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Abstract

This thesis presents investigations on the possibilities of range-limited radio communication to self-
organise a swarm of radio-connected robots. Firstly a decentralised algorithm relying only on local
exchange of information to maintain the coherence of the communication network is presented. Then
the potential of this algorithm to display complex behaviours is thoroughly studied, leading to the
development of several variants displaying interesting global behaviours such as area coverage and
connectivity control, taxis behaviour, group selection and segregation, and phase transition in axis
formation. The proposed algorithms are tested in simulation and partially confirmed with real
robot experiments. All global behaviours are emergent as the study constrains itself to using only a
restricted range omni directional radio, a beacon sensor and obstacles avoiding sensors. Moreover,
the fact that the algorithm and its variants rely only on local information makes the behaviours
highly scalable with an increase in the number of robots. The author believes that the proposed

approach has great potential for further developments.
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Chapter 1

Introduction

“Wir sind die Robotern”

Kraftwerk.

The word robot comes from the Czech word for the verb “to work”, robota. Indeed the motivation
for the invention of robots has always been to construct machines in order to free mankind from
tedious work or to carry out tasks in environments forbidden to man; hence the production line
robotic arm or the deep sea diving robots. But it has been long realised that to carry out some of
those tasks, the robot should have some degree of autonomy, if it was ever to be able to function in
a normal dynamic environment. Indeed outside of its precise place on the production line a painting
robotic arm loses its purpose completely. Analogously a deep sea diving robot is rather lost if the
communication steering it happens to fail.

For these reasons, interest in the robotics community shifted from precise control algorithms and
geometry of possible moves to the transformation of perception into meaningful action. Classical
Artificial Intelligence tried to resolve this problem in constructing world models with their intrinsic
logical laws. In this framework, perception was firstly carefully analysed according to the world
model to deduce an action to execute. In a now famous experiment with the robot “shakey”, this
architecture failed completely to demonstrate an ability to cope with the dynamics of its own moves
[Dreyfus, 1992]. A response to such failure came in the seminal work of Brooks [Brooks, 1986],
introducing the concept of “behaviour-based robotics” that took inspiration from reflex behaviours,
in which the purpose is to directly translate a perception into an action. He showed that in combining

and coordinating several such simple reflexes (which he calls “behaviours”), an autonomous robot
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was able to display complex behaviour and could cope with the dynamics of the real world. The
resulting behaviour emerges from the interaction of the reflexes. This had resonances beyond the
field of robotics and launched a whole new area of research that is referred to as new AL

Analogous to the search for autonomy in a single robot is the study of autonomous coordination
in a group of robots. The same sort of problems arise in trying to make a multi-robot system
perform a useful action. If the framework chosen is of a centralised coordination, the whole system
is very dependent on the capacities of the coordinating unit, either in a time manner because of
transmission delays or due to CPU congestion because of the exponentially increasing amount of
data to process. The answer to such problems, in an analogy to the behaviour-based architecture,
is to carefully design the autonomous behaviour of each robot using resources locally available such
that the desired global behaviour emerges from the interaction of the behaviours of all robots. The
robots self-organise without the help of an external coordinator. In doing so we step into the field
of collective or swarm robotics. As the name itself suggests, a great deal of inspiration for this field
comes from biological examples such as ant or termite colonies. These are animals with limited
capacities that are collectively able to achieve amazing tasks.

Because of the current trend in miniaturisation, there has been in this field several studies on the
minimal set of sensing abilities and rules needed to collectively achieve a given task
[Melhuish et al., 1999a]. This is known as minimalist robotics. The research presented here fits
into this framework as an investigation of the potential of crudely communicating robots to display
self-organizing behaviour.

The beauty of an exchange of information lies in the fact that the informing party only lose the en-
ergy needed to make the other aware of its knowledge. Indeed, informing another does not imply one
has to forget one’s own knowledge. One may have to give away the potential position of power that
the exclusivity of this knowledge could have represented, and this relates to the angst of the master
being overthrown by its disciple, but the exchange of knowledge can also allow for the production of
new knowledge that may benefit the informing party - a classical dilemma. Ideally, scientific progress
relies on such open availability of new results within the community.

This thesis will investigate the potential of locally communicating robots to collectively achieve
tasks beyond their intrinsic individual limitations. By the very act of sharing only local connectivity

information, robots will self-organise, that is spontaneously coordinate themselves and reach a global



equilibrium. Specialist robots sharing their knowledge with others are not considered, as in the
master-disciple example, but instead homogeneous robots. Thus this work relates to the category of

decentralised phenomena.

1.0.1 decentralised phenomena

When confronted with certain phenomena the first explanation one can usually think of involves a
single cause; one rarely takes into account all the interactions at play. Although many things have
been considered in this way, as centuries of efficient science can testify, the focus of recent decades
of work on self-organising phenomena such as chemical reactions or stock market fluctuations has
revealed the inadequacy of this paradigm to understand large parts of reality.

Indeed such phenomena resist the cause and effect framework. In such examples a change of state
is not the result of one or several causes but instead the result of all interactions between elements of
the system. No interaction is more significant; each has an impact on the future state of the system.
This has opened an area of research on decentralised phenomena, also described as distributed in the

literature. Its aim is to understand the dynamics at work in such systems.

1.0.2 constructionism

Yet the centralised way of thinking is still deeply ingrained. So much so that one would rather
look for a cause than try to understand phenomena in a decentralised way. This is what Mitchell
Resnick calls the centralised mindset [Resnick, 1999]. To overcome this mindset Resnick proposes
constructionism as an alternative to the classical analytical methodology.

As an alternative to classical analysis through observation and prediction, constructionism pro-
poses to understand and analyse phenomena by recreating - reconstructing - them. The aim is to
synthesise [Braitenberg, 1984] the phenomenological process to capture its internal dynamic. Using
constructionism helps to circumvent the centralised mindset as a centralised solution to a distributed

problem is unlikely to reveal the same properties.



1.0.3 biological examples

Life presents beautiful examples of decentralised systems. The nervous system of animals with its
impressive efficiency seems to belong to this category. Another is the embryonic development of
multicellular individuals [Turing, 1952].

But the most impressive example, perhaps because it is possible to observe it directly, comes from the
insect world. Social insect species behave in a highly developed collaborative way. For example bees
and their direction-indicative waggle dance, ants with their foraging trails and the air-conditioning
structure of termite nests show task achieving abilities that seem completely impossible considering
only a single individual. Although the presence of a queen in the colony might at first glance make
one think of a centralised system, synthesising approaches have demonstrated that local interactions
among individuals can generate the complexity of behavior observed. A good introduction to this
area of research can be found in [Bonabeau et al., 1999].

Even simpler forms of life such as bacteria seem to present decentralised characteristics; although
their simplicity deceives us into thinking that they lack the ability to form a group. But biologi-
cal evidence shows that bacteria are able to differentiate and share different tasks within a colony
[Shapiro, 1988].

Technological advances in computational power have provided the constructionist approach with
its first success in explaining biological processes and has given rise to a whole new area of research
that is known as Artificial Life (AL). Its focus is to study ”Life as it is” in providing a framework
to test concepts of theoretical biology, as well as to investigate ”Life as it could be” in transposing
those concepts into different environments or ecosystems. An example is the tierra project from
Ray [Ray, 1992] that studies the evolution of short programs in the computer memory environment
competing for CPU processing time.

This interest has led to an attempt to characterise decentralised systems more formally.

1.0.4 principles and properties

Decentralised systems make wide use of the phenomenon of emergence. While its definition is still a

matter of contention,it is best illustrated by the following sentence:

the Whole is greater than the sum of its parts.



In other words the group considered as an entity is more effective than the contribution of its
components in a specified task.

In order to achieve this phenomenon the components must interact with each other and it is the
product of this interaction that allows for the shift in performance. In decentralised systems these
interactions are supposed to be local: components only interact with nearby neighbours or with
the local environment; the consequence being that any global behaviour has to emerge from this
localisation.

As a result such systems present several properties, one of which is the robustness of the pro-
cess. Indeed a decentralised process is not subject to complete breakdown if a component fails as
decentralisation implies that it does not rely only on this special component to perform adequately.

Another property is adaptability. Often centralised systems are designed to be efficient in very
precise environments. A slight change of the interactions can lead to the failure of the process.
Decentralisation will present more of a graceful degradation in efficiency as small changes in the
environment might affect the interactions without altering them completely.

Finally the localisation of interactions gives the opportunity for the process to be scalable; that
is to be open to an increase in the number of components without loss of efficiency. A centralised
system would instead reach a maximum when the central unit is not able to take more components

into consideration either due to finite processing or communication resources.

1.0.5 collective robotics

The properties and potential of decentralised systems have raised considerable interest in the robotic
community. As a result a whole new area of research has flourished in the last decade taking its
roots in the new paradigm of behaviour based robotics.

The approach introduced by Brooks [Brooks, 1991] challenges the classical paradigm in artificial
intelligence that tried to symbolically represent knowledge inside the agent’s memory, leading to the
intractability of the real world. In contrast it proposes a reactive approach arguing that the quest
for artificial intelligence should be considering sensorimotor problems before higher-level intelligence.
For a description of the problems and issues related see [Pfeifer and Scheier, 1999].

In their comprehensive review of the field of collective robotics, Cao et al. [Cao et al., 1995] note

the motivations to study groups of robots:



e Tasks might be impossible for a single robot to accomplish, given that a robot, however com-

plicated, will suffer from its limited range of action;
e Building and using simple robots might be more flexible and more fault-tolerant;

e The constructive and synthetic approach can possibly yield insights into fundamental problems

in social and life sciences.

As a result roboticists have sought inspiration in biological metaphors to address their problems
while biologists - mainly ethologists - have seen the opportunity to put their theories under experi-
mental pressure.

In a more recent review of the field, Parker [Parker, 1996] identifies eight primary research topics:
biological inspiration, communication architectures, localisation/mapping/exploration, cooperative
object transport or manipulation, motion coordination, reconfigurable robots and learning.

Advances in miniaturisation of actuators, processors and sensors have raised minimalism as another
interesting challenge in collective robotics. It aims to study the collective ability of large groups of

robots, which are as simple as possible, to achieve non-trivial tasks [Holland and Melhuish, 1996].

1.1 The Research

This research extends the work of Winfield [Winfield, 2000] related to sensor networks, as well as
the work of Melhuish [Melhuish et al., 1999b] that focused on secondary swarming. This study looks
at the employment of mobile robots to combine sensing, locomotion and morphological adaptivity.
Following this preliminary direction of research, it is proposed here to study a swarm of autonomous
mobile robots communicating with limited-range radios. Instead of a physically connected system,
this approach investigates virtually (wireless) connected robots. It is believed that this approach
brings greater versatility in morphology and robustness to failures and noise. Also the hardware
involved is readily available, allowing us to concentrate on the development of the algorithms. Of
course the drawback lies in the fact that much effort has to be made to keep the robots together, i.e.
to maintain the coherence of the swarm.

The work presented here takes inspiration from biological distributed systems such as insects or

bacterial colonies to construct a robot collective that will show the desirable properties outlined
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below.

1.1.1 general aims

This research is primarily concerned with developing algorithms that are:

scalable: An increase in the number of agents should not be critical to the efficiency of the algorithm.
Indeed the efficiency should instead show graceful (or no) degradation to such an increase. The
study therefore relies on distributed solutions that make use of strictly local information. The

robots are all identical and exchange information only about their neighbourhoods.

robust: The algorithm should provide the swarm with the ability to cope with the unreliability of the
real world and show graceful degradation when confronted with noise and component failures.
The last requirement is again a reason to seek distributed algorithms controlling homogeneous

robots.

1.1.2 minimalism

The aim is to investigate the adaptability of a swarm of robots, in its shape and function, to changes in
the environment. Following the framework of minimalist design from Melhuish [Melhuish et al., 1998],
the focus will be on very limited robots able to communicate locally but lacking global knowledge of
the environment. The only sensor information available, beside the basic obstacle avoiding infra-red
sensors, are the beacon sensor and the radio communication. It is assumed that the communication
hardware has a limited range, is omni-directional and the quality of the transmission is not optimal.

The aim is to keep the robots as simple as possible. It is believed that stability is reachable only
with a limited range radio device and proximity sensors for avoidance. The key idea is that the
limited range gives enough information on relative position. Such severely constrained conditions
oblige us to tie together the act of communication with other behaviours of the robot. It is referred

in [Stey, 2001a] as situated communication.

1.1.3 coherence

The study starts from the preliminary work of Winfield [Winfield, 2000] on gathering sensory data

across an ad-hoc wireless connected network of mobile robots with range-limited capabilities. It was
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focused on randomly moving robots in a bounded space. The aim here is to extend to an unbounded
space controlling the behaviour of the robots in order to form a dynamically connected stable swarm,
i.e. a coherent swarm. It is believed that the robots’ limited skills are sufficient to firstly let them
maintain the network of communication in a single connected component and secondly to allow
adaptive changes in morphology of the whole swarm as well as specialisation of single robots into
different tasks.

The minimalist assumptions on hardware make the requirement on stability even more critical
because of the fact that a disconnected robot will not be able to return to the swarm as there is
no information available about relative or absolute position. But as the availability of such accu-
rate information is still an area of research in robotics, it is worthwhile developing algorithms that

circumvent the need for it.

1.1.4 networks

Due to the underlying motivation on sensory network applications, it is also sought to minimise the
communication overhead that is necessary to achieve stability, thus keeping maximum bandwidth
available for data gathering. Such a consideration has had a major impact on the methodology
followed starting from the “minimal degree reactive variant” ( see a-algorithm section 4.2.2) and
then adding “state exchange” to reach a sufficiently stable solution (see S-algorithm section 4.12).
Since the aim is to build a network, much inspiration comes from simple graph theory concepts

such as connectivity degree, cluster coefficient, etc [Bollobds, 1998, Watts, 1999].

1.2 Hypotheses
The hypotheses of this study are as follows:

major hypothesis

That it is possible, given the constraint of limited-range wireless communication, to
achieve a stable connected swarm in an unbounded environment. We shall call this

property coherence. (Chapter 4)

minor hypotheses
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That it is possible for a coherent swarm to display taxis - collective motion towards a

beacon - without loss of coherence. (Chapter 5)

That it is possible, in a coherent swarm, to achieve decentralised control of global mor-
phology, for both homogeneous and heterogeneous swarms. (Chapter 4 and Chapter 6

respectively)

1.3 Structure of the Thesis

This thesis is organised as seven chapters, outlined in the following paragraphs:

chapter 2 Research Review

This chapter presents the key concepts and issues involved in this research as well as a survey of the
related research to date.

chapter 3 Methodology

Chapter 3 describes the methodology used throughout the thesis to support the investigation of the
hypotheses. More specifically it describes the simulation details, the real robot experimental details

and the measures defined to assess the performance of the algorithms developed.

chapter 4 Coherence

This chapter presents the different algorithms that were developed to achieve coherence and an
extensive inquiry into the behaviour of the most successful one: the S-algorithm. Investigated are
the influences of swarm size, S parameter, and noise on the global behaviour. Experiments are
conducted in simulation and with real robots. The potential of strictly homogeneous swarms is

investigated and the possibility to tune the spread and generate position estimates is presented.

chapter 5 Taxis

Chapter 5 develops and investigates, in simulation, a truly emergent taxis behaviour relying on the

dynamic differentiation between robots within the swarm.
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chapter 6 Shape

This chapter investigates, in simulation, the potential of static and dynamic differentiation to actually

control the global shape of the swarm.

chapter 7 Conclusion

The final chapter summarises the work accomplished and draws insights for new areas of research.

1.4 Contributions

This thesis presents the results of several experiments involving a wireless connected swarm. Working
initially in simulation and partially confirming the [-algorithm with real robot experiments, it is

claimed that the following advances have been made in the field of collective robotics:

coherence

1. It is shown that an algorithm relying only on first order information (number of neighbours) is
not able to guarantee coherence with the sole help of communication (see a-algorithm section

4.2.2).

2. An algorithm (the S-algorithm) is developed that is able using second order information (neigh-
bours’ list of neighbours) to guarantee the coherence of the swarm (see [-algorithm section
4.12). This algorithm has the capacity to tune through a single parameter the connectivity of
the swarm (see section 4.3). This connectivity measure represents the resilience of the dynam-
ical network to loss of connections and failure of the nodes. This means that the algorithm
is able to tune the robustness of the connected network (see section 3.5.1). Furthermore the
same parameter has the power to control the area covered by the swarm (see section 4.4). It
is also shown that the behaviours presented show good scalability with increasing swarm size

and good resilience to increasing noise (see section 4.3.2).

3. An analytical upper (and lower bound) of the area covered is computed which makes use of

locally available information to derive an interval within which the actual area stands (see
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sections 3.5.2 and 8.1). This represents initial work towards the analytical modeling of the

properties of the S-algorithm.

4. The p-algorithm is implemented on real robots and the capacity of the algorithm to achieve
coherence is confirmed, despite strong compromises on the requirements assumed by the simu-
lation experiments. Also a thorough investigation of the possible reasons for differences noted

in robot performance is conducted (see section 4.3.5).

5. It is shown by the localization-$-algorithm that the exchange of information required by the

B-algorithm is sufficient for a robot to approximate its global relative position (see section 4.5).

6. The p-algorithm is extended to the tazis-B-algorithm, to present a truly emergent coherent
swarming taxis-behaviour relying on the differentiation between robots. In this algorithm, a
single robot is not able to reach the goal, but instead the swarm movement results from the
interaction of many robots’ behaviour (see sections 5.2 and 5.4). The behaviour presented also

shows good degradation to noise and swarm size increase (5.4.2).
7. The taxis behaviour developed demonstrates emergent swarm obstacle avoidance (section 5.4).

8. The ability of heterogeneities in the S threshold within the swarm running the S-algorithm
(concentric-B-algorithm) and the ability of the radial-3-algorithm variant to generate spatial

segregation of several groups of robots is demonstrated in section 6.1.

9. Based on the taxis algorithm, it is shown with the help of the shape-f-algorithm, that the

swarm can react to an external cue and adapt its shape in relation to that cue (see section 6.2).

10. A framework to undergo artificial evolution to evolve robot controllers able to display global
behaviours is defined in section 6.3. It contributes to developing work towards a methodology

for the evolution of emergence in the context of multi-robot systems.

A diagram summarising the structure of the contribution made by this thesis can be found in figure
1.2. Tt shows the development path of the different algorithms, starting from the upper left corner,
following the arrows. Figure 1.1 presents, starting from the basic algorithm, the family tree of the

different algorithms developed.
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basic algorithm

SN

B algorithm « algorithm
localisation-/ algorithm / \ concentric-/3 algorithm
taxis-g algorithm radial-/ algorithm

/

axis-f algorithm

/

evolution-/ algorithm

Figure 1.1: family tree of the different algorithms

Some elements of the results presented in this thesis have already been published in the Proceedings
of the Edinburgh International Conference on the Simulation of Adaptive Behaviour in august 2002
[Nembrini et al., 2002]. Now that the claims to contributions have been made, let us begin with the

core of this dissertation.
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Chapter 2

Background and Literature

“It was the secrets of heaven and earth that I desired.”

“Unhappy man! Do you share my madness? Have you drunk also of the intozicating draught? hear
me - let me reveal my tale and you will dash the cup from your lips!”

Mary Shelley’s Frankenstein

Modern day robotics is in essence an interdisciplinary field. Investigations encompass questions
from what is consciousness to the choice of motor control function or from the quest for true in-
dividual autonomy to the technical and algorithmic challenges of collective reconfiguration. Hence
the involvement of many different disciplines such as psychology, computer science, neurobiology,
ethology and mechanical engineering.

As a result this study owes its existence and grounds itself in results from a wide range of previous
work and, conversely, its findings could be relevant to a wide range of research. In the following pages
these results are presented in different sections although it should be understood that their inherent
interdisciplinarity makes the boundaries of the sections somewhat permeable. Bearing this in mind,
this chapter tries to take the reader from questions concerning the individual to those involving

interactions between agents.
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2.1 Intelligence

The definition of intelligence has always been controversial. Commonsense notions involve the con-
cepts of problem solving, learning, memory, language, intuition, emotions or consciousness. But
also the ability to survive in a complex world and perceptual or motor abilities are notions that
are certainly relevant to a definition of intelligence. Because of the controversy, the term cognition
will be used instead of intelligence, and we speak of an intelligent behaviour. Following Pfeiffer and
Scheier, it is stated that an intelligent behaviour implies the ability of “complying with existing rules
and generating new behaviour” [Pfeifer and Scheier, 1999].

The study of intelligent behaviour can be distinguished between the analytic and the synthetic
approaches. The analytic approach involves the observation of an intelligent being in some carefully
designed experiment and the results are then analysed to yield the confirmation or infirmation of the
starting hypothesis. In the synthetic approach, the hypotheses stand as a design method that will
be confirmed by the generation of the desired behaviour. A now classical example is the quizzical
enquiry in synthetic psychology provided by Braitenberg in [Braitenberg, 1984]. In this approach
understanding comes by building. In this respect it is related to the notion of constructionism
discussed in chapter 3.

The synthetic approach is central to the field of embodied cognitive science. It aims to study cognition
within a body rather than the potential of a disembodied mind, as was previously attempted in the
field of Artificial Intelligence.

For many years the focus has been on trying to confer to a computer the same formal logic and
abstract representations that we experience as conscious humans. In a well known experiment with
the robot “shakey”, such an attempt showed limitations in controlling a robot [Dreyfus, 1992]|. Be-
cause of the complexity of the real world the representation of all relevant features made the robot
engaged in a simple navigation task far too slow to choose which action to perform, at least with
the computing power available at the time. This failure raised the question of whether the use of
abstract representation and formal logic was needed for a task such as obstacle avoidance. Examples
from nature reveal that most animals are very successful in doing such tasks, although they are not
yet believed to master formal logic.

Lessons from nature suggests that the ability to cope with a highly dynamical environment lies
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in the coupling between cognitive and motor skills. The purpose of embodied cognitive science is
to build artifacts to investigate this coupling and its relationship to the environment. Hence the
importance of the key concepts of autonomy, embodiment and situatedness that are treated in the

next section.

2.2 Autonomy, Embodiment and Situatedness

2.2.1 autonomy

The definition of intelligent behaviour as, inter alia, the capacity for generating new behaviour implies
autonomy, that is freedom from external control. As stressed in [Pfeifer and Scheier, 1999], an agent
is normally not fully autonomous or not, but instead achieves a certain degree of autonomy. Moreover
complete autonomy is impossible as an agent always depends on external factors that are beyond its
control.

This dependency can be divided into dependencies on the environment, such as organisms in need of
food, and dependencies on other agents, such as robots to the roboticist for instance. An autonomous
agent is always dependent upon the environment either for its energy supply or if only for the cues the
environment provides to allow for proper functioning. Work in behaviour-based robotics concentrates
largely on the latter, trying to define ways of choosing actions that are relevant to the situation
without the help of external control, either human-like or computer-like. The well-known example is
the subsumption architecture that divides behavioural modules into layers of priority [Brooks, 1986].
In this study the robots are required to be autonomous in this sense. As soon as the robot is running
it has to choose its own actions; these can indeed be altered by other robots, but only altered and
not controlled.

An increase of autonomy can be achieved through making the agent capable of learning, that is
able to modify its behaviour according to past events. This plasticity of behaviour has the po-
tential to decrease the dependency of the agent on the environment making it able to cope with
environmental dynamicity, as well as to decrease the dependency of the agent to others. Examples of
learning in the multi-robot case can be found in [Tangamchit et al., 2000], [Parker and Touzet, 2000],
[lijima et al., 2000], [Mataric, 1994]. As the present study is interested in the potential of a tight set

of constraints (i.e. minimal sensing), learning is indeed a possibility for widening these potentialities.
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However, in order to narrow down the scope of the research to be able to bring interesting insights,
the robots are here kept only reactive and are not allowed to learn. However we believe that the
structures we present have great potential for further research, including learning.

Another way to decrease the control the roboticist has on the design and therefore increase the
autonomy, is to allow the robots to evolve. In this case the designer defines one or several dimensions
that the agent’s behaviour can span, optimising by trial and error. As this possibility has been
chosen to explore the potential defined by the set of constraints, a section of the present chapter is

devoted to the discussion of artificial evolution (see section 2.6.1).

2.2.2 situatedness

As many other key notions in the field, the concept of situatedness lacks a common definition. Fol-
lowing [Pfeifer and Scheier, 1999], we say of an agent that it is situated “if it can acquire information
about the current situation through its sensors in interaction with the environment”, or alternatively

if it is “always already in some situation rather than observing from outside” [Harvey, 2000).

2.2.3 embodiment

Another key concept is embodiment. In [Harvey, 2000], an embodied agent is “a perceiving body,
rather than a disembodied intelligence that happens to have sensors”. Pfeifer and Scheier refer to “au-
tonomous agents as real physical agents; in other words they are embodied” [Pfeifer and Scheier, 1999].
The importance of this reality is emphasised in the example of passive dynamic walkers: walking
robots that don’t require any electronic control as their behaviour relies only on the laws of physics
[McGeer, 1990]. In Brooks’ approach, the idea is that intelligence can emerge from this embodi-
ment [Brooks, 1986]. However it is interesting to note that the modern robots being used in the
laboratories today (such as khepera or linuzbot in this case) have - from a hardware point of view
- the same characteristics as their classical Al predecessors (central CPU, I/O, sensors, actuators).
True embodiment might well stand beyond this limitation, in robots with distributed control where
actuators have local hardware control that can be synchronised at a higher level.

Interestingly Quick blurs the difference between embodiment and situatedness by stating his defi-

nition as the possibility of interaction between the agent and its environment [Quick et al., 1999a].
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More formally:

A system X is embodied in an environment E if perturbatory channels exist between the two. That
1s, X is embodied in E if for every time t at which both X and E exist, some subset of E’s possible
states have the capacity to perturb X ’s state, and some subset of X ’s possible states have the capacity
to perturb E’s state.

This definition emphasizes the fact that an agent cannot be considered without its environment.
Indeed its existence results from it being embodied within that environment. The definition allows
consideration of different degrees of embodiment through the observation of the “bandwidth” of the
perturbatory channels. A preliminary attempt is presented in [Nehaniv et al., 2003].

It has to be noted that embodiment does not imply situatedness: as an example take a totally
remotely controlled robot. It is embodied but has no means to alter its behaviour according to its

environment and is therefore non-situated.

2.3 Synthesis and Complex Systems

In his well known book Vehicles - Experiments in synthetic psychology, Braitenberg explored the po-
tential of very simple vehicles to exhibit “intelligent” behaviour [Braitenberg, 1984]. By his “thought
experiments”, he showed the potential power of explanation of an approach of building models, either
real or virtual, that are able to reproduce a certain behaviour; and it can sometimes lead to surprising
simplicity.

As stated in [Bonabeau and Theraulaz, 1994], any science having to deal with complex systems will
find the synthetic approach attractive. A compler system, in the most commonly shared definition,
is “a network of interacting objects, agents, elements or processes that exhibit a dynamic, aggregate
behaviour”. Moreover, a complex system has “many degrees of freedom that strongly interact with
each other”. It shows “organised complexity as opposed to organised simplicity and disorganised
complexity” [Bonabeau and Theraulaz, 1994]. Living systems undoubtedly fall into this definition.

As a result, complex systems are very difficult to deal with analytically. Therefore synthesis, a
bottom-up approach based on building artifacts either real or simulated, is a way to bypass this
intractability and explore the behavioural space of complex systems. Inherent to this methodology

are the following questions: if we use synthesis to reproduce the behaviour of a complex system, what
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are the criteria of reproduction 7 Also to what extent is a phenomenon explained by the description
of a model reproducing its phenomenological characteristics 7 As most of epistemology has until
today focused on analysis rather than synthesis, these remain open questions.

A synthetic methodology seeks to understand by building. In this sense, it is strongly related
to constructionism as will be developed in chapter 3. Constructionism is primarily concerned with
learning; learning by building. As doing science is essentially about learning (although to a certain

extent unsupervised), a synthetic methodology is a constructionist approach to doing science.

2.4 Emergence and Self-Organisation

2.4.1 emergence

Pervasive and central to the fields of embodied cognitive intelligence, artificial life and behaviour-
based robotics is the idea of emergence. Again there is no commonly accepted definition and in

[Pfeifer and Scheier, 1999] three are articulated:

e A surprising property of a system that is not fully understood [Ronald and Sipper, 2001].

e A property of a system not contained in any one of its parts. It requires many components

whose behaviour is based on local rules.

e Behaviour that arises from the agent-environment interaction. Whenever several, independent
processes interact to produce a particular behaviour and the environment plays a significant

role.

It is also illustrated by the sentence the whole is more than the sum of its parts. The interactions
in a system displaying emergent phenomena are non-linear which implies that the “overall behaviour
cannot be obtained by summing the behaviours of the isolated components. There are reqularities in
the system behaviour that are not revealed by direct inspection of the laws satisfied by the components”
[Holland, 1998]. It has to be noted that emergence as well as self-organisation can happen through
interactions between agents or through interactions of components within an agent. In this sense the

role of the observer is crucial.
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In [Bonabeau and Theraulaz, 1994] another definition is attempted: “a process through which
entirely new behaviours appear, whose properties cannot be derived from a given model of how the
system behaves, so that another model has to be built in order to deal with these new behaviours”.

Here the role of levels of observation is made clear, as will be further developed in the next section.

2.4.2 self-organisation

Self-organisation was originally defined in the context of physics and chemistry to describe the
emergence of macroscopic patterns out of processes and interactions defined at the microscopic level.
It is related to chaos theory and dissipative systems far from equilibrium [Nicolis and Prigogine, 1977,
Prigogine, 1994]. In [Pfeifer and Scheier, 1999] it is referred as “a process by which patterns are
formed in systems containing a large number of elements”.

In [Bonabeau et al., 1999] self-organisation is extended to describe the interactions in social in-
sects and defined as follow: “Self-organisation is a set of dynamical mechanisms whereby structures
appear at the global level of a system from interactions among its lower level components. The rules
specifying the interactions among the system’s constituent units are executed on the basis of purely
local information, without reference to the global pattern, which is an emergent property of the system
rather than a property imposed upon the system by an external ordering influence.” In this definition
the intertwining between the notions of emergence and self-organisation appears.

We will, in the remainder of this study, use the notion of emergence as defined in
[Bonabeau and Theraulaz, 1994] (see citation above) and relate to emergence as a property describ-
ing a phenomenon or a behaviour and to self-organisation as the process in which this phenomenon
or behaviour s produced.

Bonabeau et al. mention four basic ingredients that are found in self-organising systems:
e Positive feedback that consists of simple behavioural rules that promote the creation of patterns.

o Negative feedback that counterbalances positive feedback and helps to stabilise the collective

pattern.

o Amplification of fluctuations, randomness and errors are crucial to enable the discovery of new

solutions. Patterns are created by amplification of this randomness
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o Multiple interactions interactions can increase the non-linearity of the system.
They also characterise the properties of a self-organised phenomenon [Bonabeau et al., 1999]:
e The creation of spatio-temporal structures in an initially homogeneous medium.

e The possible coexistence of several stable states (multistability). Because structure emerges
by amplification of random deviations, any such deviations can be amplified, and the system

converges to one among several possible.
e The existence of parametrically determined bifurcations.

An interesting insight into self-organisation can be found in [Gershenson and Heylighen, 2003].
Starting their study with the assumption that a way to characterise self-organisation can be by using
entropies as a measure of the increase of order, they define counter-examples showing that systems
can show “different degrees of order or “entropies” for different models or levels of observation of the
same entity”. In other words the way we define the state-space is crucial for detecting increase or
decrease of “order”. Therefore the role of the observer is again crucial to determine how the system
is to be observed. It is only relative to this choice that a system can be considered self-organising.
In our study we want to investigate self-organisation of robots therefore the level we consider is the
one we can act on, namely the control of the robots individually.

There have been several attempts to formalise emergence and self-organisation [Holland, 1998].
But these attempts, although they give insights into the essence of the problem, usually lack any
predictive power which, in the end, is the whole purpose of formalism. The formalisms developed
are more descriptive than result-oriented. An example of such a formalism is used to describe the
evolutionary framework presented in section 6.3.1. It cannot be used to predict the results of the

evolution as there are functions that cannot be expressed in a formalised way.

2.4.3 the centralised mindset

The notions of emergence and self-organisation present explanations for phenomena that are based
on interactions of components. The fact that a system’s emergent behaviour is not specified in any of
its parts, but typically arises from those interactions, makes it difficult to explain these phenomena

by well-defined cause and effect.
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Nevertheless, in his book, Resnick notes that when confronted by a given phenomenon, people
will tend to look for THE - if possible unique - cause for explaining it. In many cases, this way of
explaining phenomena is absolutely valid and, maybe because of this validity, it seems that people
tend to generalise and look for an external cause for every phenomenon considered [Resnick, 1999].
This is what Resnick calls the centralised mindset.

In his investigations at the boundary between education and science, Resnick stresses that:

“People seem to have a strong preference for centralisation in almost everything they think and do.
People tend to look for THE cause, THE reason, THE driving force, THE deciding factor. When people
observe patterns and structures in the world (... ), they often assume centralised causes where none
erist” (emphasis in original).

He explores several explanations for this observation, the first being that many phenomena are
indeed organised by a central designer or cause. Secondly most people participate in social systems
“where power and authority are very centralised ( ... ) [and] these hierarchical systems serve as
strong models”. Thirdly our conception of the self as “one entity in charge” makes it natural that
one should expect most systems to involve a central actor.

To actually design systems displaying emergent behaviour is difficult. Firstly, because of the
lack of a formal definition there are no rule-of-thumb design guidelines. Secondly because of the
centralised mindset, thinking in a distributed way, as would be needed for emergent phenomena, is

not a mature approach.

2.5 Swarm Intelligence

Swarm intelligence refers to the capability of unintelligent agents to collectively perform tasks that
we perceive as requiring intelligence [Bonabeau et al., 1999]. Classical examples of swarm behaviour
are ant foraging tasks or collective nest building. In these examples, it has been shown that solutions
exist that do not require the use of direct communication but instead relying on stigmergy and
self-organisation (see sections 2.10.1 and 2.4).

The fact that self-organisation may be the principle underlying the organisation of social insects
has potentially far reaching implications for engineering and computer science. Indeed the problems

solved by the insects’ colonies relate to problems such as sorting or distributed coordination. The
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beauty of the solutions found by evolution of ants and termites is that they are very flexible and
robust to allow for adaptation and survival. Characteristics that are highly sought in engineering
solutions. Also the ants and termites have limited cognitive capabilities which allow for synthesis of
artifacts able to mimic their behaviour. As stated in [Bonabeau and Theraulaz, 1994], “central to
the idea of swarm intelligence is the coexistence of individual simplicity and collective complexity”.

