), we get F (u)− F (0) = G(u)u.



42 CHAPTER 2. FREDHOLM AND PROPERNESS PROPERTIES

Note that since T (0) = K(0) = 0, we have G(0) = L(0) = DF (0).

(b) We show that T (u) is compact. From the equicontinuity of (∇ξib(x, .))x at ξ = 0, given
any ε > 0, there is δ > 0 such that ∀x ∈ Ω

|∇ξib(x, ξ)−∇ξib(x, 0)| < ε

2

whenever |ξ| < δ. Therefore ∀x ∈ Ω, ∀ t ∈ [0, 1], we have |∇ξib(x, ξ)−∇ξib(x, tξ)| < ε if |ξ| < δ.
But since u ∈ C1

d(Ω, IR
m) there is an r > 0 such that | (u(x),∇u(x)) | < δ whenever |x| > r. All

this means that ∀ t ∈ [0, 1], |x| > r, we have

|∇ξib(x, u(x),∇u(x))−∇ξib(x, tu(x), t∇u(x))| < ε,

and so by integrating with respect to t we get

lim
|x|→∞

(
∇ξib(x, u(x),∇u(x))−

∫ 1

0
∇ξib(x, tu(x), t∇u(x)) dt

)
= 0.

But multiplication by a bounded function vanishing at infinity is a compact operator from W 1,q

to Lq for all 1 < q <∞ (see Note E2 in the appendix). Therefore T (u) is compact from Dp(Ω)
to Yp(Ω) for all u ∈ Dp(Ω).

(c)

G(u)v = L(u)v − T (u)v = −
N∑

α,β=1

aαβ(u)∂2
αβv +

N∑
α=0

cα(u)∂αv.

Therefore,

‖G(u)v −G(u0)v‖0,p,Ω ≤
N∑

α,β=1

‖aαβ(u)− aαβ(u0)‖0,∞,Ω‖∂2
αβv‖0,p,Ω

+
N∑
α=0

‖cα(u)− cα(u0)‖0,∞,Ω‖∂αv‖0,p,Ω.

As already observed, the Nemytskii operators aαβ and cα are continuous from Xp(Ω) to
L∞(Ω, IRm×m). Accordingly, given ε > 0, there is δ > 0 such that

‖aαβ(u)− aαβ(u0)‖0,∞,Ω ≤ ε and ‖cα(u)− cα(u0)‖0,∞,Ω ≤ ε,

whenever ‖u− u0‖ ≤ δ. Consequently,

‖G(u)v −G(u0)v‖0,p,Ω ≤ const.× ε‖v‖2,p,Ω,

and therefore,
‖G(u)−G(u0)‖L(Xp(Ω),Yp(Ω)) ≤ const.× ε.

The boundedness property follows from the boundedness of aαβ and cα (Lemma 2.2). �

2.4 Properness

Lemma 2.13 Let u ∈W 2,p(Ω, IRm) and (un) ⊂W 2,p(Ω, IRm) be a bounded sequence converg-
ing to u in C1

d(Ω, IR
m). Then F (un)− F (u)−DF (u)(un − u) → 0 in Lp(Ω, IRm).
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Proof. Note first that un ⇀ u in W 2,p(Ω, IRm), by Note A2 of the appendix.

F (un)− F (u)−DF (u)(un − u)

=−
N∑

α,β=1

(
aαβ(un)− aαβ(u)

)
∂2
αβun +

N∑
α,β=1

(
Daαβ(u)(un − u)

)
∂2
αβu

+ b(un)− b(u)−Db(u)(un − u). (2.30)

As already observed in the proof of Lemma 2.8, v 7→ (Daαβ(u)v) · ∂2
αβu is a compact linear

operator from Xp(Ω) to Yp(Ω), therefore

N∑
α,β=1

(
Daαβ(u)(un − u)

)
∂2
αβu→ 0 in Lp(Ω, IRm). (2.31)

By Lemma 2.6
b(un)− b(u)−Db(u)(un − u) → 0 in Lp(Ω, IRm). (2.32)

By Lemma 2.2 (i), aαβ(un) → aαβ(u) in L∞(Ω, IRm×m), and since ∂2
αβun is bounded in

Lp(Ω, IRm)
N∑

α,β=1

(
aαβ(un)− aαβ(u)

)
∂2
αβun → 0 in Lp(Ω, IRm). (2.33)

�

Theorem 2.5 Let Ω have a C2 boundary. Suppose that there exists u0 ∈ Dp(Ω) for which
DF (u0) ∈ Φ+(Dp(Ω), Yp(Ω)). The following properties are equivalent.

(i) F : Dp(Ω) → Yp(Ω) is proper on the closed bounded subsets of Dp(Ω).

(ii) Every bounded sequence (un) ⊂ Dp(Ω) such that (F (un)) converges in Yp(Ω), contains
a subsequence converging in C1

d(Ω, IR
m).

Proof. (i) ⇒ (ii) is evident, since Dp(Ω) ↪→ C1
d(Ω, IR

m).

(ii) ⇒ (i). Let (un) ⊂ Dp(Ω) be bounded and such that (F (un)) converges in Yp(Ω). By
assumption, there is a subsequence (uφ(n)) converging to some u in C1

d(Ω, IR
m), and hence,

by Lemma 2.13, F (uφ(n)) − F (u) − DF (u)(uφ(n) − u) → 0 in Yp(Ω). By Note A2 in the
appendix, uφ(n) ⇀ u in Xp(Ω), and F is weakly continuous (Lemma 2.7), so F (uφ(n)) ⇀ F (u)
hence F (uφ(n)) → F (u) in Yp(Ω). Thus DF (u)(uφ(n) − u) → 0 in Yp(Ω). But we know
that DF (u) ∈ Φ+(Dp(Ω), Yp(Ω)) (Theorem 2.3), and hence it is proper by Yood’s criterion.
Therefore uφ(n) → u in Dp(Ω), by Note C (ii) in §1.3. �

As in [31], we can give an equivalent formulation of Theorem 2.5 in terms of sequences vanishing
uniformly at infinity.

Definition 2.5 We say that the sequence (un) ⊂ C1
d(Ω, IR

m) vanishes uniformly at infinity in
the sense of C1

d(Ω), if the following condition holds: ∀ ε > 0, ∃R > 0, ∃n0 ∈ IN such that

|un(x)|+ |∇un(x)| ≤ ε for all |x| ≥ R and n ≥ n0.
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Lemma 2.14 Let (un) ⊂ Xp(Ω) be a bounded sequence. For u ∈ Xp(Ω), the following condi-
tions are equivalent.

(i) un → u in C1
d(Ω, IR

m).

(ii) un ⇀ u in Xp(Ω), and (un) vanishes uniformly at infinity in the sense of C1
d(Ω).

Proof. Let Ωr = {x ∈ Ω : |x| < r} and Ω̃r = {x ∈ Ω : |x| > r} for every r > 0.

(i) ⇒ (ii). It follows from note A2 in the appendix that un ⇀ u in Xp(Ω). Next let ε > 0
be given. There is r > 0 for which |u(x)| + |∇u(x)| ≤ ε/2 whenever x ∈ Ω̃r. Let n0 be
such that ‖un − u‖1,∞,Ω ≤ ε/2 for n ≥ n0. Then for every x ∈ Ω̃r and n ≥ n0, we have
|un(x)|+ |∇un(x)| ≤ ε.

(ii) ⇒ (i). Let ε > 0 be given and let r > 0 and n0 ∈ IN be such that |un(x)|+ |∇un(x)| ≤
ε/2 whenever x ∈ Ω̃r and n ≥ n0. After increasing r if necessary we may assume that
|u(x)|+ |∇u(x)| ≤ ε/2. Hence

|u(x)− un(x)|+ |∇u(x)−∇un(x)| ≤ ε, ∀x ∈ Ω̃r ∀n ≥ n0.

Next, since Xp(Ωr) ↪→
comp

C1
d(Ωr, IRm) there is n1 ∈ IN such that

|u(x)− un(x)|+ |∇u(x)−∇un(x)| ≤ ε, ∀x ∈ Ωr ∀n ≥ n1.

Thus finally, we have ‖un − u‖1,∞,Ω ≤ ε for n ≥ max(n0, n1), which shows that un → u in
C1
d(Ω, IR

m) as claimed. �

Corollary 2.1 Let Ω have a C2 boundary. Suppose there exists u0 ∈ Dp(Ω) for which
DF (u0) ∈ Φ+(Dp(Ω), Yp(Ω)). The following conditions are equivalent.

(i) F : Dp(Ω) → Yp(Ω) is proper on the closed bounded subsets of Dp(Ω).

(ii) Every bounded sequence (un) ⊂ Dp(Ω) such that (F (un)) converges in Yp(Ω), vanishes
uniformly at infinity in the sense of C1

d(Ω).

(iii) Every bounded sequence (un) ⊂ Dp(Ω) such that (F (un)) converges in Yp(Ω), contains
a subsequence vanishing uniformly at infinity in the sense of C1

d(Ω).

Proof. (i) ⇒ (ii). Let (un) be a bounded sequence from Dp(Ω) such that (F (un)) converges
in Yp(Ω), and suppose that (un) does not vanish uniformly at infinity. Set θn(x) = |un(x)| +
|∇un(x)|. Then there are ε0 > 0, a subsequence uφ(n), and a sequence (xn) ⊂ Ω such that
|xn| ≥ n and θφ(n)(xn) = |uφ(n)(xn)| + |∇uφ(n)(xn)| ≥ ε0. Now (uφ(n)) is also bounded and its
image by F convergent, so by Theorem 2.5 it contains a subsequence uφ(ψ(n)) converging in C1

d

and therefore vanishing uniformly at infinity. Accordingly, there is n0 ∈ IN, and r > 0 such that
θφ(ψ(n))(x) <

ε0
2 whenever |x| ≥ r an n ≥ n0. So for n ≥ max(r, n0) (since ψ(n) ≥ n), we have

ε0 ≤ θφ(ψ(n))(xψ(n)) <
ε0
2 . Contradiction.

(ii) ⇒ (iii) is evident.

(iii) ⇒ (i). Let (un) be a bounded sequence from Dp(Ω) such that (F (un)) converges, by
assumption it contains a subsequence (uφ(n)) vanishing uniformly at infinity in the sense of C1

d .
But this subsequence is also bounded in Dp(Ω) and therefore it contains a subsequence (uφ(ψ(n)))
converging weakly to some u in Dp(Ω). So, by Lemma 2.14, uφ(ψ(n)) → u in C1

d(Ω, IR
m). Hence

F is proper by Theorem 2.5 (ii). �



2.4. PROPERNESS 45

Lemma 2.15 Let (un) ⊂ W 2,p(Ω), be a sequence converging to zero in W 2,p(Ω′), for every
bounded and open subset Ω′ ⊂ Ω. Then, given v ∈ W 2,p(Ω), ε ∈ (0, 1) and n0 ∈ IN, there is
n1 ∈ IN, n1 ≥ n0, such that for every n ≥ n1:

(i) ‖v‖p2,p,Ω + ‖un‖p2,p,Ω − ε ≤ ‖v + un‖p2,p,Ω ≤ ‖v‖p2,p,Ω + ‖un‖p2,p,Ω + ε, and

(ii) ‖v + un‖1,∞,Ω ≤ max (‖v‖1,∞,Ω, ‖un‖1,∞,Ω) + ε.

Proof. Let Ωr = {x ∈ Ω : |x| < r}, and Ω̃r = {x ∈ Ω : |x| > r}. Since v ∈ Xp(Ω) ↪→
C1
d(Ω, IR

m), there is r > 0 such that

‖v‖2,p,Ω̃r
≤ ε and ‖v‖1,∞,Ω̃r

≤ ε (2.34)

By assumption, we have un → 0 in W 2,p(Ωr) and hence also in C1(Ωr). Thus for n large enough

‖un‖2,p,Ωr ≤ ε and ‖un‖1,∞,Ωr ≤ ε. (2.35)

Using the preceding inequalities and |a− b|p ≥ ap − p(a+ b)p−1b, we get

‖v + un‖p2,p,Ω ≥ |‖v‖2,p,Ωr − ‖un‖2,p,Ωr |
p +

∣∣∣‖v‖2,p,Ω̃r
− ‖un‖2,p,Ω̃r

∣∣∣p
≥ ‖v‖p2,p,Ωr

+ ‖un‖p2,p,Ω̃r
− 2p(M + ε)p−1ε,

where M is a bound for ‖v‖2,p,Ω and ‖un‖2,p,Ω. We also deduce from (2.34) and (2.35) that

‖v‖p2,p,Ω ≤ ‖v‖p2,p,Ωr
+ εp and ‖un‖p2,p,Ω ≤ ‖un‖p2,p,Ω̃r

+ εp.

Thus
‖v‖p2,p,Ω + ‖un‖p2,p,Ω − 2(p(M + 1)p−1 + 1)ε ≤ ‖v + un‖p2,p,Ω. (2.36)

Analogously, using (2.34) and (2.35) and (a+ b)p ≤ ap + p(a+ b)p−1b, we prove that

‖v + un‖p2,p,Ω ≤ ‖v‖p2,p,Ω + ‖un‖p2,p,Ω + 2p(M + 1)p−1ε.

This proves (i) since ε is arbitrary.

For (ii), we have

‖v + un‖1,∞,Ω = max
(
‖v + un‖1,∞,Ωr , ‖v + un‖1,∞,Ω̃r

)
≤ max

(
‖v‖1,∞,Ωr + ε, ‖un‖1,∞,Ω̃r

+ ε
)

= max
(
‖v‖1,∞,Ωr , ‖un‖1,∞,Ω̃r

)
+ ε

≤ max (‖v‖1,∞,Ω, ‖un‖1,∞,Ω) + ε.

�

Lemma 2.16 Assume that Ω has a C2 boundary. Let

L = −
N∑

α,β=1

Aαβ(x)∂2
αβ +

N∑
α=1

Bα(x)∂α + C(x)

be a differential operator which is strictly Petrovskii-elliptic on the compact subsets of Ω, with
continuous and bounded coefficients. Suppose that there is a sequence (un) in Dp(Ω) such that
un ⇀ 0 in Dp(Ω), Lun → 0 in Yp(Ω), and (un) contains no subsequence converging to 0 in
Dp(Ω). Then, there is a sequence (wn) ⊂ Dp(Ω) such that wn ⇀ 0 in Dp(Ω) and Lwn → 0 in
Yp(Ω), (wn) contains no subsequence converging to 0 in Dp(Ω), but furthermore, wn → 0 in
C1
d(Ω, IR

m).
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Proof. For simplicity we denote by ‖u‖k,p the norm of u in W k,p(Ω, IRm).
Since (un) contains no subsequence converging to 0, there exist γ > 0 and n0 ∈ IN such

that ‖un‖2,p ≥ γ for n ≥ n0. Therefore, at least one component (ulnn ) of (un) verifies ‖ulnn ‖2,p ≥
γ
m = δ. Since (ln) ⊂ {1, . . . ,m} is finite, it contains a constant subsequence lψ(n) = l so that
‖ulψ(n)‖2,p ≥ δ. In the remainder of the proof, l is fixed, and for more simplicity we denote by
un the subsequence uψ(n).

Note that the hypotheses made about (un) imply by Lemma 2.10 that un → 0 inW 2,p(Ω′, IRm)
for every open and bounded subset Ω′ ⊂ Ω. Therefore ujn → 0 in W 2,p(Ω′) ∀ j = 1, . . . ,m.

Let εn be a sequence from (0,1) such that
∞∑
n=0

εn = δp.

We construct a sequence (vn) in Dp(Ω), and a subsequence (uϕ(n)) verifying vn+1 = vn +
uϕ(n+1). Recall that Lun → 0 so there is an integer ϕ(0) for which ‖Luϕ(0)‖0,p ≤ ε0. Set v0 =
uϕ(0). In Lemma 2.15 let v = ujϕ(0), ε = ε1 and n0 = ϕ(0). This produces a integer n1(j). Also
there is a n2 ∈ IN such that k ≥ n2 ⇒ ‖Luk‖0,p ≤ ε1. Set then ϕ(1) = max{n2, n1(j), 1 ≤ j ≤
m}+1, and v1 = v0 +uϕ(1). By induction suppose (vn) and ϕ(n) already constructed. Let then
v = vjn and ε = εn+1 and n0 = ϕ(n) in Lemma 2.15. This produces an integer n1(j) from which
the estimates of this Lemma hold. Also there is a n2 ∈ IN such that k ≥ n2 ⇒ ‖Luk‖0,p ≤ εn+1.
Set then ϕ(n + 1) = max{n2, n1(j) : 1 ≤ j ≤ m} + 1, and vn+1 = vn + uϕ(n+1). Note that by
construction ‖Luϕ(n)‖0,p ≤ εn. Note also that the relation defining vn, shows by induction that
vn ∈ Dp(Ω).

By Lemma 2.15 (i), we have

‖vjk‖
p
2,p + ‖ujϕ(k+1)‖

p
2,p − εk+1 ≤ ‖vjk+1‖

p
2,p ≤ ‖vjk‖

p
2,p + ‖ujϕ(k+1)‖

p
2,p + εk+1 ∀ k ∈ IN.

Thus by summation for n ≥ 1,

n∑
k=0

‖ujϕ(k)‖
p
2,p −

n∑
k=1

εk ≤ ‖vjn‖
p
2,p ≤

n∑
k=0

‖ujϕ(k)‖
p
2,p +

n∑
k=1

εk. (2.37)

Now taking j = l in the above, we get for n ≥ n0 (l and n0 are defined in the beginning of the
proof) (n− n0)δp ≤ ‖vln‖

p
2,p and therefore

(n− n0)
1/p δ ≤ ‖vln‖2,p ≤ ‖vn‖2,p for n ≥ n0. (2.38)

Let Mj ≥ 1 be a bound for ‖ujn‖2,p, so that M =
∑m

j=1Mj is a bound of ‖un‖2,p. The second

inequality of (2.37) yields: ‖vjn‖2,p ≤Mj (n+ 1 + δp)1/p. Therefore

‖vn‖2,p ≤M (n+ 1 + δp)1/p . (2.39)

From Lemma 2.15 (ii),

‖vjn+1‖1,∞ ≤ max{‖vjn‖1,∞, ‖ujϕ(n+1)‖1,∞}+ εn+1.

Hence, by induction

‖vjn‖1,∞ ≤ max{‖ujϕ(k)‖1,∞ : 0 ≤ k ≤ n}+
n∑
k=1

εk,

and thus
‖vn‖1,∞ ≤ m (C + δp) , (2.40)

where C is a bound for ‖un‖1,∞ .
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Next,

‖Lvn‖0,p ≤
n∑
k=0

‖Luϕ(k)‖0,p ≤
n∑
k=0

εk.

Therefore,
‖Lvn‖0,p ≤ δp. (2.41)

Now set wn = n−1/pvn. Then first, by (2.38) ‖wn‖2,p ≥ δ (1− (n0/n))1/p so that (wn) contains
no subsequence converging to 0 in Dp(Ω). Secondly, by (2.39) (wn) is bounded in Dp(Ω).
Next by (2.40) ‖wn‖1,∞ ≤ const. × n−1/p, whence wn → 0 in C1

d(Ω, IR
m). Lastly by (2.41),

‖Lwn‖0,p ≤ δpn−1/p which implies that Lwn → 0 in Yp(Ω). That wn ⇀ 0 in Dp(Ω) follows from
its boundedness in Dp(Ω) and its convergence to 0 in C1

d(Ω, IR
m). �

Theorem 2.6 Let Ω have a C2 boundary, and L be an elliptic operator as in the preceding
lemma. Then the following statements are equivalent.

(i) L ∈ Φ+(Dp(Ω), Yp(Ω)).

(ii) Every bounded sequence (un) ⊂ Dp(Ω) converging to zero in C1
d(Ω, IR

m) and such that
Lun → 0 in Yp(Ω), contains a subsequence converging to zero in Dp(Ω)6.

Proof. (i) ⇒ (ii). Recall that a bounded sequence in Dp(Ω) converging to 0 in C1
d(Ω, IR

m), is
weakly convergent to zero in Dp(Ω), and by Yood’s criterion L is proper on the closed bounded
subsets of Dp(Ω). Then, the result follows from Note C in §1.3.

(ii) ⇒ (i). It suffices to show (by the same note) that if (un) is sequence in Dp(Ω), such
that un ⇀ 0 in Dp(Ω) and Lun → 0 in Yp(Ω), then un → 0 in Dp(Ω). If this is false, then
there is a subsequence (uφ(n)) bounded away from zero in Dp(Ω) (which implies that it contains
no subsequence converging to zero). Hence (uφ(n)) satisfies the conditions of Lemma 2.16, and
accordingly, there is a sequence (wn) having the same properties as (uφ(n)) and furthermore
converging to zero in C1

d(Ω, IR
m). Then by assumption (wn) contains a subsequence converging

to zero in Dp(Ω). But this is impossible since (wn) contains no subsequence converging to 0 in
Dp(Ω). �

Corollary 2.2 Let Ω have a C2 boundary. Suppose that every bounded sequence (un) ⊂
Dp(Ω) converging to zero in C1

d(Ω, IR
m) and such that F (un) → F (0) in Yp(Ω), contains a

subsequence converging to zero in Dp(Ω). (It is so if F is proper on the closed bounded subsets
of Dp(Ω)). Then DF (u) ∈ Φ+(Dp(Ω), Yp(Ω)) for all u ∈ Dp(Ω).

Proof. By Theorem 2.3 it suffices to show that DF (0) ∈ Φ+(Dp(Ω), Yp(Ω)). According to
Theorem 2.6 with L = DF (0), it is sufficient to show that if (un) is a bounded sequence from
Dp(Ω) converging to zero in C1

d(Ω, IR
m) and (DF (0)un) converges to 0 in Yp(Ω), then (un)

contains a subsequence converging to 0 in Dp(Ω). By Lemma 2.13 we have

F (un)− F (0)−DF (0)un → 0 in Yp(Ω).

