
Key agreement over a radio link ∗

Mario Čagalj
LCA-EPFL

CH-1015 Lausanne
Switzerland

mario.cagalj@epfl.ch

Jean-Pierre Hubaux
LCA-EPFL

CH-1015 Lausanne
Switzerland

jean-
pierre.hubaux@epfl.ch

ABSTRACT
We present a simple, and yet powerful, technique for
key establishment over a radio link in peer-to-peer net-
works. Our approach is based on the Diffie-Hellman key
agreement protocol. This protocol is known to be vul-
nerable to the “man-in-the-middle” attack if two users
involved in the protocol share no authenticated infor-
mation about each other (e.g., public keys) prior to the
protocol execution. In this work, we show how the nat-
ural ability of users to authenticate each other by visual
and verbal contact can provide a context for secure ver-
ification of the integrity of the Diffie-Hellman param-
eters (e.g., Diffie-Hellman public keys). Having estab-
lished such a context (e.g., by being in the vicinity of
each other), even if they share no authenticated infor-
mation in advance, the users can run the Diffie-Hellman
protocol in a secure way: at the end of the protocol, the
users will be able to check whether the Diffie-Hellman
public keys they exchanged were tampered with by an
attacker.

We have devoted much attention to the user-friendliness
of our solution: (i) all messages in our protocol are ex-
changed exclusively over a radio link (neither physical
contact nor an infrared link is required between the de-
vices); (ii) the users do not have to enter any passwords.
All the users have to do is to compare a short string

∗The work presented in this paper was supported (in
part) by the National Competence Center in Research
on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National
Science Foundation under grant number 5005-67322.
(http://www.terminodes.org)

EPFL-IC Technical Report No. IC/2004/16

of usual words displayed on each of their devices. We
quantify the trade-off between the size of this string and
the level of the provided security.

We have implemented our technique in Java. Our sys-
tem is independent of the underlying operating system
and can be run on a variety of personal mobile devices,
including those with very limited computing power.

1. INTRODUCTION
As the popularity of mobile systems such as PDAs, lap-
tops, and mobile phones increases every day, users tend
to rely more and more on them, in a growing number of
situations. In this paper, we focus on the frequent case
in which two persons get together (e.g., at a meeting,
or in the street) and make use of their device to com-
municate with each other, or at least to exchange their
(electronic) business cards. Clearly, the communication
between these devices must be properly secured.

Very often, the two users will want the security between
their devices to be peer-to-peer, thus operating indepen-
dently from any authority. In practice, this means that
the mobile devices must run a protocol to authenticate
each other and to protect the data they exchange (to en-
sure confidentiality and integrity); the latter operation
typically requires setting up a symmetric shared key.
This key can be used to secure both immediate commu-
nications and communications taking place afterwards
(e.g., when users exchange email over the Internet).

It is a common belief that peer-to-peer security is more
difficult to achieve than traditional security based on
a central authority; moreover, wireless communication
and mobility are considered to be at odds with secu-
rity. Indeed, jamming or eavesdropping is easier on a
wireless link than on a wired one, notably because such
mischief can be perpetrated without physical access or
contact; likewise, a mobile device is more vulnerable to
impersonation and to denial of service attacks.

In contrast with this widespread belief, we think that
physical presence is the best way to increase mutual

trust and to exchange information in a secure way. In-
deed, authentication is straightforward, as users can vi-
sually recognize each other (if they meet for the first
time, they can be introduced to each other by a com-
mon friend whom they trust; or they can check each
other’s ID). In order to establish a shared key, they can
make use of a location limited channel (e.g., physical
contact or infrared [27, 8]) between their two devices.
The man-in-the-middle attack is considered to be un-
feasible in these conditions.

More recently, researchers have proposed solutions run-
ning exclusively on the radio link (hence they do not
require a special channel such as physical contact or
infrared), which increases the usability. To compensate
for the much higher vulnerability of the channel, in some
solutions users are required to type a password in both
devices; in other solutions, they simply have to com-
pare strings of words (the longer the string, the higher
the security). The approach we describe in this paper
belongs to the latter family of solutions. However, we
make a very significant step further, by (i) quantifying
the trade-off between security and usability, (ii) pro-
viding a detailed description of an implementation and
measuring the related execution time, and (iii) explain-
ing how this scheme can work even if the devices have
very limited computing power.