Because of these characteristics and despite the maintenance difficulties that arise when deal-
ing with large groups of robots, there is growing interest into collective robotics or swarm-based
robotics. Although much of this work is only loosely related to social insects, some try to explic-
itly mimic the behaviour found in insect colonies. Real robot implementations include Beckers
et al. [Beckers et al., 1994] who implemented distributed clustering of pucks and Melhuish et al.
[Melhuish et al., 1999a] who developed rules for two-color sorting inside a cluster and recently three-
color sorting by adding sensory skills [Melhuish, 1999b]. Melhuish also implemented an example
of cooperative wall building [Melhuish et al., 1998]. Another example is [Krieger and Billeter, 2000]
where individual activation thresholds are able to solve the task allocation problem in foraging robots.
We dedicate a whole section of the present chapter to the more general field of collective robotics
(see section 2.8)

This study, though its interest is in decentralised solutions based on local communication, is part
of the framework of swarm-based robotics, but its aim is decidedly not to reproduce any behaviour
observed in nature. Actually, as will be presented later, it is only subsequently that the behaviours

generated in this work were associated with their counterparts in nature.

2.6 Artificial Life

The concepts of self-organisation, emergence and the synthetic methodology have already been men-
tioned. Now a field that strongly relies on such notions is the field of artificial life (AL). In the
introduction of the proceedings of the first workshop on the topic, Chris Langton states his defini-
tion as:

“Artificial Life is the study of man-made systems that exhibit behaviours characteristic of natural
systems. It complements the traditional biological sciences concerned with the analysis of living

organisms by attempting to synthesise life-like behaviours within computer and other artificial media.
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By extending this empirical foundation upon which biology is based beyond carbon-chain life that has
evolved on Farth, Artificial Life can contribute to theoretical biology by locating life-as-we-know-it
within the larger picture of life-as-it-could-be” [Langton, 1989].

In their critique of the field, Bonabeau and Theraulaz state another definition:

“[Artificial life is] a general method consisting in generating at a macroscopic level, from mi-
croscopic, generally simple, interacting components, behaviours that are interpretable as life-like”
[Bonabeau and Theraulaz, 1994].

They remind us that most work in AL relies on the assumption that “synthesis is the most
appropriate approach to the study of complex systems in general and of living complex systems in
particular”. Their definition strongly emphasises the importance of ways of achieving emergence
to generate complex behaviours. In their view, the AL methodology is a “completely reductionist
one, because it is aimed at explaining high-level behaviours from low-level causes”. But they distin-
guish between ontological, methodological and epistemological reductionism, stating that AL is only
methodologically reductionist.

Both definitions are rather vague in the fact that the interpretation of a behaviour as life-like or
being characteristic of natural systems is strongly dependent on what criteria are used to test those
characteristics.

Two key notions in Artificial Life are collective behaviour and artificial evolution. The first has
been introduced in section 2.5 and will be further developed in section 2.8. The latter is the subject

of the next section.

2.6.1 artificial evolution

Because of the intractability of real experiments in natural evolution, one of the key topics in AL is
the study of artificial evolution. It was originally developed as an optimising tool aiming at searching
for the optimal solution in a given parameter space [Béck et al., 1991], and has been used as such to
find, for example, particular rules for cellular automata [Sipper, 1997|. Taking advantage of recent
developments in realistic simulation, artificial evolution has moved towards a synthetic study of
the dynamics of evolution. Examples range from evolution of programs [Miller, 2003], formation of

virtual cells [Madina et al., 2003], to evolution of whole ecosystems [Penn, 2003].
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mechanism

Artificial evolution works as follow: the system is composed of an environment and a population
of genomes. Each generation follows the three steps below (for a more thorough description, see

[Pfeifer and Scheier, 1999], chapter 8):

e Development: From each genome is derived an individual (phenotype), either directly by some

description function or through a development phase.

e Selection: Each individual is tested in the environment and according to this test is assigned a

fitness.

e Reproduction: A new population is created from the previous one by mating two individuals

(cross-over) and/or by random changes in the genome (mutation).

The result is an individual that optimises the fitness function, provided a “sufficient” number of
generations and a system genotype-phenotype that has the potential to do so.

There are many variants depending on the coding chosen to describe an individual, to assign fitness
or to choose the individuals allowed to mate. A critique of what can and cannot be achieved with a
genetic algorithm, related to engineering, and comparisons with other architectures also implementing
artificial evolution such as Genetic Programming (GP) or Evolutionary Strategies (ES), can be found

in [Toffoli, 2000].

embodied evolution

Because of the length of the evolutionary process, most of the work in evolutionary robotics has relied
on simulation to find optimal solutions and then transfered these results to real robots
[Baldassare et al., 2003]. Examples can be found in [Jakobi et al., 1995], [Quinn et al., 2002b],
[Nolfi and Floreano, 2000]. Because of the discrepancies between the real world and the simulated
model, this transfer can be difficult [Jakobi et al., 1995] (see section 2.9).

An interesting alternative to such methodology is the framework of embodied evolution presented
by Watson et al. [Watson et al., 2002], [Watson et al., 1999]. The idea is to use many robots as
the population of genome and let them interact and exchange genes in performing the required

task. More successful robots have better chances to propagate their genes than less fit ones and the
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system eventually converges towards a solution. Other examples can be found in [Nehmzow, 2001,
Kubik, 2003|
Obviously the application of such a framework strongly depends on the task being studied, but

we believe that our multi-robot set-up could be a platform for such investigations.

morphology

Most of the work in evolutionary robotics has concentrated on the control algorithms of robots with
fixed morphology. This of course is not the case for natural evolution and such a restriction may
obviously prevent solutions that require a change in morphology [Pfeifer, 2000]. Examples can be
found in [Floreano and Nolfi, 1998] or [Pollack et al., 2000]. But a striking example, built on Sims
work [Sims, 1994], shows the result of the transfer from a previously simulated evolution of mor-
phological structure for locomotion, into a real robot that shows qualitatively the same behaviour
[Lipson and Pollack, 2000] and later [Hornby et al., 2001]. Further work on wvirtual embodied evo-
lution can be found in the work of Bongard et al. [Bongard and Pfeifer, 2001], [Bongard, 2002],
[Bongard and Paul, 2000], [Frutiger et al., 2002].

The experimental set-up for this study presents a swarm of real and simulated robots that behaves
as a whole and chapter 6 investigates whether the distributed control of global shape through the

help of communication alone can be evolved.

genetic regulatory networks

As a matter of fact most evolutionary algorithms lack a development phase translating the genotype
into a phenotype. In such cases the complexity of the individual is completely contained in the
genome.Indeed the function that maps the genome into a phenotype can at most be iterative, as in
[Sims, 1994].

If you allow instead the individual to go through a growth phase controlled by the genome,
before it is actually tested for fitness, then the complexity of the genome can be greatly reduced
by making use of mechanisms of self-organisation during this growth process. Examples can be
found in [Bongard and Pfeifer, 2001], [Bongard, 2002]. In these cases, the individual’s genome is
a model of a biological DNA string. Genes are located on this string and expressed according to

the operon model of Jacob and Monod [Jacob and Monod, 1961]. It is a system in which genes
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and their products directly or indirectly regulate one another’s activities. Such a genotype forms a
self-regqulatory network as described in [Kauffman, 1989].

A self-regulatory network is a directed boolean graph in which each node typically has K entrant
edges and any number of exiting edges. Each edge has a boolean value that is updated by a boolean
function of the values of the nodes at the origin of the K entrant edges. This is an idealisation of
the operon model where edges are proteins regulating the expression of the genes represented by the
nodes. Self-regulatory networks are also known as random boolean networks (RBN).

In his study of the behaviour of such networks, Kauffman found that complex behaviour arises
when K = 2 with boolean canalysing functions. A boolean function is canalysing if one of the
input values constrains the output completely. In the example of table 2.1, the value 0 for input 1

completely determines the output.

input 1 input 2 | output
0 0 1
0 1 1
1 0 0
1 1 1

Figure 2.1: example of canalysing boolean function

In his studies, Kauffman concentrated on synchronous random boolean networks (RBN). The
update of the nodes’ states occurs simultaneously. In our case we are dealing with asynchronous
update as robots typically desynchronise and the task of synchronising the robot would be counter
to our aim of minimalism. In their study of asynchronous RBN, Mesot and Teuscher show that the
behaviour of such systems is of a quite different nature [Mesot and Teuscher, 2003].

In order to cope with asynchronicity and achieve smoother behaviour, continuous values between
0 and 1 are considered in the “gene-protein” models called artificial genetic requlatory networks.
A node in the network represents a “gene” that has an operator site and a expression site. The
expression site specifies which “protein” is expressed and to what concentration. The operator site
specifies which protein has an influence on the expression of the gene - inhibitory or enhancing - and in

which concentration thresholds; indeed this is the self-regulation. In this model, instead of influencing
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directly the downstream nodes, the result of the boolean function changes the concentrations that
will then act on the receptive downstream nodes.

By binding the value of the nodes to some phenotypic variable, such as for instance growth of a
body segment or growth of neural control as in [Bongard, 2002], the complex dynamics of the genetic

regulatory network can generate complex morphology and behaviour of an artifact.

artificial embryogeny

The development phase of the genome can be done through direct mapping or through a development,
phase. In the first case the complexity of the genotype grows linearly with the complexity of the
resulting artificial organism. But the example of human DNA presents a proof of existence of
an extremely complex organism (100 trillion neural connections in the brain) in which genotype
complexity is several orders of magnitude lower (only about 30 thousand active genes).

Such a difference of magnitude is only possible through gene reuse. A methodological approach to
allow for such reuse is to let the artificial organism go through a development phase. The individual
starts from a small initial structure and its genotype acts more as local rules that guide growth, than
an overall building plan.

Artificial embryogeny, as defined in [Stanley and Miikkulainen, 2003], encompass studies that in-
vestigate different approaches to implement this development phase. Stanley and Miikkulainen divide
the field into grammatical and cell chemistry approaches, although they stress that this is only an
apparent difference.

The first group involves the use of an algebraic description of the organism and the development
phase consists of rewriting rules of the starting description. Examples consist mainly in variants of
Lindenmayer’s L-systems [Lindenmayer, 1968] and include [Sims, 1994, Lipson and Pollack, 2000].

The second group builds on the initial paper of Alan Turing [Turing, 1952] (see section 2.12.3)
that describes his intuitions on the existence of diffusing morphogens and their potential to generate
patterns. Studies from this group try to model the diffusion of such morphogens in a cartesian space
and their action on the growth of the organism. Continuous genetic self-regulatory networks provide
a model for the production of such morphogens (see chapter 4). The examples presented below
belongs to this group.

In the work of Bongard [Bongard and Pfeifer, 2001], [Bongard, 2002], a virtual artifact is firstly
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grown with its morphology and neural control in the development phase, and then tested in the task
of pushing a box in a physically realistic environment. Evolution eventually resulted in individuals
that were able to start pushing the box and then that are more and more successful at it. In this
case, the optimal genomes are less complex than the resulting artifact’s morphology and behaviour.
The drawback is in the fact that the framework chosen - body segments that grow - does not allow
for a real robotic transfer.

In [Streichert et al., 2003], a model of cell growth according to a self-regulatory network is evolved
and shows good ability to limit the growth and undergo self-repair but they also mention that
the morphology of their artifacts depends highly on small brownian fluctuations. An application
of genetic regulatory networks (see section 6.3) in robotics can be found in [Quick et al., 1999b],
although the implementation suffers from high bias at the beginning.

In [Bentley, 2003], such a genetic network is used to control a robot. They were able to evolve,
in simulation, a path through obstacles. The transfer performed well, not least because the robot
chosen for the experiment used high-level instructions for movement.

A biologically more plausible model is introduced by Banzhaf [Banzhaf, 2003]. Instead of consid-
ering specific “protein” matching for regulation, he considers complementarity matching, using bit
strings and the XOR operation. The result corresponds to continuity in the matching process. The
behaviour of such a model shows small time fluctuations to bit changes in matching, making it of
particular interest for artificial embryogeny.

The study presented in chapter 6 is an enquiry into the potential of such self-regulatory networks
to cope with noise, dynamicity and randomness. The task is to break the symmetry to keep a linear
shape in an otherwise amorphous swarm. Because of the dynamic nature of our experimental set-up,
we actually concentrate in this case on the development phase. Although the robots we use will have
to be improved to be able to implement the algorithm using self-regulatory genetic networks, we can
realistically hope for a successful transfer of evolved characteristics into a real robot implementation,

unlike in [Bongard, 2002].
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2.7 Robotics

According to the dictionary, a robot (from the Czech robota, compulsory labor) is':

1. a machine that looks like a human being and performs the various complex acts (as walking

and talking) of a human being,
2. a mechanism guided by automatic control.

Taking the second meaning of the word, the field of robotics can be divided into two groups:
robots that are constructed to perform a fixed task in a fixed environment and robots that are
expected to cope flexibly with a changing one. Robots belonging to the first group are usually
found in production lines and their design raises problems related to mathematics, engineering and
control; the best known example being the robotic arm (multi-axis manipulator). In this case, the
environment is carefully designed and constrained to enable the robot to carry on its task without
being disturbed by unexpected events.

This possibility to constrain the environment makes the behaviour of the robot typically have, for
every possible configuration of the environment, a sensible solution. The effort is then concentrated
into recognising these configurations and matching the actual movement to the solution dictated by
the controller. This is mainly done to reduce the possibility of errors, either at the sensory level or
at the actuating level.

Because of their inherent purpose, the robots belonging to the second group add to the problems
of sensible movement within a known environment, the problems of sensing the changes in this
environment and acting “sensibly” according to these changes. Because of this difference, these
robots cannot function within the same paradigm as the ones belonging to the first group. Indeed
the ability to adapt to changing situations contradicts the possibility to map a sensible move to every
possible configuration. Furthermore, the understandable interest in designing robot devices able to
display autonomous mobile behaviours makes the interconnection of the problems of weight, energy
and computational power of great relevance.

The first approach that was attempted relied on building an abstract world model and used logical

inference to create new “knowledge” about the sensed world. However, this approach suffered from

Merriam-Webster Collegiate Dictionary edition of 1999
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the rapid intractability of the real world. The conjunction of the combinatorial explosion of logical
rules with the difficulty of correspondence between the abstract model and the real world made
the approach fail to convince that it could lead to an autonomous system. As an example, even in
drastically simplified worlds, the dynamicity induced by the movement of the robot itself was already
a change too difficult to cope with [Pfeifer and Scheier, 1999].

However, Nature provides us with countless examples that have been used lately as an inspiration
to design successful devices, such as the approach of behaviour-based robotics (see the next section).
Additionally the possibility of the robots to actually embody the fruit of theoretical investigations has
widened the scope of interest and has involved researchers from psychology, neuroscience or biology,

among others. It is now referred as bio-inspired robotics [Parker, 2000, Vaughan et al., 2000a].

2.7.1 behaviour-based robotics

The traditional approach to building robots relies on functional decomposition: sensing and propri-
oception? is performed first. The information coming from the environment is then processed and
integrated in an abstract model, the world model. According to this model an action is planned that
will eventually be transformed into an acting phase and the cycle loops. This cycle is referred as
SMPA or sense-model-plan-action [Pfeifer and Scheier, 1999].

As mentioned earlier, this approach has demonstrated low performance, especially because of the
evident simplifications that take place between the S and M phases that is later translated into
potential problems between the P and A phase. Also the possible complexity of real situations can
rapidly make the P phase computationally intractable.

The failure of real robot experiments following this framework, such as “shakey” and others
[Dreyfus, 1992], suggested the inability of this approach to cope with the uncertainties of the real
world (although the considerable progress achieved since in computing power calls for a new study
of this hypothesis). To analyse a situation and then act on the basis of this analysis is actually
computationally very expensive and rapidly becomes intractable if the environment is not highly
constrained (such as in production lines). To tackle this restriction on autonomy, Brooks proposed
to study robots that instead of analysing, simply react to changes in their sensorial environment,

i.e. to achieve a direct coupling between sensors and actuators. The problem then becomes the

2the set of perceptions that the agent has of its own body
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coordination of these reactions such that meaningful behaviour results [Brooks, 1986]. Note that
although the robot might benefit from this behaviour, the meaning stands actually only in the
observer’s eye.

More precisely, the behaviour-based approach, with the well known subsumption architecture
[Brooks, 1986], builds control architectures by incrementally adding behaviours, each of these run-
ning in parallel and being responsible for a restricted part of the overall behaviour of the robot. These
behaviours are organised in successive layers functioning relatively independently and often repre-
senting the levels of priority for the safety of the robot. This layered approach provides a framework
for the coordination of such parallel behaviours to display meaningful global behaviours.

This proposition has shown great potential and its early success [Brooks, 1986, Maes, 1991] has
started a whole field of research on autonomous robots that is commonly called behaviour-based
robotics [Arkin, 1998, Maes, 1993]. It involves the contemporaneous enquiry of software and hardware
problems such as definitions of control architectures [Albiez et al., 2002], design and use of sensors
[Lungarella et al., 2002] or actuators [Yoshida et al., 2000], control of several robots (section 2.8),
etc. As such, behaviour-based robotics is a sub-field of the framework of embodied cognitive science
presented in section 2.1. This new approach together with recent progress in hardware miniaturisation
and cheap production has made the number of laboratories working on mobile autonomous robotics
multiply in the past few years.

It is worth noting here that this approach does not state that the use of internal representation
of the external world must be avoided. The point is firstly to show that much can be achieved
using purely reactive robots; while in the case when there is necessity for internal state representing
knowledge of the environment, it may well be sufficient, or even better, to distribute that knowledge
among the behaviours in an implicit way, rather than hold it centrally in an explicit way.

This research studies the potential for behaviour-based robots to be able to coordinate themselves
into potentially very large groups. It is related to the more particular field of swarm or collective

robotics.
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2.8 Collective Robotics

The study of collective robotics naturally extends research on single robots, but it is also a domain
in its own right as multiple-robot systems can accomplish tasks that are beyond the scope of single
robots. Distributed robotic systems are also different from other distributed systems implemented
in software because of their real-world constraints.

In [Beni and Wang, 1991] Beni and Wang state the theoretical problems raised by collective
robotics. Cao et al. present in [Cao et al., 1995] a deep survey of the field and more recently Parker

[Parker, 2000] presents the state-of-the-art in the domain and identifies eight primary research topics:
e biological inspiration,

e communication architectures,

localisation/mapping/exploration,

cooperative object transport or manipulation,

e motion coordination,

reconfigurable robots,
e learning.

The research of this thesis has resonances with most of these research topics (omitting only learning
and cooperative object transport). It is related to biological examples (section 2.12); it is relevant to
distributed exploration and localisation tasks (section 2.11.2) and to reconfigurable robots(chapter
6); it involves the motion coordination of a large number of robots (chapter 5) and crucially enquires
into the potential for communication within a swarm of robots (chapters 4, 5 and 6).

The field of collective robotics is growing very rapidly and [Bonabeau et al., 1999] mentions several

possible reasons for its current success:

e Collective robotics becomes an alternative to classical Al relying on the non-classical idea that

a group of robots might be more efficient than a single “intelligent” one.

e The progress of hardware, especially in miniaturisation, has made real multi-robot experiments

possible.
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e The field of Artificial Life (section 2.6) has propagated ideas about emergent behaviour that

might have otherwise remained unknown to roboticists.

e By positive feedback. Work on the topic attracts more work, even if Bonabeau et al. note a

decrease in the conceptual originality of recent publications

The field of collective robotics naturally divides itself into two different directions. One is primar-
ily concerned with morphology and considers simple robotic modules physically attached together,
which self-organise to generate global movement or to adapt to the environment. This is done either
by controlling the joints [Lee and Sanderson, 2001, Takahashi et al., 2001] or by changing the con-
figuration of the attachment of the robots, the latter being referred to as self-reconfigurable robots
[Kotay and Rus, 1999], [Unsal et al., 2000], [Yoshida et al., 2000] (section 2.8.3).

The second direction studies the multiple interactions of autonomous robots cooperating in the ex-
ecution of a task. Such work either relies on swarm intelligence or on more complex robots with higher
skills. Foraging tasks, collective transportation [Kube. and Zhang, 1992], [Kawai and Hara, 1994] or
distributed movement in formation are well-studied examples [Beckers et al., 1994],
[Vaughan et al., 2000b] (section 2.8.2). Other work includes distributed learning [Mataric, 1994,
cooperative map building [Dedeoglu and Sukhatme, 2000], etc.

The work presented here apparently belongs to the second direction. However as global connec-
tivity of the robot network is an aim, the group formed can also be considered as a single entity and,

therefore, also falls within the first direction.

2.8.1 minimalist robotics

Advances in materials science could lead to the construction of microscopically small robots. Nano-
scale robots will have to “operate in wvery large groups or swarms to affect the macroworld”
[Holland and Melhuish, 1996] while being very limited in computation, communication and sens-
ing capabilities as well as largely unreliable. Within this framework, direct communication or ex-
plicit formation control are not likely to be realistic. The swarm intelligence paradigm described
in section 2.5 provides an environment for solutions that might scale up to huge numbers of robots

[Gage, 1993, Defago, 2001].
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The work of Melhuish fits into this framework. It sought to minimise the computational and me-
chanical complexity of the robots to meet miniaturisation requirements. This work investigated mini-
mal sorting, minimal clustering, minimal wall building and minimal swarming [Melhuish et al., 1999a],
[Melhuish et al., 1998], [Melhuish, 1999b], [Melhuish et al., 1999b], [Melhuish, 1999a]. This work
bases itself on biological examples. Other works include [Lewis and Bekey, 1992],
[Genovese et al., 1992]. But in these examples, the research is primarily in simulation only and
therefore lacks the real robot confirmation that would strengthen their argument.

However, the means to achieve the miniaturisation that is one driver of the minimalist approach is
still an area of research. Thus, it is possible that the actual microrobots that will eventually be built
may not be able to implement the algorithms developed. Indeed the paradigm of the Turing Machine
that implements the minimalist rules might not be possible in such tiny machines. For example the
work of Weiss and Knight, related to the embryonic field of wet robotics, tries to apply techniques from
molecular biology in order to engineer automated responses in bacteria through genetic engineering
[Weiss and Knight, 2000]. Because of the nature of genetic dynamics (see chapter 6 for introduction)
the minimalist rules developed by Melhuish could turn out to be extremely difficult to implement in,
for example, genetically engineered nanobots.

Because of the strong constraints chosen initially, the study presented here could be seen as part
of the minimalist approach. Indeed what is here investigated is the potential of communication by
itself to achieve useful behaviour. However, the hardware platform chosen to test the algorithms is
certainly not minimal and uses high-level communication protocols and devices. Solutions could be
found to bypass this problem; for instance using the same techniques as in [Weiss and Knight, 2000].

But then the same criticism could apply as to the work of Melhuish.

2.8.2 flocking and formation control

The task of flocking and formation keeping is one of the first investigated in the field of collective
robotics. This early interest might be due to the work of [Reynolds, 1987] on his “boids”, mimicking
the flock behaviour of simulated birds. Or might also have been motivated by military interests in
formation keeping.

Flocking (also swarming) is the task of forming a group of robot when the actual shape of

the group is not relevant. The group might be formed because of mutual attraction or because
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the group is attracted by the same attractor source (a beacon), referred to as pseudo-swarming in
[Melhuish et al., 1999a).

The classical reference on flocking is the work of Reynolds. Primarily interested in designing
a way to render visually the behaviour of a flock of birds for computer graphics purposes, he de-
fined an agent-based model that showed the ability to avoid obstacles and reform the flock after-
wards [Reynolds, 1987]. Although not aimed at being biologically plausible, this work has raised
questions on how actual birds or fishes display such behaviours. Work on this topic in robotics
can be found in [Lewis and Bekey, 1992], [Mataric, 1992], [Melhuish et al., 1999a], [Melhuish, 1999a/,
[Hayes et al., 2000]. This example introduces the idea of secondary swarming where individuals relay
the signal of the beacon which makes the robots move as a group [Melhuish, 1999a].

Similarly, Wefinitzer and Melhuish present an algorithm for target hunting where the robots share
their perceived progress towards the target within their neighbourhood [Wefinitzer and Melhuish, 2003].
Because of line-of-sight obstruction, some of the robots cannot see the prey. The robots that do see it
then act similarly as a secondary beacon. It results in cooperative hunting of the prey, whose ability
to escape is greatly reduced by the swarm acting like a catching net.

When the shape of the swarm is relevant to the task and needs to be maintained, we speak of
formation control. In most cases, the task for these robots is to move in the same direction while
trying to maintain relative distances the same. This typically involves a constrained number of
robots.

In [Balch and Arkin, 1998] the authors state that research on formation control can be divided
into unit-center-, leader- or neighbour-referenced control. Typically the first solution needs a global
positioning ability in order to compute the position of the unit-center. This requirement on global
position can be found in numerous examples [Defago and Konagaya, 2002, Lewis and Tan, 1997].
The leader solution is also highly dependent on the proper functioning of this leader. Naffin presents
a way to get round this by the periodic local election of the leader [Naffin and Sukhatme, 2004].

The neighbour referenced solution is then a possibility for decentralised control with local sensing.
Typically the formation that has to be reached is predefined in the controller
[Sugihara and Suzuki, 1990], [Fredslund and Mataric, 2001], [WeBnitzer et al., 2001], with sometimes
the investigation of the possibility to switch between two different formations [Wefinitzer et al., 2001],

[Fredslund and Mataric, 2001]. The most interesting work on formation control for this research is
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the work presented in [Balch and Hybinette, 2000] where the use of a neighbour-referenced algorithm
allows for scalability. In this case the global formation is not stated a-priori but instead emerges from
the local relative positions the robots try to maintain. Nevertheless this example relies on the sensing
of local positions of neighbours in order to compute a movement vector. This sensing is notoriously
noisy and involves high level abilities for the robots.

Another area of work on formation is the investigation of the theoretical problems stated by
formation control, for instance the possibility of a group of “robots” to actually reach the formation,
agreement on coordinate system, etc. [Prencipe and Gervasi, 2002, Suzuki and Yamashita, 1994].
These examples make assumptions on the abilities of the robots that are often unrealistic, such as
global position sensing, or sometimes state theoretically unstable extreme points in state space that
do not happen in real systems because of noise. One of the most interesting examples belonging
to that branch is the work on distributed formation control by Yamaguchi et al. who are able to
formally prove the asymptotic stability of their approach [Yamaguchi et al., 2001].

A research in between flocking and formation is the work by Quinn et al. which evolves a formation
behaviour on very simple robots by selecting the most successful controllers at moving the group
[Quinn et al., 2002a, Quinn et al., 2002b]. In this case the successful controller makes the group
adopt a formation, but this formation is only the result of the scarce sensory resource, and not a
prerequisite of the research. The study presents work on simulation and successful implementation
on real robots. In [Baldassare et al., 2003], formations are also evolved in simulation, but in this
case the group behaviour is explicitly selected by the fitness function. Another interesting example
of evolutionary computation involving a genetic regulatory network for the control of a robot swarm
can be found in [Taylor, 2004].

The work presented in this thesis relates to flocking, swarming and formation keeping. Chapter
4 investigates flocking through the possibility for locally communicating robots to guarantee the
global connectivity of the swarm; in chapter 5, swarming by allowing the flock to be attracted by a
simulated light source. Finally in chapter 6, the swarm aims to maintain a global shape - although

loosely - while moving.
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2.8.3 reconfigurable robots

Awareness of situatedness has placed a focus on the morphology of the robots [Pfeifer, 2000],
[Stgy, 2001a] and opened large areas of interest such as reconfigurable robots [Kotay and Rus, 1999,
[Unsal et al., 2000, Yoshida et al., 2000] consisting of elementary robots that reassemble themselves
to form a bigger entity, modular robots whose morphology can be changed easily
[Lee and Sanderson, 2001], [Takahashi et al., 2001}, [Kawai and Hara, 1994] and evolution of mor-
phology in simulation [Sims, 1994], [Bongard and Pfeifer, 2001], [Bongard, 2002] and with real world
confirmation [Lipson and Pollack, 2000].

Reconfigurable robots are, in effect, robot collectives that behave as a whole. The motivation is
to achieve function from shape, Allowing individual modules to connect and reconnect in various
ways in order to achieve the required function. For instance, overall movement is performed by
many single moves that when coordinated, achieve the task. This of course raises complex problems
of distributed control and communication, but the main problem to be overcome appears to be the
physical construction of those devices and much work is dedicated to this task. As a result simulation
tools are widely used, raising problems discussed in section 2.9

For examples of distributed control, see the impressive work of Stgy on arrangements of articu-
lated modules that can be reconfigured on the fly [Stgy et al., 2002, Stgy, 2004]. Other examples
can be found in [Christensen et al., 2004, Ostergaard and Lund, 2004]. For technical descriptions
of hardware implementation, see [Kurokawa et al., 2004, Murata et al., 2000, Kotay and Rus, 1999,
Unsal et al., 2000, Yoshida et al., 2000].

This thesis’ study is concerned with groups of robots that are more loosely connected. While in
the field of reconfigurable robots, individuals are normally physically linked together, the approach
here considers limited-range radio connections that build a dynamic wireless network. Connections
are unreliable and often lost. An interesting analogous example of group pattern formation using
wireless connections can be found in [Wefinitzer et al., 2001]. A study situated half-way between our
work and reconfigurable robots is the SWARMBOT project that considers ant-like mobile robots able
to physically attach to each other to behave as a single multi-robot system [Mondada et al., 2004,
Trianni et al., 2004].
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2.9 Real World Issues

Robotics is of course primarily concerned with building real artifacts that can operate in the real
world. But the cost, both in time and money, of building and testing real robots has made simulation
a necessary and unavoidable tool.

The work presented here follows the common approach of conducting early experiments in sim-
ulation and then transferring them to real robots. The advantage of such a methodology is the
substantial gain in development time as hardware problems are considered after the algorithms have
been developed. The major drawback underlined by Brooks [Brooks, 1991] comes from the fact that
a simulation always makes assumptions in modeling the real world. This can lead to results that
would be infeasible in reality, and can also lead the researcher in completely the wrong direction.

As implementing a realistic simulation can be a major undertaking in itself, a trade-off between
realism and oversimplified simulation must be found. Work from [Martinoli and Mondada, 1998]
and [Hayes et al., 2000] discusses the opportunity of high-level simulations, showing that very simple
probabilistic models that consider the robots interacting among themselves, and with the envi-
ronment as a sum of probabilistic events, are able to render the dynamics involved in a foraging
or swarming task. More work on probabilistic modeling can be found in [Martinoli et al., 1999c,
Martinoli et al., 1999b, Martinoli et al., 2003, Billard et al., 1999a, Trianni et al., 2002]. The poten-
tial for the use of these models for the purpose of analysis is discussed in section 2.13.

As a matter of fact this question relates to the concept of embodiment introduced earlier (see
section 2.1). As an agent cannot be considered without its environment, research relying only on
simulations, which by their essence are not able to render the complexity of real-world interactions,
can lead to results that make false assumptions on the nature of the agent-environment interactions.

The problem of discrepancy between real robot experiments and simulation is particularly acute
in research in robot evolution (see section 2.6.1). The use of simulation to model the evolutionary
process can indeed bias the result [Jakobi et al., 1995]. On the other hand, real robot evolutionary
experiments are the exception because of the time scale involved. To circumvent this Watson et
al. [Watson et al., 2002, Watson et al., 1999] introduced the concept of embodied evolution where a
group of real robots co-evolve in a shared environment, exchanging genes. This setup seems to be

able to speed up the evolutionary process and converge to a satisfying solution.
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Studies involving the use of simulation are abstract in two senses. Firstly they are abstract in
the representation of their algorithm. Secondly the environments in which the algorithms are being
run are abstract. The abstraction of the environment can be close to reality in case of a faithful
simulation but this fidelity is not always a requirement.

The present research stands in a hybrid position. It seeks to develop abstract algorithms that
are implemented on abstract Turing machines, while these machines live in the real world. Beyond
the problem of faithfulness of a simulation (see chapter 3) is the open question of the relevance of

abstract models to the solution of real world problems.

2.10 Communication

As stated by Lachmann in [Lachmann et al., 2000] unlike energy sharing, exchanging information is
not subject to conservation of total mass. In other words an agent that shares its knowledge with
others is not losing any part of itself. This basic consideration makes communication a preferred
approach when the aim is to improve the efficiency of a system.

As such it has been mentioned from the beginning as a problem of primary importance in collective
robotics [Beni and Wang, 1991] and is still a strong area of interest as stated in Parker [Parker, 1996].

The act of communicating can be deliberate with the agent explicitly invoking a signal transmis-
sion. This is referred to as direct communication. In contrast indirect communication is a consequence
of an agent’s behaviour and its effects on the environment. In nature both types are used by most
species. For instance human communication can rely as much on body language cues as on the
actual meaning of the message. In an interesting example, Noble shows how communication between
animals can avoid potentially harmful conflicts [Noble, 2000]. For a comprehensive survey of animal

signaling and its implications with evolution, see [Endler, 1993].

2.10.1 indirect communication

Introduced by research on social insects, this type of communication relies on interactions with
the environment. The agents act on the environmental media as they would in a communication
medium. The message that consists of changes in the environment, is delivered when such changes

are sensed by another agent, perhaps triggering a special behaviour. It is referred to as stigmergic in
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the literature. Studies on foraging and sorting tasks [Melhuish et al., 1998, Beckers et al., 1994] and
distributed building of nest structures [Bonabeau et al., 1999] rely on stigmergic communication.

Another example is the research of Kube and Bonabeau who achieve cooperative object trans-
port without direct communication [C.Kube and H.Zhang, 1994, Kube. and Zhang, 1992]. In their
study on multi-robot communication Balch and Arkin show that stigmergy can be sufficient to
complete the tasks they consider, but that direct communication is able to increase efficiency
[Balch and Arkin, 1994].

Another instance of indirect communication makes use of direct sensing of other robots that can
be interpreted as environmental cues. It implies the ability to discriminate robots from other objects,
so-called kin recognition. Robots in formation usually use this kind of interaction [Reynolds, 1987,

Mataric, 1992].