But DF (0)un → 0, and therefore F (un) → F (0). Hence by assumption (un) contains a subse-
quence converging to 0 in Dp(Ω). �

6which in turn implies that un → 0 in Dp(Ω), by Note A3 of the appendix.
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2.5 Operators with asymptotically periodic coefficients

In this section, we consider the case where F has a limit operator with periodic coefficients
in a sense precised below. Here Ω is unbounded and so K = {Ω is bounded according to our
assumptions.

When we deal with periodic functions, it is necessary to assume them defined on the whole
space IRN . So let T = (T1, . . . , TN ) ∈ IRN with Ti > 0. A mapping f defined on IRN is
said to be periodic with period T if f(x1, . . . , xi + Ti, . . . , xN ) = f(x1, . . . , xN ) ∀x ∈ IRN . We
use the following notation for n ∈ Z and T as above, nT = (nT1, . . . , nTN ), and for l ∈ ZN ,
lT = (l1T1, . . . , lNTN ).

We maintain the previous notation for r > 0: Br is the ball of center 0 and radius r,
B̃r = {x ∈ IRN : |x| > r}, Ωr = Ω ∩Br and Ω̃r = Ω ∩ B̃r.

Assume that there are two families of matrix valued functions,

a∞αβ : IRN ×
(
IRm × IRm×N)→ IRm×m, 1 ≤ α, β ≤ N,

and
c∞i : IRN ×

(
IRm × IRm×N)→ IRm×m, 0 ≤ i ≤ N,

both continuous and periodic in x with the same period T , and satisfying

lim
|x|→∞

∣∣aαβ(x, ξ)− a∞αβ(x, ξ)
∣∣ = 0, (2.42)

lim
|x|→∞

∣∣∣∣∫ 1

0
∇ξib(x, tξ) dt− c∞i (x, ξ)

∣∣∣∣ = 0, (2.43)

the convergence being uniform on the compact subsets of IRm × IRm×N . We set

b∞(x, ξ) =
N∑
i=0

c∞i (x, ξ)ξi, (2.44)

so that b∞(x, 0) = 0.
Note that by Remark 2.7, a∞αβ and b∞ are equicontinuous C0−bundle maps. Now we define

the limit operator F∞ by

F∞(u) = −
N∑

α,β=1

a∞αβ(., u,∇u)∂2
αβu+ b∞(., u,∇u). (2.45)

Observe that by Lemma 2.7 and Remark 2.9, F∞ is continuous and weakly continuous from
Xp to Yp, as well as from Xp(Ω) to Yp(Ω) and maps bounded subsets onto bounded ones. Note
also that

F∞(v)− F∞(0)−

− N∑
α,β=1

a∞αβ(., 0)∂2
αβv +

N∑
α=0

c∞α (., 0)∂αv


= −

N∑
α,β=1

(
a∞αβ(., v,∇v)− a∞αβ(., 0)

)
∂2
αβv +

N∑
α=0

(c∞α (., v,∇v)− c∞α (., 0)) ∂αv

So it follows from the equicontinuity of a∞αβ and c∞α at ξ = 0, that F∞ is differentiable at 0 with
derivative

DF∞(0)v = −
N∑

α,β=1

a∞αβ(., 0)∂2
αβv +

N∑
α=0

c∞α (., 0)∂αv (2.46)
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Lemma 2.17 Let Ω̃r = {x ∈ Ω : |x| > r} and B ⊂ Xp(Ω) be a bounded subset. Then for every
ε > 0 there is an r > 0 such that for every u ∈ B, the following hold.

(i) ‖F (u)− F (0)− F∞(u)‖0,p,Ω̃r
≤ ε, and

(ii) ‖DF (0)u−DF∞(0)u‖0,p,Ω̃r
≤ ε.

Proof. (i) Since B is bounded in Xp(Ω) and therefore in C1
d(Ω, IR

m), there is a compact set
K ⊂ IRm × IRm×N such that (u(x),∇u(x)) ∈ K for every u ∈ B and x ∈ Ω. Since the limit in
(2.42) is uniform in ξ ∈ K, |aαβ(x, ξ) − a∞αβ(x, ξ)| ≤ ε ∀x ∈ Ω̃r ∀ ξ ∈ K if r is large enough.
Thus

‖aαβ(u)− a∞αβ(u)‖0,∞,Ω̃r
≤ ε ∀u ∈ B. (2.47)

A similar argument based on (2.43) yields∣∣∣∣∫ 1

0
∇ξib(x, tξ) dt− c∞i (x, ξ)

∣∣∣∣ ≤ ε ∀x ∈ Ω̃r ∀ ξ ∈ K

if r is large enough, and thus

|b(x, ξ)− b(x, 0)− b∞(x, ξ)| ≤ ε

N∑
i=0

|ξi|.

Therefore for k = 1, . . . ,m,

‖bk(u)− bk(0)− b∞,k(u)‖0,p,Ω̃r
≤ ε

N∑
i=0

‖∂iu‖0,p,Ω̃r

≤ ε
N∑
i=0

m∑
j=1

∥∥∂iuj∥∥0,p,Ω̃r

≤ εm(N + 1)‖u‖2,p,Ω ∀u ∈ B.

Thus
‖b(u)− b(0)− b∞(u)‖0,p,Ω̃r

≤ εm2(N + 1)‖u‖2,p,Ω. (2.48)

With (2.47) we get

‖F (u)− F (0)− F∞(u)‖0,p,Ω̃r
≤ εm2(N2 +N + 1)‖u‖2,p,Ω ∀u ∈ B.

Lastly note that ε is arbitrary and ‖u‖2,p,Ω is bounded. Hence the desired result follows.

(ii) The proof is similar. Recall that

DF (0)u−DF∞(0)u = −
N∑

α,β=1

(
aαβ(., 0)− a∞αβ(., 0)

)
∂2
αβu+

N∑
α=0

(∇ξαb(., 0)− c∞α (., 0)) ∂αu.

Thus ‖DF (0)u−DF∞(0)u‖0,p,Ω̃r
≤ εm2(N2 +N + 1)‖u‖2,p,Ω. �

Corollary 2.3 Let (un) be a bounded sequence from Xp(Ω) such that un → 0 in Xp(Ω′) for
every bounded open subset Ω′ ⊂ Ω. Then we have the following.

(i) F (un)− F (0)− F∞(un) → 0 in Yp(Ω).
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(ii) (DF (0)−DF∞(0))un → 0 in Yp(Ω).

Proof. (i) Let ε > be given. Since (un) is bounded in Xp(Ω), it follows from Lemma
2.17 (i) that for r > 0 large enough we have ‖F (un) − F (0) − F∞(un)‖0,p,Ω̃r

≤ ε ∀n ∈ IN.
Next recall that un → 0 in Xp(Ωr) by hypotheses and that F and F∞ are continuous from
Xp(Ωr) to Yp(Ωr) by Lemma 2.7 and Remark 2.9. Therefore F (un) → F (0) and F∞(un) → 0
in Yp(Ωr), which means that ‖F (un) − F (0) − F∞(un)‖0,p,Ωr ≤ ε for n large enough. Thus
‖F (un)− F (0)− F∞(un)‖0,p,Ω can be made arbitrary small for n large enough.

(ii) The proof is similar. First by Lemma 2.17 (ii) we have ‖DF (0)un−DF∞(0)un‖0,p,Ω̃r
≤ ε.

Next DF (0) ∈ L(Xp(Ωr), Yp(Ωr)) by Theorem 2.2 with Ω = Ωr and it is clearly seen from (2.46)
that DF∞(0) ∈ L(Xp(Ωr), Yp(Ωr)). Therefore (DF (0)−DF∞(0))un → 0 in Yp(Ωr). And thus
‖ (DF (0)−DF∞(0))un‖0,p,Ω can be made arbitrary small for n large enough. �

Given h ∈ IRN and a function f : IRN → IR, we denote by τh(f) : IRN → IR the function

τh(f)(x) = f(x+ h)

Corollary 2.4 Let B ⊂ Xp(Ω) be a bounded subset, and Ω′ ⊂ IRN be a bounded open subset.
Then for every ε > 0, we have ‖τh(F (u)−F (0))− τhF∞(u)‖0,p,Ω′ ≤ ε for every u ∈ B provided
|h| is large enough.

Proof. Choose r > 0 as in Lemma 2.17 and increase it if necessary to have B̃r ⊂ Ω. Then
for |h| large enough we have Ω′ + h ⊂ B̃r ⊂ Ω. By the translation invariance of the Lebesgue
measure,

‖τh(F (u)− F (0))− τhF
∞(u)‖0,p,Ω′ = ‖F (u)− F (0)− F∞(u)‖0,p,Ω′+h.

Now, by Lemma 2.17

‖F (u)− F (0)− F∞(u)‖0,p,Ω′+h ≤ ‖F (u)− F (0)− F∞(u)‖0,p,B̃r
≤ ε

for every u ∈ B. �

Lemma 2.18 (Shifted subsequence Lemma) Let T = (T1, . . . , TN ) with Ti > 0. If (un) is
a bounded sequence from Xp(Ω), then either

(i) (un) vanishes uniformly at infinity in the sense of C1
d(Ω), or

(ii) there exist a sequence (ln) ⊂ ZN with limn→∞ |ln| = ∞, a subsequence (uφ(n)), and

a nonzero element ū ∈ Xp = W 2,p
(
IRN , IRm

)
such that the sequence ũn defined by

ũn(x) = uφ(n)(x+ lnT ) is weakly convergent to ū in Xp(Bk) for all k ∈ IN∗.

Proof. First of all the definition of ũn makes sense. Indeed, the domain of such shifted
subsequence is Ω − lnT . Let BR be a ball containing K = {Ω, and T̂ = minTi. Given k ∈ IN∗

there is nk ∈ IN∗ such that |ln| > k+R
T̂

for n ≥ nk. Then for x ∈ Bk, |x+ lnT | ≥ |ln|T̂ − |x| ≥
|ln|T̂ − k > R for all n ≥ nk, and so x+ lnT ∈ Ω for all x ∈ Bk and n ≥ nk. Hence Bk is in the
domain of definition of ũn for n ≥ nk. Furthermore ũn ∈ Xp(Bk) with

‖ũn‖2,p,Bk
≤ ‖uφ(n)‖2,p,Ω ≤M (2.49)
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for some constant M and for all n ≥ nk. Therefore it makes sense to consider lim
n→∞

ũn|Bk
for

any k ∈ IN∗.
Now we go to the proof of the alternative. Let Q0 = (0, T1)×· · ·× (0, TN ). Suppose that (i)

does not hold, so that there is an ε0 > 0, a sequence (xn) such that |xn| ≥ n, and a subsequence
(uψ(n)) such that |uψ(n)(xn)| + |∇uψ(n)(xn)| ≥ ε0 for all n ∈ N. Since IRN = ∪

l∈ZN

(
Q0 + lT

)
,

there is zn ∈ ZN for which yn = xn − znT ∈ Q0. Clearly lim
n→∞

|zn| = ∞. Define vn(x) =

uψ(n)(x+ znT ).
According to what has been said at the beginning of the proof, for every k ∈ IN∗ there is

nk ∈ IN∗ from which vn ∈ Xp(Bk), and furthermore (vn)n≥nk
is bounded in Xp(Bk). In partic-

ular (vn)n≥n1 is bounded in Xp(B1), and so there is a subsequence (vθ1(n)) converging weakly
to some ū1 ∈ Xp(B1). But for n ≥ n2, (vθ1(n)) ⊂ (vn) is bounded in Xp(B2), and again there is
a subsequence (vθ2(n)) ⊂ (vθ1(n)) converging weakly to some ū2 ∈ Xp(B2). Clearly ū2|B1

= ū1.
Continuing the process, we construct a sequence of subsequences (vθk(n)), each of which con-
verging weakly to ūk ∈ Xp(Bk), and furthermore ūk+1 is an extension of ūk.

Now we define (ũn) as the diagonal subsequence (vθn(n)), i.e.

ũn(x) = uψ(θn(n))(x+ zθn(n)T ) = uφ(n)(x+ lnT )

if we set ln = zθn(n) and φ(n) = ψ(θn(n)). On the other hand, we see that there is a function
ū : IRN → IRm naturally defined by: ū(x) = ūk(x) if x ∈ Bk.

Now since (ũn)n≥nk
is a subsequence of (vθk(n)), we have that (ũn) converges weakly to ū in

Xp(Bk) for all k ∈ IN∗. Therefore according to (2.49)

‖ū‖2,p,Bk
≤ lim inf

n→∞
‖ũn‖2,p,Bk

≤M

for all k ∈ IN∗, and so ū ∈ Xp.
It remains to show that ū 6= 0. Choose k ∈ IN∗ such that Q0 ⊂ Bk. By the compactness

of the embedding W 2,p(Q0, IRm) ↪→ C1(Q0, IRm) we have that ũn → ū in C1(Q0, IRm), hence
‖ũn‖1,∞,Q0 → ‖ū‖1,∞,Q0 . But

‖ũn‖1,∞,Q0 ≥
1
2
(
|ũn(yθn(n))|+ |∇ũn(yθn(n))|

)
=

1
2
(
|uψ(θn(n))(xθn(n))| + |∇uψ(θn(n))(xθn(n))|

)
≥ 1

2
ε0.

Therefore, ‖ū‖1,∞,Q0 ≥ 1
2ε0, whence ū 6= 0. �

Theorem 2.7 Let Ω have a C2 boundary. Suppose that

(i) there is u0 ∈ Dp(Ω) for which DF (u0) ∈ Φ+ (Dp(Ω), Yp(Ω)), and

(ii) {u ∈ Xp | F∞(u) = 0} = {0}.

Then F is proper on the closed bounded subsets of Dp(Ω).

Proof. By Corollary 2.1 it suffices to show that if (un) is a bounded sequence from Dp(Ω)
and (F (un)) converges to some y in Yp(Ω), then (un) vanishes uniformly at infinity in the sense
of C1

d(Ω). After replacing F by F − F (0) and y by y − F (0), we can assume that F (0) = 0.
Let us show that the case (ii) of Lemma 2.18 cannot occur. By contradiction suppose there is a
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sequence (ln) ⊂ ZN with lim
n→∞

|ln| = ∞ and a subsequence (uφ(n)) such that the sequence (ũn)

defined by ũn(x) = uφ(n)(x+ lnT ) has a nonzero weak limit ū in Xp(Bk).
It is enough to show that F∞(ū) = 0. Let ỹn be defined by ỹn(x) = y(x+ lnT ) = τlnT (y)(x).

According to the proof of Lemma 2.18, for all k ∈ IN∗, ỹn ∈ Xp(Bk) from a certain rank nk,
and it is bounded by a constant independent of k.

Let ψ ∈ C∞
0 (IRN ), and choose k ∈ IN∗ such that Bk contains the support of ψ. Recall that

ũn ⇀ ū in Xp(Bk) and F∞ : Xp(Bk) → Yp(Bk) is weakly continuous, and so F (ũn) ⇀ F (ū) in
Yp(Bk). Thus ∫

IRN

ψF∞(ū) dx =
∫
Bk

ψF∞(ū) dx = lim
n→∞

∫
Bk

ψF∞(ũn) dx

= lim
n→∞

∫
Bk

ψτlnTF
∞(uφ(n)) dx. (2.50)

On the other hand according to Corollary 2.4 (we assumed that F (0) = 0 ),

τlnTF (uφ(n))− τlnTF
∞(uφ(n)) −→

n→∞
0 in Yp(Bk). (2.51)

Next for n ≥ nk, and j = 1, . . . ,m, we have∥∥∥(τlnTF (uφ(n))− ỹn
)
j

∥∥∥p
0,p,Bk

=
∫
Bk

∣∣τlnTFj(uφ(n))(x)− τlnT yj(x)
∣∣p dx

=
∫

|z−lnT |<k

∣∣Fj(uφ(n))(z)− yj(z)
∣∣p dz

≤
∥∥Fj(uφ(n))− yj

∥∥p
0,p,Ω

−→
n→∞

0 by assumption. (2.52)

Now together equations (2.50), (2.51) and (2.52), give∫
IRN

ψF∞(ū) dx = lim
n→∞

∫
Bk

ψỹn dx.

But for each component (ỹn)j , j = 1, . . . ,m, we have∫
Bk

ψ(ỹn)j dx =
∫
Bk

ψ(x)yj(x+ lnT ) dx =
∫

B(lnT,k)

ψ(z − lnT )yj(z) dz

≤

( ∫
B(lnT,k)

|yj |p
) 1

p
( ∫
B(lnT,k)

|ψ(z − lnT )|q dz

) 1
q (1

p
+

1
q

= 1
)

≤

( ∫
B(lnT,k)

|yj |p
) 1

p
( ∫

IRN

|ψ|q
) 1

q

−→
n→∞

0,

because B(lnT, k) ⊂ B̃|lnT |−k so that the result follows from Note B3 in the appendix.
Thus, finally ∫

IRN

ψF∞(ū) dx = 0 for all ψ ∈ C∞
0 (IRN ),
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and consequently F∞(ū) = 0. �

The last theorem shows that together the semi-Fredholmness of F and the nonexistence of
nontrivial solutions of the limit problem F∞(u) = 0, are sufficient conditions for the properness
of F on Dp(Ω). Are they also necessary conditions? We already know by Corollary 2.2 that the
semi-Fredholmness is necessary. It turns out that in the case of Ω = IRN , the second condition
is also necessary.

Accordingly assume in the sequel that conditions (2.10)−(2.13) and (2.18) are satisfied on
the hole space IRN . Consequently the results obtained so far, are true and will be applied with
Ω = IRN .

Lemma 2.19 Let 1 < q < ∞ and k ∈ IN. Given u ∈ W k,q(IRN , IRm) and a sequence (hn) ⊂
IRN such that lim

n→∞
|hn| = ∞, set ũn(x) = u(x + hn). Then ũn → 0 in W k,q(Ω′, IRm) for every

bounded open subset Ω′ ⊂ IRN . In particular ũn ⇀ 0 in W k,q(IRN , IRm).

Proof. For m = 1, this is Lemma 4.8 of [31]. The conclusion is then clear, since convergence,
respectively weak convergence in W k,q(IRN , IRm), is equivalent to this type of convergence of
each component in W k,q(IRN ). �

Theorem 2.8 The following statements are equivalent.

(i) F is proper on the closed bounded subsets of Xp.

(ii) Every sequence (un) ⊂ Xp such that un ⇀ 0 in Xp and F (un) → F (0) in Yp, contains a
subsequence converging in Xp.

(iii) There is u0 ∈ Xp for which DF (u0) ∈ Φ+ (Xp, Yp) and the equation F∞(u) = 0 has no
nonzero solution in Xp.

Proof. (i) ⇒ (ii) is evident since a weakly convergent sequence is bounded. (iii) ⇒ (i) is
Theorem 2.7 (with Ω = IRN ). It remains to prove (ii) ⇒ (iii). That DF (0) : Xp → Yp is semi-
Fredholm follows from Corollary 2.2. Consider now an element u ∈ Xp such that F∞(u) = 0.
Set un(x) = u(x + nT ) so that F∞(un) = 0 by the periodicity of the the coefficients of F∞.
By Lemma 2.19, un → 0 in Xp(Ω′) for every open bounded subset Ω′ ⊂ IRN , and hence by
Corollary 2.3 (i) F (un)−F (0) → 0 in Yp. Also un ⇀ 0 in Xp, and therefore by hypotheses (un)
contains a convergent subsequence (uφ(n)). Its limit is necessarily 0 (by the uniqueness of the
weak limit in Xp). But recall that ‖un‖2,p,IRN = ‖u‖2,p,IRN , hence u = 0. �

Remark 2.10 Note that strict Petrovskii-ellipticity on the compact subsets of IRN and strict
ellipticity on IRN are equivalent for F∞. This is due to the periodicity of a∞αβ .

On the other hand note that det
(

N∑
α,β=1

ηαηβ
aαβ(x, 0)

)
is a homogeneous polynomial of

order 2m in η, so it could be written as7 P (x, η) =
N∑

|γ|=2m

pγ(x)ηγ , and the coefficients are

algebraic combination of the components of the matrices aαβ . Similarly ,

det

 N∑
α,β=1

ηαηβ
a∞αβ(x, 0)

 = P∞(x, η) =
N∑

|γ|=2m

p∞γ (x)ηγ .

7γ = (γ1, . . . , γN ) ∈ INN is a multi-index
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Thus from (2.42) it follows that given ε > 0, |pγ(x)−p∞γ (x)| ≤ ε for |x| large enough. Therefore
|P (x, η)− P∞(x, η)| ≤ N2mε|η|2m. And thus if P (x, η) ≥ λ|η|2m we have

P∞(x, η) ≥ (λ−N2mε)|η|2m.

Therefore the strict ellipticity condition (in IRN ) for aαβ(., 0) is equivalent to the strict ellipticity
of a∞αβ(., 0).

Note that this reasoning also proves the stability of the ellipticity condition i.e. an elliptic
system remains elliptic after a small enough perturbation of its leading coefficients.

2.6 Linear systems

2.6.1 Linear systems on IRN

Let S = S(IRN ) denote the Schwartz space of rapidly decreasing functions and S′ its dual, the
space of tempered distributions. Recall that Lp(IRN ) ⊂ S′ for 1 ≤ p ≤ ∞, in the sense that
Tf ∈ S′ for all f ∈ Lp(IRN ) where Tf is defined by

〈Tf , ϕ〉 =
∫

IRN

fϕ dx for all ϕ ∈ S.

Multiplication by any function Φ ∈ C∞(IRN ) which is slowly increasing (that is, Φ and all its
partial derivatives have at most polynomial growth at infinity) defines a continuous mapping of
S into itself and consequently a multiplication in S′, denoted by Φ(η) : S′ → S′, can be defined
through

〈Φ(η)u, ϕ〉 = 〈u,Φϕ〉 for all u ∈ S′ and ϕ ∈ S,

and is a continuous mapping of S′ into itself. In the same way, the Fourier transform F defined
by

(Fϕ) (η) = (2π)−
N
2

∫
IRN

e−ix·ηϕ(x) dx

which is a continuous bijection of S onto itself, induces a continuous bijection F : S′ → S′ by

〈Fu, ϕ〉 = 〈u,Fϕ〉 for all u ∈ S′ and ϕ ∈ S.