The rest of the paper is organized as follows. In Sec-
tion 2 we state the problem and formulate our assump-
tions. In Section 3 we present our solution. In Section 4
we provide a security analysis and an evaluation of the
overhead. In Section 5 we describe the implementation
of our proposal. In Section 6 we comment on the related
work. Finally, we conclude the paper in Section 7.

2. PROBLEM STATEMENT AND SYSTEM
MODEL

We consider the following problem. Two users, each
equipped with a device capable to communicate over a
radio link, get together wishing to establish a shared
key. Although they can visually recognize each other,
we assume that they share no authenticated crypto-
graphic information (e.g., public keys or a shared se-
cret) prior to this meeting. In addition, the users are
limited to communication over a radio channel (no in-
frared or physical ports are available). The challenge is
the following: How do the users establish a shared key
in such a scenario in a secure way?

2.1 Challenges in radio-based systems
The Diffie-Hellman (DH for short) key agreement pro-
tocol [11] seems to be appropriate for the problem (and
the set of assumptions) at hand; the DH key agreement
protocol is believed to be secure against a passive ad-

A gx

- B
gy

¾

A: K = (gy)x

K = (gx)y : B

Figure 1: Diffie-Hellman key agreement protocol

versary1 (e.g., eavesdropping on a wireless link). Let
us briefly review how the DH key agreement protocol
works. To agree on a shared key, two users, Alice (A)
and Bob (B), run a key agreement protocol as shown
in Figure 1. A picks a random secret number x (the
DH private key), and calculates the DH public key gx,
where g is a generator of a subgroup of large order.
B does the same, that is, he calculates gy. Finally,
A and B exchange the public keys gx and gy and cal-
culate the shared DH key as follows: K = gxy.

Unfortunately for us, the basic version of the protocol
is vulnerable to an active adversary who uses a man-
in-the-middle (MITM) attack. At first glance it may
seem that mounting the MITM attack against wire-
less devices that communicate over a radio link and are
located within the radio communication range of each
other, would require a great deal of sophistication from
an attacker. But this is not the case, as we will see
shortly.

MITM attack by exploiting ARP vulnerabilities.
The Address Resolution Protocol (ARP) [23] is a proto-
col used by the Internet Protocol (IP) network layer pro-
tocol to map IP network addresses to the hardware ad-
dresses used by a data link protocol. ARP-spoofing is a
method where an attacker on the same radio channel (or
wired) as legal users sends spoofed ARP-replies to the
subject of the attack, which can fool them into sending
all their packets to the attacking computer (Figure 2).
In an experiment we conducted, we were able to redirect
the traffic between two “legal” machines through an at-
tacking machine, despite the fact that the two legal ma-
chines were in radio-communication range of each other.
For this attack we used a collection of tools for network
auditing and penetration testing, called dsniff [25]. We
stress here that ARP-spoofing is certainly not the only
way to mount the MITM attack against wireless de-
vices.

Examples of more involved MITM attacks on Bluetooth
equipped devices can be found in [14, 17].

As we saw above, the basic DH protocol run over a
radio channel provides no entity authentication or key
authentication (even if users’ devices are in radio range

1This is true if and only if the Diffie-Hellman problem [20]
is intractable.

(IP ,mac)AA
(IP ,mac)MM

(IP ,mac)BB

ARP (IP ,mac)MRES A ARP (IP ,mac)MRES A

data(IP ,mac)MB data(IP ,mac)BB

ARP (IP ,mac)MRES B ARP (IP ,mac)MRES B

data(IP ,mac)MA data(IP ,mac)MA

time

Figure 2: MITM attack by exploiting ARP vul-
nerability

of each other). But, if the channel used was an infrared
link, the basic protocol would probably suffice. For this
reason, A and B have to extend the basic protocol by
an appropriate technique to make sure that their DH
public keys were not tampered with by an adversary.

Integrity of Diffie-Hellman public keys. As sug-
gested in [20, Note 12.50] and [24], an attacker may try
to force the resulting key of the DH key agreement pro-
tocol into a small subset of the original key range set
and then simply perform an exhaustive search over that
subset. This attack works as follows. Suppose A and
B choose a prime p = Rq +1 (R a small integer), where
q is prime, and a generator g of order p − 1 = Rq. An
adversary simply intercepts the DH public keys gx and
gy and exponentiates them with q. The secret DH key
shared between A and B will be K = gxyq, instead of
K

′

= gxy. Let us rewrite K as follows, K = gxyq = αxy,
where α = gq = g(p−1)/R. The point is to note that α
has order R (i.e., αR = (g(p−1)/R)R ≡ 1(mod p), see
[20, Chapter 2.4]). Consequently, K = αxy takes only
R values. K may thus be found by exhaustive trial of
R values; in practice R = 2.