2.10.2 direct communication

Direct communication occurs when an agent sends a direct signal to the other agents, either broadcast
or point-to-point. In [Mataric, 1994] Mataric states the potential of directed communication to
overcome limited abilities of robots.

Implementations usually involve an exchange of internal states or sensing information. Examples
include [WeBnitzer, 2001, Vaughan et al., 2000a, Yanco and Stein, 1992].

Such communication is usually implemented with radio or infra-red devices. As it involves
a shared medium some solutions have to be found to avoid collisions and loss of messages. In
[Wang and Premvuti, 1994, Wang et al., 1995] a decentralised media access protocol is defined within
the framework of mobile robotics.

The factor of shared media is also of primary importance when considering the scalability of solu-
tions. Indeed following Gage [Gage, 1993] in his consideration of groups of ”zillions” of robots, it is
interesting to study local solutions involving limited range radio devices whose local use of bandwidth
enable such scalability. Research in this direction includes the work of Arai et al. [Arai et al., 1993],
Yoshida et al. [Yoshida et al., 1998] and Stgy [Stgy, 2001b, Stgy, 2001a].

Stey [Stgy, 2001a] further differentiates directed communication into situated and abstract com-
munication. The latter is the type of communication where the physical signal that transports the

message is not considered to carry any meaning. On the other hand situated communication occurs
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when ”"both the physical properties of the signal that transfers the message and the content of the
message contribute to its meaning”. An example is given: when a person says ”move towards me”
the hearer knows from the direction of the sound and the meaning of the message what to do. It is
important to note that the sound alone does not carry any meaning and nor do the semantics alone.

The meaning emerges from the combination of both.

2.11 Networks

2.11.1 ad hoc networks

The group of communicating robots considered in this study form a communication network. Because
of the assumption of limited communication range and the focus on distributed solutions, this network
is a multi-hop ad hoc wireless network. In such a scheme when data needs to be sent to a robot
that does not stay within range it will be forwarded to a neighbour believed to be nearer to the
destination. The process is repeated and the data eventually reaches its destination via several
intermediate robots. This process is known as message routing and may involve some sort of global
knowledge of the network.

The constantly changing topology of the network makes many routing algorithms used on fixed
network topologies unfeasible; the bandwidth cost of maintaining accurate routing tables is too high.
To circumvent this problem Johnson [Johnson, 1994] proposes to divide the task into two subtasks:
route discovery and route maintenance. Instead of keeping up-to-date information on routes to all
nodes in the network, the protocol finds one on demand and is then able to maintain it. Another
work studies flooding strategies in wireless ad hoc networks [Lim and Kim, 2001].

Because of high level interest from the telecom companies, this area of research is constantly
evolving and new algorithms are presented regularly. A comparison of different algorithms proposed
can be found in [J.Broch et al., 1998]. All of the algorithms proposed show great sensitivity to the
increase in node numbers or node mobility.

In his research on swarm programming Evans [Evans, 2000] expresses doubts about the need for
node-to-node routing protocols in such an environment of agents. A possible alternative could be

found in the framework of amorphous computing which is described in section 2.11.2.
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2.11.2 distributed sensor networks

Man'’s desire to measure and control different places at the same time is well known and has been
investigated at least in fiction (see for instance Philip K. Dick’s Ubik). Sensor networks are an
engineering answer to this need. The aim is to build a group of sensors that would be able to
monitor different places simultaneously and therefore measure dynamical properties of phenomena
such as underwater currents etc. The natural metaphor being for instance the capacity of an ant
to detect an intruder and spread the alarm through the excitation of its neighbours, leading to the
mobilisation of the whole colony [Adler and Gordon, 1992, Frehland et al., 1985].

Advances in sensor technology and computer networks will enable the design of large swarms of
mobile microsensors communicating through wireless media. These developments will bring new
challenges, such as large volumes of data to process, limited bandwidth, limited power resource and
the unreliability of the environment. These challenges are comparable to those that can appear in
collective robotics.

A review of recent research can be found in [Qi et al., 2001] which divides the problem into four
aspects: data processing paradigm, sensor fusion algorithm, communication network structure and
optimal sensor deployment strategy. The study of this thesis is concerned with the last two aspects.
Other examples include [Bulusu et al., 2001, Hackwood and G.Beni, 1992, Franklin et al., 1995]

Considering the mobility of the nodes it is obvious that the network structure is dynamical and
therefore the field of ad-hoc wireless networking is of primary importance. Indeed to gather data
to a special, single node will require some sort of routing. One answer could be a point-to-point
communication protocol assuring connections between nodes; but Estrin et al. [Estrin et al., 1999a]
have presented as an alternative a data-oriented environment which avoids the power consuming
maintenance of a connection-oriented network.

The close links between sensor networks and collective robotics underlined above have brought
together researchers of both fields, underlying the overlap between the problem of coordinating the
robots carrying the sensors and the algorithm that directs the flow of information [Estrin et al., 1999b].
In [Winfield, 2000] Winfield introduces a mechanism to gather data to a collection point despite a
constantly changing network topology.

An example of collective sensing and decision making implemented in real robots can be found in

[WeBnitzer and Melhuish, 2003].
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Related to sensor networks is the project of Amorphous Computing at MIT. It is concerned
with programming self-assembling systems of unreliable, irregularly spread out, communication- and
processing-limited elements [Abelson et al., 2000, Nagpal, 1999]. As in collective robotics, biology

acts as a metaphor for many of the solutions which emerge.

2.12 Biological Examples

As stated in chapter 1, this study is not primarily concerned with mimicking natural behaviours
displayed by some social animal. Indeed, as the objective is to investigate the use of radio com-
munication, it is doubtful from the outset that any animal would be realistically mimicked by this
research.

Nevertheless the collective behaviours that we set out to demonstrate with the swarm, namely
swarming, taxis and global shape control are tasks that are performed by natural collectives. It is

therefore not surprising that the solutions developed have biological resonances.

2.12.1 essential genes set

The recent sequencing of whole genomes of organisms has raised the question of which genes are
essential for a cell to survive. As the interactions between genes within the cell are very complex and
still poorly understood, a way to circumvent this complexity is to inactivate genes one by one in a
simple organism having only a few, such as bacteria, and see if the corresponding cell survives. This
corresponds to a synthetic or constructionist approach rather more than an analytic one (see chapter
3). Although it is difficult to consider an organism without its corresponding environment, the result
of such experiments is a subset of the whole genome that should be essential to any cell, at least in the
genes function [Kobayashi et al., 2003, Fraser et al., 1995, Hutchison et al., 1999, Gil et al., 2003].
It is interesting to note that in some examples the resulting subset lacks expression regulator genes
[Kobayashi et al., 2003], suggesting that regulation is not needed for processes concerning single cell
basic machinery but rather for more complex mechanisms such as homeostasis or differentiation.
This finding strengthens the plausibility of the evolutionary framework presented in chapter 6, where
the aim is to achieve more pattern complexity from a base consisting of an amorphous connected

swarm.
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Figure 2.2: cyanobacteria (spirulina)

2.12.2 Dbacteria

In a paper and later in a book, Shapiro stresses the fact that bacteria have always been studied in
pure colonies because of the needs of medical bacteriology. Potential pathogens are identified by
showing that pure cultures grown from a single individual are responsible for the given disease. This
has led to complete neglect of the complexity of natural bacterial colonies that have just begun to
be thoroughly studied [Shapiro, 1988, Shapiro and Dworkin, 1997].

For instance, colonies of Bacillus subtilis show strikingly different patterns of growth according to
changes in the agar or nutrient concentration [Matsushita, 1997]. These patterns can be modelled
by random growth models [Ben-Jacob and Cohen, 1997]. More specifically the cells situated in the
inside of colonies growing in soft agar with high nutrients show erratic motion that is not precisely
brownian. But cells situated on the edge of the growing colony are rather still. It is conjectured that
the colony changes the medium allowing the bacteria inside to swim.

Another example, cyanobacteria (figure 2.2), show spatial patterns of differentiation between
individuals to conduct differential metabolic functions. Individuals seem able to dedifferentiate to
optimise the distribution of heterocysts. And the exchange of nutrients appears to be direct rather
than through the medium [Adams, 1997].

Myzobacteria colonies are able to move as “an intact unit [and] [wlhen an individual cell moves
a few microns beyond the edge it quickly pops back into place as though drawn by an elastic thread”
[Shapiro, 1988]. When two cells of Myzococcus virescens meet, they either align themselves or rub
alongside each other before separating. Myzococcus ranthus form spherical colonies that engulf prey
in order to digest them.

These examples strongly resonate with the swarm behaviours developed in this thesis (see chapters

49



Figure 2.3: development of dyctiostelium discoidum and patterns of cAMP concentrations

4, 5 and 6) and are a motivation for the evolutionary algorithm presented in chapter 6.

2.12.3 slime molds and morphogenesis

Although biomimetics was not the aim at the start of this work, it appears that the aggregating and
moving swarm (see chapter 4, 5 and 6) shows comparable properties with cellular slime mold Dyc-
tiostelium discoidum (figure 2.3). One of the most widely studied organisms because of its relevance
to morphogenesis, it provides a model for studying developmental processes such as chemotaxis, cell
sorting, pattern formation and complex behaviour. More particularly, it shows a striking behaviour:

When food becomes scarce in the substrate that the unicellular amoebae inhabit, they aggregate
and form multicellular migrating slugs, that eventually stop to form a fruiting body of spore cells on
top of a stalk. When aggregating they typically form streams towards the center.

[Savill and Hogeweg, 1997] present a model that accounts for aggregation, cell sorting, slug for-
mation and slug migration by presetting three different cell types and with the help of only three
processes: production of and chemotaxis to cAMP and differential cellular adhesion. The present
study is related to this work in trying to make the swarm aggregate, move and keep a global shape;
and the algorithms developed can be seen as analogous to differential cell adhesion. Interesting
work in the field of robotics that is also related to amoeba can be found in [Takahashi et al., 2001,
Takahashi et al., 2004]. But it relies on physical bounds that prevent morphogenesis.

This fits in the more general problem of morphogenesis. Pioneering work from the english math-
ematician Alan Turing and his intuitions on diffusing morphogens [Turing, 1952], together with the

advent of molecular biology, has led to results in embryology showing that gradients of a few molecular

20



signals are able to organise the development of the fly embryo [Nusslein-Volhard, 1996].

These results have been applied to various examples in the field of Artificial Life [Eggenberger, 1996]
[Eggenberger, 1997] [Bongard and Pfeifer, 2001] [Bongard, 2002] [Bongard and Paul, 2000]. Also the
relatively new field of Amorphous Computing investigates self-organisation of computer “morphol-
ogy” through the gradient diffusion metaphor [Abelson et al., 2000, Nagpal, 1999]
[Nagpal and Coore, 1998].

2.12.4 social insects

Observations of the impressive achievements of social insects are at the core of research in swarm
robotics. In these examples, the complexity induced by the collective cannot be explained by the
capacities of the individual, despite the complexity of a single insect compared to a robot. Many
examples with their potential applications can be found in [Bonabeau et al., 1999].

Examples specially relevant to this work are to be found in various species of ants. The organ-
isation of ant colonies shows dynamical specialisation of individuals into groups performing defi-
nite tasks. Removal of individuals from one group results in the readjustment between the others
to carry on the task. In polymorphic species (Pheidole for instance), this reorganisation occurs
even between morphologically specialised groups. A direct application to robotics can be found in
[Krieger and Billeter, 2000].

Weaver ants (Oecophylla, figure 2.4) form chains with their own bodies (figure 2.4) in order to cross
wide gaps and fold leaves to build nests. The explanation of such behaviour cannot rely on centralised
command and control and stands therefore as an existence proof supporting the plausibility of the
present, work.

The study of patrolling ants suggests that they are capable of effectively covering the region
around the nest and, whenever needed, of spreading an alarm signal through direct encounter
[Adler and Gordon, 1992, Frehland et al., 1985]. Study of the ant Lasius fuliginosus shows that
the rate of encounters is kept relatively constant as density changes. It is conjectured that they do so
in order to keep network connectivity. The framework of sensor networks rely on the same concept.

Examples of chorusing in crickets have shown their potential to achieve flocking and control of the
group size [Greenfield, 1994, Melhuish et al., 1999a)].

Also relevant, though not studied in this work, is the potential of virtual foraging ants to main-
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Figure 2.4: weaver ants

tain accurate routing tables in dynamic network topology. In [Bonabeau et al., 1999] are presented
comparisons with powerful algorithms for possibly faulty static networks. But the same framework

could be of interest in dynamic situations.

2.13 Analysis

As the presented investigation is primarily concerned with designing emergent behaviours in complex
systems, analysis becomes difficult. Indeed dealing with non-linear non-deterministic dynamics,
makes formalisation able to give analytical results rapidly intractable. Moreover, in order to prevent
the swarm from becoming trapped in a dead-end pattern, the behaviours governing the robots include
a random choice of heading, which introduces further difficulties for analysis.

To overcome this limitation there have been several propositions:

e computational models: In order to be able to study more deeply what is happening to the
robots, behaviours and interactions are simplified [Gazi and Passino, 2003], sometimes to a
level that seems to prevent actual relevance for robotics. These examples are related to more
abstract study in complex systems [Lachmann et al., 2000, Delgado and Sole, 1997]. Also re-
lated to this topic are the active walker models that consider brownian particles that change
the field governing their motion, as would a moving mass with the gravitational field. For an

interdisciplinary review see [Lam et al., 1997, Lam and Pochy, 1993].
o time series analysis: Using techniques from experimental physics, it is possible to analyse the
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behaviour of the robots through the examination of time related measurements [Schreiber, 1999,

Wright et al., 2001, Penn, 2002].

e probabilistic models: By considering the behaviours of the swarm as probabilistic events, it
is possible with simple geometric considerations to extract probabilistic equations that faith-
fully represent the behaviour displayed by real robots or more detailed simulations. Perhaps
the most developed and the most promising in the field of robotics is thanks to the work
of Martinoli [Martinoli and Mondada, 1998] [Martinoli et al., 1999¢| [Martinoli et al., 1999b]
[Martinoli et al., 2003]  [Hayes et al., 2000]  [Billard et al., 1999b]  [Trianni et al., 2002]
[Lerman and Galstyan, 2001].

For analysis purposes, this study defines several metrics that are defined in chapter 3. In his
remarkable study of the behaviour of discrete dynamical networks, Wuensche is able to dissect their
dynamics and to display preimages or basins of attraction [Wuensche, 1998], but he considers only
static networks and the computation involved is likely to prevent applying the same analysis to
dynamic networks. On the other hand this technique could be applied to the results of the genetic
regulatory network introduced in chapter 6. In this case, the genome codes for a static dynamical
network that influences the behaviour of a robot, which then has an influence on the expression of

the genes by diffusion across the network.
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Chapter 3

Methodology

“Most people don’t realise that I use chance as a discipline”
John Cage.
“knowledge only is not enough. True understanding comes from experimentation.”

Seymour Papert

In the young field of robotics the way to assert a scientific discovery is not yet commonly agreed.
The difficulty of mathematically formalising the notion of emergence and the cost of real robot ex-
periments in terms of time and money has led researchers in the field to state experimental guidelines
that remain far from a solid scientific proof [Bisset, 2003].

It is now widely agreed that real robot experiments are needed to confirm results from simula-
tions, however accurate they may be, because of the obvious impossibility of representing all of the
interactions that can have an influence on the problem considered. The idea coming from the new
roboticists such as Brooks [Brooks, 1991] is that the complexity of the real world is best represented
by itself.

As a result, most studies rely on the following methodology : the early research work is done
through the help of simulations presenting a limited degree of accuracy, but the confirmation of the
results is sought by building a real experiment. The reality of such experiments is of course the
closely controlled reality of a robotic laboratory as the robots, unless designed specifically for it, will
not cope with the uncertainties of the outside world.

An interesting complementary research tool is the relatively new application of probabilistic mod-

eling to the field, for instance in [Martinoli and Mondada, 1998, Lerman and Galstyan, 2001] that
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tries to bypass the formalisation problem by considering the interactions as probabilistic events and
producing either macro- or micro-level update equations. This stands at the mid-point between for-
malisation and simulation and can bring some insight into the dynamics involved in the experiments.

Our research follows the above mentioned practice in presenting results from simulation and then
confirming them, in part, through real experiments; while the use of probabilistic modeling is left for

further research.

3.1 Constructionism

As stated in chapter 1, this research can be seen as an instance of the constructionist approach to the
increase of knowledge. Instead of using an analytic approach that would consist of observing an exist-
ing system in trying to understand a given phenomenon, we try to build robots or simulate them using
computers to gain understanding in the potential of minimal communication between large groups of
robots. It is also referred to as a synthetic approach [Pfeifer and Scheier, 1999, Braitenberg, 1984].
Constructionism, as introduced by Seymour Papert, derives from the constructivist theories of Piaget

[Papert and Harel, 1991, Resnick, 1999].

3.1.1 constructivism

In trying to understand how children perceive their reality, learn and develop, Jean Piaget initiated
the constructivist theories in stating that knowledge does not exist by itself but is instead constructed
in the mind of the learner [Piaget, 1954]. More specifically, knowledge is rarely transferred intact
from the mind of a teacher to its student, as in a downloading operation, but the student has to
reinterpret and reappropriate this knowledge to be able to assimilate it. In some more radical strands,
the knowledge is always altered by the transfer.

To draw a parallel into philosophy of science, the constructivist theories relate to the relativist
approach, that challenges the objectivism and positivism of the 19th century and places the observer
as an essential component of the scientific experiment. In the words of the radical constructivist von
Glasersfeld, [von Glasersfeld, 1995]: “Objectivity is the myth that an observation can be made in the

absence of an observer” .
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3.1.2 constructionism or learning by building

After collaborating with Piaget, Seymour Papert of MIT refined the constructivist view. In his
own words : “Constructionism - the N word as opposed to the V word - shares constructivism’s
connotation of learning as “building knowledge structures” irrespective of the circumstances of the
learning. It then adds the idea that this happens especially felicitously in a context where the learner
15 consciously engaged in constructing a public entity, whether it’s a sand castle or a theory of the
universe” [Papert and Harel, 1991].

While Piaget is interested in how pure cognitive processes and logical thinking appears in a
child’s development, Papert stresses the importance of context and external tangible artifacts in the
process of learning. Constructionism in emphasizing the concreteness of knowledge, is more situated
[Ackermann, 2001], in a way analogous to the discussion of chapter 2. In Piaget’s view cognitive
growth is “a progression from egocentric beginnings to a final “formal stage” when propositional logic
and the hypothetico-deductive method “liberate” intelligence from the need for concrete situations to
mediate thinking” [Turkle and Papert, 1992].

In “Epistemological Pluralism and the Revaluation of the Concrete” [Turkle and Papert, 1992],
this view is challenged and the focus on general stages of human development is shifted to the study
of individual or culturally related learning styles: “formal reasoning is not a stage but a style”. In
this article, Turkle and Papert ask for an epistemological pluralism in accepting and encouraging
concrete knowledge to challenge the “epistemological elite” of those who master formal thinking.

In the same article, Turkle and Papert remind us that “there is a tradition of scientific epistemology
that sees the essence of science in objectivity and the essence of objectivity in a distanced relationship
with the object of study”. They later mention the case of Barbara McClintock, molecular biologist
who “came into increasing conflict with formal, “hard” methods of molecular biology” and was later
awarded the Nobel Prize when formal investigations subsequently came to the same conclusions that
she derived from her “soft” investigations.

Also they stress the fact that in spite of being the archetype of a logical machine, “the existence
of anything but an analytic approach” in computing makes the computer a perfect tool for pluralism.
Accordingly, in an area where formal thinking has yet shown to be of little use, Mitchell Resnick
uses computers and a constructionist approach to render decentralised phenomena more familiar to

students [Resnick, 1999]. In his book, he presents his inquiry situated at a crossroad between science
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and teaching, and the thoughts that emerged from it.
Turkle and Papert emphasize that decentralised phenomena, or emergent Al, present “a possibility
for new alliances between computation and the theorists as well as the practitioners of a science of

the concrete” and that concrete thinking should become “an object of science in its own right”

3.1.3 constructionism in science

As stressed by Turkle and Papert in the case of McClintock, many scientific researchers follow a
non analytic way of discovery and it is only at a second stage that analysis and formalism come
to strengthen the argument. In fields where a general theory is lacking, a lot of research goes
on through experimentation trying to delineate the contours that this hypothetical theory should
encompass while also work to try and formulate such a theory. This is the essence of the synthetic
approach introduced in section 2.3.

In fields where strong non-linear interactions predominate this approach is mostly seen. As re-
duction into smaller problems would lose the interaction and as the formal approach can cope with
only a small number of variables, statistical models or computer simulations are a widely used tool
for prediction.

A striking example to illustrate this assertion is the recent work in molecular biology on the
essential genes set. Following the sequencing of whole genomes of organisms, the question has been
raised “which genes are essential for a cell to be alive ?” Because of all the unknown interactions
that remain to be discovered, the method that researchers use to understand the system is not
by first theorising about the functions needed for a cell and then defining the corresponding gene
set. Instead they take a living cell with a small genome, a bacteria for instance, and then infer a
plausible essential genes set, either through comparison with known sequences of related organisms
[Fraser et al., 1995, Gil et al., 2003, or by inactivation of all genes one by one and testing each mutant
for survival - enormous and painstaking work [Kobayashi et al., 2003, Hutchison et al., 1999]. Indeed
the discovery of these genes is of considerable interest. The functions are likely to be found in each
living cell and could by themselves constitute a definition of life. And the discovery of essential genes
of unknown function can lead to new understanding of cell life processes [Kobayashi et al., 2003].

Actually being synthetic, this project is an instance of the constructionist approach. Indeed

we are facing a very complex and strongly non-linear system that remains poorly understood and
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constructionism provides a viewpoint to grasp the problem in which non-linearity strongly limits the
explanatory potential of the classical reductionist approach.

Another example is the current trend in developing humanoid robots that, despite sometimes
being a publicity-oriented engineering effort, can be another way to investigate cognition and its
relation with a body and an environment [Knoll et al., 2001, Ziemke, 2001]. Another is the so-called
“constructive biology” which is “biology motivated by the desire to understand how biological systems
actually are constructed by nature and develop over time rather than just to obtain a descriptive

understanding” [Nehaniv et al., 1999].

3.1.4 this research is constructionist

In investigating multi-robot behaviour linked with local communication, this research steps into the
world of non-linear interactions. In the experimental set-up presented here robots communicate only
with their nearest neighbours and this communication is either possible or not possible, like a step
function without intermediate values. The robots’ behaviour is affected by this communication, and
the behaviour itself has an influence on the availability of communication. There is no linearity as
the behaviour of a single robot cannot be investigated and then extrapolated to the group. The
behaviour of the group is not the sum of the behaviours of its individuals by the very fact of the
coupling of their behaviour by means of communication.

The method for investigating such phenomena in this research is to build the communicating
components of the group, first virtually in simulation, and then in reality with physical robots. By
this means emergent behaviours are demonstrated that the lack of formalism would make impossible
to predict theoretically. The unavailability of theory is bypassed by building “a public artifact”
[Papert and Harel, 1991].

In this respect this research is constructionist. We as researchers, are engaged in a process of
learning a discipline. But as it is scientific research the teacher is not available. Still we teach
ourselves through artifacts and, as Papert, it is believed that learning should “happen especially
felicitously” (op.cit.).

Following Harvey [Harvey, 2000], we draw attention to the fact that the phenomena constructed
actually resist the traditional methodology of reduction into smaller problems, because of strong

non-linear interactions. Arguing that a reductionist approach is impossible in this case is not the
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point here, but to present an alternative approach that might bring a constructionist insight into

such non-linear phenomena.

3.2 Simulation Details

The research follows a method of investigation that consists of, firstly, designing and implementing a
distributed control algorithm for the swarm, in simulation, to gain insights into the dynamics involved
and the problems that may arise. It must be borne in mind that the results are highly dependent
on the degree of accuracy of the simulation and represent therefore only partial results. This is
the reason that the resulting algorithms are then, secondly, implemented on real robots, taking full
advantage of the early simulation work.

As developing a simulation that takes account of every interaction contributing to the dynamics
would be impractical, a simple approach is implemented which tries to take into account those
variables relevant to the problem considered. In every choice that has been made while designing
this simulation care has been taken to always bear in mind that the algorithm will eventually be
transferred onto real robots hence, hopefully, avoiding impractical solutions.

In this simulation noise is not modeled accurately, but instead introduced as false sensor readings
or random message loss. The reason for this approach is that the best way to simulate sensor noise
is to choose a particular sensor, then record and use readings in all possible situations such that
sensor values in the simulation will be readings from these measurements. Here the purpose is to
test the robustness of the algorithm itself to white noise and not the robustness of the algorithm
on a particular robotic platform. This is the reason why such measurements were not made on the
linuxbots (see next section).

The probabilistic modeling described in [Martinoli and Mondada, 1998, Martinoli et al., 1999c,
Hayes et al., 2000] and [Lerman and Galstyan, 2001] is not used here as a design tool. In fact the
result of such modeling is a simulation that is certainly computationally less expensive than a more
realistic simulation but is not descriptive of the actual behaviour of the robots. Therefore it seems that
until further development, the probabilistic modeling methodology is more interesting as an analysis
tool, giving greater insight into which variables are actually relevant to the problem considered. To

actually design and refine the reactive behaviour rules requires more of a descriptive simulation. This
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is especially the case when dealing with emergent behaviours.

However, in this thesis, probabilistic modeling will not be used for analysis either. Firstly because
the approach of Martinoli et al. considers problems in bounded environments: in these cases, it is
possible to state a probability for a robot to be at a given place within the environment. This is
not possible in the present work, because of the initial requirement of an unbounded environment.
Secondly, the alternative approach of Lerman and Galstyan is also not applicable as such, for this
technique requires the multi-agent system considered to be markovian - i.e. the agent’s future state
should depend only on its present state. The algorithms developed in this work rely precisely on
action according to the confrontation of past and present local configurations of the network.

Nevertheless, we believe that a probabilistic modeling of the behaviour of the swarm at the level
of the network is possible and a preliminary step towards the characterisation of swarm spread on
the base of adjacency matrix information is presented in section 4.4.4. Such a measure would be
needed in order to confirm that the behaviour of modeled swarm corresponds to the one observed in

more detailed simulations.

3.2.1 robot architecture

The robots that will be used in the real robot experiments are the Linuxbots developed in the IAS lab
in Bristol' [Winfield and Holland, 2000]. They are wheeled differential drive robots with a circular
body that can be equipped with several sensors. In the simulation, it is assumed the robots are
able to move forward and turn on-the-spot with a precision ranging from perfect to errors of 10 %
on the distance or angle travelled, that they have infra-red avoidance sensors, are equipped with a
limited-range radio device and that they carry an omni-directional light sensor able to detect whether
a robot is illuminated or not.

There are three infra-red proximity sensors, one on each side of the front of the robot (L/R),
and the third at the back (B). All sensors have the same range, smaller than the range of the
communication device. Note that this does not take into account the variation in performance that
real sensors show. An idealised representation of sensor coverage is shown in figure 3.1.

The robots’ control system is designed as a finite state automaton. A robot will be in one of several

mutually exclusive states and switch between them according to environmental cues. In this study

ntelligent and Autonomous System Laboratory, University of the West of England, Bristol
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Figure 3.1: idealised coverage of avoidance sensors

the messages coming from other robots are considered as an actual part of the robot’s environment.
This is a direct consequence of the framework introduced by [Stgy, 2001c| as situated communication.
In this paper Stgy emphasizes that communication is actually tightly linked with a situation and in
certain cases cannot be separated from it without losing the meaning of the message. Robots that
are limited in their communication range actually wrap their messages with an implicit meaning that
the recipient can interpret as “this robot is in range of communication”. This thesis’ work starts
from the assumption that this implicit meaning can have an influence on the behaviour of the robot,
that is to consider it as an environmental cue.

Other environmental cues that are considered by the robot to alter its behaviour are infra-red
reflections from potential obstacles (robots or inert obstacles) and light from the light beacon. Again
it is not attempted to model the physics involved but instead a random possibility of binary false
reading is introduced that can be tuned to see the influence of a certain level of noise.

The control architecture can be divided, following [Brooks, 1986], into two layers: the avoidance
behaviour and the communication behaviour (see figure 3.2, with the transitions triggered by time
(T), proximity sensors (S) or S-algorithm (f)). It is an instance of the subsumption architecture
with two loosely coupled behaviours, one having a higher priority (avoidance) than the other 2.7.1).

Firstly, the goal of the avoidance behaviour is to steer the robot away from any obstacle that it
detects in a Braitenberg fashion [Braitenberg, 1984]: if it detects an obstacle from one side only, it
will command the motor from the opposite side to slow down (SPIN) and hence cause the robot to
turn in the opposite direction. If it detects an obstacle from both sides but none at its rear it will
move backwards (REVERSE) for a while and then turn randomly (SPIN again). Finally if all three
of its proximity sensors are on, the robot will stop until this situation changes (STOP).

Secondly the goal of the communication layer is to analyse the contents of incoming messages
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from neighbours and decide to either choose a random direction if the robot assumes it has rejoined
the group (RANDOM) or to turn 180 degrees because it needs to reconnect (BACK). The subtleties

of this layer will be discussed in chapter 4

B BACK  —
RANDOM
communication layer
avoidance layer
FORWARD B B
T T
\Y%
STOP REVERSE | —> SPIN <

Figure 3.2: State transition diagram of a robot

What is of importance here is the fact that when the robot is performing actions dictated by the
avoidance layer such as spinning, reversing or stopping, it does not take account of information from
the communication layer. In Brooks’ terminology, the avoidance layer subsumes the communication
layer, because of its priority for the robot’s safety.

In addition to these states, each robot keeps the following data structures:

e Twime counters: to control the robot in real-time, we implement a general clock as a counter in
the control loop. This gives the possibility of triggering behaviours in a time-related manner.

Several other counters are needed to give the robot some persistence in its behaviours.

e Local connection information: as the upper control layer relies on information about connec-
tions between robots, the individual robot keeps a possibly inaccurate map of the connections
between its neighbours. The reason that such information is critically needed will be discussed

in chapter 4.

o Receive buffer: in order to keep the incoming messages from neighbouring robots before pro-

cessing.
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3.2.2 communication

Following the preliminary work of Winfield, an idealised model is used to simulate radio communi-
cation between the robots. Firstly it is assumed that the wireless antenna is omnidirectional and
that the receiver is not able to detect the message if the transmitter is located further away than a
distance R, the communication range. These are sound assumptions as the communication device is
likely to use modes of modulation that experience the “threshold effect”, i.e. the sudden inability of
the receiver to demodulate the transmitted signal when the signal strength falls below the thresh-
old. Phase Shift Keying (PSK) and Frequency Shift Keying (FSK) are modulation schemes that are
likely to be used on mobile robot platforms and exhibit this effect. Secondly it is assumed that the
wireless network will enable the robots to exchange information through the same medium without
compromising the first two assumptions by using time, frequency or code diversity. Direct Sequence
(DS) or Carrier Sense Multiple Access (CSMA) are examples of such strategies to share the same
radio medium without interference [Winfield, 2000].

As a result it is not attempted to simulate buffer overflow or any other real phenomena occurring
such as signal decay and it is considered that a robot can send a message to all neighbours that
are within distance R. Noise is modeled as loss of the entire message with a constant probability.
This probability was chosen to range from zero to 10% (which represents a very poor signal-to-noise
ratio).

The situation depicted in figure 3.3 shows a group of robots together with their range of commu-
nication. In this example robot 1 can communicate with robot 2 and the latter with robot 3. Robot

4 cannot communicate with the other robots.

o

\\(

Figure 3.3: range of robots in 2 dimensions

This situation can be formalised using an undirected graph G = (V, E) where V is a set of points,
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the wvertices, representing the robots and FE is a set of lines, the edges, connecting one vertex to
another, representing the possibility for the two robots to communicate. It is possible then to draw
the graph G and hence the situation of figure 3.3 can be formalised as in figure 3.4.

In the simulation user interface the robots are represented as small circles with their ID in the
center and a small vector for their direction. When two robots are in range, a line is drawn between
them, as can be seen in figure 3.5. It is worth emphasizing here that the position information is only
known to the simulated environment; while the simulated robots themselves do not possess any such

knowledge.
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g

S e

Figure 3.5: Screen examples

3.2.3 environment

As previously stated in chapter 1, the primary interest here is to study global behaviours induced by
local interactions within the robot swarm. More precisely we shall seek to make the swarm attracted
by some environmental cue or adopt a distinctive global shape. With these aims in mind, we introduce
into the modeled environment a source of such a cue, a beacon. Its decay and occlusion through line-
of-sight obstruction are modeled and again the design was dictated by its possible realisation, the
metaphor being a bright light beacon (see figure 3.6). Noise is also introduced with probabilistic false

sensor readings. The simulation also includes the option to introduce, into the arena, some occlusive
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obstacles in the path of the swarm, as can be seen in figure 3.7. This allows us to test the behaviour
of the swarm in a more adverse environment.
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Figure 3.6: Line-of-sight obstruction
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Figure 3.7: Set-up with swarm, obstacles and beacon

3.2.4 artifacts

At a human scale, the real world is a continuous time space where things do happen in parallel. But
to model it, sequential and discrete time computers are used. The discrepancy between the reality
and its model can lead to problems with the accuracy and efficacy of the simulation results. Indeed
some behaviours of the robots observed in simulation might actually depend on the sequencing of

the model or the unrealistic absolute synchronicity. These behaviours are called artifacts.
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Obviously it is not possible to state with certainty that a particular behaviour is not an artifact
and this is the principal reason that real robot experiments are needed. Nevertheless some design
pitfalls have been identified in the literature [Harvey, 2000, Jakobi et al., 1995] as being common.
One such pitfall arises from sequentiality. If robots’ states are updated in sequence, this can lead to
the unrealistic preference of some states over others. To avoid this in simulation,the states of the
robots are updated following a pseudo-random sequence that changes at each step of the simulation.

Another artifact comes from synchronicity. However accurate they are, robots do not run syn-
chronously unless specifically designed to do so - and this can be very time and resource demanding.
Because we seek for a minimalist algorithm, asynchronous robots will be simulated. Hence the inter-

nal clock state of the robots is periodically randomly altered to avoid any unintended synchronicity.
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Figure 3.8: flowchart of the simulation
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3.3 Real Robot Experimental Details

3.3.1 the robots

The robots used for the experimental work, the linuxbots (see figure 3.9), have two wheels inde-
pendently controllable to steer the robot. They can be fitted with several sensors such as Digital
Video camera, light and infra-red sensors. Robot control is carried out by an embedded PC using
the IEEE PC/104 standard with a pentium class CPU. The robots have the advantage of running
Linux as in a normal PC, with all its compilation and networking facilities onboard. Fitted with
off-the-shelf Wireless Local Area Network (WLAN) technology, they are able to use the full potential
of the TCP/IP protocols [Winfield and Holland, 2000].