Recall also that (see for instance [38] Theorem 2.3.3. p. 177), for 1 < p <∞,

W 2,p(IRN ) =
{
g ∈ Lp(IRN )

∣∣ F−1
(1 + |η|2)FTg = Tf for some f ∈ Lp(IRN )

}
and that there is a constant K > 0 such that

‖g‖2,p ≤ K ‖f‖0,p .

A function Φ : IRN → lC is called a multiplier in Lp if u 7→ F−1
Φ(η)Fu defines a continuous

linear map from Lp(IRN ) into itself. As a special case of a result due to Miklin (Theorem
2, Appendix [27]) we can formulate the following sufficient condition for a function to be a
multiplier.

(M) Φ ∈ C∞(IRN ) is a slowly increasing function and there exists a constant M > 0 such that,
for all k ∈ {0, 1, ..., N},

|η|k
∣∣∣∣ ∂kΦ(η)
∂ηj1 ...∂ηjk

∣∣∣∣ ≤M for all η ∈ IRN ,
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where 1 ≤ j1 < j2 < · · · < jk ≤ N.

If Φ satisfies (M), then, for 1 < p <∞, there is a constant Cp > 0 such that∣∣∣〈F−1
Φ(η)FTf , ϕ

〉∣∣∣ ≤ Cp ‖f‖0,p ‖ϕ‖0,p′ for all f ∈ Lp(IRN ) and ϕ ∈ S,

where
1
p

+
1
p′

= 1. Hence there is a unique element θΦ(f) ∈ Lp(IRN ) such that

〈
F−1

Φ(η)FTf , ϕ
〉

=
∫

IRN

ϕθΦ(f) dx for all ϕ ∈ S.

Thus F−1
Φ(η)FTf = TθΦ(f) and θΦ ∈ L(Lp(IRN ), Lp(IRN )).

We can now formulate a condition ensuring that θΦ ∈ L(Lp(IRN ),W 2,p(IRN )).

(W) Let Φ and Ψ satisfy the condition (M) where Ψ(η) = (1 + |η|2)Φ(η).

If (W) is satisfied by Φ and f ∈ Lp(IRN ), we have that TθΦ(f) = F−1
Φ(η)FTf ∈ S′ and

F−1
(1 + |η|2)FTθΦ(f) = F−1

(1 + |η|2)Φ(η)FTf = TθΨ(f)

where θΨ(f) ∈ Lp(IRN ) since Ψ also satisfies (M). Thus θΦ(f) ∈ W 2,p(IRN ) and there exists a
constant K > 0 such that

‖θΦ(f)‖2,p ≤ K ‖θΨ(f)‖0,p ≤ K1 ‖f‖0,p for all f ∈ Lp(IRN ),

showing that θΦ ∈ L(Lp(IRN ),W 2,p(IRN )) for 1 < p <∞.

All the above discussion extends to vector valued functions and distributions in an obvious
way.

For a second order linear m×m− system with constant coefficients

Lu = −
N∑

α,β=1

Aαβ∂
2
αβu+

N∑
α=1

Bα∂αu+ Cu (2.53)

where Aαβ , Bα and C are a real m ×m matrices, its characteristic polynomial (or symbol) is
the m×m matrix polynomial S(η) defined by

S(η) =
N∑

α,β=1

ηαηβAαβ + i

N∑
α=1

ηαBα + C.

Note the the characteristic polynomial of the formal adjoint operator

Ltu = −
N∑

α,β=1

ATαβ∂
2
αβu−

N∑
α=1

BT
α∂αu+ CTu

is the matrix S(η)∗ = S(η)T where T denotes the transpose of a matrix.

(S) There exist constants µ > 0 and γ > 0 such that

|detS(η)| ≥ µ |η|2m + γ for all η ∈ IRN .



56 CHAPTER 2. FREDHOLM AND PROPERNESS PROPERTIES

Then, since

S(η)
−1

=
1

detS(η)
[CofS(η)]T ,

and the elements of the cofactor matrix CofS(η) are polynomials in η of degree at most 2m−2,
it follows that all the elements of the matrix S(η)−1 satisfy the condition (W) when (S) holds.

Recall that L acts on S′, through the relation

〈Lu, ϕ〉 =
〈
u, Ltϕ

〉
for all u ∈ S′ and ϕ ∈ S.

Furthermore, FLu = S(η)Fu for all u ∈ S′ and so

FLtu = S(η)∗Fu.

Theorem 2.9 Let L be a linear differential operator of the form (2.53) whose characteristic
polynomial satisfies (S). Then L : W 2,p(IRN , IRm) → Lp(IRN , IRm) is an isomorphism.

Proof. Let f ∈ Lp(IRN , IRm). The equation Lu = Tf in S′ is equivalent to

〈FLu, ϕ〉 = 〈FTf , ϕ〉 for all ϕ ∈ S
⇐⇒ 〈S(η)Fu, ϕ〉 = 〈FTf , ϕ〉 for all ϕ ∈ S

⇐⇒ 〈u, ϕ〉 =
〈
F−1

S(η)
−1FTf , ϕ

〉
for all ϕ ∈ S.

Hence w := F−1S(η)
−1FTf ∈ S′ and it is the unique solution in S′ of the equation Lu = Tf .

Since the elements of the matrix S(η)−1 satisfy the condition (W) it follows that there exists
g ∈W 2,p(IRN , IRm) such that Tg = w. Thus, for all ϕ ∈ S,∫

IRN

(Lg) · ϕ dx =
∫

IRN

(Ltϕ) · g dx =
〈
Tg, L

tϕ
〉

=
〈
w,Ltϕ

〉
= 〈Lw,ϕ〉 = 〈Tf , ϕ〉 =

∫
IRN

f · ϕdx,

showing that Lg = f. �

Lemma 2.20 Let L be a linear differential operator of the form (2.53) that is elliptic in the
sense of Petrovskii. Then its characteristic polynomial satisfies (S) if and only if detS(η) 6= 0
for all η ∈ IRN .

Proof. If there exists a point η ∈ IRN such that detS(η) = 0 then S(η) clearly cannot satisfy
(S).

If L is elliptic, it follows from (2.16) that there exists γ > 0 such that

det

 N∑
α,β=1

ηαηβAαβ

 ≥ γ |η|2m for all η ∈ IRN .

We claim that there exists a constant R > 0 such that∣∣∣det
(
|η|−2 S(η)

)∣∣∣ ≥ γ

2
for all η ∈ IRN with |η| ≥ R.

If not, there exists a sequence
(
ηk
)
⊂ IRN such that

|ηk| → ∞ and
∣∣∣det

(
|ηk|−2S(ηk)

)∣∣∣ < γ

2
.

Setting ζk =
ηk

|ηk|
and passing to a subsequence, we have that ζk → ζ where |ζ| = 1, and
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1
|ηk|2

S(ηk) =
N∑

α,β=1

ζkαζ
k
βAαβ + i

N∑
α=1

ζkα
|ηk|

Bα +
1

|ηk|2
C −→

N∑
α,β=1

ζαζβAαβ .

By the continuity of the determinant this implies that

det

 N∑
α,β=1

ζαζβAαβ

 ≤ γ

2
=
γ

2
|ζ|2m ,

contradicting the choice of γ. It follows that, for all η ∈ IRN with |η| ≥ R,

|detS(η)| ≥ γ

2
|η|2m ≥ γ

4
|η|2m +

γR2m

4
.

If detS(η) 6= 0 for all η ∈ IRN , there exists δ > 0 such that |detS(η)| ≥ δ for all η ∈ IRN with
|η| ≤ R. Thus, setting ν = δ/(2R2m), we have that

|detS(η)| ≥ δ

2
+ νR2m ≥ ν |η|2m +

δ

2

for all η ∈ IRN with |η| ≤ R, showing that S(η) satisfies (S). �

Corollary 2.5 Let L be a linear differential operator of the form (2.53) that is elliptic in the
sense of Petrovskii and such that the determinant of its characteristic polynomial has no zeros
in IRN . Then L : W 2,p(IRN , IRm) → Lp(IRN , IRm) is an isomorphism.

Finally we consider the case of linear systems with variable coefficients.

Lu = −
N∑

α,β=1

Aαβ(x)∂2
αβu+

N∑
α=1

Bα(x)∂αu+ C(x)u (2.54)

where
(C) Aαβ , Bα and C are continuous functions from IRN into the space of real m×m matrices,
and there exist matrices A∞αβ , B

∞
α and C∞ such that

Aαβ(x) → A∞αβ , Bα(x) → B∞
α and C(x) → C∞ as |x| → ∞.

Let

L∞u = −
N∑

α,β=1

A∞αβ∂
2
αβu+

N∑
α=1

B∞
α ∂αu+ C∞u

and let S∞(η) be its characteristic polynomial.

Theorem 2.10 Under the hypothesis (C), suppose that the operators Lt = tL + (1 − t)L∞

are strictly elliptic on IRN in the sense of Petrovskii for all t ∈ [0, 1] and that detS∞(η) 6= 0 for
all η ∈ IRN . Then L ∈ Φ0(Xp, Yp).

Proof. Our assumptions ensure that L∞ is elliptic and so by Corollary 2.5 we have that
L∞ : Xp → Yp is an isomorphism. Furthermore Lt : Xp → Yp is a bounded linear operator for
all t ∈ [0, 1].

We now consider T = L− L∞ and claim that it is compact modulo Lt for all t ∈ [0, 1]. To
see this, we consider a sequence (un) ⊂ Xp such that un ⇀ 0 in Xp and Ltun → 0 in Yp for
some t ∈ [0, 1]. Thus (un) is bounded in Xp and it follows as in Lemma 2.17, that for any ε > 0,
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there exists r > 0 such that ‖Tun‖0,p,B̃r
≤ ε for all n. By Lemma 2.10, we have that un → 0 in

Xp(Br) and so Tun → 0 in Yp(Br). Thus we may conclude that Tun → 0 in Yp, showing that
T is compact modulo Lt. Since L∞ : Xp → Yp is an isomorphism, L0 = L∞ ∈ Φ0(Xp, Yp). The
conclusion now follows from Lemma 2.11 (iii) since L = L1. �

As already noticed in §2.2, all operators on the segment joining two operators which are strongly
elliptic in the sense of Legendre-Hadamard, are also elliptic. Therefore if this new condition is
used, then the assumption ”Lt = tL+(1− t)L∞ are elliptic ” in the preceding theorem becomes
redundant, and we have

Corollary 2.6 Let condition (C) holds, and L be strongly elliptic on IRN in the sense of
Legendre-Hadamard. Suppose that detS∞(η) 6= 0 for all η ∈ IRN . Then L ∈ Φ0(Xp, Yp).

Proof. Letting |x| → ∞ in (2.17), we see that L∞ is also elliptic in the sense of Legendre-
Hadamard. Then Lt is elliptic in the sense of Legendre-Hadamard and therefore in the sense of
Petrovskii. Thus the conclusion follows from Theorem 2.10. �

2.6.2 Linear systems on Ω

The operator L in (2.54) acts as an operator from Xp to Yp, but also as an operator from Dp(Ω)
to Yp(Ω). To distinguish them we denote the second operator by LΩ, i.e. LΩ ∈ L (Dp(Ω), Yp(Ω)),
and indeed L ∈ L(Xp, Yp).

Then what is the connection between the Fredholmness of L and LΩ? It turns out that
their semi-Fredholmness are equivalent.

Theorem 2.11 Let Ω be unbounded and have a C2 boundary. Then

LΩ ∈ Φ+ (Dp(Ω), Yp(Ω)) ⇐⇒ L ∈ Φ+(Xp, Yp).

Proof. (i) First let LΩ ∈ Φ+ (Dp(Ω), Yp(Ω)). To prove the semi-Fredholmness of L, consider
a sequence (vn) from Xp weakly convergent to 0, and such that Lvn → 0 in Yp. We show that
vn → 0 in Xp.

Let Br be a ball containing ∂Ω (and consequently also K = {Ω), R > r , and φ ∈ C∞
0 (IRN )

be such that φ = 1 outside BR, φ = 0 on Br. Then consider the restriction to Ω of (φvn) that
we denote by (un). We have clearly (un) ⊂ Dp(Ω), and furthermore:

• un ⇀ 0 in Dp(Ω). Indeed vn ⇀ 0 in Yp so φvn ⇀ 0 in Yp (because if f ∈ Lp
′
, then also

fφ ∈ Lp′ , so that
∫
fφvn → 0 ∀f ∈ Lp′). For 1 ≤ α, β ≤ N , ∂α(φvn) = (∂αφ)vn + φ∂αvn, and

so for the same reasons as above, we have ∂α(φvn) ⇀ 0 in Yp. Next since

∂2
αβ(φvn) = (∂2

αβφ)vn + (∂βφ)∂αvn + (∂αφ)∂βvn + φ∂2
αβvn,

we have ∂2
αβ(φvn) ⇀ 0 in Yp.

Now weak convergence to 0 in W 2,p of a sequence is equivalent to the weak convergence to 0 in
Lp of all its derivatives up to order 2 (see Note C in the appendix). Thus φvn ⇀ 0 in Xp and
so also in Dp(Ω).

• Since un = vn outside BR, we have that LΩun → 0 in Yp(B̃R). But a direct calculation
already used in the proof of Lemma 2.10 shows that

LΩun =

φLvn +
∑
α,β

(
∂2
αβφAαβ

)
vn +

∑
α,β

(∂αφAαβ) ∂βvn +
∑
α,β

(∂βφAαβ) ∂αvn +
∑
α

(∂αφBα) vn

∣∣∣∣∣∣
Ω

.
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Recalling that the imbedding W 2,p(IRN ) ↪→ W 1,p(ΩR) is compact, we see that vn → 0 in
W 1,p(ΩR, IRm). This fact together with the boundedness of φ, its derivatives and of the coeffi-
cients of L, implies that LΩun → 0 in Yp(ΩR). So in fact LΩun → 0 in Yp(Ω).

Now by hypothesis LΩ ∈ Φ+ (Dp(Ω), Yp(Ω)), therefore un → 0 in Dp(Ω). Next as already
observed vn = un outside BR, so vn → 0 in Xp(B̃R). And by Lemma 2.10 (with Ω = IRN )
vn → 0 in Xp(BR). Thus finally vn → 0 in Xp, and the proof of the first part is complete.

(ii) Let now L ∈ Φ+ (Xp, Yp), and (un) be a sequence from Dp(Ω) converging weakly to 0,
and LΩun converging to 0 in Yp(Ω) (by note A4 of the appendix, weak convergence in Dp(Ω) is
the same as weak convergence in Xp(Ω)). Take the same r,R and φ as in the proof of (i), and
define the sequence (vn) by vn(x) = φ(x)un(x) if x ∈ Ω and 0 elsewhere.

Now one can check that vn ∈ Xp, and furthermore as in the proof of the first part, that
vn ⇀ 0 in Xp.
On the other hand, by construction un = vn outside BR, therefore LΩun → 0 in Yp(B̃R) and
since

Lvn|Ω = φLΩun+
∑
α,β

(
∂2
αβφAαβ

)
un+

∑
α,β

(∂αφAαβ) ∂βun+
∑
α,β

(∂βφAαβ) ∂αun+
∑
α

(∂αφBα)un,

we deduce as in the proof of the first part that Lvn → 0 in Yp(r < |x| < R). Next, vn = 0 on
Br, so Lvn → 0 in Yp(Br). Therefore Lvn → 0 in Xp.

The semi-Fredholmness of L implies that vn → 0 in Xp, and so un → 0 in Xp(B̃R). By
Lemma 2.10, un → 0 in Xp(ΩR) . Thus finally un → 0 in Xp(Ω) and the proof is complete. �

2.7 Exponential decay

Exponential decay of solutions is an important question in the field of partial differential equa-
tions. Consider the operator F in (1.2), and let f ∈ Yp(Ω) decays exponentially at infinity
(in particular this happens when f = 0), then, does all possible solutions of F (u) = f have
exponential decay? In our context, this question is related to the properness issue. In [34],
by establishing exponential decay of possible solutions of quasilinear elliptic equations on IRN ,
Rabier and Stuart prove identities of Pohozaev type for the limit problem, and in some sit-
uations, this implies that the limit problem has only the trivial solution. If in addition the
operator is Fredholm, then Theorem 2.7 ensures that F is proper on the closed bounded subset
of W 2,p(IRN ). But as we shall see, this question has also another strong connection with the
Fredholm property.

In a recent paper [30], Rabier noticed the following. For u ∈ Lp(IRN ), the intuitive idea that
u(x) decays exponentially as |x| → ∞ is usually captured by the condition that ‖u‖Lp(|x|>r) =
O(e−sr) for some s > 0 as r → ∞, and this happens in particular if u = e−s|x|v for some
v ∈ Lp(IRN ) and s > 0. The remark that multiplication by e−s|x| generates a semigroup on
L(Lp(IRN )) leads Rabier to study the problem in an abstract setting. We briefly describe his
results.

Recall first that given a Banach space X, a C0 or strongly continuous semigroup of bounded
linear operators on X is a family (T (t))t≥0 ⊂ L(X) satisfying

(i) T (0) is the identity operator on X.

(ii) T (s+ t) = T (t)T (s) for every t, s ≥ 0.

(iii) lim
t→0

T (t)x = x for every x ∈ X.
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The uniform boundedness principle then implies that the function t 7→ ‖T (t)‖L(X) is bounded
on the bounded subsets of [0,∞). In turn, this fact implies that, for every x ∈ X, the map
t 7→ T (t)x is continuous from [0,∞) into X (see [28]).

Now let X and Y be two reflexive Banach spaces. Assume that there are two injective C0

semigroups (T (s))s≥0 ⊂ L(X) and (S(s))s≥0 ⊂ L(Y ). Let L ∈ L(X,Y ) be a Fredholm operator
such that for some σ > 0, we have

rgeLT (s) ⊂ rgeS(s), ∀ s ∈ [0, σ] (2.55)

S(s)
−1
LT (s) ∈ L(X,Y ) ∀ s ∈ [0, σ] (2.56)

lim
s→0

‖S(s)
−1
LT (s)− L‖L(X,Y ) = 0. (2.57)

Under the above assumptions Rabier proves the following theorem.

Theorem 2.12 There is s0 ∈ (0, σ], such that the following property holds. If f = S(s)g
for some g ∈ Y , and s > 0, and if u ∈ X satisfies Lu = f , then there is v ∈ X such that
u = T (min(s, s0))v.

The proof is given in three steps. First the result is proved when L is surjective, and in this case
the index of L is nonnegative. The second step treats the case when L is injective (and then
the index is nonpositive). Finally, the general case is reduced to one of the previews situations
(according to the sign of the index) by adding a finite dimensional operator, and using the
following lemma.

Lemma 2.21 Let E ∈ L(X,Y ) have finite rank. Then the mappings S(.)E : [0,∞) → L(X,Y )
and ET (.) : [0,∞) → L(X,Y ) are continuous.

Indeed the proof becomes simpler if the index is zero, since by adding a finite dimensional
operator, the problem is reduced to the case when L is an isomorphism.

Now Theorem 2.12 leaves us with the following question. Suppose that s > 0 is fixed, but
g, and the possible solutions u of Lu = S(s)g are allowed to vary. Then how does the element
v behave with respect to u and g? Our next proposition answers the question in the zero index
case, and reproves by the way the existence of v. Note that since T (min(s, s0)) is injective by
hypothesis, v is uniquely determined by u (for each g).

Proposition 2.1 Let L be Fredholm of index zero in Theorem 2.12. Suppose that s > 0 is
fixed, and S(s)g ∈ rgeL. Then the following hold.

(i) For each g, the correspondence u 7→ v is an affine continuous map from L
−1

(S(s)g) to X.

(ii) In particular, when g = 0, the map u 7→ v is linear and continuous from kerL to X.

(iii) Let g vary in a bounded subset B of Y , and u vary in a bounded subset of
⋃
g∈B

L
−1

(S(s)g).
Then, v also varies in a bounded subset of X.

Proof. Since L is Fredholm of index zero, there is a finite rank operator E ∈ L(X,Y ) such
that L + E ∈ GL(X,Y ). It follows from (2.55) that LT (t) + S(t)ET (t) ⊂ rgeS(t) for all
t ∈ [0, σ], therefore the operator

Lt = S(t)
−1

(L+ S(t)E)T (t) (2.58)

is well defined. Indeed, Lt = S(t)−1LT (t) + ET (t), and it follows from (2.57) and lemma 2.21
that Lt ∈ L(X,Y ) and

lim
t→0

‖Lt − (L+ E)‖L(X,Y ) = 0. (2.59)
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Since GL(X,Y ) is open in L(X,Y ), there is s0 ∈ (0, σ] such that both Lt and L+S(t)E are in
GL(X,Y ) for all t ∈ [0, s0]. Take in particular t = min(s0, s) and let

v = L
−1

t (S(s− t)g + Eu) , (2.60)

where Lu = S(s)g. Then

(L+ S(t)E)T (t)v = S(t)S(s− t)g + S(t)Eu = S(s)g + S(t)Eu = Lu+ S(t)Eu,

which yields
(L+ S(t)E)(T (t)v − u) = 0.

Since L+ S(t)E ∈ GL(X,Y ), we have u = T (t)v.

Therefore (i) and (ii) follow from (2.60), which also yields

‖v‖X ≤ ‖L−1

t ‖L(Y,X)

{
‖S(s− t)‖L(Y )‖g‖Y + ‖E‖L(X,Y )‖u‖X

}
. (2.61)

Thus, (iii) follows from the boundedness of ‖g‖ and ‖u‖. �

Before we apply the preceding results to elliptic systems of second order, we extend Lemma
2.21 to the case when E is compact.

Lemma 2.22 Let E ∈ L(X,Y ) be compact. Then the mappings S(.)E : [0,∞) → L(X,Y )
and ET (.) : [0,∞) → L(X,Y ) are continuous.

Proof. The result can be deduced from Lemma 2.21 by approximating E with finite-rank
operators. But we give a direct proof.