Note that the above attack cannot be detected as an
inconsistency directly from the shared DH keys of the
nodes under attack (i.e., A and B still share the same
key). In order to be able to detect the above attack,
we should protect the integrity of the DH public keys
gx and gy. This attack suggests that we must seek
to ensure the integrity of DH public keys themselves,
rather than the integrity of the established symmetric
key.

Another important reason to ensure the integrity of DH
public keys is based on by the following observation:
people usually meet in person, and secure communica-
tion is usually needed after their first physical meeting
(typically over the Internet). Clearly, in such a scenario,
it is not necessary to compute the shared DH key im-

mediately. This “expensive” computation (a modular
exponentiation) can rather be postponed for some later
time, when secure communication is really needed. As a
consequence, if the solution to the problem of integrity
checking of DH public keys is not too computationally
demanding, the process of integrity checking can be car-
ried out on computationally very “light” devices. This
is very important, since, while on the move, people are
often equipped with only computationally “light” de-
vices (e.g., mobile phones, PDAs).

Yet another drawback of the integrity checking of the
established DH key is that this process could potentially
leak some information on the key itself; the key would
not be anymore distinguishable from random.

This paper includes a possible approach to this problem
of integrity checking, which exhibits properties of being
light and robust at the same time.

We next introduce the system model to be used
throughout the paper.

2.2 System model
We assume each user to be equipped with a small device
(e.g., a PDA), which we refer to as a node. Each node
is equipped with a radio transceiver (e.g., IEEE 802.11,
Bluetooth). We also assume that each node comprises a
human-friendly interface (i.e., a screen and a keyboard).

In this paper we will present our solution over the mul-
tiplicative group Z

∗
p(= {1, 2, . . . , p − 1}), where p is a

large prime. However, all the treatment here applies
to any group in which the Diffie-Hellman problem is in-
tractable2. Furthermore, we assume that p and a gener-
ator g of Z

∗
p, (2 ≤ g ≤ p−2) are selected and published.

All nodes are preloaded with these values. We stress
here that we could let users select and communicate to
each other their own parameters p and g. However this
would come at the expense of the number (and size) of
messages to be exchanged between the users, while our
goal is to keep the key exchange protocol as simple as
possible.

Concerning the adversarial model, we assume an at-
tacker to be computationally bounded : meaning that
he cannot solve the Diffie-Hellman problem in Z

∗
p or

find a collision for a hash function (with security pa-
rameter3 lMD) within a polynomial time in the security
parameter lMD.

3. PROPOSED SOLUTION
3.1 Security Vs usability trade-off
2These are all groups in which it is infeasible to distinguish
between quadruples of the form (g, g

x
, g

y
, g

xy) and quadru-
ples (g, g

x
, g

y
, g

z) where x, y, z are random exponents.
3This relates to the “safe size” of the message digest output
by this function.

Alice’s public key gx in hexadecimal system:

322B64C0F2F8FA54817D6B710B5C7C549D88E9C2E8E0

5D50A063F590982A46AD7B80A83749AC241C1F9DD391

0132341DFF9804FAF741CA7A9F420D1F14FC49062A57

B2F715FE81C20997D02FB38839095BDFD844AF07F...

179551944D632B5BD26F19B59FE2FA564C25E2454C05

8819DC0F5CFD1305EF82798532BA4ADAA6409EEBF...

“Fingerprint” of Alice’s public key-h(gx):

F33B7A487FA7135DF284CE050EBA487F44E50345

Alice’s “fingerprint” h(gx) converted to usual language words:

radio love war place house car mom path

sun bit pen dog house man ball call

Figure 3: Visual verification of Diffie-Hellman public keys

In this section, we discuss the basic ingredients (ideas)
of our approach to secure key agreement protocols when
users share no authenticated information in advance.

The simplest, and yet the most reliable, way to check
the validity of the exchanged DH public keys for A and
B, is to simply report the exchanged public keys gx

and gy to each other and then perform a comparison
of them. The comparison of the exchanged values can
be performed by looking at the screen of the commu-
nicating party, or by reading aloud the values to be
compared.