Figure 3.9: linuxbot with infra-red tower

As a result, we have a powerful research tool that can be handled as a normal remote UNIX
computer through the help of telnet shells. Control programs can be written in C/C++ and compiled
on board. It is a good tool for investigating behaviour-based robotics since different behaviours can
be represented as different processes running concurrently and independently.

More specifically, for the experiments the robots are fitted with three active infrared sensors on
the chassis for obstacle avoidance; and with a tower developed in the lab for distance measurement,
consisting of an array of eight active infrared sensors (see figure 3.10). This tower is needed because

of the design choice not to develop a dedicated short range radio device but instead to simulate
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the locality of the radio communication by taking distance measurements; then robots are able to
communicate if the measured distance is below a set threshold. Reasons why such simplification of
short range radio communication is realistic enough can be found in section 3.2.2.

The obstacle avoidance infrared sensors are situated as follow: two symmetrically at the front, and
one at the back. They have a rather small range depending on the color, angle and texture of the
reflecting surface (note the white plastic body of the robot). On average a robot detects the white
surface of another if it stands perpendicularly within 50 centimeters. Unfortunately, these sensors
share the same frequency and this can lead to a sensor on one robot misinterpreting an incoming
beam of a sensor on another robot as a reflection of its own beam. In this particular situation a
robot is detected as an obstacle with a considerably larger range.

This study investigates the potential of localised communication as opposed to global communi-
cation. The WLAN used to network the robots has a range in the order of a few hundred meters. To
be able to conduct experiments with a real possibility for the radio links to be disconnected would
need an arena the size of a cricket pitch. As the lab arena is 9 meters wide, a range of the order
of one meter is required in order to avoid the interference of the arena’s edges with the experiment.
As it is not possible to tune the WLAN range by reducing the transmission power or building a
Faraday cage around the antenna, we therefore faced a choice: either design a specific radio device
with the desired short range or simulate this requirement by measuring distances between robots and
allowing them to communicate only if within range. This latter method is referred in the literature as
virtual sensors [Billard et al., 1999b, Billard et al., 1999a]. Indeed it reduces design and testing time
as well as costs, but of course bears the inevitable disadvantages of any simulation. As previous work
using local radio communication [Watson et al., 2002, Watson et al., 1999] experienced problems of
limiting the range to such small distances, it was chosen not to attempt a specific design. The actual
design of a truly limited range radio device is a demanding work that was regarded as beyond the
scope of this PhD.

To simulate the locality of radio communication, another choice had to be made, between a
solution external to the robot such as a camera above the arena with an image processing track-
ing software, or to use a device fitted on the robot. It was the latter solution that was pursued,
firstly because this device was already available in the laboratory thanks to the work of Wefinitzer

[Wefinitzer, 2001, WeBnitzer et al., 2001], and secondly, despite using virtual sensors, it still presents

68



desirable characteristics such as: using a noisy device; creating information subjective to the robot;
functioning on the same level of dynamics, and it does not involve additional communications over
the network.

The infra-red tower consists of a circular array of IR emitters under a circular array of IR receivers
protected from unwanted reflections by a black cardboard ring (see picture 3.10). Because of the
too great range of the WLAN radios, measurements are taken through the IR tower to simulate the
required locality. Here each IR tower can be set to emit at different frequencies to identify each robot
and avoid the abovementioned problem of interference. However another problem is faced in the fact
that, as can be seen on the picture, the design use several emitters and receivers around the tower
to be able to pick up the signal in an omnidirectional manner. Because of the inevitable differences
in characteristics found in electronic components, if a robot senses another at a certain range and
then performs a small turn such that another receiver is facing the other robot, the measured range
is likely to change. This problem can be improved by suitable calibration but consider the opposite
situation: imagine that instead of the receiving robot turning, it is the transmitting one. In this case
it is another “emitter” that is facing the measuring receiver and again there is no guarantee that the
range measured will not change. However in this case no calibration is possible as the measuring
robot has no information about the orientation of the measured robot. This will have an impact on
the results of the real robot experiments.

To perform the calibration we proceed as follow: the robot to be calibrated (robot A) is placed
together with another one (robot B), separated by the chosen range distance. Robot B is set to spin
while the calibrating robot A takes several measurements to construct a mean of the variations in B’s
transmitter signal strength. Then the calibrating robot A spins for 45 degrees to construct another
mean related to the next of the 8 receivers on its tower. Each possible pair of robots were engaged
in this calibrating dance, resulting in a robot specific array of thresholds values indicating whether
a neighbouring robot is in range or not.

In order to maintain the same ratio between avoidance range and communication range as in the
simulation, the robots were calibrated with a range distance of 1.2 meters. With such range, swarms
with 7 robots were already very close to the edges of the arena.

Unfortunately it appears that the IR tower used is actually very noisy and the virtual sensor

result does not correspond with the basic assumptions the simulation was built upon (see section
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Figure 3.10: close-up of infra-red tower

3.2.2). Indeed the IR signal is not omnidirectional as the range is different in asymmetrical directions
around the robot, which result in a non-circular area of communication. It is difficult to say what
would be the result if a video tracking system had been chosen to simulate the locality of the radio,
but we believe that such problems in symmetry would not arise and we might be in a better position
to test the real behaviour of the simulated algorithms. However it is still highly valuable to study

the response of the algorithm under such non-ideal conditions.

3.3.2 experimental set-up

In all experiments the environment is the IAS laboratory arena, which is a 9 meter wide octagon
delimited by white edges suitable for IR reflection. The tiled floor is covered with steel strips in
order to power the robots for long experiments without having to change batteries. Each robot is
equipped with power pick-ups that enable it to extract the power from the floor by direct contact,
gliding on the floor (see pictures 3.11 and 3.12). A previous example of such an arena can be found
in [Martinoli et al., 1999a]. These gliding pick-ups exhibit some difficulty in absorbing the level
differences between the tiles of the floor (black edges on the picture). Because of this some robots
experienced short stops or deviations which placed extra noise on the experiment.

Each experiment started with the robots grouped near the center of the arena and lasted until
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Figure 3.11: bottom side of a linuxbot showing power pick-ups (on the plexiglas triangle)

the group was obviously disconnected (see pictures 3.12 and 3.13). We recorded odometry, local con-
nection information, state changes and video recorded experimentation runs. The starting positions

were not fixed but random. The results of these experiments will be discussed in chapter 4.

Figure 3.12: start of an experiment
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Figure 3.13: end of an experiment

3.3.3 robot processes

The real robots use the same control program architecture as in the simulation. But because the real
exchange of messages happens through the local area network, there is need to use TCP/IP protocol
to send packets. Although it would have been perfectly possible to establish a socket connection
between each robot and send reliable TCP packets, because of the size of the arena and the range of
the WLAN radios, we chose to use the unreliable User Datagram Protocol (UDP) (as the purpose is
to study unreliable communications likely to show packet loss and non-reciprocity of data exchange).
UDP thus more closely reflects the type of message exchange underlying this work. As a result the
control software is transparent to the conditions of total connectivity present in the laboratory. This
also simplifies dramatically the control software design.

Each robot concurrently runs two processes :

e the receiver process that catches incoming UDP messages from neighbours and feeds them, via

an inter-process communication queue, to the motor control process.

e the motor control process that processes information from neighbours coming out of the inter-
process communication queue, checks distances of neighbours, sends UDP messages to neigh-

bours if within range, updates the internal states and controls the motors.
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This division is needed because messages can arrive at any time and must find a listening process.
Figure 3.14 shows the Yourdon schematic representation of the processes running on two different
robots and the flow of data between them [Ward and Mellor, 1985].

It is worth emphasizing that this control algorithm architecture can be readily implemented in

real applications thanks to the choice of UDP protocol.

3.4 Goals for a Connected Swarm

Following the focus on minimalist design of Melhuish [Melhuish, 1999¢] and the preliminary work
of Winfield [Winfield, 2000], the aim is to keep the robots as simple as possible. In this case the
constraint of using radio communication is already present, so simplicity will be sought in reducing the
amount of information exchanged. It is believed that coherence is achievable only with a radio device
with limited range for communication and proximity sensors for avoidance. One of the primary goals
for this research is to design algorithms that use a minimum of information exchange and present
a control algorithm that is as simple as can be. The aim is to investigate the minimum core set of
abilities for the robots to achieve a connected swarm. This can be summarised as the goal towards
minimalism.

Another important goal in this study is to design algorithms that do not depend on a special num-
ber of robots, in other words scalability is sought. The solution developed needs to be efficient even
in the face of an increased number of robots. This concern has a huge impact on what information
is exchanged and how.

We also seek algorithms that are not prone to failure if one of the robots does not function properly
or if the communication quality is poor. This is referred to in the literature as robustness.

As a result of the general goals mentioned above, a low-level goal in this study is swarm coher-
ence, that is a group of robots that forms a network consisting of a single connected component.
For the purpose of inter-robot communication to be possible at any time, a unique stable swarm is
needed. A loss in this interconnection has to be constrained to a limited time in order to minimise
loss of messages. Moreover the swarming mechanism does not rely on information such as relative
position to allow a lost robot to reconnect. This is the reason a loss of connection for more than the

time needed for a robot’s return can result in a complete and irremediable loss of the robot, the focus
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being on unbounded environments. Coherence is therefore an absolute requirement for the swarm.
This coherence is also required when the swarm is attracted by a beacon or has to avoid obstacles
(see chapters 4 and 5).

Due to the underlying motivation on sensory network applications and for the sake of minimalism,
we also seek to minimise the communication overhead that is necessary to achieve coherence. This
is to retain maximum bandwidth for data gathering.

The second low-level goal: maximising the area covered by the robots derives from the un-
derlying motivation of distributed sensing, whose principle is to take measurements in parallel at
different places. Hence an over-stable group clumped tightly together would not be desirable. What
is sought is the most widely-spread yet stable swarm. Therefore the area covered by a swarm is
measured to quantify this goal and the influence of noise and increase in the number of robots will
be investigated in chapter 4.

In the task of being attracted to a beacon presented in chapter 5, a low-level goal is the distance
traveled by the centroid of the swarm during a certain time in the presence of obstacles or not.
The influence of noise and the number of robots will also be investigated.

In chapter 6, the possibilities for minimalist control of the shape of the connected swarm are
studied and the low-level goal is to make the swarm adopt a linear shape. Again robustness to

noise and scalability are studied.

3.5 Measures

3.5.1 measure of coherence

In this study, the first feature that has to be measured is swarm coherence. But as the loss of
a connection is a discrete event, the quantity that needs to be measured is not obvious. Should
we restrict ourselves to detect when the swarm becomes disconnected, or should we look for finer
criteria?

A definition of coherence would be:

The swarm is coherent if any break in the overall connectivity of the network lasts less

than the time constant C.
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The constant C' depends on the range of communication, the periodicity of the calling messages
(cadence) and the speed of the robots. In this study we have chosen C' = 10 times the cadence (see
figure 3.15). After such time, the swarm is declared disconnected and does not contribute to the

computation of results.

message message
check check

cycles
IHHH\HHHHI\HHHHHHH LU L]

cadence

constant C

Figure 3.15: schema of cadence and C' constant

But this definition is very crude and it would be of more use to have a gradation in levels of coher-

ence. This can be provided by the graph theory concept of n-connectivity and n-edge-connectivity:

Firstly, a graph G is connected if any two of its vertices can be joined by a path. Then
if G is connected and, for some set W of vertices or edges, G — W is disconnected, then

we say that W separates G.

For k > 2, we say that a graph is k-connected if either G is a complete graph K., or
else it has at least k£ + 2 vertices and no set of £ — 1 vertices separates it. Similarly, for
k > 2, a graph is k-edge-connected if it has at least two vertices and no set of £ — 1 edges

separates it.

The maximal value of k£ for which a connected graph G is k-connected is the connectivity
of G. Analogously the maximal k£ for which G is k-edge-connected is the edge-connectivity

of G [Bollobds, 1998|.

These two values are related by a corollary of Menger’s theorem to the number of independent?
and edge-disjoint paths [Bollobas, 1998] and therefore have a meaning in terms of robustness of the
network to connection or node failure respectively. Therefore, following the underlying concern for
sensor networks, the relevance of such a quantity to the ability of the network to propagate messages

is another motivation for measuring it.

2paths from s to ¢ that have only vertices s and ¢ in common
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Figure 3.16: Area covered by the swarm

The algorithm used to compute both values is found in [Even and Tarjan, 75|, similar computa-

tions such as number of disjoint spanning trees can be found in [Hobbs, 1989].

3.5.2 measure of area coverage

Another quantity that is important to measure is the area coverage of the whole swarm. This was
done primarily by triangulation of the bounding polygon of the graph [Nembrini et al., 2002], as can
be seen in figure 3.16 (middle). However, this metric appeared to be too sensitive to connection loss;
as in the example of figure 3.16, where the removal of an edge can potentially halve the measured
area coverage. Area coverage has therefore been redefined as the area covered by the radius of
communication of each robot within the swarm, without overlap (see right hand part of figure 3.16);
and robots disconnected from the swarm do not contribute to the measured area. This quantity is
measured with an approximation by square bisection, allowing for an error of less than 5 percent
of a single robot coverage, because of computational complexity. With this new definition of area
coverage, a smoother behaviour of the metric is achieved.

The underlying concern on sensor networks, possibly engaged in a monitoring task where area
coverage is critical, and where each agent has a local perceptual range, is another argument for the
redefinition of the area coverage metric.

Area coverage can also be approximated through the distribution of degree of connections over
the whole graph. This distribution depends on the radius of communication and is therefore highly
correlated with area coverage.

Appendices A and B develop simple geometrical ideas in order to compute an upper and lower
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bound of the area coverage (see sections 8.1 and 8.2). For the upper bound, the idea is to consider
the maximal area possibly covered by a group of robots where every robot is connected to all of
the others. In mathematical terms the graph formed by such a group of robots is called a complete
graph where each vertex has the same degree. Computing this area and dividing by the number of
robots gives the maximal contribution of a single robot to the whole area associated with its degree
of connection. By summing these contributions according to the current distribution of degrees gives
an upper bound to the area covered. As each robot has some information about the distribution of
degrees in their neighbourhood, such an approximation could be computed locally and become a cue
to trigger behaviour.

Using simple geometric properties we compute the contribution of a single robot to the area in all

possible cases of degree of connections. Then the upper bound will be given by the following formula:

Nrobots

A= D" ok)

i=1
where k; is the degree of connections and a(n) is a function that returns the maximal contribution
according to degree n (see section 8.1).

For the lower bound, the idea is to consider that the avoidance behaviour makes the robots stay
away from each other. Thus, the minimal area can be computed considering groups of robots placed
on the equilateral grid of edge length R, where R is the range of the proximity sensors.

Again we compute the minimal contribution of a single robot to the global area in all possible

cases of degree of connections. Then the lower bound is given by the following formula:

Nrobots

A= )" k)

where k; is the degree of connections and A(n) is a function that returns the minimal contribution
according to degree n (see section 8.2).
The area coverage is typically a measure that requires global knowledge but here are presented

means to get a local approximation.

3.5.3 other measures

To measure success of taxis with or without obstacles, we compute the distance of the centroid of

the swarm to the beacon. This is to be able to study the scalability of the algorithm as we increase
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the number of robots, as well as the influence of noise on the speed of the swarm.

In the case of a reactive morphology change, we measure the ratio between the added square
distance of each robot to the line starting from the beacon passing through the centroid and the
added square distance to its perpendicular (see figure 3.17). This gives an idea of the shape of the
swarm as would the ratio of the two radii of an ellipse (chapter 6).

Zé\il (dbeacon(Rmi) - Ryi)2
Z*ﬁil (dperpendicular(Rzi) - Ryi)Q

ratio =

d beacon

CentrOi d d perpendicular

Figure 3.17: reactive morphology change measure

When the swarm is separated into heterogeneous groups meant to self-organise (see chapter 6) the
group mean distance to the whole swarm center of mass is computed to measure potential differences
between them.

Also the mean minimum distance between individuals in different groups is introduced to measure

the distribution of the different groups (see figure 3.18). More formally it is defined as follows:

i = é S min (d(ri, ;)

r;€G’
r,€G

Figure 3.18: minimal distances between two groups
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Chapter 4

Coherence

“(...) to shift the responsibility from making choices to asking questions.”

John Cage.

In the real world, unbounded environments seem as ubiquitous as bounded ones. If it is sometimes
possible to restrict the environment or assume it is bounded, this is certainly not true in general.
Consider only fluid environments such as the atmosphere or the oceans. In trying to keep a group of
robots together in such an environment there are two approaches: either give the robots an ability
to come back towards the group or design a swarming algorithm that will not allow any robot to lose
the group.

The first approach involves sensing that will generally be limited in its range, or worse that will rely
on external information, such as GPS for instance, with the danger of making the swarm centralised
and non-autonomous, but will in any case increase the complexity of the robots. Following the desire
for minimalism presented in chapter 2, the second approach will therefore be pursued: throughout
this chapter the aim is to show the capacity of the algorithm developed to achieve stable swarming
of the robots. It will be referred to as coherence.

Extending the work of Winfield [Winfield, 2000], our investigations will be constrained to the study
of the potential of communication alone to achieve coherence. Solutions will not rely on positional
information either absolute or relative, also because such information is notoriously difficult to obtain.

Actually it will be shown that short range communication alone is able to generate sufficient
information to guarantee the coherence of a swarm. Furthermore the influence of noise and other pa-

rameters on the overall behaviour of the robots will be investigated and the robustness and versatility
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of the coherence algorithms demonstrated.

4.1 Starting Assumptions

Initially the research based itself on the work of Winfield that presented a study of data gathering
by a group of communication range-limited robots [Winfield, 2000]. In this research the robots move
randomly in a bounded space, collect a data sample at a certain time and then send this information
through the ad-hoc wireless network to a collection robot. The purpose was to investigate the
influence of a completely random and constantly changing topology of the ad-hoc network. Winfield
was able to show in simulation that a certain density of robots is optimal to most efficiently gather
the information.

Following this work came the idea that the behaviour of the robot could be influenced by the
communication information in order to keep the robots together: in the case of range-limited com-
munication, keeping together means staying within range of each other. The goal of coherence, as
defined here, is then to guarantee that the communication network forms a single connected compo-
nent. As a result, in achieving such an aim, the swarm would be able to operate in an unbounded
space.

Hence the starting assumptions for the research are :

the robots operate in an unbounded space.

they are equipped with range-limited omnidirectional communication devices as well as prox-

imity sensors to prevent collision.

the robots do not have any other sensing ability but proprioceptive.

e communication is two-way (duplex) but, importantly, any single message is unsolicited and

does not require an acknowledgment, i.e. it is broadcast.

The preliminary aim is to be able to guarantee the coherence of the swarm using an information
exchange as restricted as possible to minimise the algorithm’s overhead.
This is a rather strong set of assumptions that relates to the work on minimalist robotics and

distributed sensing networks. The most dramatic consequence of these assumptions is the fact that
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in an unbounded space a robot losing connection with the rest of the swarm and not reacting in an
appropriate manner will not be able to return, lacking any long-range sensing ability. Therefore the
coherence of the swarm is an absolute prerequisite for the following research of this thesis, and the

present, chapter describes work towards this particular aim.

4.1.1 minimalism

Minimalist robotics as presented in chapter 2 investigates the potential of robots that have strongly
restricted sensing and acting abilities, and/or follow a set of minimalist behaviours. One long term
aim of minimalist robotics is to find ways to build and control a large number of cheap and unreliable
robots, that despite their limitations and unreliability, are still able to complete the task. Hence the
present research fits well into such a framework. Other examples that follow this direction have been
cited in section 2.8.1.

One could argue that communication in itself is not a “minimal” ability in terms of, for example,
energy consumption or the complexity of devices involved. Our opinion is that this view only reflects
the current state of the art and that examples of “minimal” chemical communication in nature lead
us to think that truly minimal communication may become feasible. An early example of engineered
chemical communication between bacteria can be found in [Weiss and Knight, 2000]. Alternatively,
the RFID technology or the newly released ZIGBEE communication protocol could already represent

“minimal” communication solutions [Artaud et al., 2004].

4.1.2 distributed networks

If this research is to be applied in the field of distributed sensing, it is of course sensible to restrict
the communication overhead. In this case the bandwidth available is principally needed to distribute
the sense data and a control algorithm that minimise bandwidth is certainly an advantage. The use
of range-limited radio devices also limits interference in the medium due to signal decay. And of
course the possibility of operating in an unbounded environment is a crucial advantage. There is a
potential weakness in the sense that no positional information is available to tag the samples, but
as presented in section 4.5, there is potential for an alternative way to gain some confidence in the

general relative position of the robots.
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The field is rather developed because of its obvious applications and includes research that con-
centrates on the problem of data gathering such as the work of Estrin at USC as presented in section
2.11.2 or which investigates the networking problem if the nodes are unreliable, for instance see
[Bulusu et al., 2001, Foreman et al., 2003].

It is worth noting that these examples mainly look at networks consisting of fixed nodes, the
dynamics being a consequence of their unreliability. The investigation of moving active nodes is
studied by fewer groups, among which is the researches of Honary and Wessnitzer at the IASLab.
Honary is interested in monitoring underwater currents by analysing the deformation of a swarm
of diving robots [Honary and McFarland, 2003] and Wessnitzer uses information dissemination to
make a group of robots collectively catch a prey or, as a sheepdog, oblige another one to move
to a target [Wefinitzer and Melhuish, 2003]. Other examples include [Hackwood and G.Beni, 1992
Franklin et al., 1995]

These examples, while they do not rely on absolute positioning through the use of a GPS or
equivalent device, use relative positioning or directional information to complete their tasks. Actually,
most studies on coherence for swarm of agents have relied on positional information; see the well-
known example of Reynold’s boids for an early result and also the work on formation keeping, such as
[Balch and Hybinette, 2000] An interesting exception is the work of Melhuish using chirping robots
for swarming [Melhuish, 1999b], where the intensity of the chirping is used as a cue for the robot to
decide whether it is going in the right direction or not. But in this case the loss of a robot is not
considered critical to the success of the algorithm.

In the present research the only relative positional information is the interplay of the avoidance
behaviour and the range limitation of the radio-communication. It gives a robot a very approximate
idea of the location of its neighbours by telling it whether they are close, too close or not-at-all. The
next section will be show how the exchange of messages between the robots is critical to transform

this crude data into sufficient information to reliably achieve coherence.
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Figure 4.1: Basic algorithm

4.2 Algorithms

4.2.1 basic algorithm

This study restricts itself to use only the information on connections between robots. In other words
whether a particular robot is receiving a signal from another or not. The omnidirectionality of the
radio device implies that there is no positional indication about where to go in case of disconnection.
To transform this limited information into good use, the ability of the robot to turn on the spot
with reasonable precision is exploited: in the default state the robot moves forward. As soon as the
control algorithm detects a loss of wireless connection, the robot assumes it is going in the wrong
direction and turns 180 degrees to go back.

For simplicity let us restrict ourselves to the case of two robots (see figure 4.1):

Assume that the robots are initially in communication range, moving forward with random head-
ings (A). Unless they have parallel or crossing trajectories, the former situation undetrimental to the
connection and the latter being dealt by the avoidance behaviour, they will eventually lose contact
(B). In order to check whether this is the case or not, the algorithm uses a send-listen mechanism:
with a certain periodicity each robot broadcasts a message containing its ID to the others indiscrim-
inately and then listens for possibly incoming messages. If no message is received within a certain
time, each robot assumes it is out of range (B) and reacts immediately by turning 180 degrees in
order to reconnect (C). Then as soon as it receives a message it chooses a new random heading (D).

As no global time is implemented the robots should react asynchronously. However each robot
has the same range of communication so both reactions should occur within a short time, depending
on the periodicity of the calling messages. This periodicity is referred to as cadence.

This behaviour leads to the two robots maintaining themselves in range as if they were attached

84



Figure 4.2: N robots aiming for a complete graph

with an elastic band. The choice of a random heading when reconnection occurs makes the pair as a
whole follow a random walk. It is important to observe that the reciprocity of reaction, even though
it does not have to be simultaneous, is crucial to retaining the connection. Homogeneous robots have
equal velocities and the reaction of only one robot could lead to an endless pursuit.

Following Stgy, it is worth emphasizing here the fundamental characteristic of this paradigm to
achieve swarming. It is not the semantic content of the message alone that matters but the message
being tied with an environmental cue, that is the presence -or absence- of a message [Stgy, 2001c].
This algorithm thus stands in the framework of situated communication where the semantic content

of a message is closely linked to an environmental meaning.

4.2.2 connection degree algorithm: a-algorithm

Applying this basic algorithm to a greater number of robots by making each robot react to every
loss of connection leads to an over-reactive swarm which clumps together. To react to every loss of
connection is equivalent to aiming towards a complete graph where each vertex is connected to every
other. This is not the aim. Figure 4.2 depicts the result of applying the basic algorithm to a swarm
of N robots.

So the problem for the robot is in choosing which loss of connection not to react to. In order
to discriminate between different messages, these must be somehow tagged with the sender’s ID. A

first suggestion is that robots periodically sending messages containing their respective IDs only, this
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would enable a receiving robot to count how many others are in range, referred to as the connection
degree (remember that message collision does not need to be taken into account, see section 3.2.2 for
discussion).

A possible algorithm for choosing when to react thus consists of giving each robot a threshold
« on the number of connections, and making the robot react if this number falls below «. The
pseudo-code of the a-algorithm is set out in figure 4.3. This solution is close to the approach
adopted by Stgy in [Stgy, 2001c]. Actually Stgy’s algorithm relies on differences in the number of
neighbours without the help of thresholds. The algorithm is straightforwardly implemented on real
robots (LEGO mindstorms), using very crude infra-red communication and suffering therefore from
very unreliable communication channels. It is tested in a bounded office corridor and Stgy is able to
show that the algorithm makes the robots stay together more than random movement alone would

allow, but the coherence of the network is not assured.

measures

The measures used to test the potential of the alpha-algorithm are the following (see chapter 3):

e number of successful runs, a successful run being a run that ends with a connected swarm.

e cdge- and vertex-connectivity, which represent the minimal number of edges (respectively ver-

tices) that have to be removed to disconnect the network.

e area coverage, which is the measure of the area spanned by the communication radius of all

robots and normalised area coverage which is this value divided by the swarm size.

Each simulation run lasted 50,000 time steps with a cadence value of 100. Hence, each robot sent
500 messages. Each of the measures above was recorded once every 1000 steps and has been averaged
over the whole run. For a number of values of swarm size and «, 10 runs have been performed and
the result depicted is the mean value over these runs with its standard deviation. When the purpose
of the investigation is not to vary them, the chosen values for the remaining parameters are shown

in table 4.4.
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Create list of neighbours for robot, Nlist
k = number of neighbours in Nlist
i=0

loop forever {
i = i modulo cadence

if (i=0) {
Send ID message

Save copy of k in LastK
k = number of neighbours in Nlist

if ((k<lastK) and (k < alpha)) {
turn robot through 180 degrees
}
else if (k > LastK) {
make random turn
}
}

Steer the robot according to state
Listen for calls from robots in range
Grow Nlist with neighbours IDs

i++

Figure 4.3: pseudo-code for a-algorithm
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size 20 or 60
random noise 2%
Q 6

steps 50,000
runs 10

Figure 4.4: general parameter values for a-algorithm

results

Figures 4.5 and 4.6 depict the results in edge-, vertex-connectivity and normalised area coverage
with increasing values of the « threshold for swarms of 20 and 60 robots. The most striking feature
is the drop of connectivity between a swarm of 20 robots and a swarm of 60 (figure 4.5). Also the
parameter o show the ability to control the area coverage of the swarm: an increase in « corresponds
to a densification of the swarm (figure 4.6). This ability seems to level down as the parameter value
increases. It is important here to mention that the results depicted in these figures are only results

of successful runs, i.e. runs that ended with a connected swarm.
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Figure 4.5: edge- and vertex-connectivity for alpha-algorithm

The proportion of successful runs for each value of « is depicted in figure 4.7 and shows high
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Figure 4.7: proportion of finished runs for a-algorithm

variability, apparently independent of swarm size.

The ability of the parameter alpha to control the area coverage is not surprising. It follows from
the fact that increasing the number of connections sought by a robot makes it stay close to its
neighbours. As a result the overall swarm density increases. This phenomena occurs up to the point

where the avoidance behaviour takes over to prevent further densification.
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What is more unexpected is the drop of connectivity between swarm size in figure 4.5. In order
to investigate this more closely, the parameter « is fixed to the value of 6 and the size of the swarm
varied. The results are depicted in figures 4.8: the drop of connectivity can clearly be followed as the
size increases. It is also interesting to note in figure 4.9, that the area covered per individual robot
decreases slightly. This is due to the way area is computed: because of overlapping communication
area, robots that are within the swarm do not contribute as much as robots that are on the edge.
When the swarm size increases more robots find themselves within the swarm, hence the decrease of

the area covered per robot. Again these results are from successful swarms only.

connectivity
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Figure 4.8: connectivity with increasing swarm size, a-algorithm

As can be seen in the result for the a-algorithm, the coherence of the network is more or less
maintained for thresholds o = 6 or above. But there seems to exist special network configurations
that must be avoided in order to assure the coherence of the swarm (see figure 4.10). When a
robot (or a group) is linked to the rest of the swarm by a single communication link, the danger
lies in the possibility of a robot not reacting to the loss of such a connection essential to global
connectivity, because the number of remaining connections is above the threshold. In graph theory
an edge representing such an important connection is known as a bridge. In the case of a vertex that
is essential for connectivity, it is called a cutvertez: in such a situation, a robot failure would lead to

disconnection (figure 4.11).

90



5000

4500

4000 -

w
a
(=3
o

w
o
=]
o

—

area covered per robot
¥ ¥
o o
o o

[
a
j=]
o

1000 (-

500

20 40 60 80 100
number of robots

Figure 4.9: normalised area coverage with increasing swarm size, a-algorithm

Figure 4.10: extreme states: bridges
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Figure 4.11: extreme states: a cutvertex

This is the explanation of the drop in connectivity observed: the measures of edge- and vertex-
connectivity are global measures. This means that a single change in the network topology can
potentially lead to a decrease in the connectivity value. The appearance of a cutvertex for instance

will drop the vertex-connectivity to a value of 1. With an increasing swarm size, the probability of
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the occurrence of such situations increases. In fact the connectivity measures represent the resilience
of the network to component failure: the edge-connectivity value is the number of connections -
regardless which one - that can be lost without disconnecting the network, whereas the vertex-
connectivity value represents the number of nodes that can be removed without disconnection (a
node removal will happen, for instance, in the case of a robot network failure).

It is worth here reminding the reader that our main concern is the coherence of the swarm.
Because of the dynamicity of the swarm, this is a constant danger; whereas, and again for dynamicity
reasons, the probability that a robot failure occurs when being in a cutvertex situation is much lower.
Therefore the solution presented in the next section deals primarily with bridges and only indirectly

with cutvertices.

4.2.3 shared neighbour algorithm: S-algorithm

To avoid the extreme configurations of figure 4.10, we make use of the graph theory concept of
clustering: instead of considering only its own degree of connection to trigger a reaction, each robot
will receive from its neighbours their adjacency table - their neighbours’ list - in order to check
whether a particular neighbour is shared by other ones, that is whether a particular neighbour is the
neighbour of other robots.

The algorithm works as follows: for each lost connection a robot checks how many of its remaining
neighbours still have the lost robot in their neighbourhood. If this number is less than or equal to
the fixed threshold 3, the robot turns around and comes back. In parallel if its degree of connections
is rising the robot chooses a random heading.

For instance in the situation of figure 4.12, robot A, when losing the connection with robot B,
will check its other neighbours and finds that robots C' and D share B as neighbour. Hence A will
react and turn back only if the threshold (3 is set equal or greater than two. The algorithm thus
makes the robot try to maintain the triangulation observable in the figure, therefore avoiding critical
states. The pseudo-code of the §-algorithm for one robot is set out in figure 4.13.

It is interesting to note that the robot tries to maintain 3 shared connections with each neighbour
and one might think that this would lead to over-connectivity, as described earlier. But in fact each
connection can contribute to different sharings and such a condensed clustering is never reached. On

the other hand if the robot for instance establishes a new link with a robot that does not have other
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Figure 4.12: Shared neighbour

connections with the robot’s surrounding neighbourhood, it will react to the loss of this neighbour
until the shared connections are also established. This is precisely the behaviour that is sought.

The p-algorithm also prevents the formation of cutvertices as long as g is greater or equal to 2.
Indeed in the situation depicted in figure 4.14 a cutvertex is about to be formed. But the presence
of a cutvertex implies that there can only be one shared neighbour. Hence a reaction to prevent a
cutvertex providing 8 > 2.

Simulation confirms that the S-algorithm increases swarm coherence, as the triangulation is per-
fectly observable and therefore critical states avoided. A value of 8 equal to one is enough to achieve
coherent spread. Of course the communication bandwidth of the whole process is somewhat in-
creased compared to the basic algorithm, as well as the processing power needed for the robot. More
sensitivity to the message content (semantics) is also introduced. However, the communication is
still situated, and hence message loss or misinterpretation only leads to over-reactivity without loss
of robots, as the introduction of noise into the simulation confirms. Also this increase in bandwidth
does not affect the scalability of the algorithm as it concerns only exchanges between neighbouring
robots and will therefore not be propagated more than a single hop in the network.

If we set M as the maximum number of neighbours, then the length of a sent message will not be
greater than M? IDs (M neighbours with M neighbours themselves). Considering the robot’s body

and the communication area, an approximation for M can be computed as follows:

=[G

where Acomm is the communication area, Apyqy is the area of the robot body and [ | is the upper
rounded integer function.
It is worth here stressing that the results obtained with the increase of information exchange

needed by the S-algorithm, could not be achieved in the framework of the a-algorithm. Indeed the
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Create list of neighbours for robot, Nlist
k = number of neighbours in Nlist
i=0

loop forever {
i = i modulo cadence

if (i =0) {
Send ID message

Save copy of k in LastK

Set reaction indicator Back to FALSE

k = number of neighbours in Nlist

Create LostList comparing Nlist and 01dList

for (each robot in LostList) {
Find nShared, number of shared neighbours
if (nShared <= beta) {
Set reaction indicator Back to TRUE

if (Back = TRUE) {
turn robot through 180 degrees

}
else if (k > LastK) {
make random turn

3

Save copy of Nlist in 0Oldlist
b

Steer the robot according to state
Listen for calls from robots in range
Grow Nlist with neighbours IDs and connection info

i++

Figure 4.13: pseudo-code for -algorithm
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Figure 4.14: a cutvertex about to form

second order information (the neighbours of a neighbour) is crucial to detect bridges and cutvertices
before they form. This follows from the fact that the first order information of one robot connected
to another is not sufficient to determine the nature of this connection in terms of the connectivity of

the neighbouring network.