(i) We prove the continuity of t 7→ S(t)E. Let t ≥ 0 and ε > 0 be given. Consider a bounded
neighborhood I of t in [0,∞), and let M > 0 be a bound of ‖T (s)‖ for s ∈ I. Let B denote
the closed unit ball in X. The set E(B) is relatively compact in Y and therefore it is totally
bounded. Accordingly, there exist u1, . . . , uk ∈ B such that E(B) is covered by the open balls
centered at Euj with radius ε

3M . It follows from the strong continuity of S(s) at Euj that

‖S(s)Euj − S(t)Euj‖Y ≤
ε

3
,

for every s ∈ I close enough to t, and every j = 1, . . . , k. Now, for every u ∈ B there is some j
such that

‖Eu− Euj‖Y <
ε

3M
.

Then,

‖S(s)Eu− S(t)Eu‖ ≤ ‖S(s)Eu− S(s)Euj‖+ ‖S(s)Euj − S(t)Euj‖+ ‖S(t)Euj − S(t)Eu‖
≤ ‖S(s)‖‖Eu− Euj‖+ ‖S(s)Euj − S(t)Euj‖+ ‖S(t)‖‖Euj − Eu‖

≤M
ε

3M
+
ε

3
+M

ε

3M
= ε.

Since this holds for every u ∈ B, we have ‖S(s)E−S(t)E‖L(X,Y ) ≤ ε, and the proof is complete.

(ii) Let E∗ and T ∗(t) denote the adjoints of E and T (t) respectively. Since X is reflexive,
Corollary 10.6 in Pazy [28] ensures that T ∗ is a C0 semigroup on X ′. Now,

‖ET (s)− ET (t)‖L(X,Y ) = ‖T ∗(s)E∗ − T ∗(t)E∗‖L(Y ′,X′).

But E∗ is compact, therefore, the result follows from part (i). �
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2.7.1 Linear systems

Let Ω ⊂ IRN be unbounded and have a Lipschitz bounded boundary. Consider the second order
differential operator of the form (2.15)

Lv := −
N∑

α,β=1

Aαβ(x)∂2
αβv +

N∑
α=1

Bα(x)∂αv + C(x)v

with its coefficients being continuous and bounded on Ω.
We already know that L ∈ L (Xp(Ω), Yp(Ω)).
Let Br be a ball containing ∂Ω (and consequently also K = {Ω), R > r, and φ ∈ C∞

0 (IRN )
be such that φ = 1 outside BR, φ = 0 on Br. Set θ(x) = φ(x)|x|. Then θ ∈ C∞(IRN ), θ(x) = |x|
when |x| ≥ R, and θ(x) = 0 when |x| ≤ r.

Furthermore for x 6= 0

∂θ

∂xi
= φ

xi
|x|

+ ∂iφ|x| (2.62)

∂2θ

∂xj∂xi
= φ ·

(
δij
|x|

− xixj
|x|3

)
+ ∂jφ

xi
|x|

+ ∂iφ
xj
|x|

+ ∂2
ijφ|x| (2.63)

When |x| ≤ r, θ = 0 and when |x| > R, φ = 1 so its derivatives are zero. Therefore from (2.62)
and (2.63), we deduce that all the derivatives of θ are bounded on IRN .

Define for every s ≥ 0 and u ∈ Yp(Ω), S(s)u := e−sθu. Let T (s) be the restriction of S(s)
to Xp(Ω). Now we check that T and S satisfy all the assumptions of Theorem 2.12.

• We clearly have that e−sθ ∈ C∞(IRN ) and is bounded by 1 (because θ ≥ 0), therefore
S(s) maps Yp(Ω) into itself, T (s) maps Xp(Ω) into itself, and Dp(Ω) into itself. T and S clearly
satisfy conditions (i) and (ii) in the definition of a semigroup. They are also injective since
e−sθ > 0.

We check condition (iii). Let u ∈ Yp(Ω) be fixed, then it follows from the Lebesgue dominated
convergence that

lim
s→0

e−sθu = u in Yp(Ω) (2.64)

Therefore S is a C0 semigroup on L(Yp(Ω)).
But for the same reason when u ∈ Xp(Ω)

lim
s→0

e−sθ∂αu = ∂αu in Yp(Ω) (2.65)

lim
s→0

e−sθ∂2
αβu = ∂2

αβu in Yp(Ω). (2.66)

for all 1 ≤ α, β ≤ N . Now a direct calculation (in Yp(Ω)) shows that

∂α(e−sθu)− e−sθ∂αu = −s∂αθe−sθu, (2.67)

∂2
αβ(e

−sθu)− e−sθ∂2
αβu = −se−sθ

(
∂βθ∂αu+ ∂αθ∂βu+ ∂2

αβθu− s∂αθ∂βθu
)
. (2.68)

Therefore

lim
s→0

(
∂α(e−sθu)− e−sθ∂αu

)
= 0 (2.69)

lim
s→0

(
∂2
αβ(e

−sθu)− e−sθ∂2
αβu

)
= 0. (2.70)

Now, recalling (2.65) and (2.66), we see that ∂α(e−sθu) → ∂αu, and ∂2
αβ(e

−sθu) → ∂2
αβu in

Yp(Ω) when s → 0. All this means that e−sθu → u in Xp(Ω), that is lim
s→0

T (s)u = u in Xp(Ω).
This proves the strong continuity the semigroups T and S.
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• Now, we prove that condition (2.55) is satisfied. Let u ∈ Xp(Ω), from (2.67) we see that
Bα∂α(e−sθu) = e−sθηα where ηα is some function in Yp(Ω) (because Bα is bounded). From
(2.68) we see that Aαβ∂2

αβ(e
−sθu) = e−sθζαβ where ζαβ ∈ Yp(Ω). Hence

L(e−sθu) = e−sθ

 N∑
α,β=1

ζαβ +
N∑
α=1

ηα + Cu

 .

That is LT (s)u = L(e−sθu) = e−sθg = S(s)g for some g in Yp(Ω), and every s ≥ 0.

• We prove (2.56) and (2.57). Again using (2.67) an (2.68) we see that for all u ∈ Xp(Ω)

‖S(s)−1LT (s)u− Lu‖0,p,Ω ≤ sM‖u‖2,p,Ω (2.71)

where M is a suitable bound of the coefficients Aαβ , Bα, C and the derivatives of θ. This proves
at the same time (2.56) and (2.57), when X = Xp(Ω) and indeed also when X = Dp(Ω).

As a result of the preceding and Theorem 2.12, we have

Theorem 2.13 , Suppose that the differential operator L in (2.15) is Fredholm between Dp(Ω)
and Yp(Ω). Then, whenever u ∈ Dp(Ω) satisfies esθLu ∈ Yp(Ω) for some s > 0, we have
u = e−tθv for some v ∈ Dp(Ω), where t = min(s, s0). Consequently, since p > N , we have

|u(x)| ≤ e−tθ(x)|v(x)| ≤ ‖v‖0,∞e
−tθ(x) ≤ const.× ‖v‖2,pe

−tθ(x), (2.72)

and

|∇u(x)| ≤ const.× ‖v‖2,pe
−tθ(x), (2.73)

for all x ∈ Ω.

From Proposition 2.1, we have a uniform exponential decay when L is Fredholm of index
zero.

Proposition 2.2 Let the differential operator L in (2.15) be Fredholm of index zero between
Dp(Ω) and Yp(Ω). Suppose that for some fixed s > 0, esθLu belongs to a bounded subset of
Yp(Ω) for all u in a bounded subset B ⊂ Dp(Ω). Then, there exists a positive constant C(s,B)
such that

|u(x)| ≤ C(s,B)e−tθ(x), (2.74)

for all u ∈ B and all x ∈ Ω.

2.7.2 Quasilinear systems

We consider now the operator F in (1.2) under the assumptions (2.10)−(2.13) and (2.18).
Furthermore, we assume that F (0) = 0.

It follows from Theorem 2.4, that F (u) = G(u)u, where for a fixed u ∈ Dp(Ω), G(u) is a
differential operator of the form (2.15), and so it satisfies conditions (2.55), (2.56) and (2.57).
As a result, we get

Proposition 2.3 Let the operator F : Dp(Ω) → Yp(Ω) in (1.2) be Fredholm. Let f ∈ Yp(Ω)
satisfy esθf ∈ Yp(Ω), for some s > 0. Then for all possible solutions u ∈ Dp(Ω) of F (u) = f ,
there is t = t(u, s) > 0 and v ∈ Dp(Ω), such that u = e−tθv.
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Theorem 2.14 With the additional assumption that b is a C2
ξ−bundle map, with ∇2

ξb(., 0)
bounded, the number t in Proposition 2.3 can be chosen independently of u.

Proof. We begin with some notation. For a scalar equicontinuous C1
ξ−bundle map h :

Ω × IRm × IRm×N → IR, we know from the proof of Lemma 2.3 that h can be written in the
form (see (2.2))

h(x, ξ) = h(x, 0) +
N∑
α=0

(∫ 1

0
∇ξαh(x, tξ) dt

)
· ξα. (2.75)

If now h takes values in IRm, applying the above equality to each component hk and letting
∇ξαh denote the matrix of lines ∇ξαh

k, then (2.75) also holds for h in this case. We make one
more step in the matrix-vector notation. If h takes values in IRm×m, we apply what has been
said to each column hj . Let then ∇ξαh(x, ξ) denote the array of length m of matrices, with
each component being the matrix ∇ξαhj(x, ξ). Then (2.75) still holds for h in this case as well.

Now we go to the proof of the Theorem. Since b is an equicontinuous C1
ξ−bundle map with

b(x, 0) = 0, we can write

b(x, ξ) =
N∑
α=0

cα(x, ξ)ξα.

But b is supposed to be C2
ξ and so one can check that cα is an equicontinuous C1

ξ−bundle map.
According to what have been said, there is a family of equicontinuous C0−bundle map c`α such
that

cα(x, ξ) = cα(x, 0) +
N∑
`=0

c`α(x, ξ)ξ`.

Note that bα(., 0) = cα(., 0), and condition (2.13) implies that they are bounded functions.
Now, again, we can write

aαβ(x, ξ) = aαβ(x, 0) +
N∑
`=0

a`αβ(x, ξ)ξ`,

where a`αβ are equicontinuous C0−bundle maps.
Then

F (u) = −
N∑

α,β=1

(
aαβ(0) +

N∑
`=0

a`αβ(u)∂`u

)
∂2
αβu+

N∑
α=0

(
cα(0) +

N∑
`=0

c`α(u)∂`u

)
∂αu,

and

G(0)u = DF (0)u = −
N∑

α,β=1

aαβ(0)∂2
αβu+

N∑
α=0

bα(0)∂αu.

Therefore, since bα(0) = cα(0), we get

G(0)u− f = G(0)u− F (u)

=
N∑

α,β=1

N∑
`=0

(
a`αβ(u)∂`u

)
∂2
αβu−

N∑
α=0

N∑
`=0

(
c`α(u)∂`u

)
∂αu. (2.76)

Now, let s0 be the number given by Theorem 2.12, for the linear operator G(0). Indeed it
suffices to prove the result, when s ≤ s0, for if s > s0, then the condition esθf ∈ Yp(Ω), implies
that es0θf ∈ Yp(Ω).
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Proposition 2.3, already ensures that u = e−tθv, for some t (depending on u) and some
v ∈ Dp(Ω). Recalling (2.67) and (2.68), we see that the the derivatives of u have also an
exponential decay i.e. they have the form e−tθy where y ∈ Yp(Ω). Therefore, replacing u by
e−tθv in the right hand side of (2.76), we see that we get the factor e−tθe−tθ = e−2tθ, and what
is left is a function we call g0, i.e.

G(0)u− f = e−2tθg0.

We claim that g0 ∈ Yp(Ω). First, conditions (2.11) and (2.13) imply that a`αβ(., 0), c`α(., 0) are
bounded. The assumption that ∇2

ξb(., 0) is bounded implies that b`α(., 0) are bounded as well.
Therefore, according to Lemma 2.2 (ii), a`αβ(u), and c`α(u) are bounded functions. Second, v
and its first derivatives are in L∞ and in Lp, and the second derivatives are in Lp. Therefore,
g0 is a sum of functions in Yp(Ω), and the claim is proved.

Consequently, we can write

G(0)u = f + e−2tθg0 = e−min(s,2t)θ
(
emin(s,2t)θf + e(−2t+min(s,2t))θg0

)
.

Now, |emin(s,2t)θ(x)f(x)| ≤ |esθ(x)f(x)| for every x ∈ Ω and so emin(s,2t)θf ∈ Yp(Ω). And similarly,
e(−2t+min(s,2t))θg0 ∈ Yp(Ω).

As a result, Theorem 2.12 for G(0) yields an element v1 ∈ Dp(Ω), such that

u = e−min(s0,min(s,2t))θv1 = e−min(s,2t)θv1,

since min(s, 2t) ≤ s ≤ s0 by assumption.
If s ≤ 2t, then u = e−sθv1 and we are done. If not, replace u by e−2tθv1 in (2.76), to get

G(0)u = f + e−4tθg1 = e−min(s,4t)θ
(
emin(s,4t)θf + e(−4t+min(s,4t))θg0

)
.

Then, again, Theorem 2.12 yields an element v2 ∈ Dp(Ω) such that

u = e−min(s,4t)θv2.

If s ≤ 4t, then u = e−sθv2 and this is the claimed result. If not, then u = e−4tθv2, and replacing
this value of u in (2.76), leads again to an alternative. But this procedure ends in a finite
number k of steps (depending on u), for which s ≤ 2ku, and we have

u = e−sθvk,

for some vk ∈ Dp(Ω). �

Proposition 2.4 S(s)−1G(u)T (s) converges to G(u) as s→ 0, uniformly with respect to u in
bounded subsets.

Proof.

G(u)T (s)v = G(u)(e−sθv) = −
N∑

α,β=1

aαβ(u)∂2
αβ(e

−sθv) +
N∑
α=0

cα(u)∂α(e−sθv)

= −
N∑

α,β=1

aαβ(u)
(
− se−sθ

(
∂βθ∂αv + ∂αθ∂βv + ∂2

αβθv − s∂αθ∂βv
)

+ e−sθ∂2
αβv

)

+
N∑
α=1

cα(u)
(
−s∂αθe−sθv + e−sθ∂αv

)
+ c0(u)e−sθv
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Therefore

S(s)−1G(u)T (s)v −G(u)v = s
N∑

α,β=1

aαβ(u)
(
∂αθ∂βv + ∂βθ∂αv + ∂2

αβθv − s∂αθ∂βθv

)

− s
N∑
α=1

cα(u)(∂αθv).

Let u belong to a bounded subset of Xp(Ω). It follows that there is a positive constant M such
that

‖S(s)−1G(u)T (s)v −G(u)v‖0,p,Ω ≤ sM‖v‖2,p,Ω. �



Chapter 3

Existence from a priori bounds

3.1 A general result

Let Ω be an open subset of IRN with a C2 bounded boundary. Consider the quasilinear operator
F defined by (1.2), under the assumptions (2.10)−(2.13) and (2.18). The purpose of this section
is to give a condition ensuring that for every h ∈ Yp(Ω), the equation F (u) = h has at least one
solution u ∈ Dp(Ω). To simplify the writing and since no other domain than Ω is involved in
this part, we write Dp and Yp instead of Dp(Ω) and Yp(Ω).

In order to use the degree for Fredholm maps defined in [29], DF (u) must be invertible at
some point u0 ∈ Dp. Otherwise F has no base point and so the absolute degree |deg |(F,B, h)
(when defined) is always zero, and therefore no conclusion about existence can be derived using
the degree in the usual way. But in our setting this ensures that F is Fredholm of index zero
(Theorem 2.3). It is not restrictive then to assume that u0 = 0, and F (u0) = F (0) = 0. Indeed
set F̃ (u) = F (u + u0) − F (u0). Then the properness of F is equivalent to the properness of
F̃ . Also DF̃ (u) = DF (u+ u0) so the Fredholmness of F is equivalent to the Fredholmness (of
the same index) of F̃ . And of course the solvability of the equation F (u) = h for every h is
equivalent to the solvability of F̃ (u) = h for every h.

We assume that
• DF (0) ∈ GL(Dp, Yp).
• F is proper on the closed bounded subsets of Dp. This happens for instance if Ω is

unbounded and F has a periodic limit operator F∞ such that {u ∈ Xp(IRN ); F∞(u) = 0} = {0}.
But F may be proper for different reasons1.

We consider the homotopy H defined by

H(t, u) =


1
t
F (tu)− th if t 6= 0

DF (0)u if t = 0
(3.1)

Lemma 3.1 H has the following properties.

1. For every t ∈ IR, H(t, .) ∈ C1(Dp, Yp), and H ∈ C1(IR∗ ×Dp, Yp).

2. DuH(t, u) = DF (tu) ∈ Φ0(Dp, Yp), ∀ (t, u) ∈ IR×Dp.

3. For every bounded B ⊂ Dp, the collection (H(., u))u∈B is equicontinuous.

4. The restriction of H to any closed bounded subset of IR×Dp is proper.

1Theorem 2.8 states that when Ω = IRN and F has a limit operator, then the properness of F implies the
nonexistence of nontrivial solutions of F∞(u) = 0. But it may happen that no periodic limit problem exists as
in [21] for example.

67
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Proof. Indeed (t, u) 7→ −th is C1, constant with respect to u, and compact since one
dimensional, so it is enough to verify the above properties for G defined by G(t, u) = H(t, u)+th.

1. and 2. Since F is C1,we see by the chain rule that for fixed t, the partial map G(t, .) is C1 and
that DuG(t, u)v = DF (tu)v for all v ∈ Dp. So this proves point 2. On the other hand G(., u) is
differentiable with respect to t at every point t 6= 0, and DtG(t, u) = −1

t2
F (tu) + 1

tDF (tu)u, so
DtG is continuous at every point (t, u) with t 6= 0 (see the remark after the proof). Therefore
G has continuous partial derivatives on IR∗×Dp and this is equivalent to the second statement
of point 1.

3. The equicontinuity at t = 0 is a consequence of the differentiability of F at 0. Indeed
G(t, u)−G(0, u) = 1

tF (tu)−DF (0)u. Now for every ε > 0 there is δ > 0 such that

‖F (v)−DF (0)v‖p ≤ ε‖v‖2,p if ‖v‖2,p ≤ δ.

Therefore if M > 0 is a bound for u ∈ B, and |t| ≤ δ/M , we have ‖G(t, u)−G(0, u)‖p ≤ εM .
Let now t0 6= 0, then

G(t, u)−G(t0, u) =
1
t
F (tu)− 1

t0
F (t0u)

= −
N∑

α,β=1

(
aαβ(tu)− aαβ(t0u)

)
∂2
αβu+

N∑
α=0

(
cα(tu)− cα(t0u)

)
∂αu

where cα is the Nemytskii operator generated by the (matrix-valued) C0 bundle map

cα(x, ξ) =
∫ 1

0
∇ξαb(x, τξ) dτ.

Let M > 0 be a bound for u ∈ B, so in particular |u(x)| and |∇u(x)| are bounded by M for
every u ∈ B and every x ∈ Ω. Now by Lemma 2.1 (i), (aαβ(x, .))x∈Ω is uniformly equicontinuous
on the bounded subsets of IRm × IRm×N . Accordingly for every ε > 0, there is δ > 0 such that
|aαβ(x, tu(x), t∇u(x))− aαβ(x, t0u(x), t0∇u(x))| ≤ ε if |t− t0| ≤ δ/M , that is

‖aαβ(tu)− aαβ(t0u)‖∞ ≤ ε.

On the other hand using the equicontinuity for cα, we see that ‖cα(tu)−cα(t0u)‖∞ ≤ ε if |t−t0|
is sufficiently small. Therefore for |t− t0| sufficiently small and all u ∈ B, we have

‖G(t, u)−G(t0, u)‖p ≤ m2M(N2 +N + 1)ε.

Since ε is arbitrary, this inequality means that (G(., u))u∈B is equicontinuous at t0 6= 0. Together
with point 1., this also shows that G ∈ C(IR×Dp, Yp).

4. We begin by proving the properness of G(t, .). If t = 0 then G(0, .) is an isomorphisms and
so it is proper. If t 6= 0, let (un) ⊂ Dp be a bounded sequence such that (G(t, un)) converges.
Then (F (tun)) converges. But (tun) is bounded, so the properness of F implies that it has a
convergent subsequence. Since t 6= 0, (un) has a convergent subsequence.

Since for every bounded subset B ⊂ Dp, (G(., u))u∈B is equicontinuous, the conclusion
follows from Lemma 1.1. �

Remark 3.1 H need not be differentiable at zero. Take for example F (u) = −∆u + |u|1/2u,
then 1

tF (tu) = −∆u + |t|1/2|u|1/2u. Indeed this situation does not occur if more regularity on
F is assumed. For instance if F is C2, it follows from the Taylor expansion of F about zero
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that 1
t2
F (tu) − 1

tDF (0)u → 1
2D2F (0)(u, u) as t → 0 (uniformly with respect to u on bounded

subsets), and so DtG(0, u) = 1
2D2F (0)(u, u). On the other hand as t→ 0,

DtG(t, u) = − 1
t2
F (tu) +

1
t
DF (0)u− 1

t
DF (0)u+

1
t
DF (tu)u

→ −1
2
D2F (0)(u, u) + D2F (0)(u, u) =

1
2
D2F (0)(u, u).

Therefore G is C1 in this case.

Now since F is only C1, H|[0,1] need not be an admissible homotopy in the sense of Definition
4.2 of [29]. However it is admissible in the sense of Benevieri-Furi.

Proposition 3.1 Suppose that there is R > 0 such that

‖u‖2,p ≤ R whenever H(t, u) = 0 for some t ∈ [0, 1]. (E)

Then F (u) = h is solvable in Dp.

Proof. Let B ⊂ Dp be the ball of center 0 and radius R+ 1. The condition (E) ensures that
0 /∈ H([0, 1], ∂B). Next by Lemma 3.1 (2.), DuH(t, 0) = DF (0) ∈ GL(Dp, Yp), i.e. 0 is a base
point of H(t, .) for all t ∈ IR. Therefore, using Theorem 1.2, we get

deg0(F − h,B, 0) = deg0(H(1, .)), B, 0)
= deg0(H(0, .), B, 0)
= deg0(DF (0), B, 0)
= 1.