Although this approach provides very strong security,
it is clearly impractical as can be seen from Figure 3.
A possible way to make visual (and verbal) verifica-
tion easier is to represent the DH public keys in a more
readable form. Thus, instead of comparing the raw bi-
nary (decimal, hexadecimal etc.) information, we can
replace each word of m binary digits with a meaningful
item (a word or an image) from a predefined database
of 2m items (words, images); a set of m binary dig-
its represents a unique index in the database. How-
ever, in this way the users would have to compare d l

me
words (images), where l is the number of binary digits
(bits) required to represent a DH public key (typically,
l = 1024 bits). Since we should keep m small (for
the sake of a node’s memory), the users are still left
with a large number of words (images) to be read and
compared.

An alternative is to trade some robustness of visual (ver-
bal) checking for increased usability. Thus, instead of
verifying a DH public key itself (e.g., gx), we can ac-
tually verify the hash value of it, i.e., h(gx) (like in
PGP [1]). Since, in practice, hash functions produce
much shorter output than DH public values, the usabil-

ity of visual (verbal) checking is substantially improved.
However, since DH public keys are much longer than
digests output by a hash function, many different DH
public keys translate to the same digest. This may give
some advantage to a potential attacker. Consequently,
for the hash function based approach to be useful from
the security point of view, the employed hash function h
should exhibit the following important properties: (i) h
should be collision resistant ; (ii) the size of a digest
output by h should be no less than a specified thresh-
old l (at the time being the recommended threshold is
l = 160 bits) [20].

Notice that the second property directly impacts the
usability of the approach with visual (verbal) verifica-
tion. Thus, for example, if we assume that our database
contains 1024 different items (i.e., m = 10), it would
require users to verify 160

10 = 16 items. This number is
much smaller than in the case in which no hash func-
tion is used (Figure 3). The number of items to be
checked can additionally be reduced by increasing the
number of items in the database, i.e., increasing m.
Inevitably, this results in increase in the memory re-
quirements (Lavg · 2m, where Lavg is the average word
size). For example, for m = 32 (and hence 160

32 = 5
items to be compared) and Lavg = 4 Bytes, we would
need around 16 GB of memory to store the dictionary,
whereas m = 10 requires only 4 KB.

We can also trade off memory requirements for usability.
Thus, we can completely avoid the need for a database
with specific items. However, in this case we are back
to the representation of a given output in a number sys-
tem (hexadecimal, decimal, but certainly not a binary
system). As a consequence, usability deteriorates again.

We conclude that a trade-off between robustness (secu-

rity), memory requirements and usability is necessary to
make the approach of visual (verbal) verification func-
tional.

3.2 Commitment schemes
An important cryptographic building block we will be
using in our protocol is message commitment. The rea-
son we use commitments is because we want to impose
the following restrictions on our users: (i) a user who
commits to a certain value (a DH public key in our
case) cannot change this value afterwards (the scheme
is binding); (ii) the commitment is hidden from its re-
ceiver until the sender “opens” it (the scheme is hiding).

A commitment scheme transforms a value m into a com-
mitment/opening pair (c, d), where c reveals no infor-
mation about m, but (c, d) together reveal m, and it is

infeasible to find d
′

such that (c, d
′

) reveals m
′

6= m.
Now, if A wants to commit a value m to B, she first
generates the commitment/openeing pair (cA, dA) ←
Commit(m), and sends cA to B. To open m, A simply

sends dA to B, who runs m
′

← Open(cA, dA). If the
employed commitment scheme is “correct”, at the end
of the protocol we must have m

′

= m.

In this paper we will make use of a collision-free hash
function based commitment scheme due Halevi and Mi-
cali [13]. We call this scheme the Halevi-Micali com-
mitment scheme [13]. This scheme is a very practical
commitment scheme based solely on collision-free hash-
ing. To commit to a message M , the sender picks at
random a string x and a universal hash function f so
that f(x) = M . Then the user applies the collision-free
hash function h (e.g. SHA-1, which is believed to be
collision free) to the random string x to get y = h(x)
and sends the commit string c = (y, f) to the intended
receiver. To open the commit string, the sender simply
sends the random string x. The efficiency of this com-
mitment scheme comes from the fact that it makes use
of inexpensive hash functions only.