4.3 coherence

It has been shown that the a-algorithm is not able to guarantee the coherence of the swarm, mainly
because of its fundamental conceptual flaws. The following section will show that the upgrade to
the (-algorithm is itself able in (possibly noisy) simulations and to a certain extent in real robot

experiments, to guarantee this coherence.

4.3.1 simulation measures

The measures used to test the potential of the S-algorithm to achieve coherence are as follows (see

chapter 3):

o number of successful runs, a successful run being a run that ends with a connected swarm.

e cdge- and vertex-connectivity, which represent the minimal number of edges (respectively ver-

tices) that have to be removed to disconnect the network.

e odometry which records the proportion of time spent in the different states (forward, turn,

backwards and stop) over the whole run.
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Each simulation run lasted 100,000 time steps with a cadence value of 100. Hence, each robot
sent one thousand messages. Each of the measures above was recorded once every 1000 steps and
has been averaged over the whole run. For a number of values of swarm size, 3, cadence and noise,
10 runs have been performed and the result depicted is the mean value over these runs with its
standard deviation. When the purpose of the investigation is not to vary them, the values chosen

for the remaining parameters are shown in table 4.15.

size 20
cadence 100
random noise 2%
153 20rb
steps 100,000
runs 10

Figure 4.15: general parameter values for $S-algorithm

4.3.2 simulation results

Because of the interesting features of the S-algorithm, a much more extensive investigation of the
parameter space has been conducted, in order to show that the upgrade to the S-algorithm (and the
corresponding increase in information exchange) is justified and leads to an effective improvement.

Figure 4.16 shows the variation of the edge-connectivity with an increase in 3 threshold and swarm
size. The drop in connectivity observed in the results of the c-algorithm is no longer seen. In contrast
the p-algorithm shows good constancy of connectivity against swarm size increase. Figure 4.16 also
shows that the connectivity increases sharply with increasing 3, then levels out at 8 values between
5 and 10.

The reason for this leveling is due both to the avoidance behaviour that comes into action, and
the fact that, with high values of 3, aggregation takes some time to complete. The typical middlerun
configuration is a highly connected swarm with a few satellite robots that need some time to clump
with the rest of the swarm. Because of the global nature of the connectivity measure these satellites

can lead to a slight underestimate of the connectivity, that we would not observe with much longer
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Figure 4.16: connectivity against § value and swarm size

runs.

Also, smaller swarms seem to present a slightly lower performance, especially with higher values
of 8. The reason is the higher dynamicity of smaller swarms that makes them more brittle in their
behaviour (figure 4.17). The vertex-connectivity measure, almost equal to the edge-connectivity
one, is not shown for readability purpose. In figure 4.18 the increase of performance due to the g-
algorithm is obvious with most of the runs completing with a connected swarm. The value § = 1,
that is keeping one shared neighbour, is insufficient for reliable coherence, whereas a value of 2 is
already very good.

Figure 4.19 plots the variation of odometry against swarm size and (3 threshold. In this picture,
the surface for the “stop” state is not shown for simplicity, but it is clear from the others states
that the proportion of time spent in the stop state is very low. The higher dynamicity of smaller
swarms is clearly seen on the diminishing curvature of the “turn” state surface along the swarm size
dimension. This curvature corresponds to an increasing curvature of the “forward” state surface.

The next step is to test whether the desirable qualities shown by the §-algorithm are conserved
with increasing levels of noise and the results are depicted in figures 4.20, 4.21 and 4.22. Note that
these results have been obtained with increasing level of noise in communication, proximity sensors

and actuators simultaneously. Indeed a drop in connectivity with increasing noise can be observed
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Figure 4.18: successful runs against g value and swarm size

in figure 4.20, but this is hardly noticeable for 4 = 2. Meanwhile, there is no difference in the
proportion of success (figure 4.21). Taking a look at the odometry in figure 4.22, an almost linear
decrease of the proportion of the “forward” state is observable, with a corresponding increase of the

“turning” state.
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Figure 4.20: connectivity against noise, S-algorithm, (n=20)
The introduction of noise directly decreases connectivity with the loss of messages. Therefore
the performance of the algorithm with # = 2 in maintaining the connectivity at a high value is

impressive. In fact, with increasing noise, a robot experiences more disconnection and as a result

its reactivity increases. This maintains the connectivity. With its higher threshold value, a swarm
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Figure 4.22: odometry against noise, -algorithm, (n=20)

with § = 5 is already more reactive than § = 2, the potential to then absorb the direct decrease
of connectivity due to noise is thus lower, and the decrease in connectivity with increasing noise is
evident.

Results for area coverage show that the coverage per robot increases slightly for 5 = 5 with

increasing noise, suggesting that higher levels of noise will lead to disconnection (see section 4.4
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figure 4.47, page 122). This is indeed what happens in the real robot experiments. Nevertheless the
behaviour of the S-algorithm in the presence of increasing levels of noise is arguably very satisfactory.

Now we investigate the influence of the cadence C'in which messages are sent. Plotting connectivity
against cadence shows an increase until C' = 150 where a sudden drop is observed (figure 4.23).

Different values of 3 show the same behaviour.
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cadence

Figure 4.23: connectivity against cadence, S-algorithm

Looking at the odometry in figure 4.24, the proportion of the “forward” state increases as expected:
a robot turns to react to the absence of incoming messages after a cadence lapse; if the length of the
lapse increases the time spent going in a straight line must increase as well. But such an increase is
limited and the figure 4.23 drop corresponds to a plateau.

These two figures suggest an optimum value for the cadence in terms of connectivity. This optimum
lies between C' = 100 and C' = 200. It is most likely near the value C = 150 as this corresponds to
the highest value of the connectivity and to the start of the plateau in the odometry.

Now a robot needs 180 time steps to perform a U-turn (one time step per degree). Figure 4.23
shows that connectivity is highest when the value C is below this number, which means that the
robot, because of the steering layer priority, is not going to react to the next output of the (-
algorithm. Indeed the communication layer has an influence only if the robot is in the “forward”

state (see schema 3.2). The value C' = 50, which allows for ignoring two following outputs of the
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Figure 4.24: odometry against cadence, S-algorithm

B-algorithm, does not perform as well.

Thus the explanation for the drop at C' = 200 is that immediately after performing the U-turn, the
robot gets a new stimulus without having had the time to recover the lost connection that triggered
the first reaction. In the worst case a second U-turn will be triggered, that will put the robot back
into its initial direction, which is clearly harmful to the connectivity.

It follows from this analysis that the §-algorithm makes good use of a refractory state, ignoring

one of its outputs after reacting, but that this state should not last more than one network stimulus.
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4.3.3 real robot experimental measures

The real robot experiments have necessarily proceeded slightly differently from the simulations.
Instead of leaving a run to continue, even in case of unrecoverable disconnections, the run was stopped
whenever the disconnection was visually obvious. This was necessary because of the restricted size of
the arena, allowing a lost robot to return to the swarm by bouncing back from the arena boundary,
negating the assumption of an unbounded arena.

The performance of the real robot experiments was far below the performance observed in sim-
ulation in that disconnection always eventually occurred. Hence the measures used to test the
performance of the S-algorithm in the context of real robot experiments are modified as follows (see

chapter 3):

e mean length of the runs. This is a measure of the performance in maintaining connectedness,

as the run was stopped when the swarm was disconnected.

e edge-connectivity, which represents the minimal number of edges that have to be removed to

disconnect the network.

e odometry which records the proportion of time spent in the different states (forward, turn,

backwards and stop) over the whole run.

Each value was recorded every time a message was sent and has been averaged over the whole run.
For a number of values of swarm size, 5, and cadence, an average of 10 runs have been performed
and the result depicted is the mean value over these runs with its standard deviation. The number
of runs for each parameter value investigated can be found in table 4.26. When the purpose of the
investigation is not to vary them, the chosen values for the remaining parameters are shown in table
4.25.

The attention of the reader is drawn to the fact that the computation of the connectivity presents
a serious conceptual problem: as the real robots are asynchronous finite state real machines, there
is no global “tick” to allow for a meaningful sample of the topology of the network. The measures
were recorded onboard of each robot and the inevitable drift between the robots’ processing cycles
weakens the accuracy of the connectivity measure. As will be shown in section 4.3.5, the robots are

also heterogeneous, which makes the computed value of coherence even more difficult to determine.
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size 7
cadence 100
I5; 2
length | variable

runs table 4.26

Figure 4.25: general parameter values for S-algorithm

swarm size | 8 | cadence | nb. of runs
2 100 12
4 2 100 10
6 2 100 15
7 0 100 8
7 1 100 8
7 2 100 10
7 3 100 11
7 4 100 8
7 5 100 9
7 6 100 10
7 2 50 8
7 2 150 9
7 2 200 10

Figure 4.26: number of real robot experiment runs

In the real robot experiments, the robots run the same algorithm as the simulated robots, therefore
increasing the cadence value increases the number of program loops between each sent message.
Because of the decision to simulate the locality of communication through the help of the IR tower
(see chapter 3), the action of sending a message takes much more time in the real robot experiments
than in simulation. Thus the variation of the cadence value does not have the same meaning in

the real robot experiments. Figure 4.27 plots the real-time periodicity of message sending against
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Figure 4.27: time correspondence for cadence values

different values of C' (the “+” sign interpolates the cadence value C' = 0, corresponding to the

processing time of the IR tower).

4.3.4 real robot experiments

As mentioned above, the real robot experiments presented a much lower performance than the
simulations. The reasons for this drop in performance are investigated in section 4.3.5. The size of
the arena and the laboratory resources did not allow experiments with a larger number of robots.
Nevertheless the qualitative behaviour seen in the real robot experiments did not differ significantly
from that observed in simulation. Figure 4.28 on page 106 shows a frame sequence of two real robots
running the basic algorithm.

Firstly we investigate the performance of the S-algorithm with different swarm sizes. The results
are depicted in figures 4.29, 4.30 and 4.31. A much lower connectivity than in the simulation with a
swarm of 7 robots is observable, even in the presence of 10% noise.

Also the proportion of time spent in different states is very different than in simulation. There is
a decrease in the proportion of the “forward” state as swarm size increases, which is not noticeable
in the simulation results. It has to be noted that, for larger swarms (/N = 6 or 7) the robots spend
roughly the same time going forward and turning. From the previous discussion of the simulation

results, we know that better performance is obtained when robots turn less.
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Figure 4.28: real robots running the basic algorithm
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Figure 4.30: run length with different swarm sizes
But it is in the length, and the variability in the length, of the runs that the most striking difference
is to be seen. A cadence value of C' = 100 means a message sending lapse of 3 and a half seconds

(see figure 4.27); in the average run (2 minutes) each robot therefore sends an average of only 35

messages. By contrast a successful simulation run meant 1000 messages.
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Figure 4.31: odometry with different swarm sizes

When the influence of the 3 threshold on the behaviour of the swarm is investigated (see figures
4.32 and 4.33), the same features as in the previous discussion, namely very short runs, high variability
and differences in odometry are observable. The potential of the S-algorithm to tune the connectivity
is nevertheless apparent in figure 4.32. Figure 4.33 shows great correlation of shape; but differences
in absolute value are due to the fact that real robots are experiencing a higher level of noise. We
know from figure 4.22 (page 100) that increasing noise brings the proportion of “forward” and “turn”
states closer together.

Finally the influence of cadence on performance is investigated. The results are depicted in
figures 4.34, 4.35 and 4.36 (as there is no exact correspondence with the simulated cadence values,
comparisons with simulation results is omitted). Looking at the odometry (figure 4.36), we see that
the proportions of the different states vary with different values of C. The proportions for C' = 200
are quantitatively equivalent to the results of the simulation with N =7 and 8 = 2 (see figure 4.19,
page 99). A corresponding increase in the connectivity' could suggest that this parameter is open
for optimisation towards values larger than C' = 200.

But on the other hand, the mean length of the runs decreases with increasing cadence (figure 4.35).

In fact the difference between cadence values in simulation and values in the real robot experiments

Lthe high value for C' = 50 is due to high spinning of the robots as can be seen in the odometry
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Figure 4.33: odometry with different 5 values

has an unexpected consequence: as the real robot takes an average of 1.5 seconds to perform a
U-turn, the time needed by the IR tower to simulate the locality of the communication leaves no
opportunity for the cadence to drop below the turn-time and present the same characteristics seen
in the simulation. The pseudo-refractory state that showed better performance in simulation is then

out of reach. As this discovery has been made only late in the program of work, new experiments
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Figure 4.35: run length with different cadence values

could not be scheduled, but it seems very likely that dividing the turning speed of the real robot by

3 or 4 would be beneficial to the swarm coherence.
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Figure 4.36: odometry with different cadence values

4.3.5 reasons for lower performance

Although clearly showing the desired behaviour, the performance of the real robot experiments is
significantly worse than the simulation results. The coherence, that is the stable dynamic connectivity
of the robot network, is not maintained for long. The purpose of this section is to question the reasons
for this poor performance.

A first reason linked with turning speed has already been mentioned. This concerns the swarm as
a whole, but when recording the ID of the lost robot at the end of the run, some robots appeared to
get lost more often than others. Figure 4.37 shows the proportion of the runs in which each robot
got lost. This proportion has been computed over the 91 runs that involved seven robots (see table
4.26). Note that robot #2 and robot #7 especially show a very low likelihood of getting disconnected
(i.e. good performance).

An explanation for this variable likelihood of loss is crucial to understanding the low performance
of the real robot experiments and the remainder of this section is dedicated to a discussion of the
different possible reasons.

A primary cue about where the problem could lie has already been proposed in the discussion of
the optimisation of the cadence value. Two successive 180 degrees turns without straight movement

has been shown to be crucial for disconnection. But the lack of positive increase in the length of the
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Figure 4.37: likelihood of loss for each robot (note: 7 robots identified 0,2, 3, 5, 6, 7, and 8)

runs with increasing cadence, raises doubts about the unique influence of this factor.

In order to check whether the C' parameter has some influence on the distribution of loss across
the swarm, the likelihood of loss for each C' value is plotted (figure 4.38). C' = 50 is the only value
which presents a somewhat more even distribution. But this value makes the robots turn most of the
time until they eventually disconnect, which explains the slightly more even distribution. Although
these results are extracted from fewer runs, qualitatively the same distribution is observed.

If the global cadence value is not responsible for differential loss, there might be hardware het-
erogeneities in the robots that makes them react differently to the same algorithm. Indeed there are

and the first one can be found by looking again at the cadence.

a possible reason: heterogeneous cadence

Let us consider the possibility that the heterogeneities are due to the two different generations of
Linuxbots within the experimental robot population; one using 486 processor technology and the
other 586 (Pentium) technology. Since the cadence value is implemented as a count of algorithm
cycles rather than an absolute time value, could variations of processing time be responsible ? Note
that although the S-algorithm is very simple in software terms, it hides significant computation in

the IR tower subsystem and network communication.
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Figure 4.38: proportion of loss for each robot with different C' values

Figure 4.39 depicts the comparison of the increase of the time against the number of messages sent
between robot #0 and the others for different C' values. For robots #3, #5 and #6, the lines don’t
superimpose. The lines are slightly under the ones for robot #0 for all C' values. Robots #3,#5
and #6 belong to the more recent generation and have faster processors. But there is no difference
in speed between robot #0 and robot #2 and therefore the difference in likelihood of loss between

robot #0 and robot #2 cannot be explained by different platform speeds.

a possible reason: infra-red noise

As differences in processor speed are not sufficient to explain the differences in loss, another possibility
for hardware heterogeneities is investigated: the IR tower.

As can be seen in figure 3.10 (page 70), the infra-red tower used to measure the distances between
robots in order to simulate the locality of the communication device, is composed of eight IR receivers
mounted above eight IR emitting diodes. Each of these has properties that vary around a mean value
(see chapter 3, section 3.3.1). In order to compensate for these variations calibration of the IR tower
was conducted.

The question is whether the differences in likelihood of robot loss could be explained by the

differences in IR towers such as signal-to-noise ratio, etc. Figure 4.40 depicts the “in communication”
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Figure 4.39: robot cadence comparisons
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threshold values for each robot against the robot IDs.

In this plot, robot #2 represents a small but noticeable drop in the calibration value compared
with the others (see the characteristic drop in each plot of figure 4.40), but this is not the case for
robot #7. Alternatively, the signal-to-noise ratio could explain the frequent failure of robot #8, as
the threshold values are as a whole lower than for other robots (last plot of figure 4.40) but robot
#0, another bad performing robot, does not present the same characteristic.

This discussion suggests that the IR tower cannot be solely responsible for the differential loss of

the robots.
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Figure 4.40: calibration against robots ID
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a possible reason: avoidance behaviour

The collision sensors used on the robots are IR emitters and receivers and present the same variability
inherent to electronic devices as the sensors used on the IR tower. Moreover, all operate on the same
frequency. This means that a sensor can mistakenly interpret the IR beam emitted by the sensor of
another robot as the reflection of its own beam. The result is a potential interference of the collision

sensors at a range of two times the avoidance range, as illustrated in figure 4.41.
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Figure 4.41: avoidance sensors interference

Also, because of the size of the experimental arena and the fact that the S-algorithm needs a large
number of robots, the communication range had to be constrained to 1.2 meters to avoid interference
from the arena walls. As a result the ratio between avoidance and communication ranges is not the
same as that used in simulation: r = 5 in simulation and r = 2.5 for real robots. This restricted
communication range turned out to be actually below the interference range, which sometimes made
a returning robot veer away from the swarm before being able to reconnect.

When investigating possible heterogeneities within the swarm, it turned out that the collision
sensors have very variable ranges due to possible misplacement of the receiver within the sensor
enclosure; a misplaced sensor leading to reduced IR received signal strength, and thus to a reduced
sensor range. Again, because these heterogeneities were spotted after the experiments, it is difficult
to assert with certainty that the sensors haven’t changed platform between the experiments and
when these heterogeneities were investigated. Nevertheless, robot #2 and to a lesser extent robot
#7 presented sensors with misplaced receivers compared to the rest of the swarm, which makes them

more prone to stay within the swarm than the others.
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summary of the possible reasons

Because of the delay between the experimental work and the discovery of the role played by het-
erogeneities within the swarm on the performance, the precise cause of the differential loss cannot
be determined with certainty. But the role played by collision sensor interference and heterogeneity
seems to be the most likely explanation. It is also possible that a combination of the potential issues
discussed here has the power to explain this differential likelihood of loss. Because one of these issues
results from an implementation choice, namely the simulation of locality through the IR tower (a
choice that would ideally not be repeated), then deeper analysis would not shed greater light on the
[-algorithm.

But, the IR tower limitations excepted, this investigation on the potential causes of differential
loss has shown several directions for the improvement of the robots: reducing the forward speed
of the robots; controlling the cadence more tightly; increasing the size of the arena or, conversely,
reducing the range of the avoidance sensors. Also this analysis suggests that the g-algorithm is able

to cope with heterogeneities in cadencing, which was not expected.
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4.4 Spatial Covering

As one of the underlying motivations for this study is to build distributed sensor networks it is
interesting to study the range of behaviours that the implementation of the §-algorithm is able to
produce without the aid of any new sensing or processing abilities. The following sections contain a
description of work on spatial covering and localization, involving only strictly homogeneous swarms.
Again, investigations are conducted firstly in simulation and only the spatial covering algorithm is
tested on real robots.

It is of course of primary importance for sensor networks to be able to control the area coverage of
sensing components. This corresponds to the control of the granularity of the sensing. The idea is to
test the precise role played by the threshold coefficient § and how the area coverage can be controlled

through it. Figure 4.42 shows that differing 3 values indeed have an influence on the swarm coverage.

Figure 4.42: examples of area coverage with S =1 and =4

Figure 4.43 shows the area covered by a swarm of 40 robots when the S threshold follows a
transition from § = 1 to § = 20 and vice-versa. We observe that the threshold value can indeed
be used to control the area coverage. It is also interesting to note that the spreading is much faster
than the aggregation: when [ is raised the area coverage slowly reduces to reach an equilibrium in
around 100,000 time steps, whereas the swarm only needs 50,000 steps to return to the initial spread.
Figure 4.44 depicts the corresponding edge-connectivity, primarily increasing towards a plateau and

then swiftly reducing.
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Figure 4.43: area transition from g =1 to § = 20
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Figure 4.44: connectivity from g =1 to § = 20

4.4.1 spatial measures

The area covered by the robot swarm is defined as all points on the plane that are within the

communication radius of at least one robot. We measure this area using an approximation by
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bisection (see chapter 3). In the simulated case, position information was readily available, whereas
positions for the real robot experiments have been assessed by visually following every robot, frame
by frame, on the video recordings of each experiment. This means of getting the positions of the
robot is prone to errors but an automatic video tracking system was not available at the time of the
experimental work.

The measures to record area coverage are as follows:

e area coverage and area coverage per robot, which are the measure of the area spanned by the

communication radius of all robots and the same value divided by the swarm size.

The length of the runs in simulation and in real robot experiments are the same as in sections 4.3.1

and 4.3.3 (pages 95 and 103).

4.4.2 simulation results

When the mean area covered by the robots during the run is plotted against 5 threshold for different
swarm sizes, this gives the family of curves of figure 4.45. In this figure the potential of the 5 threshold
to control the area is clear, and control is effective up to a value of 8 = 10. Beyond this value the
contraction of the swarm takes longer than the length of the run, and is therefore not measured. But
in any case, the contraction is limited firstly by the avoidance behaviour and secondly by the size of
the robot body. What is also of primary importance is the linear increase of the area when increasing
the size of the swarm. This increase can also be modulated by the 8 threshold, unharming to the
linearity. This shows that there is no leveling of the action of the algorithm and we can therefore
potentially control the area of any swarm size.

The area divided by the number of the robots gives the mean contribution of a single robot to
the area (figure 4.46). For all swarm sizes, the slope of the decrease of the contribution is strikingly
similar. This proves that the amplitude of the S-control is more or less the same with any number
of robots. Of course the effect on the whole swarm area is bigger with larger swarms (figure 4.45).
The decrease of the contribution for increasing swarm sizes is due to overlapping communication
areas: for larger swarms a greater proportion of robots are situated within the swarm. Because of
overlaps, these robots don’t contribute as much as robots at the boundary to the whole swarm area.

As expected, this decrease levels out with increasing swarm size.

120



25

2b
15F
n =100

n =80

1k
n =60
\ + n =40

area covered

+

0.5r

! + + + n=20
%ﬁ + + L, n=10
—+ - T n=7
ol . L . . .
1 2 3 4 5 10 20 40
beta threshold

Figure 4.45: area covered against $ and swarm size

5000
4500 -
4000 -

3500 -

n =10

n =20

N}

o

o

=]
T

area covered
N w
o o
o o
o o
: :

1500

1000

5t

s 45 10 20 a
beta threshold

-
N
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Now we investigate the influence of noise on area coverage and the results can be seen in figure 4.47.
Again these results have been obtained with increasing levels of noise in connection, proximity sensors
and actuators simultaneously. The plot of the normalised area shows that it stays quite constant for
B = 2 and increases slightly for § = 5. The increase corresponds to a drop in the connectivity and
a high proportion of “turn” state. This suggests that an increase in noise proportion could lead to

a more brittle swarm. Nevertheless the fact that the area shows such a small variation with a large
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increase in noise is a striking feature of the algorithm.
Finally the spread of the swarm against an increase in the cadence of sending messages is studied.
The results are depicted in the figure 4.48. A very slight increase in the area is noticeable for C' = 200

and corresponds again to a drop in connectivity (see figure 4.23, page 101).
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Figure 4.48: normalised area coverage with increasing cadence

122



4.4.3 real robots experiments

The results of real robot experiments on area coverage are depicted in the figures 4.49 to 4.51. Note
that the correspondence in area values between real robot experiments and simulations is computed
through a geometrical transformation that does not consider lens distortion. The comparisons in the
figures are thus more qualitative than quantitative. An increase in swarm size shows a decreasing
curve for the normalised area, similar to the simulation results (figure 4.49). This behaviour is also

due to overlaps, as described in section 4.4.2.
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Figure 4.49: normalised area with increasing swarm size (5 = 2)

When parameter § is varied a decrease in the normalised area coverage is noticeable (figure 4.50),
although the range of this decrease is not as large as that seen in simulation. The reason could be
the lack of connectivity. Indeed such values in connectivity are in simulation translated into larger
area coverage. Considering cadence, area coverage shows no sensitivity to an increase but a higher
variability (figure 4.51). Figure 4.52 shows typical dispositions of real robots running the S-algorithm

with differing 8 values.

4.4.4 area coverage estimators

Chapter 3 (and Appendices A and B) introduced a method to estimate, from the adjacency matrix

of the network, an upper and lower bound for the area coverage of the swarm. Figures 4.53 to 4.57
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present the results of a set of experiments testing this hypothesis. Runs lasted 100,000 steps and 5
runs were needed to compute the mean and standard deviations.

It results from figure 4.53 that the estimates are upper and lower bounds for the area coverage.
However, when the normalised values are considered (figure 4.54), we observe that these bounds fail to

display the same behaviour as the actual area coverage. More specifically, the decrease in normalised
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Figure 4.52: real robot experiments with § =2 and § =6
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Figure 4.53: area and estimators with increasing swarm size

coverage that occurs with increasing swarm size is very slightly observed in the behaviour of the
lower bound, while the upper bound shows a completely opposite behaviour. Also the contraction
of the swarm with increasing /5 values is not observed (see figure 4.55).

The reasons for such inaccuracies are to be found in the fact that the basic assumption for the
estimation of the upper bound is placing each robot on a circle in order to measure its contribution
to the overall area. This results in every robot contributing something to the area (with the small
outermost region, see Appendix A). On the other hand, in a simulated swarm, there are robots

situated within the swarm whose area is completely covered by others. And the number of such
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robots increases with increasing size.
The example presented in figure 4.56 shows that although being far above and under the area

coverage value when averaged over whole runs, the bounds estimators are not strict lower and upper

bounds. Indeed the area coverage value occasionally exceeds the upper bound value or finds itself
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below the lower bound. As non-strict bounds typically are difficult to narrow (usually loosing bound-
ing ability), this feature raises doubts of a possible improvement in the bounds without involving

more than just consideration of the vertex degree value of the graph.
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Figure 4.56: normalised area and estimators during a run with differing g values

Figure 4.57 shows the influence of noise on the estimation of the area. The direct influence of
noise on the connections does not seem to have a substantial influence on the area estimators. This
corresponds well with the behaviour of the area coverage in the presence of noise.

Despite these inaccuracies, the area coverage estimators still present a crude idea of the spread
of the swarm and can be of use in different contexts such as, for instance, distributed sensing. It

is worth noting here that the estimators proposed did not make any use of neighbour information,
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which indicates room for improvement within the framework of the S-algorithm.

4.4.5 summary

In this section, the power of the §-algorithm to achieve control of swarm spread has been demon-
strated in simulation and this ability is not lost with increasing noise. The relative difficulty of the
real robot swarm in demonstrating the same behaviour is linked with practical issues in achieving
coherence and not due to some physical impossibility.

Also, a method has been presented that is a means for deducing upper and lower bounds for area
coverage from the adjacency matrix of the network, which performs well despite high frequency time
fluctuations. This method represent a first step towards the characterisation of an efficient robot
swarm through analysis of the adjacency matrix of the network. Such a characterisation would be
needed for the assessment of a probabilistic model describing the dynamics of the robot swarm by
modeling changes in the network (see chapters 3 and 7).

In the next section a means will be presented for the robot to locally deduce its relative position

within the swarm.
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4.5 Spatial Selection

One of the initial aims of this research is to achieve coherence without the help of relative posi-
tions. The previous sections of this chapter have shown that this is indeed possible. Now it will
be demonstrated that the increase of information exchange introduced by the $-algorithm brings a
straightforward way to infer a very crude approximation of the relative position of each robot within
the swarm.

Nagpal [Nagpal, 1999] describes an interesting solution within the framework of amorphous com-
puting, using triangulation on hop counts to derive an estimate of the position. But this algorithm
makes use of a spread of information that will use some of the available bandwidth. Moreover the
problem of choosing the three robots needed to initiate the spread is not addressed.

The idea developed here instead makes use of the information already available to the robot by

the requirements of the §-algorithm: its own degree of connections and those of its neighbours.

4.5.1 description

At the end of its cadence round the robot compares its connectivity degree to the ones of its neigh-
bours. If its own degree is the greatest it assumes it is located within the interior of the swarm, and
if it is the smallest, the robot assumes it must be at the border of swarm. This process is equivalent
to finding the local extrema of the connections degree potential over the swarm.

More formally, a robot R considers itself an insider if
degr > degr,VR; € Neigh(R)
and an outsider if
degr < degr,VR; € Neigh(R)

and neither if these two conditions are not satisfied.

The justification for this method is simply that the degree K tends to be lower at the border. The
reverse argument holds inside the swarm. Of course this approach cannot guarantee to select all of
the robots that are actually at the border of the swarm, but that is the price to pay for locality and

low bandwidth exchange.

129



Another drawback is the possibility that a robot believes itself to be at the border although it is
not, when considering large groups of robots where local minima can happen within the swarm. But
these situations are not stable and depend on low values of (.

The advantage is that this selection is done completely locally and that it is able to cope with any
degree of dynamicity as a change in the network is immediately reflected in the selection. A biological
example of such a dynamic selection can be found in cyanobacteria, like in the genus Nostoc, which
forms filaments where 5 to 10% of the individual cells differentiate into heterocysts to produce colony
essential nutriments. If this individual is removed from the filament, reorganisation occurs and a
new individual differentiates. To achieve this differentiation, intercellular communication is essential

but it remains unclear what precise mechanism is at play [Adams, 1997, Shapiro, 1988|.

4.5.2 measures

The measures to record performance of the spatial selection algorithm as follows:

e insider and outsider mean distance to the center of mass and its standard deviation, for both
groups of selected robots, the distance and its standard deviation is computed, in order to

measure the difference between them.

e whole swarm mean distance to the center of mass as defined in chapter 3 for comparison

purposes.

e proportion of insider/outsider robots in the swarm, to measure the ability of the algorithm to

select robots.

The length of the runs in simulation are the same as in section 4.3, namely 100,000 steps.

4.5.3 simulation results

The results of simulation runs are depicted in figures 4.58 to 4.63. Firstly we investigate the influence
of swarm size and 3 value. In figure 4.58, there is a clear separation between the average mean
distance to the center of mass of “insiders” robots (surface below), “outsider” robots (surface above)
and the swarm’s global mean distance to the center of mass. This clearly confirms the ability of the

proposed algorithm to spatially select robots.
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Figure 4.59: proportion of selected robots

When considering the proportion of both groups of robots in the swarm (figure 4.59 “outsiders”
surface above, “insiders” surface below) “insiders” happen to be less frequent. The explanation lies
in the fact that the number of robots at the boundary of the swarm is, in “healthy” swarms, larger

than at the local connection degree maxima. Which means that more robots are potential candidates
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for becoming “outsiders”.

When observing the mean distances and proportions for a larger swarm (n = 60) with different
B threshold values (8 = 1 and 3) during a run (figures 4.60 and 4.61), it turns out that a smaller
value lowers the performance of the selection. Indeed the difference between distances to center of
mass is reduced. This can be explained by considering the potential formed by all connection degree
values on all robots. With small S values, the dynamicity of the swarm is high and this potential

is typically very hilly, resulting in many different local maxima and minima in large swarms, as can
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Figure 4.61: proportion of selected robots during a run

be seen in figure 4.61. Typically the number of local minima and maxima increases as the swarm
expands thanks to its low [ threshold. As a result the probability for these local extrema to be
located outside or inside the swarm is lowered. Increasing the 8 value leads to a more even potential
lowering the number of local minima and increasing selection performance.

Studying the influence of noise on the spatial selection algorithm (figures 4.62 and 4.63) shows
that the proposed approach is globally resilient to noise, which is of remarkable interest considering

that connection noise has a direct impact on the degree values of the swarm.
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4.5.4 summary

This section has presented a method for an individual robot to declare itself near the center or at the
boundary of the swarm, with the help of information already available, because of the requirements
of the B-algorithm. It has been shown that despite short-term inaccuracies at the individual level,

this algorithm is actually very efficient when whole swarms are considered over the run. It is also
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very resilient to noise.
Indeed, while the information provided by this technique is not as precise as relative or global
coordinates, it is nevertheless a reliable information the robots can act upon to trigger specific

behaviours necessary to the task being implemented.

4.6 Summary of the Chapter

discussion of o and S variants

Although coherence is greatly improved in introducing the shared neighbour variant the S-algorithm
does have some drawbacks.

The main one is the increase of radio-communication bandwidth, as each robot needs to transmit
its neighbours’ list to its immediate neighbours. This indeed increases the communication overhead;
but as the communication is assumed to be local and as the neighbour information is only needed by
the robot’s neighbours, this isn’t a real problem when dealing with large groups of robots. In fact,
the B-algorithm displays an almost absolute scalability: its complete locality and distributedness put
no limit in the number of the robots involved. There is a slightly more subtle implication, which
is the new importance of the identities of the robots. When two robots exchange their list, it is
of critical importance that they agree on each others’ IDs. One solution is to give every robot a
unique identification number. This might have no implication for our experiments as the number of
robots will be constrained but it will certainly be a limiting factor if we were to control a very large
number of robots; but the example of unique hardware MAC addresses across the internet (around
25 millions of different IDs) shows the potential of the algorithm as it stands.