Hence the existence of an element u ∈ Dp such that F (u)− h = 0. �

Remark 3.2 We can still prove Proposition 3.1 without appealing to Theorem 1.2 (which uses
the Benevieri-Furi degree). Indeed, note first that, as a consequence of Lemma 3.1, H|[ε,1]×B̄ is
B-admissible for every ε ∈ (0, 1) and every bounded subset B ⊂ Dp. In particular, taking B as
in the first proof above, we get

deg0(H(1, .), B, 0) = deg0(H(ε, .), B, 0).

So let us calculate deg0(H(ε, .), B, 0) for ε small enough.
From the inverse function theorem, there is a neighborhood U0 of zero in Dp and a neigh-

borhood V0 of zero in Yp such that F : U0 → V0 is a diffeomorphism. Now choose ε0, ε1 ∈ (0, 1)
small enough so that ε20h ∈ V0, and ε1B ⊂ U0, and let ε = min(ε0, ε1). Then there exists u0 ∈ U0

for which F (u0) = ε2h. Letting then u1 = 1
εu0, this is equivalent to H(ε, u1) = 0. Furthermore

u1 is the unique solution of H(ε, u) = 0 (for this choice of ε indeed). For if u2 is another solution,
then firstly, F (εu2) = ε2h, and secondly, u2 ∈ B by (E) and so εu2 ∈ U0. But F |U0

is injective,
so εu1 = εu2 and therefore u1 = u2.

Now since F : U0 → V0 is a diffeomorphism, DF (u) ∈ GL(Dp, Yp) for all u ∈ U0, thus
DuH(ε, u) = DF (εu) ∈ GL(Dp, Yp) for all u ∈ B. This means that 0 is regular value of H(ε, .).
Therefore from the very definition of the degree at regular values

deg0(H(ε, .), B, 0) = σ(DuH(ε, C), [0, 1]),

where C(λ) = λu1 is the segment joining 0 to u1. But from the above, DuH(ε, λu1) is an
isomorphism, and since the parity of a path of isomorphisms is 1, we conclude that

deg0(H(ε, .), B, 0) = 1.

�
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Indeed the most difficult thing to verify in Proposition 3.1 , is the a priori estimate for the
homotopy. And there may be situations where no bounds exist, in this case Proposition 3.1 is
useless. So we shall present a special case where a priori bounds can be derived, showing that
all this business is not empty.

3.2 A special case (reaction - diffusion systems)

Let now Ω = IRN . We consider F of the special form

F (u) = Lu+ f(x, u) (3.2)

which we begin to define. Let for k = 1, . . . ,m, and α, β = 1, . . . , N, Akαβ be real numbers
satisfying

∃ γ0 > 0 ∀ η ∈ IRN
N∑

α,β=1

Akαβηαηβ ≥ γ0|η|2. (3.3)

Let also dk ∈ IRN be given vectors. Define for each k the (scalar) elliptic differential operator
Lk by

Lkuk = −
N∑

α,β=1

Akαβ∂
2
αβu

k + dk · ∇uk for uk ∈W 2,p, (3.4)

and set for u = (u1, . . . , um)T ∈ Xp

Lu = L

u1

...
um

 =

 L1u1

...
Lmum

 . (3.5)

Let f : IRN × IRm → IRm be an equicontinuous C1
ζ−bundle map with f(x, 0) = 0 and ∇ζf(·, 0)

bounded2. We assume that there is a matrix-valued function g∞ ∈ C(IRm, IRm×m) such that

lim
|x|→∞

∣∣∣∣∫ 1

0
∇ζf(x, tζ) dt− g∞(ζ)

∣∣∣∣ = 0, (3.6)

uniformly for ζ in compact subsets of IRm, and we set f∞(ζ) = g∞(ζ)ζ.
Consider then the operator F defined by (3.2). It has the form (1.2)

F (u) = −
N∑

α,β=1

aαβ(., u,∇u)∂2
αβu+ b(., u,∇u), (3.7)

where

aαβ(x, ξ0, .., ξN ) =


A1
αβ 0 · · · 0
0 A2

αβ · · · 0
...

...
. . .

...
0 0 · · · Amαβ

 , (3.8)

and

b(x, ξ0, .., ξN ) =


N∑
α=1

d1
αξ

1
α + f1(x, ξ0)

...
N∑
α=1

dmα ξ
m
α + fm(x, ξ0)

 . (3.9)

2here ζ replace the original ξ0.
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One can check that L is strongly elliptic in the sense of Legendre-Hadamard. This, together
with the assumptions made on the nonlinearity f , ensure that conditions (2.10)−(2.13) and
(2.18), are satisfied. Furthermore F has a limit operator F∞

F∞(u) = Lu+ f∞(u) (3.10)

which is differentiable at 0 with (according to (2.46))

DF∞(0)u = Lu+ g∞(0)u. (3.11)

Therefore, DF∞(0) is an elliptic operator with constant coefficients. Our last assumption on
the nonlinearity is

∃ δ > 0 fk(x, ζ)ζk ≥ δ|ζk|2 ∀ (x, ζ) ∈ IRN × IRm. (3.12)

Example. One of the simplest examples that satisfy all the previous assumptions is

F

(
u
v

)
=
(
−∆u+ u(u2 + v2 + 1)
−∆v + v(u2 + v2 + 1)

)
.

Its linearization at zero

DF (0)
(
u
v

)
=
(
−∆u+ u
−∆v + v

)
is an isomorphism between Xp and Yp.

For properness and a priori bounds, we need a maximum principle.

Lemma 3.2 (Maximum principle) Let z be a continuous map from IRN to IR vanishing at
infinity, L be a second order scalar elliptic operator of the form

L v = −
N∑

α,β=1

pαβ(x)∂2
αβv +B(x) · ∇v,

where the matrix (pαβ(x)) is positive definite. Then the following hold.

(i) L z ≥ 0 on IRN =⇒ z ≥ 0 on IRN .

(ii) If Θ is an open non trivial3 subset of IRN such that z(x) = 0 on ∂Θ, then

L z ≤ 0 on Θ =⇒ z ≤ 0 on Θ.

(iii) (L z)z ≤ 0 on IRN =⇒ z = 0 on IRN .

Proof. (i) Let x ∈ IRN . Consider the ball BR of center 0 and radius R > |x|. By Theorem
9.6 of [18],

z(x) ≥ sup
x∈∂BR

|z(x)| → 0 as R→∞

And therefore z(x) ≥ 0 for all x ∈ IRN .

(ii) If Θ is bounded, this is once again Theorem 9.6 of [18]. So let Θ be unbounded, and choose
R sufficiently large so that Θ ∩BR is not empty. Then applying the same theorem to Θ ∩BR,
and noting that ∂(Θ ∩BR) ⊂ ∂Θ ∪BR, we have ∀x ∈ Θ,

z(x) ≤ sup
x∈∂Θ∩BR

z(x) ≤ sup
x∈∂BR

|z(x)| → 0 as R→∞

3this means that Θ 6= ∅ and Θ 6= IRN , which is equivalent to saying ∂Θ 6= ∅.
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Therefore z(x) ≤ 0 for all x ∈ Θ.

(iii) Suppose that Θ = {x ∈ IRN , z(x) > 0} 6= ∅. If Θ = IRN , then Lz ≤ 0 on IRN , but then
z ≤ 0 by (i), contradiction. Next if Θ 6= IRN then ∂Θ 6= ∅, and one can show that z(x) = 0 on
∂Θ, and once again we get a contradiction from (ii). Therefore Θ = ∅. Replacing z by −z in
this reasoning, we get {x ∈ IRN , z(x) < 0} = ∅. Thus finally z = 0 on IRN . �

Lemma 3.3 Under the above conditions, if DF (0) ∈ GL(Xp, Yp), then F : Xp → Yp is Fred-
holm of index zero, and proper on the closed bounded subsets of Xp.

Proof. We need to show that F∞(u) = 0 ⇒ u = 0. Note first that condition (3.6) implies
that as |x| → ∞

f(x, ζ) =
(∫ 1

0
∇ζf(x, tζ) dt

)
ζ −→ g∞(ζ)ζ = f∞(ζ).

So letting |x| → ∞ in (3.12), we get

f∞k (ζ)ζk ≥ δ|ζk|2 ∀ ζ ∈ IRm. (3.13)

Now if u = (u1, . . . , um) ∈ Xp satisfies F∞(u) = 0, then for all k = 1, . . . ,m,

(Lkuk)uk = −f∞k (u)uk ≤ −δ(uk)2 ≤ 0.

Therefore uk = 0 from Lemma 3.2 (iii). From Theorem 2.7 (with Ω = IRN ), we conclude that
F is proper on the closed bounded subsets of Xp. �

Proposition 3.2 If DF (0) ∈ GL(Xp, Yp), then for every h ∈ Yp, F (u) = h is solvable in Xp.

Proof. F satisfies all the properties required in §3.1. So to prove solvability it is enough
to obtain a priori estimates. Set for t ∈ [0, 1], Et = {u ∈ Xp,H(t, u) = 0}. Since E0 =
{DF (0)

−1
(h)}, we need to show that E′ =

⋃
0<t≤1

Et is bounded.

We know that Lk + δ is an isomorphism from W 2,p(IRN ) to Lp(IRN ) (apply for example
Corollary 2.5 with m = 1). So let for k = 1, . . . ,m, ψk = (Lk + δ)−1(|hk|). Then by Lemma 3.2
(i), ψk ≥ 0. Now consider an element u ∈ E′. We claim that |uk(x)| ≤ ψk(x) for every x ∈ IRN

and every k = 1, . . . ,m. Suppose first that for some k ∈ {1, . . . ,m} and some x ∈ IRN , we have
uk(x) > ψk(x). Let then z = uk − ψk, and Θ =

{
x ∈ IRN , z(x) > 0

}
. Then, for all x ∈ Θ

Lkz = Lkuk − Lkψk

= −1
t
fk(tu) + thk − (Lk + δ)ψk + δψk

= −1
t
fk(tu) + thk − |hk|+ δψk.

But for x ∈ Θ, tuk(x) > 0, and so by condition (3.12)

fk(x, tu(x)) ≥ δtuk(x) hence − 1
t
fk(x, tu(x)) ≤ −δuk(x)

Therefore
Lkz ≤ −δuk + δψk < 0.
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If Θ = IRN , then by Lemma 3.2 (i) z ≤ 0 on IRN , contradiction. If Θ 6= IRN , then z(x) = 0 for
x ∈ ∂Θ, and z ≤ 0 on Θ from Lemma 3.2 (ii). But this contradicts the definition of Θ. Thus
uk(x) ≤ ψk(x) for every x ∈ IRN and every k = 1, . . . ,m.

Next, suppose that uk(x) < −ψk(x) for some k ∈ {1, . . . ,m} and some x ∈ IRN , and let
w = uk + ψk, and Σ =

{
x ∈ IRN , w(x) < 0

}
. Then

Lkw = Lkuk + Lkψk

= −1
t
fk(tu) + thk + (Lk + δ)ψk − δψk

= −1
t
fk(tu) + thk + |hk| − δψk

≥ −δuk − δψk > 0,

because fk(x, tu(x)) ≤ δtuk(x) since uk(x) < 0 when x ∈ Σ. Once again by Lemma 3.2
(i) and (ii), w ≥ 0 on Σ, and we have a contradiction. Consequently |u(x)| ≤ |ψ(x)| and so
‖u‖∞ ≤ ‖ψ‖∞ and ‖u‖0,p ≤ ‖ψ‖0,p.

Now as already observed several times f can be written as f(x, ζ) = g(x, ζ) ·ζ, where g is the
equicontinuous C0−bundle map defined by g(x, ζ) =

∫ 1
0 ∇ζf(x, tζ) dt. And then by Lemma

2.1 (ii) (g(x, .))x is equibounded on the bounded subset of IRm because g(., 0) = ∇ζf(., 0)
is bounded. Accordingly, for every bounded K ⊂ IRM there is a constant MK such that
|f(x, ζ)| ≤ MK |ζ| for all x ∈ IRN and ζ ∈ K. Consequently, since ‖u‖∞ ≤ ‖ψ‖∞, there is
M = M‖ψ‖∞ such that in particular

‖f(tu)‖0,p ≤M‖tu‖0,p.

But for u ∈ E′

(L+ 1)u = −1
t
f(tu) + th+ u,

and since (L + 1) ∈ GL(Xp, Yp), there is C > 0 such that ‖u‖2,p ≤ C‖(L + 1)u‖0,p, and
consequently

‖u‖2,p ≤ C‖(L+ 1)u‖0,p ≤ C ((M + 1)‖ψ‖0,p + ‖h‖0,p) .

�

3.3 A second homotopy

We continue to deal with the problem of the previous section, but we consider another homotopy

H(t, u) = Lu+ tf(u) + (1− t)δu− th, where δ > 0.

The advantage of this homotopy is that we do not need to assume explicitly that DF (u) is
invertible at some point (the existence of a point u0 at which DF (u0) is invertible will follow
from degree arguments: see the remark after Proposition 3.3). But to ensure the Fredholmness
of this homotopy we make a further assumption. Consider the family of elliptic operators with
constant coefficients (t ∈ [0, 1])

Lu+ tg∞(0)u+ (1− t)δu. (3.14)

We assume that its characteristic polynomial has no real zeros

detS∞t (ξ) 6= 0 for all ξ ∈ IRN and t ∈ [0, 1]. (3.15)

Lemma 3.4 H has the following properties.
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(i) H ∈ C1(IR×Xp, Yp).

(ii) DuH(t, u) ∈ Φ0(Xp, Yp) ∀ (t, u) ∈ [0, 1]×Xp.

(iii) For every bounded B ⊂ Xp, the collection (H(., u))u∈B is equicontinuous.

(iv) The restriction of H to any closed bounded subset of [0, 1]×Xp is proper.

Proof. Indeed it is sufficient to prove the above properties for G(t, u) = H(t, u) + th.

(i) is straightforward.

(ii) For each t ∈ [0, 1], G(t, .) has the same form of F with f(x, ζ) replaced by tf(x, ζ)+(1−t)δζ
which satisfies exactly the same assumptions on f . Thus, once again, all theorems of chapter 2
apply to G(t, .). In particular by Theorem 2.3, it is enough to prove that DuG(t, 0) ∈ Φ0(Xp, Yp).
But DuG(t, 0)u = Lu + tDf(0)u + (1 − t)δu, and it has (3.14) as a limit operator, which is
assumed to be an isomorphism for all t ∈ [0, 1]. Therefore the result follows from Corollary 2.6.

(iii) Let t, t0 ∈ [0, 1], then G(t, u)−G(t0, u) = (t− t0)f(u) + (t0− t)δu. And the result follows
from the fact that f(u) is bounded in Yp when u is bounded in Xp (see for example Lemma 2.3
(i)).

(iv) We prove that each partial G(t, .) map is proper. Then recalling point (iii), we proceed
exactly as in the proof of Lemma 3.1 (4.). Now for each t ∈ [0, 1], G(t, .) has a limit problem

G∞(t, u) = Lu+ tf∞(u) + (1− t)δu

Let u ∈ Xp satisfies G∞(t, u) = 0. Then

(Lkuk)uk = −tf∞k (u)uk − (1− t)δ(uk)2 ≤ 0

as it follows from (3.12). Therefore the maximum principle implies uk = 0. By Theorem 2.7
(recalling (ii)), G(t., ) is proper on the closed bounded subsets of Xp. �

Corollary 3.1 For every bounded subset B in Xp, H|[0,1]×B̄ is B-admissible.

Lemma 3.5 Let E = {u ∈ Xp,H(t, u) = 0 for some t ∈ [0, 1]}. Then E is bounded.

Proof. Let for k = 1, . . . ,m, ψk = (Lk + δ)−1(|hk|). Then by Lemma 3.2 (i), ψk ≥ 0. We
claim that |uk(x)| ≤ ψk(x) for every x ∈ IRN and every k = 1, . . . ,m. Suppose first that for
some k ∈ {1, . . . ,m} and some x ∈ IRN , we have uk(x) > ψk(x). Let then z = uk − ψk, and
Θ =

{
x ∈ IRN , z(x) > 0

}
. Then for all x ∈ Θ

Lkz = Lkuk − Lkψk

= −tfk(u)− (1− t)δuk + thk − (Lk + δ)ψk + δψk

= −tfk(tu)− (1− t)δuk + thk − |hk|+ δψk

≤ −δuk + δψk < 0,

which leads to a contradiction by the maximum principle. Therefore uk(x) ≤ ψk(x) for every
x ∈ IRN and every k = 1, . . . ,m.

A similar discussion as in the proof of Proposition 3.2 shows that uk(x) ≥ −ψk(x) for every
x ∈ IRN and every k = 1, . . . ,m.

Consequently, |u(x)| ≤ |ψ(x)| and so ‖u‖∞ ≤ ‖ψ‖∞ and ‖u‖0,p ≤ ‖ψ‖0,p. The conclusion
follows exactly as in the end of Proposition’s 3.2 proof. �
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Proposition 3.3 For every h ∈ Yp, F (u) = h is solvable in Xp.

Proof. Let B be a ball of center 0 and containing E. Then indeed 0 /∈ H([0, 1], ∂B). Now
H(0, .) = L+ δ ∈ GL(Xp, Yp), therefore 0 is a base point of H(0, .) and deg0(H(0, .), B, 0) = 1.
The contraposition of Theorem 1.1 (ii) ensures the existence of an element u ∈ B for which
H(1, u) = F (u)− h = 0. �

Remark 3.3 The contraposition of Theorem 1.1 (ii) ensures also the existence of a base point
u0 of H(1, .), and consequently of F . Then, degu0

(F − h,B, 0) = ±1.
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Chapter 4

Global continuation in nonlinear
elasticity

4.1 Setting of the problem

In three dimensional elasticity the following notation is often used when formulating the basic
field equations.

M is the set of all real 3× 3 matrices,
M+ = {E ∈M | detE > 0} ,
O+ =

{
E ∈M | ETE = EET = I and detE = 1

}
,

where I is the identity matrix, and ET is the transpose of E. A scalar product on M is defined
by

〈E,G〉 = traceEGT = traceETG.

and the associated norm is denoted by ‖ · ‖. This norm satisfies ‖E‖ = ‖ET ‖, and ‖QE‖ =
‖EQ‖ = ‖E‖ for all E ∈M , and Q ∈ O+.

We consider an elastic body in an unstressed reference configuration which fills IR3. In this
case a deformation of the body is described by a map ϕ such that

(i) ϕ ∈ C1(IR3, IR3).

(ii) ∇ϕ(x) ∈M+ for all x ∈ IR3.

(iii) ϕ : IR3 → IR3 is injective.

We suppose that the mass density in the reference configuration is given by a function
ρ : IR3 → IR such that

ρ ∈ C(IR3) and ρ(x) > 0 for all x ∈ IR3.

The external forces acting on the body are given by a density f : IR3 × IR3 → IR3 such that

f : IR3 × IR3 → IR3 is an equicontinuous C1
ξ − bundle map.

A particular example reminiscent of the Hook’s law is

f(x, ζ) = −k(ζ − x) + f0(x),

77
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where k > 0, and f0 : IR3 → IR3 is a continuous function with compact support. Under these
assumptions, the equations of equilibrium for a deformation ϕ are

divT (x) + ρ(x)f(x, ϕ(x)) = 0 for x ∈ IR3, (4.1)

T (x)[∇ϕ(x)]T = [∇ϕ(x)][T (x)]T for x ∈ IR3, (4.2)

where T (x) denotes the first Piola-Kirchhoff stress tensor at x.
We suppose that the body is asymptotically undeformed in the sense that

ϕ(x)− x→ 0 as |x| → ∞. (4.3)

To complete the specification of the problem (4.1) − (4.3), we must say how the stress in the
material is determined by its deformation. This is done through a constitutive relation of the
form

T (x) = T̂ (∇ϕ(x)),

where T̂ : M+ → M is the elastic response function, which depends on the material. The
frame indifference requires that T̂ (QE) = QT̂ (E), for all E ∈M+ and Q ∈ O+. We also assume
that the reference configuration is unstressed, and so T̂ (I) = 0.

In this chapter we concentrate on a class of materials known as Mooney-Rivlin materials,
for which the response function derives from a potential energy or stored energy function
W : M+ → IR of the form

W (E) = a ‖E‖2 + b ‖CofE‖2 + h(detE), (4.4)

where a > 0, b ≥ 0 are constants, and h : (0,∞) → IR is a C3−convex function. Usually
h(t) → ∞ as t → 0, and a typical example is h(t) = ct2 − d ln t with c, d > 0. Note that by
adding a constant, we can normalize the energy by W (I) = 0, and this is equivalent to

3a+ 3b+ h(1) = 0,

since ‖I‖2 = trace I = 3, and Cof I = I. This will be assumed in the sequel.
The fact that T̂ derives from the energy W means that T̂ (E) = gradW (E), which is also

expressed by the condition〈
T̂ (E), G

〉
= DW (E)G for all E ∈M+ and G ∈M.

Remark 4.1 Here, DW (E) is the Fréchet derivative of W at E, and so it is a linear function
from M to IR, whereas T̂ (E) is a matrix.

Remark 4.2 Materials for which the response function derives from a potential energy are
called hyperelastic.

If we write ϕ in the form ϕ(x) = x + u(x), (the function u : IR3 → IR3 is called the
displacement corresponding to the deformation ϕ), the equations (4.1), (4.2) and (4.3) are
then equivalent to

div T̂ (I +∇u(x)) + ρ(x)f (x, x+ u(x)) = 0 for x ∈ IR3, (4.5)
lim

|x|→∞
u(x) = 0. (4.6)
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We note that, for i = 1, 2, 3,

(
div T̂ (I +∇u(x))

)
i
=

3∑
α=1

∂

∂xα

(
T̂iα (I +∇u(x))

)
=

3∑
α=1

3∑
β,j=1

∂T̂iα (I +∇u(x))
∂Ejβ

∂α[∇u(x)]jβ

=
3∑

α=1

3∑
β,j=1

∂T̂iα(I +∇u(x))
∂Ejβ

∂2
αβuj(x).