A solution could be found by dynamically allocating the robots’ IDs. A very simple approach
consists of a previously unnamed robot in choosing its ID as different from the list of IDs received
in the first message. Then comes the problem of changing the ID of the twins that eventually come
into contact. This can be done deterministically by setting the new ID as the sum of all IDs received
in the last message (modulo some limiting value), through the hypothesis that the neighbourhood
of each twin is different. Of course the number of shared neighbours will be erroneously computed

until the twins directly send themselves a message but this will affect coherence only slightly.
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coherence

The [-algorithm does not make use of relative positions within the swarm. The spatial information
needed for the robot to react is embodied by the presence of a message or not. Instead of concentrating
on maintaining distances as would be done for a formation algorithm, the idea is to concentrate on
the connectivity of the immediate neighbourhood. Global connectivity comes only as a side effect,
although an extremely valuable side-effect.

It has been shown in this chapter that the parameter § is able to control the edge and vertex-
connectivity of the swarm network. This is of primary importance: these measures are global mea-
sures, that is to say they hold for the whole network; if there is on one end of the network a robot
with a unique connection to the rest of the swarm then both measures will take the value of 1, dis-
regarding the connectivity of the remaining robots. On the other hand, the § threshold is a strictly
local parameter. Therefore its capacity to maintain and tune the global connectivity is of remarkable

interest.

area coverage

Summing up the results for area coverage, we can say that the desired control of the swarm is possible
by tuning the parameter 5. It has to be noted that the amplitude of the control is determined by
the ratio between the communication range and the avoidance range/robot body size. With a higher
communication range a larger coverage can of course be met with a low 8 value, while the limit for
the smallest area will still be set by the avoidance range and the robot body size.

Also, the coverage is not greatly affected by an increase in noise, which is of primary importance
if the coverage has to be guaranteed in noisy environments.

A way to deduce the coverage knowing the distribution of connection degrees has also been inves-
tigated and showed interesting results, but the upper and lower bounds created fail to really exhibit

the same behavioural features as the actual coverage, especially with the influence of the threshold

8.

136



spatial selection

The p-algorithm provides enough information exchange for a selection of distinctive robots. This
selection can be of great interest in the context of distributed sensing: indeed the robots that select
themselves as being within the boundary of the swarm are preferable candidates for the garnering
of information for they have, by definition, a high degree of connections and should be situated near
the center of mass of the swarm. The outside robots on the other hand can be used for the sensing
itself for they should present a nicely spread group. Alternatively, the outsiders can be used to

communicate the sensed data with some neighbouring external agent.

(B-algorithm is similar to differential adhesion

The crucial role played by differential adhesion for morphogenesis has already been mentioned in
section 2.12.3. In fact the 8 threshold can be regarded as a “glue” parameter for the robot, a high
value meaning a very sticky robot. Indeed by raising the threshold, the robot will react to more
connections and hence will stick more to the others. With a low value, it will move more freely
within the swarm. This analogy will be further investigated in chapter 6, where it will be shown that

an extended algorithm can demonstrate somewhat typical behaviours of cells during morphogenesis.

[p-algorithm is dimension independent

It is interesting to note that the S-algorithm has been straightforwardly transposed to a three dimen-
sional simulation (result not included in this thesis). The ability to tune the spread of the swarm and
the possibility to spatially select the robots was clearly observed. These behaviours can therefore be
seen as direct consequences of the basic design and not a particularity of a precise dimension. In fact
the behaviours presented in this chapter are defined inside the environment defined by the connected
swarm and are therefore independent of the dimension of the environment the swarm is embedded

within.

noise in simulation and in real robot experiments

In the simulation noise has been introduced as false sensors readings, variability in the actuators or

complete message loss in the case of communication. According to this choice, levels of noise were
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increased from 0 to 10% uniformly. This is by no mean realistic, as there is no reason that the
amount of noise at the actuator level should be proportional to the noise at the communication level.
In fact, 10% of message loss represents a very poor communication channel by current standards.

This choice is a non-situated implementation of noise: in the real world, noise is linked to a
situation. Take for instance the avoidance interference problem described in section 4.3.5. The real
robot implementation indeed suffered from such poor representation of noise in the simulation.

However, it also suffered to a great extent from the choice of the IR tower to simulate the lo-
cality of the communication device. This choice challenged one of the basic assumptions of the
research, namely that the range of the communication device could be accurately described by a
circle [Winfield, 2000]. This was not the case on the real robots presented in this thesis, but we
believe that effort put into the design of a specific device should provide the desired regular locality,
and lead to better results. Nevertheless, the 5 algorithm still performed well despite this adverse
context, which shows its intrinsic high resilience to noise.

In fact, the similarities we observe between the behaviour of the simulations and the real robots

strongly validate both implementations of the §-algorithm on these different platforms.
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Chapter 5

Taxis

“ Nel farsi di ogni avvenimento che poi grandemente si configura c¢’é un concorso di minuti
avvenimenti, tanto minuti da essere a volte impercettibili, che in moto di attrazione e di
aggregazione corrono Verso un centro oscuro, verso un vuoto campo magnetico in cui prendono
forma: e sono, insieme, il grande avvenimento appunto. In questa forma, nella forma che insieme
assumono, nessun minuto avvenimento é accidentale, incidentale, fortuito: le parti, sia pure

molecolari, trovano necessita - e quindi spiegazione - nel tutto; e il tutto nelle parti. ”

L’Affaire Moro

Leonardo Sciascia

The movement of the multitude is all a question of coordination. The individual in a crowd is
always confronted by the movement of its peers and the attention needed to avoid collisions makes
a persistent destination easy to forget. Ideas to overcome this difficulty without the help of direct
control of the individual, which very soon becomes intractable as the multitude grows, involve either
the transformation of the environment, drastic constraints on the movement allowed or submission
to some “coordinator”.

Take road traffic as an example. The centralised framework that underpinned the use of traffic
lights to coordinate the flow of cars has been in many cases progressively replaced by roundabouts.
In the transformed roundabout environment, traffic coordination emerges from the interplay of the
constrained environment and the learned behaviour of the drivers. More general coordination in
road traffic relies also on severely constrained behaviours of the drivers - think of the convention on

the side of the road used. Also submission to a road “coordinator” implies some confidence in his
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“insightful” guidance.

Now that the aim of a coherent swarm has been achieved, the question is whether its global move-
ment is condemned to remain random or whether a coherent swarm that displays tazis® behaviour
is possible. In this chapter not only will it be shown possible, but also that the solution does not
require transformation of the environment or choice of a leader and involves only a limited constraint

on the individual’s movement.

5.1 Environmental Incentive

In this investigation of swarm movement, the aim is to show that it is possible to control the movement
of the swarm by providing an environmental “attractor”. To this end, a beacon is introduced into
the environment, that is, an environmental cue to break the evenness of the environment. To enable
further real implementation, it has been chosen to simulate a source of light with its decaying intensity
(see chapter 3). As a result, at each position in the environment we measure a possibly noisy lighting
value, a gradient, that could be exploited to sense the direction of the beacon.

When following a beacon gradient (chemical, sonic or light...) an obvious solution is to place two
different sensors on both side of the robot (see figure 5.1) and then make the robot turn towards the
sensor indicating the highest value. This stereo implementation is highly dependent on signal-to-
noise ratio as the robot’s sensors are not situated far from each other and the two different sensing

values are therefore very similar.

Figure 5.1: a stereo sensors solution

When trying to simulate such a behaviour in the robots of the coherent swarm of chapter 4, it was
quickly evident that the changes in direction induced by the stereo beacon sensors were completely

overwhelmed by the changes in direction needed by the §-algorithm, that had to have precedence to

Lfrom the greek Tafio that refers to the organisation of battalion on the battlefield
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maintain coherence. The random movement of the swarm was, therefore, not altered at all.

It has been shown in chapter 4 that the results of the distributed selection algorithm provides us
with a possibility to choose special robots (section 4.5). The answer could then be to make these
robots take a sample and somehow share it with their neighbours, generating an idea of the position
of the beacon to then make the whole swarm move towards it (see [Nagpal, 1999, Dudek et al., 1993]
that present algorithms to generate the position).

Although the problem of localization of the beacon might seem the most difficult to answer, the
problem of coordinated movement represents an equal challenge. How is it possible to make a group
of robots that individually do not have any precise idea about relative directions or positions follow

a precise direction ?

5.1.1 biological examples

The most striking biological example is the behaviour of the slimemold Dyctiostelium discoidum. As
described in chapter 2, in the context of scarce resources, the amoeba aggregate to form as a whole a
moving slug, in order to get back into some resourceful place. It has been shown that this movement
is the result of differential cellular adhesion [Savill and Hogeweg, 1997] and actually it will be shown
that the solution investigated here is close to this example, at least conceptually (see section 5.5).
Myzobacteria and heterocystous? Cyanobacteria show also an ability to move as a whole, but the
precise mechanism involved has not yet been discovered [Adams, 1997, Shapiro, 1988].

Social insects are the living existence proof that coherent swarming is possible; bees, ants and
crickets to cite just some of the examples [Bonabeau et al., 1999, Greenfield, 1994, Melhuish, 1999c¢].
The behaviours often involve chemical or sound emission that is relayed by the individuals, inducing
a positive feedback. It is known as secondary swarming [Melhuish et al., 1999a]. An example of
interestingly efficient stereo-sensor taxis is the example of cricket phonotaxis, in which neuronal
cross-inhibition has impressive signal filtering capabilities [Webb et al., 2003].

Last but not least, vertebrates such as some fishes, mammals or birds behave as a school, herd or
flock. But in these cases the capabilities of the individuals are much more developed than bacteria
or insects, and it remains an open question what the mechanisms are to allow them to display such

behaviours [Endler, 1993].

2that has the ability to differentiate into heterocysts
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5.1.2 robotics examples

In the robotics literature, we have several examples of global movement, partly taking inspiration from
the biological examples cited above. This research divides into two groups: problems where the shape
of the group is of importance - formation - and problems where only the group movement is important
- swarming or flocking (see section 2.8.2). Typically, research in the first group often involves a limited
number of robots whereas the second one is more concerned with scalable behaviours.

The work on formation concentrates on keeping the formation and the choice of a direction is
usually not addressed. For a review of several examples see section 2.8.2. But the avoidance of
obstacles is a problem considered as it can be destructive to the formation. Balch and Arkin
present a solution based on global position that is able to avoid obstacles while maintaining the
formation [Balch and Arkin, 1998]. Fredslund and Mataric present a neighbour-referenced algorithm
using only local sensing that is able to reform the formation after the avoidance of an obstacle
[Fredslund and Mataric, 2001]. The most interesting example on scalable formation control by Balch
and Hybinette also shows very good obstacle avoidance but again the movement is not an exemple
of swarm taxis [Balch and Hybinette, 2000]. In [Baldassare et al., 2003] the formation behaviour is
evolved by selecting cooperating robots equipped with 4 light sensors. The fitness function biases
the selection towards collective behaviour and interesting formations emerge from this evolutionary
process. Another example also involving artificial evolution is the work of Trianni et al. on hole
avoidance while maintaining formation [Trianni et al., 2004].

Because of its computer graphics flavour, the work of Reynolds on flocking did not address the
problem of the movement incentive [Reynolds, 1987]. But several other authors have investigated the
task [Mataric, 1992, Melhuish et al., 1999a, Melhuish, 1999a, Hayes et al., 2000].
[Melhuish et al., 1999a] differentiates between examples where the robots happen to be together
because they are attracted by the same beacon (swarming in the definition of section 2.8.2) and
the task where the robots play an active role in maintaining group relationships among themselves
(flocking).

One possibility to render the robots active in this sense is to let them relay the signal of the
beacon by some signaling ability. It is referred as secondary swarming [Lewis and Bekey, 1992,
Melhuish, 1999a, Hayes et al., 2000] and results in a better performing swarm as the decay of the

signal is bypassed by the signaling robots acting as repeaters. In [Hayes et al., 2000] a probabilistic
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modeling approach to the secondary swarming/flocking task is investigated in order to give more
insight into the crucial parameters at play.

Weflnitzer and Melhuish present an interesting algorithm for target hunting where the robots share
their perceived progress towards the target within the neighbourhood making the most successful
ones keep their direction and the others follow [WeBnitzer and Melhuish, 2003]. It results in the
cooperative hunting of the prey with the swarm acting as an active catching net. Because of line-of-
sight obstruction, some of the robots cannot see the prey. The robots that do see it then act similarly
as a secondary beacon.

An interesting work that stands in between the two groups is the work by Quinn et al. which
presents the investigation of the possibility for a small group of very simple robots to move collectively
by selecting the controllers through artificial evolution (see section 6.3) on their ability to make the
group move [Quinn et al., 2002a, Quinn et al., 2002b]. In this case the successful group chooses a
formation to maintain, but this choice is only a successful strategy given the parameters, and not a
prerequisite of the research.

Work concerned with modeling the behaviour of amoeba is presented in [Yokoi et al., 1998, Takahashi et al., 20
It is interested in modeling the slug part of the social amoeba life cycle in implementing a model based
on vibrating potentials. Differential vibration abilities make the whole group move in the direction
of the beacon by changing the vibration of the “cells” nearest to the beacon [Takahashi et al., 2004].
The drawback of this approach is that it needs physical bonds to convey the vibration that then

make a change in configuration difficult.

5.2 Taxis Behaviour

5.2.1 description

As stated above taxis can be decomposed into a localisation task and a movement task. But this
decomposition raises the problem of adequacy between both tasks: the localisation should provide
the robot with information that it can make use of in order to perform a sensible move. Clearly in
the two beacon sensors example the directional information is useless as the robot changes direction
constantly because of the S-algorithm.

In fact, instead of considering the questions of localisation and movement as two different problems
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to be solved separately, the answer seems to be in binding these two problems together.

localisation

Firstly the robots are equipped with an omnidirectional light sensor. This sensor is put on the
robot body such that the presence of another robot on the line-of-sight to the beacon occludes the
illumination (see chapter 3). It is assumed that the signal-to-noise ratio is high enough for a robot
to distinguish between sensing the beacon directly and the ambient light.

The result is a swarm that senses the beacon only - with some noise - on the side that is nearest to
it, see figure 5.2. It has to be stressed here that there is no measure of signal strength that gives an
estimate of the distance. Real robots should react to a threshold value that discriminates between
ambient light and direct beacon illumination. Nevertheless the illuminated side of the swarm provides
as a whole a direction to follow. It will be shown that this restricted information is sufficient to allow

the swarm to move towards the beacon.

I beacon

Figure 5.2: an illuminated swarm

144



movement

The idea is to make an illuminated robot become special to its neighbours by entering a new state -
referred to as the “red” state. A layer is then added on top of the shared neighbour behaviour that
always triggers a robot’s reaction if the lost connection involved a red robot; this holding whatever
the number of required shared neighbours 5. The information of being “red” needs to be broadcast
to the neighbours to allow them to react to it. The available bandwidth will only be slightly affected
as the increase per message corresponds to a number of bits equals to the number of the robot’s
neighbours.

It has been shown in chapter 4 that swarms with higher 5 threshold tend to remain in the same
place while smaller 5 values enable for more random movement. In fact the special state “red”
corresponds to setting the £ value to infinity for distinctive robots.

This results in the red robots trying to build complete graphs among themselves, reacting to each
loss, clumping together and therefore restricting their global movement. Meanwhile the others are
drawn towards the red ones, surrounding them and hence getting themselves into the light. As the
current red robots build their complete graph, they occlude the red ones that happen to stand inside.
This leads to a configuration similar to that at the start, but - importantly - the restricted movement
of the red part of the swarm has attracted the other robots slightly in the direction of the beacon.

The process then repeats itself and a slow movement proceeds towards the beacon (see figure 5.3).

illuminated robots

non-illuminated robots

Figure 5.3: schematic suite of the taxis process

It must be noted that if the explanation above appears to dissect the process into distinctive phases,
this does not correspond to the actual phenomena which occur continuously and dynamically. Such
phase separations are made only for the sake of clarity.

As a result, the taxis process is not implemented through direct coding. It is a behaviour that
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emerges from the interaction of the illuminated and non-illuminated robots. What is introduced
in the code is a difference in behaviour that translates itself into a bias for the swarm towards the
beacon. Figure 5.4 presents the modification to the pseudo-code needed for the implementation of

the taxis behaviour.

5.3 Experimental Set-Up

This chapter only presents investigations in simulation. Indeed the taxis process of this chapter needs
long runs to show meaningful results, as will be shown in the following sections. Because the real
robot swarm is not quite successful in maintaining coherence, it was impossible to implement taxis
on real robots without improving their performance running the coherence algorithm.

Another reason not to run real robot experiments is the relative lack of behaviour difference
between real robot swarms running differing 8 values. As the taxis algorithm relies on differentiation,

it is very likely that no movement will ever take place.

5.3.1 environment

Until now the environment has been considered as completely neutral. In order to give the necessary
tropism to the swarm, a beacon is introduced in the environment north of the starting area. It is
situated at a distance of 1000 units from the center of this area.

In order to put the movement of the swarm under environmental pressure, three circular light
occluding obstacles are introduced in another set of experiments, one directly in line between the
swarm and the beacon and the two others on both sides of the first one. After an initial random
spread the beacon is sensed by a few robots that attract the swarm through the obstacles. This
setup slows down the global movement and it seems that a minimal aperture between the obstacles
is needed in order not to overwhelm the emergent bias of the taxis. These obstacles are situated on
a straight horizontal line 150 units north of the center of the starting area. They have a diameter of
80 units and the gap between them measures also 80 units (see figure 5.5). In chapter 3, figures 3.6

and 3.7 present schematically both experimental set-ups.
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Create list of neighbours for robot, Nlist
k = number of neighbours in Nlist
i=0

loop forever {
i = i modulo cadence

if (1 =0) {
Send ID message

Save copy of k in LastK

Set reaction indicator Back to FALSE

k = number of neighbours in Nlist

Create LostList comparing Nlist and 0OldList

for (each robot in LostList) {
Find nShared, number of shared neighbours
if (nShared <= beta) {
Set reaction indicator Back to TRUE

// this is new ...
if (color of robot == red) {
Set reaction indicator Back to TRUE

}
}

if (Back = TRUE) {
turn robot through 180 degrees

}
else if (k > LastK) {
make random turn

}

Save copy of Nlist in Oldlist
}

Steer the robot according to state
Listen for calls from robots in range
Grow Nlist with neighbours IDs and connection info

i++

Figure 5.4: pseudo-code for S-algorithm
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Figure 5.5: a swarm oozing its way through the obstacles

5.3.2 measures

The measures used to test the performance of the taxis algorithm are as follows:

e progress towards beacon. The Y coordinate of the position of the swarm’s center of mass at the

end of the run gives measure of the speed of the taxis.
o number of successful runs, a successful run being a run that ends with a connected swarm.

e edge-connectivity which represents the minimal number of edges that have to be removed to

disconnect the network, giving a measure of coherence.

e odometry which records the proportion of time spent in the different states (forward, turn,

backwards and stop) over the whole run.

Each run lasted 1,000,000 time steps with a cadence value of 100. Hence, each robot sent 10000
messages. Each value was recorded once every 10000 steps and, except for the progress measure,
has been averaged over the whole run. For a number of values of swarm size, § and noise, 5 runs
have been performed and the result depicted is the mean value over these runs with its standard
deviation. When the purpose of the investigation is not to vary them, the chosen values for the

remaining parameters are shown in table 5.6.
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size 20
cadence 100
random noise 2%
B lor2
steps 1,000,000
runs 5

Figure 5.6: general parameter values for $-algorithm

5.4 Results

The results of the simulation runs are depicted in figures 5.7 to 5.20. It is firstly shown that there
indeed is a movement of the swarm in the direction of the beacon and that obstacles can be avoided.

The influence of noise is investigated afterwards.

5.4.1 results with and without presence of obstacles

Figure 5.7 shows the progression of the swarm towards the beacon with increasing swarm sizes and
change in § parameter. The first observation is that a value 8 = 1 is not enough to guarantee
the cohesion of the swarm as almost all runs finish disconnected (see figure 5.8, where most values
for 8 = 1 are empty). Therefore the good performance of the few runs that completed cannot be
considered as conclusive. On the other hand with values 8 = 2 or 3, the proportion of good runs
increases and a net movement in the direction of the beacon is observable. The curve of the results
suggests the presence of an optimal swarm size near N = 20 and an optimal value 8 = 2.

The difference of performance when changing the 3 value is explained by the fact that the process
relies on differentiation between illuminated and non-illuminated robots. By raising the 8 value for
the non-illuminated robots the differentiation is lowered and hence the taxis performance degrades.

The lower performance of smaller and larger swarms suggests that the proportion of differentiated
robots within the swarm is an important factor. In small swarms almost all robots are illuminated
while this proportion is inversed in larger swarms.

But any discussion on performance is somehow missing the point as the speed of the swarm is

tremendously slow. Indeed the length of the run is 1,000,000 steps and in this number of steps, a
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Figure 5.8: successful runs for taxis behaviour

lone robot going in straight line can travel 10,000 distance units. Which means in the best case that
a robot spends roughly one twenty-fifth of its time moving towards the beacon. This can never be
regarded as good performance.

In fact, the interesting feature of this algorithm is not the speed of the movement but the fact

that movement is taking place at all, and this without the help of a directional sensor. The reduced
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performance with larger § values or larger swarm sizes is counterbalanced by confidence that the
movement is such that the swarm is eventually going to reach the beacon.

In the presence of obstacles, this confidence does not hold in all cases, as can be seen in figure
5.9. While a value 8 = 1 shows the same brittleness, it can be seen that swarms of 10 and 20 robots
with § = 2 are able to move through the obstacles. But in the case of § = 3 for size greater than
N = 7 for instance, the requirements on connectivity induced by the [-algorithm does not leave
enough malleability on the swarm to let it ooze through the obstacles. In this case, the disposition of
obstacles represents a trap for the swarm as the attraction draws the swarm towards a gap it cannot
go through. This impossibility is of course dependent on the size of the gap between the obstacles.
Nevertheless the ability of the swarm to find the way between the obstacles is quite impressive,
sometimes showing very interesting behaviours as in figure 5.11.

Also larger swarms with 8 = 2 tend to disconnect themselves in the presence of obstacles. Indeed
the attraction on the part of the swarm that is already gone through the obstacles is stronger that
the connectivity glue of the S-algorithm (see figure 5.8). Figure 5.10 shows a disconnected swarm of

60 robots experiencing this problem.
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Figure 5.9: progression for taxis behaviour with obstacles

The case of N = 7 with 8 = 3 is interesting as it shows better performance with than without

the obstacles. An explanation is that the obstacles prevent the deleterious over-illumination of the
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Figure 5.10: a broken swarm of 60 robots

swarm and that the size is too small to stop the swarm going through them.

Taking a look at the edge-connectivity (figure 5.12) shows that the taxis algorithm does not affect
its tunability, indeed differing values of 8 induce differing connectivity values. These values are
comparable to the non-moving case. Also connectivity does not seem to be affected by the presence
of obstacles.

The comparison of the odometry plots (figures 5.13 and 5.14) shows that the local behaviour of
the robots is not sensitive to the presence of obstacles, meaning that the time spent turning to avoid

the obstacles is negligible in comparison of the turns required by the S-algorithm.

5.4.2 influence of noise

To measure the precise influence of noise on the taxis process requires two steps. Firstly noise will
be increased on all possible sources of noise simultaneously, namely noise on actuators, avoidance
sensors, communication device and illumination sensor . Secondly noise on communication will be
fixed at a level of 2% and only the remaining sources will be varied. The results are depicted in
figures 5.15 to 5.17 for the first step and 5.18 to 5.20 for the second step.

When noise is increased on all sources at the same time the degradation of performance is quite
strong (figure 5.15), with a result at 10% of noise that shows a possibility of negative movement, that

is movement away from the beacon. Nevertheless with intermediate levels of noise, movement is still
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Figure 5.11: progression through the obstacles for a swarm of 30 robots
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Figure 5.13: odometry for taxis behaviour

taking place, thus demonstrating the robustness of the solution. Also the difference in performance
with differing swarm sizes appears to be reduced as noise increases.

Connectivity is maintained despite the increase in noise (figure 5.16), as was already observed in
chapter 4. Only a slight general decrease is observable and that could be due to the small number

of testing runs.
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Figure 5.14: odometry for taxis behaviour with obstacles
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Considering odometry (figure 5.17) the characteristic pattern of influence of noise seen in chapter
4 is again observable, providing us with an explanation for the degradation in performance: the taxis
process relies on the fact that some of the movement of the robots is going in the right direction
while the illuminated robots function as an anchor such that robots going in the wrong direction

eventually choose a better one. If the proportion of straight motion is reduced in favour of turning
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Figure 5.17: odometry vs noise for taxis behaviour

motion because of the need for reconnection, then global movement can only be reduced also.

But the increase of the proportion of the “turning” state is linear, whereas the decrease of per-
formance is exponential, which suggests that the explanation above is not sufficient to explain the
degradation. Actually, as already mentioned, the movement results from differentiation between the

illuminated and non-illuminated robots. This differentiation lies in an increase of the 3 threshold,
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leading to a greater reactivity of the illuminated robots. The increase of noise increases the reac-
tivity of all robots indiscriminately, which levels down the differentiation. Hence the decrease in
performance.

When the level of noise on the communication device is fixed at 2%, the degradation of performance
is greatly reduced (figure 5.18). The slight decrease in connectivity is no longer to be seen(figure

5.19). And the plot of the odometry shows a striking constancy (figure 5.20).

500

N

o

=]
T

progress towards target
N w
o o
o o

100+

F— beta=2,n=20

IA— A beta=2,n=60

noise percentage

Figure 5.18: progression vs noise for taxis behaviour (communication noise fixed at 2%)

These results show that the degradation in performance with increasing noise is mainly due to
noise on the communication device. Considering that the loss of 2% of messages represents, by
current standards a very poor communications channel, there is good confidence that such a signal-
to-noise ratio is achievable on real robots (if the problem of locality is solved, see section 4.3.5). This
shows the robustness of the solution developed. Indeed the behaviour is strikingly insensitive to an

increase in noise on the light sensor and this is of considerable interest for potential applications.
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Figure 5.20: odometry vs noise for taxis behaviour(communication noise fixed at 2%)

5.5 Summary of the Chapter

movement is truly emergent

It is important here to stress that the sensing of “being illuminated” or not does not allow a single

robot (a swarm of 1) to reach the beacon. The taxis behaviour only results from the subtle interaction
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of the illuminated robots and the others. This feature makes the behaviour truly emergent.

In fact, it could be argued that this behaviour actually represent a higher level of emergence than
is commonly meant, in the sense that not only does it involve the interaction of the robots with
the environment but also the interaction of the robots themselves. As a comparison, an ant-like
clustering task is not as dependent on the other individuals: a lone robot is able to achieve the task,
though in a longer time. In the case presented, the interaction between the robots is as crucial,
if not more crucial, than the interaction with the environment. However, recalling the definition
of emergence that was chosen in section 2.4.2, namely that the notion of emergence is “a process
through which entirely new behaviours appear, whose properties cannot be derived from a given model
of how the system behaves, so that another model has to be built in order to deal with these new
behaviours” [Bonabeau and Theraulaz, 1994], implies the definition of a model (that can be seen as
the observer model) in order to build the new describing model. Therefore the differing levels of
emergence should be represented by a chain of describing models. Hence one model would describe
the emergence of the coherence behaviour from the local rules, while another would present the taxis
algorithm emerging from the interaction between the coherence behaviour and the differentiation
induced by the beacon. Following the same definition, a model could describe the taxis behaviour
directly from the local rules and the beacon influence on these local rules, losing the relevance of
different emergence levels. Here is indeed an example that the notion of emergence is dependent on
the observer.

As an emergent behaviour, the presented taxis behaviour is highly dependent on the various pa-
rameters in action: communication range, rate of occlusion, avoidance range, etc. These dependencies
remain to be investigated in real robots experiments but the simulation results already predict that
the conditions of noise and swarm size are determinants for success, especially for communication

noise and in the presence of obstacles.

movement is possible through differential cellular adhesion

It has been demonstrated that cellular adhesion plays a crucial role in the Dyctiostelium discoidum
slug migration [Savill and Hogeweg, 1997]. And as suggested in chapter 4, the g threshold value
can be considered as an adhesion value between the robots. In introducing the environmental cue

together with the extension of the original S-algorithm, this adhesion is differentiated over the swarm
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according to an external incentive, which provides the swarm with both direction and movement at
the same time.

Although the process is not quite the same as in Dyctiostelium, where the production of the
chemical cAMP is involved, this example of movement through differentiation is very similar in its
essence. This similarity stands as a justification for this approach, for social amoeba show morpho-
genetic behaviours without apparently involving other abilities [Hogeweg, 2000b, Hogeweg, 2000a,
Hogeweg, 2002]. The next chapter is devoted to the investigation of similar behaviours.

A feature also suggestive of the behaviour of an amoeba is what happens when the swarm reaches
the beacon: the interplay of the avoidance behaviour and the beacon attraction makes the swarm
enclose the beacon, similarly to the phagocyte behaviour of the amoeba (see figure 5.21). Although
it remains to be properly investigated, this behaviour could be of considerable interest for real

applications.

Figure 5.21: amoeba-like enclosure of the beacon

obstacle avoidance comes for free

The interplay of the local avoidance abilities of the robots with the taxis behaviour gives the whole
swarm the ability to travel around occluding obstacles, while maintaining coherence. This behaviour

is not coded in the algorithm and is again emergent.
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When it is situated behind an occluding obstacle, the swarm actually functions as a distributed
sensing network. It spreads moving randomly until one of its bounding robots gets beyond the shade
of the obstacle and becomes illuminated by the beacon, starting the taxis process in the direction of

this lighted area. As soon as this area is reached, the swarm starts moving in the right direction.

drawbacks and advantages

One of the drawbacks is the sensitivity to noise in the communication device that has the power to
blur the differentiation induced by the light beacon. But as already mentioned the proportion of
loss of messages considered are huge compared to current standards of communication performance,
which give good confidence on the realisability of the algorithm.

Another drawback is the relative non scalability in the performance of the process to an increase
in swarm size. Actually the performance is very low in any case, so a better performance measure
would rather be whether movement is taking place or not. It has been shown that it is in most
situations the case.

Perhaps the main drawback that might prevent the use of this algorithm in many real world
implementations is its relatively slow speed. On the other hand its robustness to beacon noise makes
it very interesting to applications which are not time-dependent.

Another advantage is the absence of any true positional information to carry out the global taxis.
Indeed, apart from the crude information given by the neighbours messages and the added “redness”
information, there is neither reference to nor exchange of position information in the algorithm.
This is a huge advantage considering the fact that position information has always been difficult to
produce and maintain accurately.

As the p-algorithm is dimension independent, so is the taxis extension. As a result, there is no
reason why the taxis behaviour could not be straightforwardly implemented in three dimension, with
of course an adaptation of the crucial parameters involved.

However, the most important advantage is the fact that the swarm moves as a whole. Indeed
the movement is not a sum of all individuals moving towards the target that happen to be together
because they move towards the same target. In our case the movement results from a complex

interaction that allows for the maintenance of coherence while moving.
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real robot implementation

The level of noise induced by the device used to simulate the locality of the connection, together
with other sources of noise, was so high that changes in § threshold values did not have a sufficient
influence on the swarm behaviour, as can be seen in the results of the real robot experiments on
coherence (see section 4.4.3). Therefore, the essential differentiation could not take place, and the

current platform made real robot experiments on taxis behaviour impossible.
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Chapter 6

Shape

“The art of urban civilisations tends to be static,solid and symmetrical (...); to a greater and lesser
extent nomadic art tends to be portable, asymmetric, discordant, restless, incorporeal and intuitive
(...).”7

Bruce Chatwin.

The swirling flock of birds, the crawling Dyctiostelium “slug” or the static insects’ swarm in a
field on a summer afternoon, all of these state the question of how to make a multitude move, not
only in a distinctive direction, but also in a distinctive manner.

In these examples the shape that is formed remains constant while the place taken within it by
the moving individuals changes constantly. What then is the reason for this constancy ? Are there

internal or external causes 7 Is it somehow mediated between the individuals ? Is there a plan ?

morphogenesis

In raising these questions, this thesis steps into the world of self-assembling shapes, growth and
forms, or to put it another way the world of morphogenesis. These problems have of course already
been beautifully solved by nature and numerous biologists have celebrated nature by studying the
striking capacity for growth, repair and pattern generation of live beings [d’Arcy Thompson, 1917,
Shapiro, 1988].

Starting with the pioneering work of Alan Turing [Turing, 1952|, there has been constant explo-
ration of the capacity of abstract models to generate patterns found in nature. Examples range from

L-systems [Lindenmayer, 1968] or bacterial growth [Ben-Jacob and Cohen, 1997], to the modeling
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of the Dyctiostelium dynamics [Savill and Hogeweg, 1997]. These are a part of the Artificial Life
framework (see chapter 2).

The area of research on computational models of morphogenesis has boomed in recent years
thanks to the development of computer games with realistic three-dimensional interfaces. The speed
requirements have placed pressure on the development of fast algorithms able to generate an abstract
model of plants or textures, for instance. Indeed in these examples the use of pictures or drawings is
rapidly and intractably consuming in terms of computer resources, as the purpose of the interface is
to allow for the choice of any point of view.

Of course the requirements of an efficient game interface are not equivalent to those of a faithful
model of Dyctiostelium dynamics, but ideas and solutions diffuse in both directions. The work
of Reynolds on the flocks of “boids” was, for instance, initially developed for artificial reality

[Reynolds, 1987].

dynamicity

Another pervasive feature in literature is the non-dynamicity of the morphogenetic process: once an
element of the structure is assembled, either it is fixed or the algorithm will try to keep it fixed, as in
the research area on robot formations (see section 2.8.2). But indeed this is not the case in Nature:
the cells of the developing embryo have no fixed positions, and moreover biological research has shown
the crucial role played by cell migration in the developmental process [Mombach and Glazier, 1996].
In its model of Dyctiostelium behaviour, Hogeweg tackles this problem with great elegance and his
work stands as a powerful example that dynamicity together with differential adhesion are at the
core of the morphogenetic process [Hogeweg, 2000b, Hogeweg, 2000a).

This chapter will investigate, in simulation only, the ability of the abstract S-algorithm to allow for
the control of dynamic global shape. Let us here remind ourselves that dynamicity is a requirement
of the S-algorithm and for this reason a solution to shape control has no choice but to be dynamic.
We will first investigate the potential for pattern formation in the initial version of the S-algorithm
(from chapter 4), with predefined heterogeneities within the swarm (in section 6.1). Next the light
sensor extended algorithm used for the implementation of the taxis behaviour will be investigated
(section 6.2) and finally a system developed for artificial evolution will be presented but only partially

investigated (section 6.3).
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6.1 Spatial Segregation

It has already been mentioned in chapters 4 and 5 that the $-algorithm could be considered as an
adhesion mechanism with the S threshold as adhesion strength parameter. The work of Hogeweg
suggests that some distinctive patterns could be dynamically formed by the variation of the adhesion
strength over the population of the swarm.