Before going further, let us write down explicitly the expression of T̂ , for a Mooney-Rivlin
material, In doing so, we are led naturally to establish some useful identities that will be needed
in the sequel.

Lemma 4.1 For E ∈M+,

T̂ (E) = 2aE + 2b(detE)2
(∥∥E−1

∥∥2
E−T − E−TE−1E−T

)
+ h′(detE)(detE)E−T , (4.7)

where E−T = (E−1)T = (ET )−1.

Proof. Define for E ∈M+

A(E) = a ‖E‖2 , B(E) = b ‖CofE‖2 , C(E) = h(detE).

We compute the derivatives of A, B, and C. Indeed,

DA(E)G = 2a〈E,G〉
DB(E)G = 2b〈CofE,D(CofE)G〉 (4.8)
DC(E)G = h′(detE)D(detE)G (4.9)

Therefore, we are led to compute D(det) and D(Cof ).
Now, (CofE)ij = (−1)i+j det Êij , where Êij is the matrix obtained from E by deleting the

ith row and jth column, and then

E−1 =
(CofE)T

detE
, or CofE = (detE)E−T .

Furthermore, for every i = 1, 2, 3,

detE =
3∑
j=1

Eij(CofE)ij (expanding detE along the ith row).

Therefore,

∂ detE
∂Eik

=
3∑
j=1

∂Eij
∂Eik

(CofE)ij + Eij
∂(CofE)ij
∂Eik

=
3∑
j=1

δjk(CofE)ij + Eij × 0, since (CofE)ij contains no terms from row i

= (CofE)ik.
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Hence,

D(detE)G =
3∑

i,k=1

∂ detE
∂Eik

Gik =
3∑

i,k=1

(CofE)ikGik

= trace (CofE)TG = 〈CofE,G〉.
= (detE)〈E−T , G〉.

Now, by differentiating the identity EE−1 = I, we get D(E−1)G = −E−1GE−1, and by the
chain rule, D(E−T )G =

(
−E−1GE−1

)T = −E−TGTE−T . Since CofE = (detE)E−T , we get

D(CofE)G = (detE)〈E−T , G〉E−T + (detE)(−E−TGTE−T ).

Replacing CofE and D(CofE)G by their values in (4.8), using the properties of the scalar
product 〈·, ·〉, and the identity 〈E−T , E−TGTE−T 〉 = 〈E−TE−1E−T , G〉, we finally obtain

DB(E)G = 2b(detE)2
(∥∥E−1

∥∥2 〈E−T , G〉 −
〈
E−TE−1E−T , G

〉)
.

Equation (4.9) becomes

DC(E)G = h′(detE)(detE)〈E−T , G〉.

Therefore,

DW (E)G = 2a〈E,G〉+ 2b(detE)2
(∥∥E−1

∥∥2 〈E−T , G〉 −
〈
E−TE−1E−T , G

〉)
+ h′(detE)(detE)〈E−T , G〉,

and so,

T̂ (E) = 2aE + 2b(detE)2
(∥∥E−1

∥∥2
E−T − E−TE−1E−T

)
+ h′(detE)(detE)E−T .

�

Remark 4.3 In fact, the identities of the previous lemma, hold for arbitrary n× n− matrices
with nonzero determinant, and not just for E ∈M+.

It follows that T̂ (I) = (2a+4b+h′(1))I, and so the condition that the reference configuration
is unstressed (i.e. T̂ (I) = 0) becomes

2a+ 4b+ h′(1) = 0. (4.10)

Corollary 4.1 T̂ has the following properties.

R(i) T̂ ∈ C2(M+,M), and T̂ (I) = 0.

R(ii) T̂ (QE) = QT̂ (E) for all Q ∈ O+ and E ∈M+.

R(iii) T̂ (E)ET = E[T̂ (E)]T for all E ∈M+.

Remark 4.4 The property R(ii) means that the response function is frame-indifferent. By
R(iii), the equation (4.2) for the balance of the moments of the forces is always satisfied.

Differentiating the terms of T̂ and using the identities of the previous lemma, we get
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Lemma 4.2 Let

B̂(E) = (detE)2
(∥∥E−1

∥∥2
E−T − E−TE−1E−T

)
Ĉ(E) = h′(detE)(detE)E−T .

Then

DB̂(E)G = 2(detE)2〈E−T , G〉
(
‖E−1‖2E−T − E−TE−1E−T )

− (detE)2
(
2〈E−1, E−1GE−1〉E−T + ‖E−1‖2E−TGTE−T )

+ (detE)2E−T (GTE−TE−1 + E−1GE−1 + E−1E−TGT
)
E−T

and

DĈ(E)G = h′′(detE)(detE)2〈E−T , G〉E−T + h′(detE)(detE)
(
〈E−T , G〉E−T − E−TGTE−T )

= h′′(detE)〈CofE,G〉CofE + h′(detE)(detE)
(
〈E−T , G〉E−T − E−TGTE−T )

�

Since T̂ (E) = 2aE + 2bB̂(E) + Ĉ(E), we have DT̂ (E)G = 2aG+ 2bDB̂(E)G+ DĈ(E)G for all
G ∈M . In particular, when E = I, we get

DT̂ (I)G = [4b+ h′′(1) + h′(1)]trace (G)I + 2(a+ b)G− (2b+ h′(1))GT .

But from (4.10), it follows that 2(a+ b) = −2(b+ h′(1)), and thus, we can state

Corollary 4.2
DT̂ (I)G = λtrace (G)I + µ(GT +G)

where

λ = 4b+ h′(1) + h′′(1) = −2a+ h′′(1),
µ = 2(a+ b) > 0,

are the Lamé constants, and satisfy

λ+ 2µ = 2a+ 4b+ h′′(1) > 0.

�

At this point, two issues remain to be resolved before we can use the results of chapter
2 in this context. First of all, the equation (4.5) is not defined for all smooth functions u :
IR3 → IR3 but only for those such that I +∇u(x) ∈ M+ for all x ∈ IR3. Secondly, amongst all
possible solutions of (4.5), only those such that x 7→ x+ u(x) is injective on IR3 correspond to
deformations of the elastic body.
To deal with the first point, we clearly have to extend the definition of T̂ from M+ to all of M.
For most response functions, this cannot be done in a smooth way because∥∥∥T̂ (E)

∥∥∥→∞ when detE → 0.

Hence we must restrict T̂ to a slightly smaller set and then find a smooth extension of this
restriction.
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Lemma 4.3 Let h ∈ C3(0,∞) satisfy h′′(t) ≥ 0 for all t > 0 (this is equivalent to the convexity
of h). Then, for any ε > 0, there exists a function hε ∈ C3(IR) such that

h′′ε(t) ≥ 0 for all t ∈ IR and hε(t) = h(t) for all t ≥ ε.

Proof. Define hε on (−∞, ε) as follows

hε(t) =


h(ε) + h′(ε)(t− ε) +

1
2
h′′(ε)(t− ε)2 +

1
6
h′′′(ε)(t− ε)3 if h′′′(ε) ≤ 0,

h(ε) +
(
h′(ε)− h′′(ε)2

h′′′(ε)

)
(t− ε) +

h′′(ε)3

h′′′(ε)2

(
exp

(
h′′′(ε)
h′′(ε)

(t− ε)
)
− 1
)

if h′′′(ε) > 0.

Note that in the second case h′′(ε) > 0, because h′′ is strictly increasing in a neighborhood of
ε. Now, one can check that, in both cases, h(i)

ε (ε) = h(i)(ε) for i = 0, 1, 2, 3, and that h′′ε(t) ≥ 0
for all t ≤ ε. �

Setting
W ε(E) = a ‖E‖2 + b ‖CofE‖2 + hε(detE) for all E ∈M, (4.11)

we clearly have that W ε ∈ C3(M, IR) and W ε(E) = W (E) for all E ∈Mε, where

Mε = {E ∈M | detE > ε} . (4.12)

Thus we can define T̂ ε ∈ C2(M,M) by〈
T̂ ε(E), G

〉
= DW ε(E)G for all E,G ∈M,

and it follows that T̂ ε(E) = T̂ (E) for all E ∈Mε.

We fix ε > 0 and define a matrix valued function aεαβ : IR3 ×
(
IR3 ×M

)
→M by

(
aεαβ(x, ξ0, ξ

′)
)
i,j

=
∂T̂ εiα (I + ξ′)

∂Ejβ
(4.13)

where α, β, i, j = 1, 2, 3. We also define a function b : IR3 × IR3 ×M → IR3 by

b(x, ξ) = −ρ(x)f (x, x+ ξ0) (4.14)

We replace (4.5) by the equation

div T̂ ε (I +∇u(x)) + ρ(x)f (x, x+ u(x)) = 0 for x ∈ IR3, (4.15)

which is then in the from (1.1) since,

(
div T̂ ε (I +∇u(x))

)
i
=

3∑
α=1

3∑
β,j=1

∂T̂ εiα (I +∇u(x))
∂Ejβ

∂2
αβuj(x)

=

 3∑
α,β=1

aεαβ(x, u(x),∇u(x))∂2
αβu


i

.

We prove that this system satisfies the ellipticity condition (2.18), and we first claim that〈
DT̂ ε(E)(ζ ⊗ η), ζ ⊗ η

〉
≥ 2a|ζ|2|η|2, (4.16)
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for all ζ, η ∈ IR3 and all E ∈M , and where (ζ ⊗ η)ij = ζiηj .
One way to show this, is to make a direct calculation based on Lemma 4.2, after noting that

some of the identities hold in fact for every E ∈ M , because the set {E ∈ M | detE 6= 0} is
dense in M1.

We give however, a more conceptual proof. In doing so, we introduce two fundamental
concepts in elasticity that we need later.

Note that the function W ε is not convex in general (unless b = hε = 0), however, if we
define W̃ : M ×M × IR → IR by

W̃ (E1, E2, δ) = a ‖E1‖2 + b ‖E2‖2 + hε(δ),

then W̃ is convex in its arguments, and we have W ε(E) = W̃ (E,CofE,detE). A function
having this property is called polyconvex, a concept introduced by J. Ball in the context of
the calculus of variations.

Now, it can be shown (using the Jensen inequality), that a polyconvex function P : M → IR
satisfies

P (E) ≤ 1
measD

∫
D
P (E +∇v) dx,

for every bounded measurable subset D ⊂ IR3, every E ∈ M and every v ∈ W 1,∞
0 (D, IR3). A

function satisfying the preceding inequality is called quasiconvex.
Finally a C2−quasiconvex function P satisfies the (not strong) Legendre-Hadamard condi-

tion
D2P (E)(ζ ⊗ η, ζ ⊗ η) ≥ 0 for all E ∈M, and all ζ, η ∈ IR3.

For more details and proofs, see for instance [10].
Now we prove inequality (4.16). Note that W ε(E) = A(E) +B(E) + Cε(E) where

A(E) = a ‖E‖2 , B(E) = b ‖CofE‖2 , Cε(E) = hε(detE).

For any E,G ∈M,
D2A(E)(G,G) = 2a ‖G‖2 ,

and so,
D2A(E)(ζ ⊗ η, ζ ⊗ η) = 2a ‖ζ ⊗ η‖2 = 2a|ζ|2|η|2 for all ζ, η ∈ IR3.

Note that the parts B and Cε are themselves polyconvex functions on M , and consequently

D2B(E)(ζ ⊗ η, ζ ⊗ η) ≥ 0,

D2Cε(E)(ζ ⊗ η, ζ ⊗ η) ≥ 0,

for all ζ, η ∈ IR3. But〈
DT̂ ε(E)G,G

〉
= D2W ε(E)(G,G) for all E,G ∈M,

and for G = ζ ⊗ η, we have just shown that,

D2W ε(E)(G,G) ≥ 2a ‖G‖2 = 2a |ζ|2 |η|2 . �

We now show that the ellipticity condition (2.18) is satisfied. Since 3∑
α,β=1

ηαηβa
ε
αβ(x, ξ)


ij

=
3∑

α,β=1

∂T̂ εiα (I + ξ′)
∂Ejβ

ηαηβ

1Since the equation det(E − λI) = 0 has finitely many solutions in λ ∈ IR, then det(E − 1
n
I) 6= 0 for n ∈ IN

large enough, and indeed E − 1
n
I → E as n→∞.
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we have that

3∑
i,j=1

 3∑
α,β=1

ηαηβa
ε
αβ(x, ξ)


ij

ζiζj =
3∑

i,j=1

3∑
α,β=1

∂T̂ εiα (I + ξ′))
∂Ejβ

ηαηβζiζj

=
〈
DT̂ ε

(
I + ξ′

)
(ζ ⊗ η), ζ ⊗ η

〉
= D2W ε(I + ξ′)(ζ ⊗ η, ζ ⊗ η) ≥ 2a|ζ|2|η|2,

for all ζ, η ∈ IR3\{0} and (x, ξ) ∈ IR3 ×
(
IR3 ×M

)
.

Thus, (since a > 0), the Strong Legendre-Hadamard condition (2.17) is satisfied and so also
(2.18).

Henceforth, we assume that the mass density ρ(x) and the body forces f(x, ζ) have the
following property.

(B) There exist a real number p > 3 such that the function

x 7→ ρ(x)f(x, x) belongs to Lp(IR3, IR3),

and the function
x 7→ ρ(x)∇ζf(x, x) belongs to L∞(IR3,M).

Then the hypotheses (2.10) to (2.13) are satisfied by (4.13) and (4.14). Solutions of the system

u ∈ Xp = W 2,p(IR3, IR3) and (4.17)

div T̂ ε(I +∇u(x)) + ρ(x)f (x, x+ u(x)) = 0 for x ∈ IR3 (4.18)

satisfy (4.6), because 3 < p <∞.

To conclude we need to discuss the extent to which solutions of (4.18) correspond to defor-
mations of the elastic body satisfying (4.3). For this we set

O =
{
u ∈ Xp | I +∇u(x) ∈M+ for all x ∈ IR3

}
and

Oε =
{
u ∈ Xp | I +∇u(x) ∈Mε for all x ∈ IR3

}
for 0 < ε < 1.

Lemma 4.4 For any real number p > 3, the sets O and Oε have the following properties.

(i) O and Oε are open subsets of Xp. For any u ∈ O there exists ε > 0 such that I+∇u(x) ∈
Mε for all x ∈ IR3. Thus O =

⋃
0<ε<1

Oε.

(ii) For any u ∈ O, the function ϕ defined by ϕ(x) = x+ u(x) is a deformation.

(iii) For any µ ∈ (0, 1) there exists ε > 0 such that {u ∈ Xp : ‖∇u‖∞ < µ} ⊂ Oε.

Proof. Since det I = 1, there exists δ > 0 such that

detE ≥ 1
2

for all E ∈ Z = {E ∈M : ‖E − I‖ < δ} .

(i) Fix u ∈ O. Since u ∈ Xp ⊂ C1
d(IR

3, IR3), there exists R > 0 such that

|u(x)|+ ‖∇u(x)‖ < δ

2
whenever |x| ≥ R.
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In particular, I + ∇u(x) ∈ Z for all |x| ≥ R and consequently det(I + ∇u(x)) ≥ 1
2 whenever

|x| ≥ R.
But det(I + ∇u(x)) > 0 for all x and hence γ ≡ inf{det(I + ∇u(x)) : |x| ≤ R} > 0 by the
continuity of ∇u. Thus we see that I +∇u(x) ∈Mε for all x ∈ IR3 for any ε < min{1

2 , γ}, and
hence u ∈ Oε.

Furthermore, there exists ν > 0 such that det(I + E) ≥ γ
2 provided that ‖E −∇u(x)‖ < ν

for some x with |x| ≤ R. By the continuity of the embedding of Xp in C1
d(IR

3, IR3), there
exists σ > 0 such that ‖∇v(x)−∇u(x)‖ < min{ δ2 , ν} for all x ∈ IR3 and all v ∈ Xp such that
‖v − u‖2,p < σ. Then for v ∈ Xp with ‖v − u‖2,p < σ, we have that

‖∇v(x)‖ ≤ ‖∇u(x)‖+ ‖∇v(x)−∇u(x)‖ < δ

2
+
δ

2
for |x| ≥ R,

and so I + ∇v(x) ∈ Z for all |x| ≥ R, whereas ‖∇v(x)−∇u(x)‖ < ν for |x| ≤ R, and so
det(I +∇v(x)) ≥ γ

2 for all |x| ≤ R.
It follows that det(I +∇v(x)) ≥ min{1

2 ,
γ
2} for all x ∈ IR3 and all v ∈ Xp with ‖v − u‖2,p < σ.

This proves that O is an open subset of Xp. The proof that Oε is open is similar.

(ii) Fix u ∈ O and set ϕ(x) = x+ u(x). There exists r > 0 such that

|u(x)|+ ‖∇u(x)‖ < 1
2

whenever |x| ≥ r.

We show first that ϕ is injective on {x ∈ IR3 : |x| ≥ r + 1}.
Suppose that |x| , |y| ≥ r + 1 and that ϕ(x) = ϕ(y). Then

|x− y| = |u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ 1.

But

u(y)− u(x) =
∫ 1

0

d
dt
u(ty + (1− t)x) dt =

∫ 1

0
∇u(ty + (1− t)x) dt[y − x]

and so
|x− y| = |u(y)− u(x)| ≤ |y − x| max

0≤t≤1
‖∇u(ty + (1− t)x)‖ .

However
|ty + (1− t)x| = |x− t(y − x)| ≥ |x| − t |y − x| ≥ r

since |x| ≥ r + 1 and |y − x| ≤ 1. Therefore, ‖∇u(ty + (1− t)x)‖ < 1
2 for all t ∈ [0, 1] and

consequently,

|x− y| = |u(y)− u(x)| ≤ 1
2
|y − x| ,

so we must have x = y, proving the injectivity of ϕ on the region {x ∈ IR3 : |x| ≥ r + 1}. From
this we can now deduce that ϕ is injective on all of IR3 by appealing to a well-known result due
to Meisters and Olech [26],[9]. Indeed, given two elements x, y ∈ IR3 such that ϕ(x) = ϕ(y),
there exists R > r + 1 such that x, y ∈ B, where B = {z ∈ IR3 : |z| ≤ R}. Now as we have
just shown, ϕ restricted to ∂B is injective and det∇ϕ(x) > 0 for all x since u ∈ O. Hence ϕ
restricted to B is injective by the result of Meisters and Olech, and therefore, x = y.

(iii) Let U = {E ∈M : ‖E − I‖ < 1} and recall that for all E ∈ U, E is invertible with
detE > 0. For any µ < 1,

ε(µ) ≡ inf{detE : ‖E − I‖ ≤ µ} > 0.

Now consider an element u ∈ Xp such that ‖∇u‖∞ < µ. Then det(I + ∇u(x)) ≥ ε(µ) for all
x ∈ IR3, so u ∈ Oε for all ε < ε(µ). �
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Let us end by summarizing the situation. Our aim is to treat the equilibrium, under the
applications of body forces and no deformation at infinity, of an elastic body whose reference
configuration occupies IR3. This amounts to finding those deformations ϕ which satisfy the equa-
tions (4.1), (4.2), (4.3). We can begin by studying the solutions u of the problem (4.17),(4.18)
which, as we have shown, satisfies the hypotheses of the main results of chapter 2, provided
that f has the property (B). If, in addition, u ∈ Oε, then by Lemma 4.4, ϕ(x) = x + u(x)
is a deformation and it satisfies the equations (4.1), (4.2), (4.3). Conversely, for any equilib-
rium deformation ϕ, there exists an ε > 0 such that u(x) = ϕ(x) − x lies in Oε and satisfies
(4.17),(4.18). Since Oε is an open neighborhood of 0 in W 2,p(IR3, IR3), solutions of (4.18) that
are obtained by continuation from u ≡ 0 will, at least initially lie in the subset Oε.

Now, we are ready to study the Fredholm and properness properties of the map

Fε(u)(x) = −div T̂ ε(I +∇u(x))− ρ(x)f(x, x+ u(x)). (4.19)

We recall, for future references, the assumptions on T̂ ε.

(T) T̂ ε is the gradient of the function W ε : M → IR defined by

W ε(E) = a ‖E‖2 + b ‖CofE‖2 + hε(detE),

where a > 0, b ≥ 0 are constants, and hε : IR → IR is a C3−convex function. Furthermore,
W ε(I) = 0 and T̂ ε(I) = 0.

4.2 Fredholm and properness properties

So far, we assumed the following about the density and the forces.

ρ ∈ C(IR3) and ρ(x) > 0 for all x ∈ IR3, (4.20)

f : IR3 × IR3 → IR3 is an equicontinuous C1
ζ − bundle map, (4.21)

the functions x 7→ ρ(x)∇ζf(x, x) and x 7→ ρ(x)f(x, x) belong respectively to

L∞(IR3,M) and Lp(IR3, IR3) for some p ∈ (3,∞). (4.22)

Now, we add the following assumptions.

lim
|x|→∞

ρ(x) = ρ∞ > 0, (4.23)

there exists a function f∞ ∈ C1(IR3, IR3) with f∞(0) = 0 such that

lim
|x|→∞

‖∇ζf(x, x+ ζ)−∇f∞(ζ)‖ = 0, uniformly for ζ in compact subsets of IR3, (4.24)

there is k > 0 such that (∇ζf(x, x)η) · η ≤ −k|η|2, ∀x, η ∈ IR3. (4.25)

Let
g(ζ) = ρ∞f∞(ζ). (4.26)

(G) g (or equivalently f∞) is conservative i.e. there exist a function G ∈ C1(IR3) such
that ∇G(ζ) = g(ζ) for all ζ ∈ IR3. Then, by adding a constant, we consider that G(0) = 0.

Our last hypothesis is
f∞(ζ) · ζ ≤ −k|ζ|2. (4.27)

Under the previous assumptions we have a limit operator in the sense of §2.5.