In fact this differential adhesion is conjectured to be responsible for pattern formation in developing
cells. One of the classical basic patterns that have been formed can be seen in figure 6.1 [Gilbert, 2002,

Hogeweg, 2000Db]

Figure 6.1: basic pattern found in developing living tissues

An interesting preliminary example, to be soon applied to robotics, is the work of Ottery, who
built a model of biological cells to investigate differential cellular adhesion [Ottery and Hallam, 2004].
The importance of random forces to enable the cells to build new bonds is emphasised.

Drawing from the classical examples of figure 6.1, two experimental hypotheses can be proposed:
is it possible to spatially discriminate between differing groups of robots, firstly segregating concen-

trically around the center of mass and secondly segregating radially (see schematic view 6.2)?

G3 | G2 @

Figure 6.2: schematic view of the spatial segregation hypotheses
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In other words is it possible to guarantee that one group would occupy the center of the swarm and
another would distribute concentrically around it? Or to guarantee that the groups would distribute
in differing segments around the center of mass, with a group in the center or not ?

From the point of view of distributed sensing an interesting feature that would be of value in a
sensor network is the possibility of placing heterogeneous robots in a specified relative position. As
the design presented precisely lacks this kind of information it is challenging to try to achieve such

spatial segregation.

6.1.1 algorithms description

With the degree variant (a-algorithm) we have already attempted to increase the a threshold on the
number of connections for a small number of robots. These robots were certainly more often near

the center but the result suffered from the overall instability of the system.

concentric segregation

Applying the same idea as in the shared neighbour algorithm, we make use of the threshold 3, in
order to investigate how robots with different threshold values self-organise. This algorithm simply
consists of setting different 5 values to the robots belonging to different groups. It will be referred
to as the concentric-3-algorithm.

As a result, robots with higher g values are more sensitive to the quality and the number of
connections in their neighbourhood. They react more to losses of connections and tend to stay at
the same place. Therefore they group together while the robots with lower § values simply surround
them. We will investigate the potential of this algorithm to discriminate between two and three
groups of robots, with a proportion of one third/two thirds and equal thirds respectively. Figure 6.3

shows an example of 2-group segregation, while figure 6.4 shows an example of 3-group segregation.

radial segregation

To obtain radial segregation we propose to make a robot apply differing 5 values according to the
group membership of the lost robot. This algorithm is named radial-3-algorithm. This results in a

group being more reactive to losses from one particular group and less reactive to losses from another,
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S

Figure 6.4: 3-group concentric segregation (start and resulting pattern)

while being specially reactive to the robots belonging to its own group. For this algorithm swarms
composed of three groups will be investigated, with equal proportions for each groups.

The three groups example raises a question on the topology of the preferences. Taking a look at
the schematic view in figure 6.5 in which the preferred groups are represented by an arrow towards
them, the potential for fundamental differences can be seen. We will question whether the topolog-
ical differences between situation A and situation B have their equivalence in the resulting swarm
patterns, but topology C will not be considered. Figure 6.6 shows examples of resulting patterns

with topologies A and B.
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Figure 6.6: 3-group radial segregation resulting patterns with topologies A and B (5,000,000 steps)

6.1.2 measures

In order to quantify the performance of the different spatial segregation algorithms, the following

measures will be used (see chapter 3):

e group mean distance to the whole swarm center of mass and its standard deviation, for each
robot group the distance to the center of mass of the whole swarm is computed with its standard

deviation to measure a potential difference between them.

e mean minimum distance between individuals in different groups to measure the distribution of

the different groups, defined as follows:

1
dmin = T4 min (d(ri: 7’_7))
|G| e r;€G

This mean minimum distance is compared to a default value which consist of the mean over all
pairs of group over 10 measures at the beginning of the run, when groups are randomly mixed

together.
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e whole swarm mean distance to its center of mass as defined in chapter 3 for comparison pur-

poses.

The first measure is designed to test the concentric segregation and the second the radial one.

The groups are defined through the following rule: if Robot;p =i mod 3 then the robot belongs
to group 4. This divides the swarm into three groups. In order to get two groups group 0 and 1
are merged. This results in the proportions mentioned above. In the case of 2-group concentric
segregation, the merged group takes the lowest § value.

The length of the simulation run is 500,000 steps, in order to leave enough time for the robots to
self-organise. Each value was recorded every 5000 steps and has been averaged over 10 values at the
end of the run. For a number of values of swarm size, 8 and noise, 5 runs have been performed and
the result depicted is the mean value over these runs with its standard deviation. When the purpose
of the investigation is not to vary them, the chosen values for the remaining parameters are shown
in table 6.7 ( (7,3,1) means the 8 parameter of the group 0 is set to 7, the 3 parameter of the group

1 to 3, and the 3 parameter of the group 2 to 1).

size 20 or 60
cadence 100

o] (7,1) or (7,3,1)
steps 500’000
runs )

Figure 6.7: general parameter values for segregation

For the 2-group experiments the 3 parameter of the group 0 is set to 7 and varies from 1 to 5
for the other group . For the 3-group experiments the 3 parameter of the group 0 is set to 7, the

parameter of the group 2 to 1 and the parameter of the remaining group varies from 2 to 5.

6.1.3 simulation results for concentric segregation

The results for the concentric segregation experiments for a 2-group partition are depicted in figures

6.8 to 6.10. From 6.11 to 6.13 are shown the results for a 3-group partition.
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Figure 6.8 shows the behaviour of the group distances to the center of mass with an increasing
B value for the group with minimal value. A clear difference in the distances is visible, which levels
down as the difference between the § values diminishes.

Figure 6.9 presents a more general view of the parameter influences. The difference between the
distances for the group with increasing 3 value (group 1) and the group with fixed 8 value (group
1) is observable over the whole parameter space.

The influence of noise on the segregation performance is limited as can be seen in figure 6.10. The
high variability of the standard deviation is due to the low number of different runs as only runs that

finish with a connected swarm are considered in computing the performance measure.
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Figure 6.8: 2-group concentric segregation (n=60)

The behaviour of the group distances for a 3-group partition is depicted in figure 6.11 and the
distribution meets with expectation. Indeed the group with an intermediate [ value presents a
mean distance to the center of mass inbetween the groups with maximal and minimal £ value. The
difference between the intermediate and the maximal value group levels down as expected. Figure
6.12 shows that the distribution in sequence of the preceding figure is independent of swarm size.
3-group segregation seems to be more sensitive to noise with increasing variability among the runs.
But on the average the general character is conserved (figure 6.13).

The process of segregation is quite slow. Indeed each robot has to discover neighbours with stronger
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Figure 6.9: 2-group concentric segregation
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Figure 6.10: 2-group concentric segregation (n=60)

bonds by random movement while the requirements of coherence restrict freedom of movement within

the swarm. This is analogous to the dynamics of area coverage of figure 4.43 (page 119).

The discussion above shows that heterogeneities in the § values across the swarm are sufficient to

concentrically segregate the groups with differing values, with greater 5 values nearer to the center
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Figure 6.11: 3-group concentric segregation (n=20)

group 2, beta=1
200 ~

180 | .
whole swarm
160 —
group 1, betaincr.
S 140+

group O, beta=7
120 +

toC

@ 100

80 |

distanc

60

40

20+

60

80 beta threshold
number of robots

Figure 6.12: 3-group concentric segregation
of mass. Hence we have an example of global shape control through local rules. The only drawback
is in the speed of the process which needs long runs to reach the desired equilibrium, the reason

being that the chosen robots need to increase their connections one after another. Nevertheless it is

a powerful behaviour of the S-algorithm that presents good scalability and robustness to noise.
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Figure 6.13: 3-group concentric segregation (n=20)

For the time being, the simulated robots have differing thresholds, fixed at the beginning of the
run, but an alternative approach would be to find a distributed way of fixing threshold, possibly
by choosing robots that are already suitable for that group; and therefore decreasing the time of
completion. One possibility could be to use the insider/outsider estimation of the spatial selection

algorithm described in section 4.5.

6.1.4 simulation results for radial segregation

The results for the radial segregation experiments of a 3-group partition, with group preferences
topology A are depicted in figures 6.15 to 6.17. Figures 6.18 to 6.20 show the results for group
preferences topology B (see section 6.1.1).

Figure 6.15 shows the behaviour of the mean minimum distances between the different groups
as compared with the non-segregated case. Each group shows similar values which are qualitatively
different from the non-segregated case, diminishing towards the default with increasing intermediate
B value. When considering a more general parameter space, the behaviour is similar for all swarm
sizes (figure 6.16, for readability only the non-segregated case and one of the three group value are
shown). The time needed for larger swarms to reach the desired equilibrium explains the better

performance of smaller swarms and suggests longer simulation runs are needed to investigate if
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the performance at the equilibrium is dependent on swarm size. But single long runs (figure 6.6)
showed very good performance with large swarms. Figure 6.14 shows a sequence of a 3-group radial
segregation process.

Noise, as expected, diminishes the segregation measures towards the non-segregated case, with
gentle degradation as the level increases (figure 6.17).

Figure 6.18 shows simulation results for topology B. The mean minimum distances for the pair
0 — 2 are clearly larger than for the pair 0 —1 or 1 —2. 0 — 1 and 1 — 2 are neighbouring pairs in
the topology, while the group 0 is not a neighbour of group 2. Here again the difference from the
non-segregated case levels down along the increase in the intermediate § value, but not for the pair
0 — 2 as the third B value (non-preferred group) stays equal to 1. The variations are high due to
limited number of simulation runs.

In the more general picture of the influence of swarm size (figure 6.19 with 0 — 2 distances repre-
sented in the top surface, 1 — 2 in the middle and the non-segregated below), a good scalability of
the radial segregation algorithm is clearly observable.

The behaviour again shows good degradation to noise with differences gently leveling down. The
mean minimum distance for the non-neighbouring pair 0 — 2 always stays above the others (figure
6.20).

In fact the topology of group preferences is transported into the topological structure of the swarm.
As topology A presents central symmetry, the measure shows similar values on all pairs. On the other
hand topology B assigns a central role to group 1 which can directly be observed in the structure of
the swarm. Again with only a slight change in the algorithm and more importantly without increasing
the information exchanged, potential control of the global structure of the swarm is demonstrated.
The linear nature of the group preferences of topology B indeed leads to the formation of “linear”
swarms as can be seen in figure 6.6. But this process needs several million steps to reach equilibrium
and is therefore beyond thorough investigation with the available computing power of the laboratory.
The slow speed is due to the tendency of each robot to maintain connections for the sake of coherence,
which diminishes its mobility within the swarm. In the next section we investigate the potential to

use an external cue (the taxis beacon) to differentiate the robots in order to build a linear shape.
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Figure 6.14: sequence of 3-group radial segregation process (topology B)
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Figure 6.15: 3-group radial segregation topology A (n=60)
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Figure 6.16: 3-group radial segregation topology A
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Figure 6.17: 3-group radial segregation topology A (n=60)
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Figure 6.18: 3-group radial segregation topology B (n=60)
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Figure 6.20: 3-group radial segregation topology B (n=60)
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6.2 Axis Formation

One of the most striking achievements of morphogenesis in the development of the embryo is the
transformation of the initial circular symmetry of the zygote into an axial symmetry that leads to
head-tail and dorso-ventral differentiation. Considered in perfect geometrical spaces, this transfor-
mation states the conceptual problem of choosing the direction to grow the axis. It is referred to as
the break of symmetry. If there is no preferred direction, there is no reason why a particular cell starts
to divide at a higher rate in order to create the axial pattern. The temptation is high to see, in this
phenomenon, the proof for a predetermination of the cell. But careful experiments have shown that
the choice of a preferred direction can also be dynamically reorganised to fit particular environmen-
tal conditions. For instance the axis differentiation of a plant is greatly influenced by gravity. The
germination of a seed turned upside down is of course not making the plant grow inside the terrain.
Further experimental results on the influence of external cues on symmetry breaking in the embryo of
the fruit fly, in the form of maternal diffusing morphogens, can be found in [Nusslein-Volhard, 1996].

Things could be simple and the problem settled: symmetry breaking does need environmental
cues. But unfortunately experiments have gone further and investigation of the growth of plants in
microgravity have shown that the presence of gravity is not necessary for their development. Also
attempts to identify the morphogens responsible for the break of symmetry in the mammal embryo
have until now been inconclusive [Gilbert, 2002]. These experiments suggest that the mechanisms
involved in the break of symmetry make use of environmental cues decisive for the survival of the
individual, but that these mechanisms can also cope with the absence of these cues.

This ability is of primary importance for electromechanical devices such as robots. Indeed these
devices normally show a very poor performance when the environment they have been designed for
is changed. In this section we investigate the possibility of using the light occluding mechanism
presented in chapter 5 to provide the environmental cue for axis formation. Cueless axis formation

will be investigated in section 6.3.

6.2.1 description

To achieve axis formation, the idea is to use the same algorithm that was used for the taxis task (see

pseudo code 5.4) introducing more differentiation between the “red” robots and the others. In this
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algorithm the “red” robots have a priority in reaction in the sense that any robot losing a connection
to a “red” robot has to react whatever the number of shared connections. The influence of this
differentiation is described in section 5.2.

It is proposed that being “red” or not also has an influence on the speed of the robots: both cases
of the “red” robots being faster or slower than the others will be investigated. This variant of the
[B-algorithm will be referred to as the axis-3-algorithm.

This very slight differentiation has actually a huge impact on the overall shape of the swarm.
Indeed in the case of the “red” robots being faster, the group of these robots move fast while the
others are slowed down. As a result the “red” group elongates the swarm in the direction of the
beacon. In the other case where the group of the non-“red” robots moves faster, the robots that
become illuminated suddenly slow down and are overrun by fast robots that soon become illuminated.
The result is a swarm growing in both directions perpendicular to the direction of the beacon. Figures
6.21 and 6.22 show examples of horizontal and vertical axis. Figure 6.23 on page 182 shows a sequence

of horizontal axis formation.

Figure 6.21: horizontal axis formation with speed ratio = 10

6.2.2 measures

The measures used to test the potential of the beta-algorithm to achieve coherence are as follows (see

chapter 3):

e number of successful runs, a successful run being a run that ends with a connected swarm.
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Figure 6.22: vertical axis formation with speed ratio = —10

e cedge-connectivity, which represent the minimal number of edges that have to be removed to

disconnect the network.

e odometry which records the proportion of time spent in the different states (forward, turn,

backwards and stop) over the whole run.

e vertical/horizontal axial ratio which gives the performance measure of the axis formation algo-
rithm, as the beacon is situated north of the starting area. It is computed as the added squared
distances to the horizontal line through the center of mass, divided by the added squared dis-
tances to the vertical line. Hence a value above 1 indicates that the swarm is more vertical

than horizontal.

The speed ratio is defined as follow: if it is positive, the “red” robots move with a speed equal to

1

—- while the others move with a speed equal to one. If the ratio is negative the “red” robots move

with a speed of one and the others with a speed equal to m The value 0 corresponds to no speed
differentiation between the “red” robots and the others.

Each run lasted 500,000 time steps with a cadence value of 100. Hence, each robot sent 5000
messages. Each value was recorded once every 5000 steps and has been averaged over the second
half of the run. For a number of values of swarm size, $ and noise, 5 runs have been performed and

the result depicted is the mean value over these runs with its standard deviation. When the purpose
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Figure 6.23: horizontal axis formation sequence with speed ratio = 10
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size 20 or 60
cadence 100
random noise 2%
B 2
ratio -10 or 10
steps 500,000
runs 5

Figure 6.24: general parameter values for axis formation algorithm

of the investigation is not to vary them, the chosen values for the remaining parameters are shown

in table 6.24.

6.2.3 simulation results
swarm size and [ threshold variation

Firstly the influences of increasing swarm size and increasing  parameter are investigated and the
results depicted in figures 6.25 to 6.31.

The influence on the vertical /horizontal ratio can be seen in figure 6.25. The top surface corre-
sponds to a speed ratio value of —10; the lower surface to a value of 10. Clearly a separation is
observable between the behaviours with different speed ratios. Also one notes a drop in performance
with increasing swarm size and increasing (3 threshold. The first drop is mainly due to the restricted
length of the run, as the self-organisation of the swarm takes more and more time with increasing
swarm sizes, especially where the speed of a group of robots is slowed. The other drop corresponds
to the fact that the algorithm needs a high differentiation between the “red” robots and the others.
Increasing the 3 threshold reduces this difference.

Taking a look at connectivity (figures 6.26 and 6.27), the characteristic increase corresponding to
increasing [ values is clearly present. Also a drop in connectivity for the speed ratio value 10 when
swarm size increases is observable, which corresponds to a drop in the proportion of finished runs
(see figure 6.28). This suggests that the swarm becomes more brittle with increasing size.

Figures 6.29 and 6.30 depict the odometry for speed ratio values equal to 10 and —10 which
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Figure 6.26: edge-connectivity for speed ratio = 10
presents a net difference of the proportions in different states between the two cases. The value 10
has a higher proportion of “turning” state which is related to the brittleness noted in connectivity.

Figure 6.31 shows the behaviour of the normalised area with both speed ratio values. The upper

surface corresponds to the speed ratio value of 10 and the lower surface to the value —10. Despite
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Figure 6.27: edge-connectivity for speed ratio = —10
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Figure 6.28: proportion of successful runs
a huge difference in the axial ratio, the normalised area is very similar for both values. What is
especially remarkable is the absence of decrease in area for increasing beta values. Taking a look at

figure 4.46, it is noticeable that the minimum value for each swarm size is not reached. Instead the

swarm keeps the area in a middle value, even with varying ratio.
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speed ratio

Next we study the change of behaviour of the swarm with varying speed ratio values. Figures 6.32
to 6.35 present the results. The behaviour of the axial ratio with increasing speed ratio values
shows a remarkable instance of phase transition (figure 6.32). Indeed, for both swarm sizes N = 20
or 60, though to different extent, the axial ratios for negative and positive speed ratio values are
qualitatively extremely different. The behaviour of the swarm stays at a relatively high ratio value
for negative values and sharply decreases to reach the state of the swarm for positive values. Whereas

the neutral speed ratio value stands as a middle point between these two different states.

axial ratio

0.5F

0.2r

0.1

-20 -10 -5 0 5 10 20
vertical speed ratio horizontal

Figure 6.32: axial ratio for increasing speed ratio values

Phase transition is a pervasive phenomena in complex systems, and was first used by Erdos and
Renyi to mathematically define the appearance, in randomly growing graphs, of a giant connected
component [Erdés and Renyi, 1960]. This phenomena is at the core of the concept of Small Worlds
[Watts, 1999] and is also the basis of Kauffman’s theory for the emergence of Life [Kauffman, 1989].
An example of an investigation in phase transition phenomena related to robotic communication is
presented in [Brodie, 2000]. It explores, with the help of evolutionary computing, the appearance of
communication in a group of robots engaged in a foraging task.

The plot for edge-connectivity shows that connectivity stays relatively constant for negative speed

ratio values for both swarm sizes (figure 6.33). On the other hand, positive values corresponding to
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horizontal swarms show differences in the connectivity trend with increasing speed ratio values: the
smaller swarm (/N = 20) has increasing connectivity while in the larger swarm (N = 60) connectivity
remains more or less constant. This difference is also seen in the proportion of good runs (figure
6.34). A reduction in connectivity for larger swarms in the case of the speed ratio value of 10 has
already been noted, and it is clear that this is a general feature of positive speed ratio values. Taking
a look at the odometry plot in figure 6.35 we see a comparable state transition between negative and

positive speed ratio values.
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Figure 6.33: edge-connectivity for increasing speed ratio values

noise

Finally we investigate the influence of increasing levels of noise on the performance of the axis
formation algorithm. The results are seen in figures 6.36 to 6.39. In this case, a parallel increase
in the noise level is used: the influence of communication is not decoupled from the other source of
noise.

As expected we note a decrease in performance with a leveling of the qualitative difference between
positive and negative speed ratio values (figure 6.36).

Edge-connectivity (figure 6.37), is largely conserved with increasing noise. The difference between

small and large swarms for speed ratio value of 10 is observable as well. We should remind ourselves
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Figure 6.35: odometry for increasing speed ratio values

here that all values are recorded only for successful runs (except of course for the mean length of the

runs). Indeed when the influence of noise on the proportion of successful runs is observed, a sensible

decrease is seen (figure 6.38).
The plot of the odometry (figure 6.39) shows a characteristic decrease of the “forward” state

proportion to the point where the swarms spends half of its time turning and half going forward.
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Figure 6.37: edge-connectivity for increasing noise level

The same influence was noted when studying the initial S-algorithm (see figure 4.22, page 100).
Considering that the algorithm used for axis formation is only slightly modified from the algorithm

for taxis behaviour in chapter 5, and given that the decoupling of noise sources has not been investi-

gated, the results in this section give good confidence that communication noise is largely responsible

for the drop in performance. As already noted, the levels of noise in communication simulated here
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Figure 6.39: odometry for increasing noise level

(up to 10% of message loss) are far above what would be found in practice in the communication

industry.
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6.3 Evolution

The previous section has shown that, with a beacon and the light extended [S-algorithm, we can
induce the swarm to adopt a linear global shape. Also mentioned in section 6.1 was that topology B
of group preferences leads to linear shape equilibrium, although only after a huge number of steps.
This section presents an extension of the [ algorithm, referred to as the evolution-$-algorithm, to
investigate, through artificial evolution, the possibility (in the absence of a beacon) to speed up
the self-organising process. The aim is a self-induced and self-sustained linear global shape for the
swarm.

The previous sections of this chapter have made it clear that differentiation in the robots’ speed
and S threshold is potentially sufficient to allow the linear property to emerge. However, in the case
now considered there will be no external cue, thus only an internal mechanism can induce such a
differentiation.

In the animal embryo it has been shown that this differentiation is the result of the diffusion of
internal and external morphogens, with different local concentrations, which trigger the expression of
locally differing morphogenetic processes, leading to a break of symmetry [Nusslein-Volhard, 1996].
This crucial role was first imagined by Alan Turing in a seminal paper in which is described a mech-
anism explaining the formation of patterns through the diffusion of such morphogens [Turing, 1952].

Hence the p-algorithm is extended, following this morphogen diffusion metaphor, by making
each robot produce morphogens that diffuse across the network, triggering change in speed and /3

threshold.

6.3.1 mechanism description

Consider now that each of the robots carries two different elements : a string of integers with value
between 0 and 100, the genotype, and a set of local concentrations of virtual diffusing chemicals,
the transcription factors (TFs). The first element carries the “genetic” information, common to all
robots, while the second is a set meant to mediate diffusion of genetic information between robots.
It is with differing values within this set of transcription factors that the robots differentiate. The
genotype directs the production of the TFs while their local concentrations have a direct influence on

the genotype production. Considering only one robot, this framework represents a dynamical system
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that soon reaches equilibrium. However, by their ability to diffuse across the network, the TFs not
only have an influence on the concentration of the robot considered but also a local influence on the
concentrations of its neighbours.

In tying together concentration levels with phenotypic features such as speed and [ threshold, the
production of the genotype has an influence on the behaviour of each robot. However, the behaviour of
each robot creates changes in the topology of the network, thereby changing the dynamics of diffusion.
This, in turn, has an influence on TF concentrations and hence on genotypic TF production. The

overall mechanism is depicted in figure 6.40.
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5] 9 [73]46]32] 10] 24| 99] 13]67] 3 [ 11] 30
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genotype operator
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@ behaviour of the robot

speed and [3threshold

phenotype operator T B-algorithm +

Figure 6.40: genotype-phenotype mechanism

More formally the mechanism can be described as follows:

e the vector of concentrations of transcription factors in robot ¢ is transformed by the genotype

operator G and decayed by a constant decaying factor &.
vip = Gvjp) — €
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e speed and [ threshold of robot ¢ are modified by the phenotype operator PH, a function of

current speed, [ threshold and the concentrations of TFs.
(s, 8") == PH (v, 8", B")
Define the total distribution of TFs concentrations, speeds and § thresholds as follows:
Mtf = (Uff)izl..R Vs = (Si)izl..R Up = (5i)z‘:1..R

e the total distribution of concentrations is updated by the diffusion operator DIF'F which is a

function of the current concentrations and the topology of the network V.

My := DIFF(M,;, N)

e the topology of the network N is a function of the current state of the network and the total

distribution of speed and [ threshold.
N := F(N, v, v3)

Unlike operators G, PH and DIF'F, the function F' is not deterministic but emerges from the
interactions of all robots, and previous sections have shown the crucial role played by speed

and [ threshold.

The idea is that such a mechanism, provided with a suitable genotype, creates a dynamic of
reinforcement leading to dynamical equilibrium in a selected global shape. In order to find such
a suitable genotype, an artificial evolution is run, mating high fitness individuals by crossover and
mutation.

With this mechanism, the robots remain homogeneous in the sense that they all carry the same
genotype, but they become heterogeneous as the purpose is to trigger differentiation in speed and 3

threshold.

genotype operator

The genome consists of genes spread on a string of integers which can vary in length. At the end of
each listening round the genome is scanned. The beginning of a gene, the promoter, is marked by a
number below a certain threshold. When a gene is found the next 10 numbers, the bases, have the

following meaning:
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e Bases #1 and #2 are the IDs of the transcription factors that regulate the genes.

e Bases #3 and #4 code for the 2-input boolean function directing the action of the two regulating

TFs.

e Bases #5 and #6 code for the concentration interval needed for the first regulating TF to be

considered as active for this particular gene.
e Bases #7 and #8 code a concentration interval for the second regulating TF.

e Bases #9 and #10 represent the ID of the expressed transcription factor and the concentration

expressed respectively.

So, in order for the gene to express its TF, the regulating TF's have to be within their active interval
or outside it, depending on whether they have an inhibitory or excitatory role on this gene. This role
is determined by the 2-input boolean function coded by bases #3 and #4. This boolean function is
chosen to be canalysing to reduce search space. A canalysing boolean function is a function where the
output is totally determined by one of the inputs taking a specific value. It has been shown that nature
makes extensive use of such canalysing functions [Kauffman, 1989, Kauffman and Goodwin, 1994]
(see section 2.6.1).

The genome is then scanned further for possible other genes. The concentrations are updated at
the end of the scanning phase and normalised such that their sum always remains within the simplex.
1.€. z vips = 1.
i=1..Nyg

The great advantage of this approach for genome coding is the absence of a set number of genes;

there is only an upper limit because of memory limitations, which is set to 100 genes.

phenotype operator

To translate the genomic information enclosed in the concentrations of transcription factors, the
first six transcription factors are arbitrarily chosen as structural TFs that can change the behaviour
of the robot. As speed and [ threshold have been shown to be sufficient to induce specific global

shape equilibrium, the first two TF's arbitrate increase and decrease in speed, while the following two
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change the (3 threshold. The remaining two make the robot change to the “red” state (Chapter 5).
This last ability allows for a sudden change of 8 threshold from the current value to infinity.

More formally, robot ¢ speed is updated as follows:

i iftfi—tfi < —A

Sn

sty =< no change if —A < tfi—tfi <\
si4o  iftfi—tfi> A
The (8 threshold and the transition to “red” state are updated analogously. Then the robot behaves

following the S-algorithm with the “red” state extension as described in chapter 5.

diffusion operator

The information exchange of the -algorithm is increased to include diffusion of transcription factors.
This diffusion is defined such that some transcription factors have only an internal function whereas
others diffuse to neighbouring robots: only TFs whose concentrations exceed the diffusion threshold
0 contribute to diffusion.

The contribution to diffusion + is evenly distributed between the NN; neighbours. This is to intro-
duce difference in the TF concentrations, as the network topology is the only source of heterogeneity
that can be exploited to break the symmetry.

Formally, for each transcription factor, a robot ¢ TF concentration is updated as follows:

no change iftf! < ¢

tﬁnﬂ = ) ,
tfi(L =) iftfi >0

and a neighbour j receives
iy = U+ 5t
n+ n Nz n

All neighbours contributions are summed at the end of the listening round and the new concentrations

updated and normalised. That is:
tf£+72j with  R;>6 N%-tfg if tf, <0
thl=7 472 win R NthfVJ): if tfy >0

It has to be stressed that this diffusion operator is not a model of real diffusion phenomena but

thiL—H =

rather an adaptation to fit into the network framework without any additional exchange of informa-

tion. It is worth reminding the reader that the S-algorithm does not rely on a concerted exchange of
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information. Instead information is sent regardless of the hypothetical presence of neighbours, and
robots cannot request information from a neighbour. As a result the diffusion mechanism has to
function without prior knowledge of the neighbouring concentrations, which restricts the possibility
of accurate modeling. In addition to diffusion, the concentrations of the TF decay over time by a
constant decaying factor &.

The mechanism presented here is similar to that presented by Bongard, but his case assumes and
considers an “organism” that is very unlikely to be physically implemented [Bongard, 2002]. On
the other hand Taylor presents the result of an evolutionary model that is from the start aimed
towards real robot implementation [Taylor, 2004]. The preliminary results are encouraging even if
the achieved task is very similar to secondary swarming (see section 2.8.2)

In Bongard’s case there is a fixed topology of the TF's sites of expression (cartesian) which has a
great influence on the morphologies that can be evolved. In the model presented here the network
topology is random and the role of the genotype is to influence this randomness to transform itself

into some meaningful global shape.

6.3.2 artificial evolution algorithm

Given the genotype-phenotype mechanism described above, the task is now to find the genome
able to arbitrate differentiation within the swarm in order to tend towards specific global shape
equilibrium. This is done with the help of a classical genetic algorithm with crossover and mutation
[Bick et al., 1991]. The individuals of a population of genomes are tested one by one and assigned a
fitness. Then the best ones are chosen to generate a new population which is tested again. The process
repeats for several generations and, provided the problem can be solved by the genotype-phenotype
mechanism, eventually leads to the emergence of a locally optimal genome. For a discussion of

problems of evolvability and global optimum search strategies, see [Toffoli, 2000].

fitness function

In order to show that a break of symmetry can be self-induced by the interplay of random fluctuations
and self-organising behaviour, the specific global shape the swarm has to reach has been chosen to
be a linear shape.

Hence the base of the fitness function is the measure of the ratio of the added square distance as
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described in chapter 3. In the case of robots disconnected from the swarm, these do not contribute
to the ratio and the ratio value is reduced. This is to reward for coherence without prematurely
condemning non-cohesive genomes.

In order to reward stability of the global shape, the performance measure is recorded several times
at the end of the testing run and the fitness is the result of the multiplication of the mean value over
the samples by the entropy of the normalised sequence. In other words:

N,

_ 1 S; -
S = — S; O'Z':T E=—- UiIOgO'Z'

V. 2 > 2.

i=1 51
fit =5E

where s; is the sequence of performance measure and Ny its length.

algorithm features

The genetic algorithm proceeds as follows:
e the population is composed of P genomes.

e per generation each genome in the population is tested for N; runs of 200,000 steps and its
fitness is averaged over all runs, including runs of previous generations. The level of noise is

set to 2%.

e then some of the B best individuals are selected by pairs to produce O = P — B offspring.

They are selected by tournament wheel with probability proportional to their fitness.

e the pairs are mated using a crossover operation, which consists in splitting both genomes and
forming the new genome by joining two pieces from different parents together. A constant
probability of mutation is also included, with the replacement of the base value by a new

random integer between 0 and 100.
e the process is repeated for G generations.

This genetic algorithm can be represented as a (B + O)evolutionary strategy in the notation
introduced by [Béck et al., 1991]. For computational tractability and good evolutionary dynamics,

the parameters have been chosen to have the values shown in table 6.41.
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P 90
B 30
0] 20
N, 2
G | 10000

Figure 6.41: parameter values for genetic algorithm

6.3.3 results

In order to study the evolutionary dynamics, the following values are recorded for each generation :
e the fitness of the best individual, the mean fitness and its associated standard deviation.
e the number of genes of the best individual and the mean number of genes across the population.

o the persistence for the best genome and the average persistence across the population. Persis-
tence is the difference between the current generation number and the generation number in

which the genome considered first appeared.

Persistence measures the turnover of genomes in the population. A high value means that the
population on average is rather old, which means that newly created genomes have difficulties in
performing better.

Figure 6.42 presents preliminary results of an evolutionary run. Despite a large number of gen-
erations (5300), the fitness does not increase. The number of genes and the persistence suggest the
presence of two different epochs: after an initial plateau around the value of 40 genes, the number
of genes slowly decreases towards another plateau near the value 20. Simultaneously, the mean per-
sistence starts with quite a high value (around 100), with the persistence of the best individual very
low, and decreases towards the value 25. These features suggest that despite a non-increasing fitness
value, exploration of the search space is nevertheless taking place. The system is thus still in the
initial exploratory period. Indeed, no decisive interaction of genes has yet been found.

Figure 6.43 shows the differences in concentrations, speed and g threshold between two robots
with best genome of generation 523. The differentiation in concentrations is clearly observable (upper

plot); and this difference is translated into § threshold differentiation (lower plot). In this example
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Figure 6.43: differentiation between 2 robots (generation 523)

Figure 6.44: typical swarm configuration for best genome of generation 523
the genome contains only a gene coding for the TF allowing increase of the § threshold. A gene

coding for the TF necessary for a decrease has not yet appeared. Figure 6.44 shows a swarm running

the genome that codes for the differentiation seen in figure 6.43.
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These results show that the discovery of acceptable solutions is very slow. Indeed the search
space is very large (possibly 100'%) and the available computing power was limited to a SUN
UltraSparc 10 machine. With this machine, the presented results needed 10 computing days to
complete. The question remains whether the whole system is suffering from ill-definition, that is
the genotype-phenotype mechanism is not able to cope with the randomness and dynamicity of the
swarm, or whether the exploration needs a larger population, more testing runs or fine-tuning of
the parameters. However, with the available computing power this investigation could not be done.
Nevertheless the differentiation that was sought is observable (figure 6.43), which suggests that the

mechanism may very well be able to display the specific global shape equilibrium.

6.4 Summary of the Chapter

This chapter has presented investigations into the potential for locally controlling the global shape
of the swarm by introducing heterogeneities between robots. Firstly these heterogeneities have been
predefined and fixed. Secondly they have been induced by a beacon and could therefore dynamically
change through the dynamics of the swarm. Finally they have been self-generated by a genotype-
phenotype mechanism.

As a consequence of the algorithm, global connectivity of the communication network formed by
the swarm of robots is maintained. This could lead to applications in large mobile sensor arrays

which require them to adapt their shape to provide appropriate sensing.

concentric and radial segregation

In section 6.1 the possibility to segregate predefined groups of robots has been investigated by firstly
giving each group a different  threshold. As a result the groups self-organise concentrically with
the group with highest £ value in the center, surrounded by the other groups in decreasing 3 value
order.

Secondly the S threshold value has been chosen to be dependent on the group, with the accom-
panying preference topology. The results show the possibility to radially segregate groups of robots,
faithfully reproducing the topology of preference on the global shape of the swarm.

Although showing good scalability and gentle degradation in presence of noise, both processes
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need long runs to reach an acceptable state and even longer runs to reach the concentric equilibrium.

axis formation

In section 6.2, the beacon sensitive S-algorithm extension of chapter 5 is used to define heterogeneities
in speed and [ value within the swarm. Speed is shown to be a crucial parameter that arbitrates an
impressive phase transition between horizontal and perpendicular axis formation.

The use of a beacon greatly speeds up the process and its steady presence helps in maintaining a

very stable equilibrium. Scalability and robustness to noise are conserved.

evolution

The evolution section (section 6.3) presented a mechanism able to control the differentiation in speed
and S value, which was specifically designed to be open to artificial evolution. With this mechanism
we have investigated the goal of self-generating and self-maintaining a linear global shape. Despite
inconclusive results on the ability of the mechanism to reach the desired equilibrium, the mechanism
has been shown to be able to induce differentiation within the swarm.

This chapter closes the investigation of the potential of the S-algorithm beyond the initial require-
ment of coherence that was initiated in section 4.4 of chapter 4. The following chapter will sum up
the work accomplished, draw the conclusions that can be extracted from it, discuss the drawbacks

of the solutions developed and point to further research directions.
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Chapter 7

Conclusion

“..de toute facon t’es foutu.”

Salomé

Because there eventually comes a time when research has to be stopped, this chapter will try to
sum up the work accomplished during the past three and a half years. It will firstly present the
solutions developed, then discuss their drawbacks and advantages. Next it will draw the necessary

conclusions and finally point to the potential for further research directions.

7.1 Work Accomplished

The major hypothesis of this thesis is the contention that decentralised control can lead to global
coherence of the robot swarm based only upon range-limited communication. Chapter 4 presented
the investigation towards this hypothesis and showed, with the help of simulation, that second-order
information (information on neighbours’ neighbours) is needed to guarantee coherence. It was shown
that the algorithm developed (the S-algorithm, see section 4.2.3) is scalable and robust to high levels
of noise and that it can be implemented on real robots, despite serious discrepancies between the
robotic platform used and the assumptions of the simulation. This algorithm involves only local
broadcast of neighbours’ information, and can therefore be considered as fully distributed and thus
fully scalable.

The minor hypotheses are concerned with the potential for the S-algorithm to allow the swarm to

display complex global behaviour such as area coverage control, coherent swarming or global shape
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control.

Chapter 4 described the potential for area coverage control, in a rather amorphous manner, by
tuning the § threshold. This area control is closely linked with the ability of the g threshold to
control the edge- and vertex-connectivity of the network. These are global metrics that relate to the
resilience of the network to component failure. The ability of the algorithm to distributedly influence
global features of the underlying network is of great interest.

A solution for the spatial selection of the robots using the information already available to them
for the [-algorithm was also presented. It is able to discriminate between robots that are at the
boundary of the swarm and robots that are within the swarm. As the §-algorithm does not rely on
positional information, this localisation ability, albeit limited, is quite remarkable. The same idea to
use information already available was applied to investigate the possibility to compute local estimates
of the area coverage. Although being of limited precision, the estimates still provide reliable bounds
on area coverage.

In chapter 5 the extension of the algorithm to include beacon perception led to the development
of a truly emergent taxis behaviour, with the additional ability to avoid beacon occluding obstacles
coming as a valuable side-effect. Strongly relying on subtle robot interactions, the solution presented
cannot make a single robot move towards the beacon. Only the dynamic equilibrium between robots
that sense the beacon and robots that don’t, makes the swarm as a whole move towards the beacon.
This algorithm has the advantage to display taxis while still being able to maintain coherence.
Although the purpose of this research is not in investigating biologically plausible solutions, the taxis
behaviour is highly reminiscent of bacteria and slime molds such as Dyctiostelium.

Finally chapter 6 presented the potential for fixed and dynamical heterogeneities between robots
within the swarm to induce the control of the overall shape. Firstly, differential 8 thresholds across
the swarm have shown to be responsible for the concentric dynamical self-organisation of different
predefined groups of robots, whereas group dependent S-thresholds presented the ability to segregate
different groups within the swarm, according to the topology of the group preferences.

Secondly, the use of a beacon to trigger further dynamical differentiation in speed between the
robots was able to achieve dynamical axis formation. Speed is shown to arbitrate a phase transition
between co linear and perpendicular axis formation. With this result the potential of the S-algorithm

and its variants to exhibit complex behaviours through the tuning of a small set of parameters is def-
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initely confirmed. Again, these behaviours relate to numerous biological examples of morphogenesis,
ranging from Dyctiostelium to the development of the animal embryo.

These biological analogies are incentives for the development of an evolutionary framework to dy-
namically tune the crucial parameters according to virtual morphogens diffusing across the network.
Despite being deceitful, most likely because of a huge search space and limited computing resources,
the algorithm was able to evolve dynamical robot differentiation within the swarm, but failed to
achieve the proposed self-induced axis formation task.

All these complex behaviours have been shown to be to some extent scalable and robust to high

levels of noise.

7.1.1 algorithms developed

This thesis has presented several algorithms which displayed differing behaviours (see figure 1.1, page
16):

e the preliminary a-algorithm managed to keep the robots together for a while but could not

guarantee coherence in the long term because of its fundamental theoretical flaws.

e the main [-algorithm achieved long term coherence, tuning of the network connectivity, area
coverage control and the exchange of information needed by this algorithm was demonstrated
to be sufficient for crude relative positioning within the swarm (localisation-j3-algorithm). Real
robot experiments and simulations presented sufficient similarities to support the correctness

of the implementation.

e Heterogeneities in 8 threshold have been shown to induce global group segregation (concentric-

B-algorithm and radial-g-algorithm).

e the light beacon extension of the S-algorithm (taxis-S-algorithm) presented, through dynamic

differentiation, a truly emergent swarming behaviour that allowed for obstacle avoidance.

e Further differentiation in robot speed within the taxis-3-algorithm led to perpendicular and
co linear axis formation (axis-3-algorithm). The investigation of the speed parameter revealed

the occurrence of a phase transition phenomena.
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e the genotype-phenotype mechanism together with the evolutionary algorithm showed the ability
to induce differentiation within the swarm but failed to achieve beaconless axis formation,
most likely because of a tremendously huge search space and insufficient computing resources

(evolution-S-algorithm).

7.1.2 drawbacks

The essential step from the a to the S-algorithm increased information exchange and sensitivity to
the message content. Because the algorithm relies on comparisons of neighbourhood, the compared
neighbours have to agree on the IDs they exchange. This could restrict the scalability of the system
as each of the robots needs to possess a unique ID. This could be a problem in the case of minimalist
robots, but for robots using standard LAN cards, we note that each such card has a unique hardware
ID: the MAC address. A possible way to circumvent this restriction was proposed in section 4.6.

One of the drawbacks of the S-algorithm and its extensions is the relative slowness of the self-
organising processes. For instance in area coverage control, swarm contraction takes some time
to reach equilibrium. This is even more true with the taxis process that needs very long runs to
complete. It is clear that applications that require fast completion cannot rely on such algorithms, but
applications where reliability is more important can have confidence that the swarm will eventually
reach equilibrium (or the beacon). This slowness has greatly impaired the evolution algorithm as
long runs were needed to efficiently test the different genomes.

Another drawback was the practical difficulty encountered in limiting the range of the radio device.
There is good confidence that the WLAN radios used present good communication range geometry,
but this remains to be tested in a (large) real robot experiment. This difficulty may actually be
intrinsic to the choice of the radio medium and might restrict the use of such algorithms to large
spaces. However, new lower power radio standards such as IEEE 802.15.4 (Zigbee) have tunable range
that can be limited to 1 meter [Artaud et al., 2004]. Shifting to another means of communication

(sound or chemical for instance) could also circumvent this range difficulty.
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7.1.3 advantages

The main advantage of the different algorithms presented is the fact that, in addition to being fully
distributed, they all rely on strictly local information exchange. As a result, scalability is almost
guaranteed. Only the use of a beacon introduces some performance decrease against increasing swarm
size. Except for the ID sensitivity discussed in the previous section, the S-algorithm presents perfect
scalability, thanks to the limited communication range.

Although being potentially a drawback, the dynamicity of the swarm is the reason for the swarm’s
potential in complex behaviours. Not only crucial to the basic algorithm, constant movement (and
randomness) is needed to give the robots sufficient freedom to self-organise. As a result the be-
haviours are dynamical equilibria towards which the self-organising swarm proceeds. Built on such
consideration, an evolution framework presented, if it eventually copes with the randomness of the
swarm, it may produce genomes coding for the behaviour leading to any shape equilibrium, provided
a fitness function is available.

The use of a radio communication device as a virtual bound between the robots leaves freedom in
the design of the robotic individuals implementing the different algorithms. Using legged or flying
robots only changes the possible strategy to implement the necessary U-turn.

These advantages suggest that the potential of the presented family of algorithms is not restricted
to the robotic platform used. In fact, we believe that they represent an algorithm design framework

to be applied to the field of swarm robotics in general.

7.2 Hypotheses Demonstrated

From the previous chapters and the discussion above it can be declared that the hypotheses have been
proved, although only partially in some cases. Indeed the methodology presented in chapter 3 requires
the confirmation of all simulation results by a real robot experiment, at least for a reasonable swarm
size. This has been possible only for the most simple behaviours possible with the [-algorithm,
as the more complex behaviours require a very long term coherent swarm; this was not possible,
largely because of the practical choice of device used to simulate locality. But the success of the
implementation, in spite of huge differences between the real robots and the simulation, give good

confidence that once a solution to the practical problems can be found, verification of the full set of
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behaviours will only be a question of time.

This stated, the complexity and richness of the behaviours displayed by robots fitted with such
a simple ability as the range-limited broadcast of a list of neighbours, is undeniably impressive and
shall certainly lead to further research. It is clear that this research has opened many directions that
could be extended much further, some of which represent whole new research areas. This could be
seen as a weakness, but the purpose has been from the start to explore the potential of range-limited
communication for emergent behaviour and we believe that the present thesis has discovered and
explored many interesting features of this approach.

Throughout this thesis the constructionist approach has permitted us to imagine and conduct
experiments that, we believe, have increased understanding of the capabilities of such complex robotic
systems. It is doubtful that the algorithms that are at the source of the beautiful behaviours presented
in the previous chapters could have been invented following a pure analytical approach. Actually we
believe that this thesis provides an example of the power of the constructionist approach and that
only this approach could yield such results. Now, a better understanding of the reasons for such

capabilities is needed and this is where analytical study is required.

7.3 Further Research Directions

Because the initial choice of this study was to demonstrate the potential of the range-limited com-
munication approach, the mechanisms revealed have not been exhaustively investigated. Many pa-
rameters were arbitrarily fixed, such as the ratio of communication/avoidance range, for instance.
These dimensions of the parameter space remain to be further studied.

Moreover, the discovery of the potential of the §-algorithm has revealed areas of research whose
investigation was beyond the scope of the thesis. In this section we articulate some of the potential

for further research that we believe might deliver interesting results.

7.3.1 real robots implementation

The most obvious area for further work, because of the practical difficulties encountered by the
present study, is in the real robot implementation of the behaviours that still need methodological

confirmation. Implementation should either proceed through a better localisation simulation frame-
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work, such as video frame grabbing for instance, or concentrate on the realisation of a dedicated radio
device with all the hardware and software difficulties inherent to this choice, such as message collision
for instance. Even more interesting would be the investigation of other communication media, more

compatible to the framework of minimalist robotics, perhaps sound or chemical communication.

7.3.2 communication protocols

As the S-algorithm has shown its ability to tune the connectivity of the communication network, it
is now of great importance to study the communication properties of the dynamic network created.
Of primary interest is the investigation of different routing protocols that will make, despite the
constant reorganisation of the network, multi-hop exchange of information possible. Indeed, the
possibility for two robots to communicate thanks to the relay of messages by other robots, is the
motivation underlying this thesis. A great success would be to achieve this routing with only the help
of the information already provided by the S-algorithm, namely the neighbours’ list of neighbours.
Furthermore, the routing protocol could be linked to the behaviour of the robots, in order to self-
organise a reliable dynamical communication network.

This advance could lead to applications in large mobile sensor arrays which, as demonstrated, could
exhibit adaptation of their shape to provide appropriate sensing. Such protocols are highly sought

after by telecom companies to develop a potentially infrastructure free mobile telephone network.

7.3.3 Dbehaviours

The behaviours presented need extensive investigation to determine the precise role of the different
parameters; to cite just a few, the influence of randomness, communication range/avoidance range
ratio, obstacles’ sizes or different topologies of the radial-g-algorithm. As differentiation within
the swarm has shown, its potential for complex behaviour and pattern formation, the potential
of the remaining parameters for further differentiation should be investigated as well, for instance
differentiation in the scope of the random turn after reconnection.

As the localisation-3-algorithm and the area estimators used only connection degree information,
the ID information provides room for improvement that should be investigated; as also should the

potential use of these results to influence the behaviour of the robots. More generally, the use of
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internal cues to induce dynamical differentiation within the swarm should yield further results. The
evolution framework of section 6.3 attempted an automatic search of this potential, but more focused
research on this particular topic might be more successful.

The phagocyte behaviour presented in the summary of chapter 5 could have interesting real
applications. Therefore, more insight must be gained by thorough investigation of this situation.
We suggest the study of an algorithm able to decide whether the beacon has been enclosed or not

(possibly wefinitzer’s collective decision algorithm [Wefinitzer and Melhuish, 2003]).

7.3.4 analysis

Powerful tools of analysis are crucially needed in the field of collective robotics [Winfield, 2004].
There have been several propositions already (see section 2.13) and the most promising seems
to be the probabilistic modeling approach initiated by Martinoli [Martinoli and Mondada, 1998,
Lerman and Galstyan, 2001]. The application of such an approach to the problems presented in
this thesis is of remarkable interest. Although it is possible that, by their inherent dynamicity and
unconstrained environment, the behaviours presented in this thesis show themselves resistant to the
methodology. Nevertheless, these behaviours strongly suggest that some fundamental property is

involved which would yield to be formal analytical investigation.

7.3.5 learning and evolution

An area that has been completely, although consciously, neglected is the application of learning
algorithms across the swarm. We believe that the use of learning has the potential to improve the
adaptability of the coherent swarm to changing environments.

The relative failure of the presented genotype-phenotype mechanism to converge through artificial
evolution should not be taken as a proof of impossibility. Within this framework there is indeed
room for improvement, through the investigation of different variants of the mechanism for instance.
Better computing resources together with a more noise-resilient genotype mechanism, a less dynamic
diffusion operator and a less difficult task, should lead to more positive results. A serious constraint
of the search space should also be considered.

Potentially the evolution approach applied to our dynamical swarm is open to the development

212



of any shape for which we can produce a fitness function. Thus this direction merits further effort

to eventually produce its first results.
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Chapter 8

Appendices

8.1 Appendix A: upper bound for area coverage

Assuming that the robots have a circular range of communication we are going to produce an upper
bound of the area covered by the swarm using only information on the distribution of degrees of
connection. As stated in chapter 3, the advantage of this estimator is its local definition. Indeed
the S-algorithm requires an individual robot to receive local information on connections. Hence the
method described below gives a robot an upper bound of the area covered by itself and its neighbours,
and could be used to influence its behaviour.

Using simple geometric properties we compute the contribution of a single robot to the area in all

possible cases of degree of connections. Then the upper bound will be given by the following formula:

Nrobots

A= D" ok

i=1
where k; is the degree of connections and «(n) is a function that returns the maximal contribution
according to degree n.

To compute the maximal area for a degree value of £ we put k£ + 1 robots symmetrically on the
largest possible circle such that they are all interconnected, i.e. such that they form a complete
graph. We compute the area and divide by £ + 1 to get the individual contribution to the area. The
robots are placed on a circle in order to get the same value for each robot by symmetry.

When we draw the area covered by the robots we get a rosace(see figure 8.1). It is possible to
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compute the area by subtracting all overlaps to the addition of £ + 1 single robot areas; in other
words we add the area as if the robots were all far from each other and then subtract all overlaps.
We label the regions starting from outside the area towards the center, and each time we cross a

circle boundary we increase by one.

Figure 8.1: rosaces with £k =3 and £ =5

NN AN (=)
A X

1 i n-1 n

Figure 8.2: different region types and their corresponding graph

In such a drawing we get four different types of regions (see figure 8.2). By subtraction we do not
need to compute the first case and get the following formula:

for the whole rosace
A, =na—nBy —2nBy —---—n(n—2)B}_; — (n—1)By

for the individual contribution

1
= o By _opr ... (n_2)pr, — "= Upn

n n "
where n = k41 is the number of robots, a the area covered by a single robot and Bg the area of the

division ¢ dependent on the number of robots j.
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8.1.1 Proof of formula

we firstly have to define more formally how the divisions are labeled. To this end we define the graph
of the divided surface as follow: a vertex represents a region of the plane defined by the rosace and

there is an edge between two vertices if the regions are adjacent (see figure 8.3).

Figure 8.3: two representations of the graph of the rosace with £k =5

We then define a labeling path from the vertex representing the outermost region to the vertex
representing the innermost region - i.e. a path from outside the rosace to the center - as a path
that starts from the outmost vertex and is allowed to go through an edge if this edge represents the
boundary of a circle the path has not yet crossed. As in a rosace all circles intersect in the center,
such a path is obviously well defined and it ends in the center of the rosace.

Now we take a labeling path as defined and label the regions starting with 0 for the outmost
vertex and increasing by 1 for each vertex along the path. To check whether these labels are well
defined we need to be sure that two different labeling paths going through the same region will give
the same label to that region. In order to do that we need the general graph of the rosace (see figure
8.4).

On such a representation of the graph, a labeling path is a path that starts on the left and always
go towards right until the center vertex is reached. Indeed to go towards left would make the path
longer than n edges and the rosace has only n different circles. The path would therefore not be a

labeling path. The well-definition of the labels directly follows from that remark.
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n-1
Figure 8.4: the graph of a rosace with k =n — 1

In order to compute the area, we can just add all the regions and get the following formula:

n—1

Ay=n) Bl +Bj

i=1

Alternatively and because the addition of many non-exact small quantities can lead to noticeable
errors, we prefer to proceed by subtraction of all overlaps from the area covered by a single robot.
As each time we cross a new circle we increase it by one, the label actually represents the number of
circles overlapping a region. The regions with a label equal to one are already counted in the single
robot area. The innermost region is counted n times; that means (n — 1) too many times. Finally
the regions with label 2 < i < n — 1 are each counted 7 times; that is (i — 1) too many and there are

n such regions in the area. The formula becomes now:
n—1
Ap =na — nZ(z —-1)B — (n—1)B}
i=2

as stated earlier.
What remains to be proved is that the general graph of the rosace is indeed the one depicted in

figure 8.4.

217



8.1.2 Proof of the graph

To prove the general graph, we define an E-set E C Z,, such as:

/

1,1 € Ly,

E st if i€ E then i€ Z,

and i,j€EE=1i+1 or j+1€E

\
More intuitively, an E-set E' is a “connected” subset of Z,. Using the obvious bijection between Z,
and the centers of the robots’ communication circles on the base circle !, there is a connected interval

of the base circle containing all centers in E and no others (see figure 8.5).

6

Figure 8.5: An E-set on the circle

Now we define a subset of the plane II as follow:
Ie=(a\{UJ( e}
i€E j¢E i€E
Let our graph be G = (V; E) with V the set of vertices corresponding to a region of the plane IT,

and E the set of edges. Let also E,, be the set of all E-set of Z,. We then define the bijection

f: Vv — F,
) — F

outmost — O

it is well-defined as if £ # E’ then I N Iy = & by definition.

Lobtained by labeling the robots in the trigonometric order starting from the trigonometric origin, for instance
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surjection

we have to show VE € E, = Iz # @. In particular , we have to find a € II such that Vi €
E, d(z,¢)<r and Vj ¢ Ed(z,c;)>r. We define the boundary of E

OE=i€F and i=j+1,j¢FE or i+1¢F

We have by definition of an E-set that |0F| < 2. Remember the intuitive representation an E-set.

If |OE| = 1, let us define d;, as the straight line passing in 4 perpendicular to dC;. Then di Ld;1
in 4 divides the plane in two parts A U B where all i € FE are A (wlog). Hence z = 0C; Nd;, N A
fulfills d(z, ;) > r as d(x, dy)) = d(x,7) = r (see figure 8.6).

d itang

. X
d i perp

Figure 8.6: case |0E| =1

If instead |0E| = 2 (E = {i,¢'}) then (J;yz C; has two elements = and z'. But again by definition
of an E-set, d; 7 divides the plane in two parts I = A U B, where one (wlog A) contains all j ¢ E.
Define x = BN ;.55 C; the element of the circles generated by the boundary of E that stands in B.
Then the only points y € A with d(z,y) < r are in the shaded area D = AN C(z,r) in figure 8.7.
Alternatively CNC(x,7) = {i,i'}. As a result and because the intersection of two distinct circles can

have at most two elements, 37 ¢ E with d(x,J) < r.

injection

What needs to be proved is that VE, I is connected. We begin with three remarks:
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Figure 8.7: case |0E| =2

. ﬂZe’P(Z\) C; is convez, i.e. YVx,y € (C;, 2y C G

® (Yicn G C Clem(E), 1), VE C Zy, where cp(E) is the center of mass of the elements in E and

[ is the maximal diameter of an intersection of C; (see figure 8.8).

e UjsrC; overlaps C(cm(E),1), VE C Zn, as the minimal diameter of a union of C; is greater

than [.

The maximal diameter of the intersection of several circles is found with the intersection of two
nearest circles. In our case, we take adjacent ¢ as in figure 8.8 where a = 27/n, and compute
d = 2Rsin %i and | = 2y/3RsinZ. Then we use the fact that for all B convex, we have B\ (4N B)
connexe if the minimal diameter of A is greater or equal to the maximal diameter of B. Indeed A
cannot separate B in two components because it is too large.

Then the graph is proved as follow: an edge in the graph corresponds on the plane II to crossing
a circle. Also to cross a circle corresponds in terms of E-set, through the bijection defined above, to

adding or subtracting an element. But to remain in the set of E-sets there are
e 4 possibilities if 1 < |E| <n —1
e 3 possibilities if |[E|=1or |[E|=n—1

e n possibilities if ¥ = & or K =7,
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Figure 8.8: [ maximal diameter of an intersection of C;

These possibilities correspond to the degrees of the general graph.
To represent the graph we draw the vertices in columns according to the number of elements in
E. There are n different E-set with k£ elements, hence n rows, and n + 1 columns (n elements in Z,

and @). O

8.1.3 computation of B, 2 <:<n—2

Figure 8.9 depicts the situation with the center of the circle labeled with A, and the four robots
contributing to the area B} labeled with B, C, D and FE.

Half the area B}’ can be computed using simple geometric tools:

n
Bi = Q(Atriangle FGH T Asegment CGH — Asegment EFH)

where a segment is the area of the circular sector defined by an isosceles triangle minus the area of

this triangle (see figure 8.10).
In order to compute this area we make use of the available information from the disposition of

the robots on the circle. From the polygon BCDE we get
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G

Figure 8.9: schema for the computation of B}

C A

Figure 8.10: a segment area from a triangle ABC

from polygon EJFGH,

_ea
0=¢+ 5
from polygon ACHE,
5=arcc0s(§sin %T) and y=0+w-¢
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from polygon ABFFE,

& = arccos(— sin
r
From polygon ACGD,

, — 1
u = arccos(— sin (= Um

) and f=p+w—>
r n

from polygon BCGDEJ,
a = 2Rsin ~sin - + r sin(u) — rsin(€)
non
and finally from triangle EFH
.
=92 —
¢=2rsing

Then area B}’ is computed as follows:

B! = acsin + r*(8 — sin ) — r*(y — sin~)

computation of R

Ton Tn

Figure 8.11: calculation of R for n odd

If n is even, robots are placed on the circle in front of each other, (i.e. robots are distributed
symmetrically on the circle with circular symmetry of center B). In this case the radius of the

maximal circle is

where r is the communication radius.

From figure 8.11 which depicts the odd case with a robot situated in A and another in B, follows

r

- T
2 cos o
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8.1.4 computation of B ;

C
P r
o B
h r 0
r R
Y d Tin Azn
/
D Y "
r R
£

Figure 8.12: schema for the computation of B,

Half the area B! _; can be computed by considering the communication disks of two neighbouring
robots on the circle. Figure 8.12 depicts the situation with the center of the circle labeled with A,
and both robots contributing labeled with £ and B. For the computation of n even or odd, we use
the same schema with a different R value.

We firstly note from the isosceles triangle BDFE that § = %i — v. Next we compute from the
triangle ABC,

sin _ sin(r — 1)
R r
. R . 2w
g = arcsm(? sin(m — 7))
from the triangle ABD,
siny  sin(m— 1)
R r
in( sin(r — )
= arcsin(— sin(m — —
7 r n
from the triangle BCE,
a=——F+y



and

sin(§ — %) _ sin(§ + .- B)
T L
I — Tcos(ﬁ ; )
cos T

where L is the segment C'E; and finally we compute from the triangle CDE,
h = rsin(J)
T
=7 sm(n v)

Then half the area B)_, is computed as follows:

1
n —
§Bn_1 - Atriangle CDE — Asector DEF + Asegment BCD

where A stands for area. Hence,

B', = 2(%L Sin(% -7)) — T_Z(% —7+ gj(a ~sin a))
_ 2(COS£58; %) sm(% —7) —sin(—= = B+7) +28 - 7)

8.1.5 computation of B

For the computation of B, we distinguish between the odd and even case.

n odd

Figure 8.13: schema for the computation of B}, oddcase

The area B]! can be computed as follows:

n
Bn = Apolygon + nAsegment
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As the polygon is formed of n isosceles triangles with isosceles edges of length R,
BZ = n(Atriangle + Asegment)

Figure 8.13 depicts the triangle situation with the center of the circle labeled with A, and the three

T

robots involved labeled with B,C and D. Remember that for the computation of n odd, R =

2cos%'
Then,
" R?> o7 r’ T
By = —sin— +n—(——sin—)
2 n n n
.9
nr? (7‘(’ ) 7r+ sin 22 )
= —|— —sin—
2 \n n 4(:0521
n
n even

C r/2 A /2

Figure 8.14: schema for the computation of B}, even case

Half the area can be computed using the same technique as used for the computation of B]_;:

n
Bn = 2n(14tria,ngle AEC T Asegment DEC)

Figure 8.14 depicts the n even case with the center of the circle labeled with A, and the three robots
involved labeled with B,C' and D.

From triangle DEC, we get

T
T2
From triangle ABC),
™ 37
P=9 "t



and

sin 3 sin o
- =
5 d
in
PR sin -
2 sin i—”
n

Then the area is computed as follows:

rdsin®™ 2 g ™
n "\ 5 (5, i g,)
r2sin®®sin® 2 g T
_ 2n<—#+——— : _)
8 snk 2l gy
s 4 T
S1n — Sin —
= nrQ(rfign-i-l—sinl)
4s1n£ 2n 2n

8.1.6 computation of special case n = 2

As the formula for the rosace does not hold for n = 2, this case has to be dealt with separately. In
fact this case is equivalent to the case presented in section 8.2.5 with » = R. We therefore get an

expression of the maximal area covered by two robots with communication radius r:

thus,
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8.2 Appendix B: lower bound for area coverage

As the robots have proximity sensors with lower range than the communication range, it is possible,
with analogous reasoning as used in the computation of the upper bound, to compute a lower bound
of the area coverage of the swarm. Using simple geometric properties we again compute the minimal
contribution of a single robot to the global area in all possible cases of degree of connections. Then

the lower bound is given by the following formula:

Nrobots

A= )" Ak)

where k; is the degree of connections and \(n) is a function that returns the minimal contribution

according to degree n.

8.2.1 growth

If the robots have to keep a minimal distance, the area will be minimal if they are situated on an
equilateral grid. Hence to compute the minimal area for a degree value of k£ we put £ + 1 robots on
an equilateral grid of edge length R - the avoidance radius, such that they are all interconnected and
cover an area as symmetrical as possible. To this extent, we start with three robots forming the first
equilateral triangle and then grow the shape according to the growth rule depicted in figure 8.15 (the
notation corresponds to the number of equilateral length R on the edges of the 6-polygon). We then
compute the area and divide by k£ + 1 to get the individual contribution to the area.

Unlike for the computation of the upper bound, we will start from the area covered by two robots
standing at minimal distance to each other, and then compute the new contribution of each added

robot on the equilateral grid. Then the expression of the minimal contribution is

1 n+1
A(n) = n—ﬂ(growthg + Zz_;glrovvthi)

If n > 3, growing the previous group by adding a robot corresponds to the addition of a vertex
on the equilateral grid occupied by the group. According to the position of this added vertex, the
growth of the overall covered area can be different. Following the growth rule of figure 8.15, we have

to compute 5 different cases (figure 8.16).
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Figure 8.15: minimal area growth

type O typel typel.l type 2 type2.1

Figure 8.16: area growth types

Following the growth rule, we compute the first cases and show the behaviour of the sum in figure
8.17. No proof is given as the communication radius/avoidance radius ratio constrains in our case
the number of robots to N < 36.

To compute the contribution to the growth of the overall covered area for each growth type, we

consider figure 8.18 and derive the following equations
AO - A
Al = A - C
A1_1 - A - 20
AQ = B

Ay = B-C

What remains to be computed are the areas A, B and C.
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growth types

notation | nb of robots |0 1 1.1 2 2.1
3 1
6 4
9 4 3
2:1 12 4 3 3
1:3 18 4 6 6
3:2 27 4 6 3 12
2:4 36 4 6 6 18
4:3 66 4 6 9 24 3
3:5 60 4 6 12 30 6
5:4 75 4 6 15 36 12
4:6 90 4 6 18 42 18
6:5 106 4 6 21 48 27
5:7 126 4 6 24 54 36
7:6 147 4 6 27 60 48
6:8 168 4 6 30 66 60

Figure 8.17: computation of the first terms of the sum

“

Figure 8.18: computation of area types
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Figure 8.19: schema for the computation of A

8.2.2 computation of A

Figure 8.19 depicts schematically the situation with two robots labeled B and D; they stand at a
distance R of each other, on the equilateral grid. In order to compute the different terms of this

equation, we consider several polygons. From triangle ABC we firstly get

0= g ¢ and & = arcsin %
from triangle BED
™
o = arccos o +¢
from triangle BC'D
a+6+B+EE+0 = T

B =Z+¢-a
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and

sin(g —¢  siné
r—iI R
r—1 = 2r sin(% —£)

I = 7"(1 —2sin(% —f))

Then an expression for the area A is given by

A = 2 (Atriangle CEF + Asegment DEF — Asegment BCE)
R .o T . r .
= 2(§sm(§ - 5)2rs1n§+§(ﬁ—smﬁ) — E(a—sma))
.m B« . :
= r(2l sm(§ — 5) sin o + (8 —a) — (sin 8 — sin a))

8.2.3 computation of B

Figure 8.20: schema for the computation of B

Figure 8.20 depicts schematically the situation with two robots labeled B and D; they stand at

a distance R of each other. In order to compute the different terms of this equation, we consider
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several polygons. From triangle ABC' we firstly get

) Rsin
sin§ =
r
. (V3R
& = arcsm( o )
and
T
0=——
5 ¢

from triangle BEG

a—arccosﬁ%—&— u
N 2r 3
from triangle BC'D
S+E&+B+a+s = w
p =5+&—a
and
sin(§ — ¢ _ siné
r-1 R
2r . m
r—1 = —=sin(< — &)

Then an expression for the area B is given by

B = 2 (Atriangle cEF + Asegment DEF — Asegment BC’E‘)

= 2(% sin(g — §)2rsin% + g(ﬁ —sin 3) — g(a — sina))
= T(2l sin(g - g) sin % + (8 —a) — (sin § —sin a))

8.2.4 computation of C

Figure 8.21 depicts schematically the situation with three robots labeled A, D and H. In order to
compute the different terms of this equation, we consider several polygons. From the polygon AHC D

we firstly get

w3
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Figure 8.21: schema for the computation of C'

as the robots are placed on the hexagonal grid; from triangle BC'D
. B
d=2 —
rsing
from triangle ABG

o = arccos — — 0
2r

from triangle AC'D

sing  sinp
T R
= arcsin( 3R>
= 2r
and
B=g—n—a
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from triangle ABC

siny  sinao
r d
. sin o
siny =
i 2sin g
) ( sin v )
= arcsin
i 2sin g
back to triangle AC'D, we get
sin(B+a+46)  siné
r+1 o
2
r+l = ——sin(B+a+2)

/3 3

I = r(%sin(ﬁ—l—oﬁ—g)—l)

Then an expression for the area C' is given by

c =2 (Atriangle BCE T Asegment BCD — Asegment ABE)
ld
= 2(§sin7+g(ﬁ—sinﬁ)—g(a—sina))

= ldsiny+r(8 —sin ) — r(a — sin «)

8.2.5 computation of special case n = 2

Figure 8.22: schema for the computation of the special case of two robots

Again, the case n = 2 has to be dealt with separately. Figure 8.22 depicts schematically the

situation with the two robots labeled A and D standing at a distance R of each other. An expression
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for the area covered by the pair is given by

2
A=2mr" — 4(Atriangle EBC T Asegment ABC)

which then gives

A1) =7r® —2 (Atriangle EBC + Asegment ABC)

In order to compute the different terms of this equation, we consider several polygons. From the

triangle ABE we firstly get

R 2
(. = arccos — and h=1/r2— R_
2r 4

Then the area is given by

R r?
_ 2 _ oy — = _ — gl
A = 2mr 4( (r 2)h+ 2(06 51na)>
R R?
— 2 _ (- 2 _ 2
= 2(7rr (r 2) r 1 r(a s1noz)>
2
A1) = wrz—(r—g) 7.2_%_7«2(04_5111@)
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