F∞
ε (u) = −div T̂ (I +∇u)− ρ∞f∞(u) (4.28)
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Remark 4.5 It follows that ρ := inf
x∈IR3

ρ(x) > 0. Indeed, from (4.23), there is R > 0 such that

ρ(x) ≥ 1
2ρ

∞, whenever |x| > R. From (4.20), ρ attains its (positive) minimum on the compact
set BR at a point x0. But then ρ ≥ min(1

2ρ
∞, ρ(x0)) > 0.

Remark 4.6 Under assumptions (4.20) and (4.23), condition (4.22) is equivalent to

x 7→ ∇ζf(x, x) ∈ L∞(IR3,M), and x 7→ f(x, x) ∈ Lp(IR3, IR3). (4.29)

Indeed, if (4.22) holds, then (4.29) holds as well because ‖∇ζf(x, x)‖ ≤ 1
ρ
‖ρ(x)∇ζf(x, x)‖, and

|f(x, x)| ≤ 1
ρ
|ρ(x)f(x, x)|, for every x ∈ IR3. Conversely, if (4.29) holds then (4.22) holds,

because ‖ρ(x)∇ζf(x, x)‖ ≤ ‖ρ‖0,∞‖∇ζf(x, x)‖, and |ρ(x)f(x, x)| ≤ ‖ρ‖0,∞|f(x, x)|.

Remark 4.7 It follows from assumptions (4.23)−(4.24) that

ζT∇f∞(0)ζ ≤ −k|ζ|2.

Remark 4.8 Assumption (G) is weaker than the fact that f is conservative with respect to
ζ. Indeed, the condition that there is Φ : IR3 × IR3 → IR such that ∇ζΦ(x, ζ) = f(x, ζ), is
equivalent to the condition that rot ζf(x, ζ) = 0 for all x and ζ ∈ IR3, since IR3 is simply
connected. Then letting |x| → ∞, we get rot f∞(ζ) = 0 and so f∞ is conservative.

Remark 4.9 The field f(x, ζ) = −k(ζ − x) + f0(x), given in §4.1 satisfies all our assumptions,
with f∞(ζ) = −kζ.

Proposition 4.1 Under assumptions (T) and (4.20)−(4.22), the operator Fε in (4.19) is of
class C1 from Xp to Yp. Its derivative at zero is

DFε(0)u = −(λ+ µ)∇(divu)− µ∆u− ρ(x)∇ζf(x, x)u, (4.30)

where λ and µ are given in Corollary 4.2.

Proof. That Fε is C1, follows from Theorem 2.2, since the coefficients of Fε satisfy the
required assumptions (2.10)−(2.13). In particular, from the chain rule and the linearity of the
operators div and ∇, it follows that

DFε(0)u = −div DT̂ ε(I)∇u− ρ(x)∇ζf(x, x)u,

From Corollary 4.2, we have, since T̂ ε(I) = T̂ (I),

DT̂ ε(I)G = λtrace (G)I + µ(GT +G),

and therefore,

div DT̂ ε(I)∇u = div (λtrace (∇u)I + µ(∇uT +∇u))
= div (λ(divu)I + µ(∇uT +∇u)).

Or componentwise, for i = 1, 2, 3,(
div DT̂ ε(I)∇u

)
i
= λ

3∑
j=1

∂j(divu)δij + µ

3∑
j=1

∂j(∂iuj + ∂jui)

= λ∂i(divu) + µ∂i(divu) + µ∆ui
= (λ+ µ) (∇(divu))i + µ∆ui.

�
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Lemma 4.5 Let θ ∈ C∞(IR3) satisfy θ(x) = |x| for |x| > 2, and θ(x) = 0 when |x| < 1. Let
u = e−sθv for some v ∈ Xp and some s > 0. Then the following hold.

(i) u ∈W 1,q for all q ∈ [1,∞].

(ii) ∂αui∂βuj ∈W 1,1(IR3), for every i, j = 1, 2, 3 and α, β = 0, 1, 2, 3. In particular,

‖∇u‖2, (divu)2, ‖rotu‖2, ∆u · u, ∇(divu) · u ∈ L1(IR3),

and
(divu)u, (∇u)Tu ∈W 1,1(IR3, IR3).

(iii)
∫

IR3
∂αw = 0 for every w ∈W 1,1(IR3), and every α = 1, 2, 3.

Proof. (i) Note first, that since v ∈ L∞ and e−sθ ∈ Lq for any q ∈ [1,∞], we have u ∈ Lq.
Second, by a direct computation already made in §2.7, we have for α = 1, 2, 3,

∂α(e−sθv) = e−sθ∂αv − s∂αθe
−sθv.

Using the fact that the derivatives of θ are bounded functions, we see that ∂αu belongs to Lq

as well.

(ii) In particular ∂αui ∈ Lp
′
, where 1

p′ + 1
p = 1. And since ∂βuj ∈ Lp, we have from Hölder

inequality ∂αui∂βuj ∈ L1. Next, ∂k(∂αui∂βuj) = ∂kαui∂βuj + ∂αui∂kβuj . And for the same
reason as before, we have ∂k(∂αui∂βuj) ∈ L1.

(iii) follows from the density of C∞
0 (IR3) in W 1,1(IR3).

Proposition 4.2 Retain assumptions (T) and (4.20)−(4.25). Then, DFε(0) ∈ GL(Xp, Yp).

Proof. The proof is made in two steps. First, we show that DFε(0) ∈ Φ0(Xp, Yp), because it
is a compact perturbation of an isomorphism, and then we show that kerDFε(0) = {0}.

First step.

DFε(0)u = −(λ+ µ)∇(divu)− µ∆u− ρ∞∇f∞(0)u+ (ρ∞∇f∞(0)− ρ(x)∇ζf(x, x))u.

Now, let

Lu = −(λ+ µ)∇(divu)− µ∆u− ρ∞∇f∞(0)u

= −(λ+ µ)

 ∂2
1 ∂1∂2 ∂1∂3

∂2∂1 ∂2
2 ∂2∂3

∂3∂1 ∂3∂2 ∂2
3

u1

u2

u3

− µ

∆ 0 0
0 ∆ 0
0 0 ∆

u1

u2

u3

− ρ∞∇f∞(0)

u1

u2

u3

 .

Then, the characteristic polynomial of L is

S(η) = (λ+ µ)

 η2
1 η1η2 η1η3

η2η1 η2
2 η2η3

η3η1 η3η2 η2
3

+ µ

|η|2 0 0
0 |η|2 0
0 0 |η|2

− ρ∞∇f∞(0)

We claim that the matrix S(η) is positive definite. Indeed,

(
ζ1 ζ2 ζ3

) η2
1 η1η2 η1η3

η2η1 η2
2 η2η3

η3η1 η3η2 η2
3

ζ1ζ2
ζ3

 = ζT (η ⊗ η)ζ = (ζ · η)2,
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and (
ζ1 ζ2 ζ3

)|η|2 0 0
0 |η|2 0
0 0 |η|2

ζ1ζ2
ζ3

 = |η|2|ζ|2.

Therefore,
ζTS(η)ζ = (λ+ µ)(ζ · η)2 + µ|η|2|ζ|2 − ρ∞ζT∇f∞(0)ζ

By Cauchy inequality, |η|2|ζ|2 ≥ (ζ · η)2, and from Remark 4.7

−ζT∇f∞(0)ζ ≥ k|ζ|2.

So

ζTS(η)ζ ≥ (λ+ 2µ)(ζ · η)2 + k|ζ|2

≥ k|ζ|2,

which proves the claim. But then S(η) has a positive determinant for all η ∈ IR3, and it follows
from Corollary 2.5 that L is an isomorphism from Xp and Yp.

On the other hand, the operator u 7→ (ρ∞∇f∞(0)− ρ(x)∇ζf(x, x))u is compact (see Note
E2 in the appendix). Therefore, DFε(0) ∈ Φ0(Xp, Yp).

Second step. Let u = (u1, u2, u3) ∈ ker DFε(0). Since DFε(0) is Fredholm, it follows
from Theorem 2.13 that u has exponential decay, that is, there is s > 0 and v ∈ Xp such that
u = e−sθv. Therefore from Lemma 4.5∫

IR3
div ((divu)u) dx = 0,

and since
div ((divu)u) = ∇(divu) · u+ (divu)2,

with all terms in L1 by the same lemma, we get

−
∫

IR3
∇(divu) · u dx =

∫
IR3

(divu)2 dx.

For the same reasons, we deduce from the identity

div
(
(∇u)Tu

)
= ∆u · u+ 〈∇u,∇u〉 ,

that
−
∫

IR3
∆u · u dx =

∫
IR3
〈∇u,∇u〉 dx =

∫
IR3
‖∇u‖2 dx.

By a direct calculation,

‖rotu‖2 + (divu)2 = ‖∇u‖2 + 2
{
∂2(u2∂1u1)− ∂1(u2∂2u1) + ∂3(u3∂1u1)− ∂1(u3∂3u1)

+ ∂3(u3∂2u2)− ∂2(u3∂3u2)
}
.

It follows from Lemma 4.5, that all terms in the preceding identity belong to L1(IR3) and

furthermore
∫

IR3
∂i(uj∂luk) dx = 0 for all i, j, k, l ∈ {1, 2, 3}. Therefore

∫
IR3
‖rotu‖2 dx+

∫
IR3

(divu)2 dx =
∫

IR3
‖∇u‖2 dx
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and so,

−
∫

IR3
div DT̂ (I)∇u · u dx = (λ+ µ)

∫
IR3

(divu)2 dx+ µ

∫
IR3
‖∇u‖2 dx

= (λ+ µ)
∫

IR3
(divu)2 dx+ µ

∫
IR3
‖rotu‖2 + (divu)2 dx

= (λ+ 2µ)
∫

IR3
(divu)2 dx+ µ

∫
IR3
‖rotu‖2 dx

≥ min(µ, λ+ 2µ)
∫

IR3
‖∇u‖2 dx.

Now, since ∇ζf(x, x) ∈ L∞ and u ∈ L2, we get from assumption (4.25)

−
∫

IR3
ρ(x) (∇ζf(x, x)u) · u dx ≥ kρ

∫
IR3
|u|2 dx.

Hence,

0 =
∫

IR3
DFε(0)u · u dx ≥ min(µ, λ+ 2µ)

∫
IR3
‖∇u‖2 dx+ kρ

∫
IR3
|u|2 dx ≥ 0.

Therefore, u = 0, and so ker DFε(0) = {0}. Thus, DFε(0) ∈ GL(Xp, Yp). �

Proposition 4.3 (Pohozaev identities) Retain assumptions (T), (4.20)−(4.25) and (G).
Let u ∈ Xp be a solution of F∞

ε (u) = 0. Then,

(i) the functions
〈
T̂ ε(I +∇u),∇u

〉
, W ε(I +∇u), g(u) · u, and G(u) belong to L1(IR3).

(ii) ∫
IR3

g(u) · u dx =
∫

IR3

〈
T̂ ε(I +∇u),∇u

〉
dx (4.31)

= 3
∫

IR3
W ε(I +∇u) dx− 3

∫
IR3
G(u) dx. (4.32)

Proof. (i) Observe first, that, under our assumptions, the operator F∞
ε is of class C1 between

Xp and Yp, and its derivative at zero is the operator

DF∞
ε (0) = Lu = −(λ+ µ)∇(divu)− µ∆u− ρ∞∇f∞(0)u

But we showed in Proposition 4.2, that L an isomorphism from Xp to Yp. Since the coefficients
of F∞

ε have all the properties required in chapter 2, we deduce from Theorem 2.3 that F∞
ε is

Fredholm of index zero. Because F∞
ε is Fredholm, it follows from Proposition 2.3, that u has

exponential decay.
Consider now the term W ε(I +∇u). Let ξ vary in a ball B centered at 0 in M . From the

mean value theorem we have

|W ε(I + ξ)| = |W ε(I + ξ)−W ε(I)| ≤ max
ξ∈B

‖DW ε(I + ξ)‖‖ξ‖

for all ξ ∈ B. In particular, since ∇u(x) belong to the ball B = B(0, ‖u‖1,∞), for all x ∈ IR3,
we have

|W ε(I +∇u(x))| ≤ max
ξ∈B

‖DW ε(I + ξ)‖‖∇u(x)‖.
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Since ∇u decays exponentially we get

|W ε(I +∇u(x))| ≤ const.× e−sθ(x), (4.33)

for all x ∈ IR. In particular the function x 7→W ε(I +∇u(x)) belongs to L1(IR3).

Remark. The number s and the constant appearing in the last inequality depend on u, but
note that for the purpose of this proposition, we do not need any kind of uniform decay as in
Theorem 2.14 or Proposition 2.2.

For the same reasons, i.e. the mean value theorem, the exponential decay of ∇u, and the
condition G(0) = 0, the function G(u) has exponential decay, and so belongs also to L1(IR3).

For the function g(u) · u, note that since |u(x)| ≤ ‖u‖1,∞ for all x ∈ IR3, it follows from
the continuity of g, that x 7→ g(u(x)) belongs to L∞(IR3, IR3). Since u has exponential decay,
g(u) · u has also an exponential decay, and therefore belongs to L1. Similarly, the function〈
T̂ ε(I +∇u),∇u

〉
has exponential decay.

(ii) The idea to prove these identities, is to multiply the equation F∞
ε (u) = 0 i.e.

div T̂ ε(I +∇u) + g(u) = 0,

successively by u and (x · ∇)u = (∇u)x, and integrate by parts.
As before, it follows from the mean value theorem, and the exponential decay of u and ∇u

that
(
T̂ ε(I +∇u)

)T
u ∈W 1,1(IR3, IR3). Therefore,∫

IR3
div

[(
T̂ ε(I +∇u)

)T
u

]
dx = 0,

by Lemma 4.5 (iii). But

div
[(
T̂ ε(I +∇u)

)T
u

]
=
[
div T̂ ε(I +∇u)

]
· u+

〈
T̂ ε(I +∇u),∇u

〉
,

with all terms in L1(IR3). Hence,

−
∫

IR3

[
div T̂ ε(I +∇u)

]
· u dx =

∫
IR3

〈
T̂ ε(I +∇u),∇u

〉
dx,

and equation (4.31) follows. Now,

g(u) · (∇u)x =
3∑

i,j=1

gi(u)(∂jui)xj

=
3∑
j=1

3∑
i=1

∂iG(u)(∂jui)xj

=
3∑
j=1

xj
∂

∂xj
G(u).

Note that for any polynomial map P : IR3 → IR, the function P (x)e−sθ(x), decays exponentially
at infinity. Consequently, all the terms above are in L1, and the function xjG(u) belongs to
W 1,1(IR3). Therefore,

0 =
∫

IR3
∂j [xjG(u)] dx =

∫
IR3
G(u) dx+

∫
IR3

xj
∂

∂xj
G(u) dx,
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and so
3∑
j=1

∫
IR3

xj
∂

∂xj
G(u) dx = −3

∫
IR3
G(u) dx.

Similarly,

−
∫

IR3
div T̂ ε(I +∇u) · (∇u)xdx = −

3∑
i,j,k=1

∫
IR3

∂

∂xj
T̂ εij(I +∇u)xk∂kui dx

=
3∑

i,j,k=1

∫
IR3

T̂ εij(I +∇u)∂j(xk∂kui) dx

=
3∑

i,j,k=1

∫
IR3

T̂ εij(I +∇u)(δkj∂kui + xk∂jkui) dx

=
∫

IR3

3∑
i,j=1

T̂ εij(I +∇u)∂jui dx+
3∑

k=1

∫
IR3

xk∂kW
ε(I +∇u) dx

=
∫

IR3
〈T̂ ε(I +∇u),∇u〉dx− 3

∫
IR3

W ε(I +∇u) dx.

Therefore,

−3
∫

IR3
G(u) dx =

∫
IR3
〈T̂ ε(I +∇u),∇u〉dx− 3

∫
IR3

W ε(I +∇u) dx,

and equation (4.32) follows. �

Theorem 4.1 Retain assumptions (T), (4.20)−(4.25), (G), and (4.27). Then Fε : Xp → Yp is
Fredholm of index zero, and proper on the closed bounded of Xp.

Proof. The only point that remains to prove is the nonexistence of nontrivial solutions of
F∞
ε (u) = 0 (Theorem 2.8). So let u ∈ Xp satisfy F∞

ε (u) = 0. Then, from Proposition 4.3

3
∫

IR3
W ε(I +∇u) dx = 3

∫
IR3
G(u) dx+

∫
IR3

g(u) · u dx.

From assumption (4.27), we have g(ζ) · ζ ≤ −kρ∞|ζ|2. As a consequence,

G(ζ) =
∫ 1

0

d
dt
G(tζ) dt =

∫ 1

0
∇G(tζ) · ζ dt

=
∫ 1

0
g(tζ) · ζ dt

≤
∫ 1

0
−kρ∞t|ζ|2 dt

= −1
2
kρ∞|ζ|2.

Therefore,

3
∫

IR3
W ε(I +∇u) dx ≤ −3

2
kρ∞

∫
IR3
|u|2 dx− kρ∞

∫
IR3
|u|2 dx

= −5
2
kρ∞

∫
IR3
|u|2 dx ≤ 0 (4.34)
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so
∫

IR3
W ε(I +∇u) dx ≤ 0.

We show that the reverse inequality also holds. It follows from the quasiconvexity of W ε

that for any v ∈ C∞
0 (IR3, IR3) such that supp v ⊂ BR∫

IR3
W ε(I +∇v) dx =

∫
BR

W ε(I +∇v) dx ≥ (measBR)W ε(I) = 0.

Let ψ : IR → IR be C∞ function satisfying ψ(t) = 1 for t < 0, and ψ(t) = 0 for t > 1. Define
for r > 0, φr : IR3 → IR by

φr(x) =

{
1 if |x| < r

ψ(|x| − r) if |x| ≥ r.

Then, indeed, φr is a C∞ function with compact support, and furthermore, its derivatives are
bounded by a constant independent of r. As for (4.33), there is a constant C > 0 independent
of r, such that ∣∣W ε

(
I +∇(φru(x))

)∣∣ ≤ Ce−sθ(x),

for all x ∈ IR3 and r > 0. Consequently,
∫
|x|>r

|W ε(I +∇(φru))|dx tends to zero as r → ∞.

Given δ > 0, choose r large enough such that both∫
|x|>r

|W ε(I +∇u)| dx and
∫
|x|>r

|W ε(I +∇(φru))| dx

are less than δ. Then∫
IR3

W ε(I +∇u) dx =
∫

IR3
W ε(I +∇u)−W ε(I +∇(φru)) dx+

∫
IR3

W ε(I +∇(φru)) dx

=
∫

|x|>r

W ε(I +∇u) dx−
∫

|x|>r

W ε(I +∇(φru)) dx+
∫

IR3

W ε(I +∇(φru)) dx

≥ −2δ.

But this is true for any δ > 0, and therefore,
∫

IR3
W ε(I +∇u) dx ≥ 0. Hence,

∫
IR3

W ε(I +∇u) dx = 0.

But then, it follows from (4.34) that

−5
2
kρ∞

∫
IR3
|u|2 dx = 0,

which implies u = 0. �

4.3 Global continuation

Theorem 4.2 (Global continuation) Let X, Y be two Banach spaces, and J be an open
interval of the real line containing 0. Consider a continuous operator F : J × X → Y having
the following properties.

• F is differentiable with respect to the second variable, DuF (t, u) ∈ Φ0(X,Y ), for all
(t, u) ∈ J ×X, and the map (t, u) 7→ DuF (t, u) is continuous.
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• For any compact subset A of J and any closed bounded subset B ⊂ X, the restriction
F |A×B is proper.

• DuF (0, 0) ∈ GL(X,Y ) and F (0, 0) = 0.

Let O be an open subset of X containing 0, and C be the maximal connected subset of (J ×O)∩
F−1(0) which contains (0, 0). Let PIR and PX denote respectively the projections of IR×X on
IR and X. Then, at least one of the following holds.

(i) C is unbounded.

(ii) There exists ū ∈ X, ū 6= 0 such that (0, ū) ∈ C.

(iii) The closure in IR of PIR(C) intersects ∂J .

(iv) PX(C) intersects ∂O, where C is the closure of C in IR×X.

Remark 4.10 If alternative (iii) holds, then at a point t ∈ ∂J , the map F (t, .) may no longer
be defined, or it may loose its properness or Fredholm properties. The meaning of alternative
(iv) will be clear in Theorem 4.3 (see Remark 4.13).

Remark 4.11 If ∂(J ×O) = ∅ (this happens if and only if J = IR and O = X), then neither
of alternative (iii) or (iv) can hold. Therefore, we prove the theorem under the assumption that
∂(J ×O) 6= ∅. Note that ∂(J ×O) =

(
∂J ×O

)
∪
(
J × ∂O

)
.

Proof. Suppose that none of the alternatives hold. Then,

1. Claim. C is compact. Indeed, PIR(C) is contained in J but does not meet ∂J since (iii)
does not hold. Hence it is contained in J . Similarly, PX(C) ⊂ O, because (iv) does not hold.
Now observe that C ⊂ PIR(C) × PX(C) ⊂ PIR(C) × PX(C) ⊂ J × O. But C, being a connected
component of J ×O, is closed in J ×O. Therefore, C = C, that is, C is closed in IR×X.

Because alternative (i) does not hold, C is bounded, and accordingly, PIR(C) is compact. It
follows then from the properness assumption on F , that F−1(0)∩

(
PIR(C)× PIR(C)

)
is compact.

But this set contains the closed set C, which is, therefore, compact. Therefore, in fact, PIR(C) is
a compact interval [a, b] ⊂ J , and we can choose two points a′, b′ ∈ J , such that [a, b] ⊂ (a′, b′).

2. Since C ∩ ∂(J ×O) = ∅, we have

d1 := dist (C, ∂(J ×O))
= inf

(t,u)∈C
dist ((t, u), ∂(J ×O)) > 0,

because the infinimum is attained at a point (t0, u0) in the compact set C, and (t0, u0) /∈ ∂(J×O).

3. The implicit function theorem ensures that there exist δ > 0, a C1−map ũ : (−δ, δ) → X
and a neighborhood Vδ of (0,0) such that

(t, u) ∈ Vδ and F (t, u) = 0 ⇔ t ∈ (−δ, δ) and u = ũ(t).

Let rδ > 0 be such that B((0, 0), rδ) ⊂ Vδ and let C1 = B((0, 0), rδ2 ) ∩ C, so that C1 is open in C
and hence C\C1 is compact.

Therefore, since (ii) does not hold,

d2 := dist (C\C1, {0} ×X) > 0,
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because C\C1 is compact and {0} ×X is closed.
Define

Σ = {(t, u) ∈ IR×X | dist ((t, u), C) < α} ∩ (a′, b′)×O

=
⋃

(t0,u0)∈C

B ((t0, u0), α) ∩ (a′, b′)×O,

where α =
1
2

min
(
d1, d2,

rδ
2

)
.2

Then, indeed, Σ ⊂ J ×O, and Σ is open and bounded.

Claim. F (0, u) = 0 and (0, u) ∈ Σ ⇒ u = 0.
If not, there exist u 6= 0 such that F (0, u) = 0 and (0, u) ∈ Σ. Since the unique solution of

F (0, u) = 0 in Vδ is u = 0, then (0, u) cannot lie in Vδ an so neither in B((0, 0), rδ). Therefore
‖u‖ = ‖(0, u)‖ ≥ rδ. Then, (from the triangle inequality)

dist
(
(0, u), Brδ/2

)
≥ rδ

2
,

and since C1 ⊂ B rδ
2

, we have

dist ((0, u), C1) ≥
rδ
2
.

(0, u) ∈ {0} ×X ⇒ dist ((0, u), C\C1) ≥ d2. Therefore,

dist ((0, u), C) = min {dist ((0, u), C1) ,dist ((0, u), C\C1)}

≥ min
{rδ

2
, d2

}
≥ 2α.

But (0, u) ∈ Σ ⊂ {(t, u) ∈ IR×X |dist ((t, u), C) ≤ α}, so dist ((0, u), C) ≤ α, contradiction.

4. Let
K = Σ ∩ F−1(0),

which is compact by the properness of F . Since C ⊂ Σ, then C ∩ ∂Σ = ∅.
If there were a closed connected subset C̃ of K intersecting both C and ∂Σ, then, C

⋃
C̃ would

be connected (as the union of two connected sets with non empty intersection), contradicting
the maximality of C.

Therefore, the celebrated separation theorem3 implies that there exist two disjoint closed
subset A and B of K such that

K = A ∪B,
C ⊂ A,

∂Σ ∩ F−1(0) ⊂ B.

Let

Υ =
{

(t, u) ∈ Σ | dist ((t, u), A) <
1
2
dist (A,B)

}
,

which is open and bounded and contains A. So ∂Υ ∩ A = ∅ and indeed ∂Υ ∩ B = ∅, hence
∂Υ ∩K = ∅, i.e. ∂Υ ∩ Σ ∩ F−1(0) = ∅. Since ∂Υ ⊂ Σ, we get

∂Υ ∩ F−1(0) = ∅.
2By taking α smaller, we can ensure that

⋃
(t0,u0)∈C B ((t0, u0), α) ⊂ (a′, b′)×O. But this is not essential.

3See Brown [7]- chapter 14, for a topological proof (which uses no metric) of this theorem.
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5. Define, for t ∈ J ,
Υt = {u ∈ O | (t, u) ∈ Υ} .

Claim. 0 /∈ F (t, ∂Υt), for all t ∈ J .
One can show that u ∈ ∂Υt ⇒ (t, u) ∈ ∂Υ.
If 0 ∈ F (t, ∂Υt) for some t ∈ J , then there exists u ∈ ∂Υt such that F (t, u) = 0, so

(t, u) ∈ ∂Υ and (t, u) ∈ F−1(0). But F−1(0)∩ ∂Υ = ∅, a contradiction which proves the claim.

6. It follows from the claim in point 3., that u = 0 is the unique solution of F (0, u) = 0
in Υ0. Therefore, by the definition of the base point degree at regular values

deg0(F (0, .),Υ0, 0) = 1.

By the generalized homotopy invariance of the absolute degree (since 0 /∈ F (t, ∂Υt) for all
t ∈ J), we should have

|deg |(F (t, .),Υt, 0) = 1, for all t ∈ J.

However, since Υ ⊂ Σ ⊂ (a′, b′)×O, we have Υt = ∅, for t ∈ (b′, supJ), and so

|deg |(F (t, .),Υt, 0) = 0,

contradiction. �

Remark 4.12 Consider the homotopy (3.1) defined in chapter 3. It satisfies all the assumptions
of the previous theorem with J = IR and O = Dp(Ω). Therefore, alternatives (iii) and (iv) can-
not hold. Alternative (ii) cannot hold either because the only solution of H(0, u) = DF (0)u = 0
is u = 0. Then, we deduce that there exists an unbounded branch of solutions (t, u) of
F (tu) = t2h emanating from (0, 0).

Consider now the operator Fε in (4.19) under assumption (T), with the body forces

f(t, x, ζ) = −k(ζ − x) + tf0(x),

where t is a real parameter, k > 0, and f0 : IR3 → IR3 is a continuous function with compact
support. Then, we can define Fε as an operator acting between IR×Xp and Yp, by

Fε(t, u)(x) = −div T̂ ε(I +∇u(x)) + kρ(x)u(x)− tρ(x)f0(x) (4.35)

Theorem 4.3 Let Fε be given by (4.35) and

O =
{
u ∈ Xp | det(I +∇u(x)) > 0 for all x ∈ IR3

}
.

Let C be the maximal connected subset of (IR×O)∩F−1
ε (0) which contains (0, 0). Then, either

(i) C is unbounded, or

(ii) PXp(C) intersects ∂O.

Remark 4.13 In alternative (ii), the projection of C on Xp meets the boundary of O at a point
u which consequently satisfies det(I + ∇u(x)) = 0 for some x ∈ IR3. Then, the deformation
ϕ(x) = x+ u(x) is not orientation preserving. In this case, the global branch attains the limits
of elasticity.
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Proof. Note first, that, for each t ∈ IR the partial map Fε(t, .) satisfies all the assumptions
of the previous section, and accordingly it is proper on the closed bounded subsets of Xp,
and Fredholm of index zero. Furthermore, it is clear that (Fε(., u))u∈Xp

is equicontinuous.
Thus, by Lemma 1.1, Fε is proper on the closed bounded subsets of IR × Xp. Since indeed
Fε ∈ C1(IR × Xp, Yp), and DuFε(t, 0) is an isomorphism (independent of t), we see that Fε
satisfies the required conditions of Theorem 4.2. Accordingly, we have 4 alternatives, but
alternative (iii) of that theorem cannot happen since J = IR. Alternative (ii) cannot occur
either because Fε(0, u) = F∞

ε (0, u), and we showed in Theorem 4.1 that the only solution of
F∞
ε (0, u) = 0 is u = 0. �

Now we go back to the original problem (without restriction and extension). It turns out
that if we define the operator F (t, u), by

F (t, u)(x) = −div T̂ (I +∇u(x)) + kρ(x)u(x)− tρ(x)f0(x),

then F maps IR×O into Lp(IR3, IR3).
Indeed, for every u ∈ O, there exists ε ∈ (0, 1) such that u ∈ Oε (see Lemma 4.4 (i)). But

then, it follows from the definition of Fε, that F (t, u) = Fε(t, u) ∈ Yp.
We formulate a global continuation result for this original operator.

Theorem 4.4 Let C be the connected component of F−1(0) ∩ (IR×O) which contains (0, 0).
Then either C is unbounded, or the projection onto Xp of C meets ∂Oε for every ε ∈ (0, 1).

The second alternative is equivalent to4 C * IR×Oε ∀ ε ∈ (0, 1) indicating that the branch
gets closer and closer to a break down of orientation preserving.

Proof. Clearly it is equivalent to show that there is a connected set satisfying one of the two
alternatives.

Now Theorem 4.3 can be restated as follows. Let Cε be the connected component of F−1
ε (0)∩

(IR × Oε) which contains (0, 0), then for every ε ∈ (0, 1), either Cε is unbounded or PXp(Cε) ∩
∂Oε 6= ∅.

Let C = ∪0<ε<1Cε. Then C is connected as the union of connected sets having a common
point. Note that C ⊂ IR×∪0<ε<1Oε = IR×O, and that C ⊂ F−1(0) because if (t, u) ∈ C, then
there is ε ∈ (0, 1) s.t. (t, u) ∈ Cε ⊂ IR×Oε. But then F (t, u) = Fε(t, u) = 0.

Now we have two cases. Either (i) there is ε ∈ (0, 1) s.t. Cε is unbounded, and then C is
unbounded. Or (ii) for every ε ∈ (0, 1), Cε is bounded, and then by Theorem 4.3 PXp(Cε)∩∂Oε 6=
∅. But since PXp(Cε) ⊂ PXp(C), we get PXp(C) ∩ ∂Oε 6= ∅ for every ε ∈ (0, 1). �

Second proof. The key relation between the operator F : IR×O → Yp and the family of
operators Fε : IR×Xp → Yp is that

F (t, u) = Fε(t, u) whenever u ∈ Oε,

and so F coincides with Fε on a open subset of Xp and this has the following implications.

(a) F ∈ C1(IR×O, Yp).

(b) For every u ∈ O, there is ε ∈ (0, 1) such that u ∈ Oε, and so DuF (t, u) = DFε(t, u) is
Fredholm of index zero.

(c) For every ε ∈ (0, 1) (and every t ∈ IR), the restriction of F (t, .) to any closed bounded
subset A ⊂ Oε is proper.

4C * IR×Oε means that C intersects the complement of IR×Oε. Since the connected set C intersects IR×Oε

at (0,0), it meets the boundary of IR×Oε.
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We do not know if the set O is connected or simply connected, but in the proof of the
global continuation theorem, all we used is the absolute degree, and this does not requires any
condition of orientability. Accordingly, the theorem applies to the operator F and so we recover
the alternatives. �

Generalization. We can treat more general body forces f that depend on a real parameter
t which lies in an interval J . But the list of technical assumptions increases.

Consider a continuous map f : J × IR3 × IR3 → IR3 with the following properties. For
each t ∈ J , f(t, .) : IR3 × IR3 → IR3 is an equicontinuous C1

ζ−bundle map, and ∂t∇ζf is an
equicontinuous C0−bundle maps. Furthermore,

f(0, x, x) = 0, for all x ∈ IR3.

For each t ∈ J , the function x 7→ ∇ζf(t, x, x) belongs to L∞(IR3,M), and

the function x 7→ f(t, x, x) belongs to Lp(IR3, IR3). (4.36)

For each t ∈ J , the function x 7→ ∇ζ∂tf(t, x, x) belongs to L∞(IR3,M). (4.37)

For every t ∈ J,
∫

IR3
|f(t+ h, x, x)− f(t, x, x)|p dx→ 0 as h→ 0. (4.38)

For every t ∈ J , there exists a function f∞t ∈ C1(IR3, IR3) with f∞t (0) = 0 for all t ∈ J
and such that lim

|x|→∞
‖∇ζf(t, x, x+ ζ)−∇ζf

∞
t (ζ)‖ = 0, (4.39)

uniformly for ζ in compact subsets of IR3.

For each t ∈ J , there is kt > 0 such that (∇ζf(t, x, x)η) · η ≤ −kt|η|2, ∀x, η ∈ IR3. (4.40)

Let

gt(ζ) = ρ∞f∞t (ζ). (4.41)

We assume that for each t ∈ J , there exists a function Gt ∈ C1(IR3) such that ∇Gt(ζ) = gt(ζ)
for all ζ ∈ IR3. And the last hypothesis is

f∞t (ζ) · ζ ≤ −kt|ζ|2. (4.42)

Under the above conditions, we consider the elasticity operator which depends now on a
parameter t ∈ J ,

Fε(t, u)(x) = −div T̂ ε(I +∇u(x))− ρ(x)f(t, x, x+ u(x)), (4.43)

and satisfies Fε(0, 0) = 0.

Then our assumptions ensure that for each t ∈ J , the map Fε(t, .) is proper on the closed
bounded subset of Xp, and Fredholm of index zero, and DuF (t, 0) is an isomorphism for all
t ∈ J . Also, one check that (t, u) 7→ DuF (t, u) is continuous. To prove that Fε|A×B is proper
whenever A is compact in J and B ⊂ Xp is closed and bounded, it is enough to show by Lemma
1.1 that the collection (Fε(., u))u∈B is equicontinuous. This will follow from

Lemma 4.6 Let f(t, u)(x) = f(t, x, x + u(x)), be the Nemytskii operator associated with f .
Then, for every bounded subset B ⊂ Xp, the collection (f(., u))u∈B is equicontinuous.
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Proof.

f(t+ h, u)(x)− f(t, u)(x) =
∫ 1

0

d
dτ
f(t+ τh, x, x+ u(x)) dτ

= h

∫ 1

0
∂tf(t+ τh, x, x+ u(x)) dτ

= h

∫ 1

0

(∫ 1

0

d
ds
∂tf (t+ τh, x, x+ su(x)) ds+ ∂tf(t+ τh, x, x)

)
dτ

= h

(∫ 1

0

∫ 1

0
∇ζ∂tf (t+ τh, x, x+ su(x)) dsdτ

)
u(x)

+
∫ 1

0

d
dτ
f(t+ τh, x, x) dτ. (4.44)

The assumptions made on f ensure (as in Lemma 2.1) that there is M > 0 such that

‖∇ζ∂tf (t+ τh, x, x+ su(x)) ‖ ≤M

for all s, τ ∈ [0, 1], x ∈ IR3, and u ∈ B. The last term in (4.44) is f(t+ h, x, x)− f(t, x, x), and
it norm in Lp tends to zero as h→ 0 by assumption (4.38). Therefore, given any δ > 0, we have

‖f(t+ h, u)− f(t, u)‖0,p ≤ |h|M‖u‖0,p + δ,

for |h| small enough. �
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Appendix A

Some results about sequences and
function spaces

In what follows X, Y and Z are real Banach spaces.

Note A1. Let X be reflexive, u ∈ X and (un) be a bounded sequence from X. Suppose that
every weakly convergent subsequence of (un) converges weakly to u (i.e. the limit is independent
of the subsequence, or (un) has a unique weak cluster point). Then un ⇀ u.

Proof. If not, there exist f ∈ X ′, ε0 > 0, and a subsequence (uϕ(n)) such that

|〈f, uϕ(n)〉 − 〈f, u〉| ≥ ε0 for all n ∈ IN.

But (uϕ(n)) is bounded, therefore it contains a subsequence (uϕ(ψ(n))) converging weakly to
some l. By assumption, l = u, so that uϕ(ψ(n)) ⇀ u. But this contradicts the above inequality.

�

Note A2. Let X be reflexive, X ↪→ Y , u ∈ X and (un) be a bounded sequence in X such
that un → u in Y . Then un ⇀ u in X.

Proof. If not, there exist f ∈ X ′, ε0 > 0 and a subsequence (uϕ(n)) such that∣∣〈f, uϕ(n)〉 − 〈f, u〉
∣∣ ≥ ε0 for all n ∈ IN.

But (uϕ(n)) is bounded so it contains a subsequence (uϕ(ψ(n))) converging weakly to some v in
X (and hence in Y ). By the uniqueness of the weak limit in Y , we have v = u. Therefore
uϕ(ψ(n)) ⇀ u in X. But this contradicts the definition of (uϕ(n)). �

Application. X = W 2,p(Ω, IRm), Y = C1
d(Ω, IR

m), with N < p < ∞, and ∂Ω bounded and
Lipschitz.

Note A3. Let L : X → Z have the following property: if (un) is bounded in X, un → 0 in Y
and L(un) converges in Z then (un) contains a subsequence converging to zero in X. Then for
(un) as above, we have in fact un → 0 in X.

Proof. If not, there is a subsequence whose norm is bounded away from zero. But this sub-
sequence has all the properties of (un), so by hypotheses, it contains a subsequence converging
to zero in X, which contradicts its definition. �

Note A4. Let E be a subspace of X. Consider a sequence (un) and an element u from E.
Then un ⇀ u in E ⇔ un ⇀ u in X.
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Proof. Since X ′ ⊂ E′, if un ⇀ u in E, then un ⇀ u in X. Conversely let un ⇀ u in
X, and f ∈ E′. By Hahn-Banach theorem, we can extend f to an element f̃ of X ′. Then
〈f, un − u〉 = 〈f̃ , un − u〉 → 0. Thus un ⇀ u in E. �

Note B1. Let A ⊂ IRN be a measurable set, and 1 ≤ q ≤ ∞. Let un → u in L∞(A) and
vn → v in Lq(A). Then unvn → uv in Lq(A).

Proof. This is because ‖unvn − uv‖q ≤ ‖un − u‖∞‖vn‖q + ‖u‖∞‖vn − v‖q. �

Note B2. Let un → u in L∞(A) and vn ⇀ v in Lq(A), for 1 ≤ q < ∞. Then unvn ⇀ uv in
Lq(A).

Proof. Let f ∈ Lq′(A), where
1
q

+
1
q′

= 1. Then

∫
A

f(unvn − uv) =
∫
A

f(unvn − uvn) +
∫
A

fu(vn − v).

The result follows from the facts that fu ∈ Lq′(A) and∣∣∣∣∣
∫
A

f(unvn − uvn)

∣∣∣∣∣ ≤ ‖f‖q′‖vn‖q‖un − u‖∞. �

Note B3. Let f ∈ L1(A). Then the functional µ defined on the measurable subsets of A by

µ(G) =
∫
G
|f |, is a measure on A, and as any measure it satisfies lim

n→∞
µ(Gn) = µ(

⋂
Gn) for

every decreasing family of subsets (Gn) from A. This is why

lim
n→∞

∫
|x|>n

|f | =
∫

⋂
B̃n

|f | = 0,

since
⋂
B̃n = ∅.

C. Let G ⊂ IRN be an open set, k ∈ IN, 1 ≤ q < ∞, and (un) ⊂ W k,q(G) such that un ⇀ u.
Then for every multi-index γ with |γ| ≤ k, Dγ : W k,q → W k−|γ|,q is linear and bounded and
hence weakly continuous, therefore Dγun ⇀ Dγu in W k−|γ|,q(G) ⊂ Lq(G).

The converse results from a theorem on the representation of elements of
(
W k,q

)′
, see for

instance Adams [1] Theorem 3.8, which states that if f ∈ (W k,q(G))
′

then there is a family
(vγ) ⊂ Lq

′
(G) (|γ| ≤ k) such that

〈f, u〉 =
∑
|γ|≤k

∫
G

(Dγu) vγ .

Note D. Let Ω ⊂ IRN be an open set, with ∂Ω bounded and Lipschitz and N < p < ∞.
Then the functions of W 1,p(Ω) are bounded and Hölder continuous on Ω (Adams [1], Theorem
5.4). Now let u ∈W 1,p(Ω). Since C∞

0 (IRN ) is dense in W 1,p(Ω) ([1], Theorem 3.18), there is a
sequence (un) in C∞

0 (IRN ) converging to u inW 1,p(Ω) and hence in L∞(Ω). Accordingly, for any
ε > 0, there is n0 ∈ IN such that ‖u−un0‖0,∞,Ω ≤ ε, and therefore ∀x ∈ Ω, |u(x)| ≤ |un0(x)|+ε.
But for |x| large enough un0(x) = 0 so |u(x)| ≤ ε which means that lim

x∈Ω,|x|→∞
|u(x)| = 0.
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From the preceding we deduce that W 2,p(Ω) ↪→ C1
d(Ω). The imbeddings are compact if in

addition Ω is bounded.

Note E1. Let N < p < ∞, and u ∈ Lp(Ω). Define the operator T by Tv := uv. Then
T : W 1,p(Ω) → Lp(Ω) is compact.

Proof. Tv ∈ Lp(Ω) because v ∈ W 1,p(Ω) ↪→ L∞(Ω). Define φn for n ∈ IN by φn(x) =
1 if |x| ≤ n and zero elsewhere. Let Tnv = φnuv, and Ωn = {x ∈ Ω : |x| < n}. Since
W 1,p(Ωn) ↪→

comp
L∞(Ωn), Tn : W 1,p(Ω) → Lp(Ω) is compact. Now

‖Tv − Tnv‖pp =
∫

|x|>n

|u|p|v|p ≤ ‖v‖p∞
∫

|x|>n

|u|p ≤ const.× ‖v‖p1,p
∫

|x|>n

|u|p.

This means that T is the uniform limit of a sequence of compact operators, and so it is itself
compact. �

Note E2. Let A be an open unbounded subset of IRN , and ϕ ∈ L∞(A) tending to zero at
infinity. Define for u ∈W 1,q(A), Mu := ϕu. Then M : W 1,q(A) → Lq(A) is compact.

Proof. Indeed using the compactness of Sobolev imbeddings on bounded domains, one can
see that M is a uniform limit of compact operators (as in Note E1). Equivalently, one can also
argue like this. Let (un) be a sequence of W 1,q(A) converging weakly to zero, K > 0 be a bound

of
(∫

A
|un|q

)
and ε > 0 be given. Then there is r > 0 such that |ϕ(x)|q ≤ ε

2K
for almost every

x ∈ A ∩ B̃r. By the compactness of the imbedding W 1,q(A) ↪→ Lq(A ∩Br), we have un → 0 in

Lq(A ∩Br), and so for n large enough we have ‖ϕ‖q∞
∫

|x|<r

|un|q ≤
ε

2
. Therefore

∫
A

|ϕun|q =
∫

|x|<r

|ϕun|q +
∫

|x|>r

|ϕun|q ≤ ε

for n large enough. This means that Mun → 0 in Lq(A) and so M is completely continuous
and hence compact because W 1,q is reflexive. �
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atiques élémentaires) in 1994. Then, I attended the Lebanese University, Faculty of Sciences,
where I obtained a Master in Mathematics in 1998.

In the same year, I attended a joint program between several French-speaking universities
(including the EPFL), at the end of which I obtained a ’Diplôme d’études approfondies’ in
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