An example of a more computationally intensive com-
mitment scheme is the Pedersen commitment scheme,
which is perfect-hiding and computationally bind-
ing [21]. The major disadvantage of this scheme is that
it requires expensive cryptographic operations like mod-
ular exponentiation. We note that Pedersen’s scheme
could potentially be used in scenarios where users are
equipped with devices with more computational power
than PDAs (e.g., laptops).

In the following section, we describe our protocol.

3.3 Protocol description
Let us first introduce the notation we will be using in
the rest of the text:

DH Abbr.“Diffie-Hellman”
⊕ Bitwise “xor” operation
p A large prime number

(system parameter)
g A generator of Z

∗
p,

(2 ≤ g ≤ p − 2) (system
parameter)

(c, d) ← Commit(m) The commitment/open-
ing pair (c, d) for m

m
′

← Open(c, d) Opens the commitment
with the opening key d

κ A security parameter
in our protocol (κ ∈ N)

M The set of |M | distinct
items (e.g., words),
s.t. |M |κ ¿ |Z∗

p|
iid Abbr. “independent

and identically distrib.”

We first describe a basic protocol with a general com-
mitment scheme. The employed commitment scheme
should exhibit the following properties: (i) it should be
perfect-hiding; (ii) it should be computationally bind-
ing [13]. We emphasize here that computationally-
hiding and perfect-binding schemes would work as well.
However, for the clarity of the presentation we restrict
ourselves, without any loss of generality, to the first type
of commitment schemes. Later in the paper (Section 4),
we discuss the effects of the Halevi-Micali commitment
scheme to our protocol.

Our protocol is run between two users only (e.g., Al-
ice (A) and Bob (B)). The protocol for key agreement
unfolds4 as shown in Figure 4.

Both A and B select their secret exponents x and
y, respectively, uniformly at random from the set
{1, 2, . . . , p − 2} and, in turn, calculate DH public keys
gx and gy, respectively. In addition, A and B select
so called mask elements xm and ym, respectively, uni-

formly at random from the set S
def
= {0, 1}n, where n is

the number of binary digits in the binary representation
of the largest element from the set {1, 2, . . . , p − 2}.

In the initial phase (Step 1), A and B calculate commit-
ment/opening pairs for the tuples (xm, gx) and (ym, gy),
respectively, that is:

(cA, dA) ← Commit(xm, gx)

(cB , dB) ← Commit(ym, gy)

Having calculated (cA, dA) and (cB , dB) in Step 1,
A and B exchange the commitments cA and cB (Step
2). There is no strict order in which this exchange of
messages should happen. However, notice that in most
cases one party receives a commitment before the other
sends its own. We will see later how this fact can help

4Assuming that no attack is taking place yet.

Step 1 A: (cA, dA) ← Commit(xm, gx)
(cB , dB) ← Commit(ym, gy) : B

Step 2 cA
-

A cB
¾ B

dA
-

dB
¾

Step 3 A: (xm, gx) ← Open(Commit(cB , dB))
(ym, gy) ← Open(Commit(cA, dB)) :B

Step 4 A: iAB ← select (κ log2 |M |) bits from (xm ⊕ gx ⊕ ym ⊕ gy)
iBA ← select (κ log2 |M |) bits from (ym ⊕ gy ⊕ xm ⊕ gx) :B

Step 5 A Compare(iAB , iBA) B

Figure 4: A commitment protocol and the integrity checking scheme integrated into the basic Diffie-
Hellman key agreement protocol

us to optimize5 our protocol.

It is only after receiving a commitment from the other
side, that A and B reveal their committed values by
sending the opening keys dA and dB , respectively, to
each other. Having received the opening keys, in
Step 3, A and B open the committed values (ym, gy)
and (xm, gx) by running Open(Commit(cB , dB)) and
Open(Commit(cA, dA)), respectively. At this stage
A and B should make sure that their commitments (i.e.,
DH public keys) have not been modified by an attacker.
As we discussed earlier, the most reliable way to per-
form this is to compare each and every digit (decimal,
hexadecimal, etc.) of their respective DH public keys6.
But, as we argued earlier, this is a rather cumbersome
and potentially error-prone task. Our approach to this
verification problem is as follows.

In Step 4, A and B first “xor” all the DH public keys and
their mask elements, i.e., (xm ⊕ gx ⊕ ym ⊕ gy) and
(ym ⊕ gy ⊕ xm ⊕ gx), respectively. Then A and B sim-
ply select κ log2 |M | bits from the result of the above
“xor” operations to variables iAB and iBA, respectively.
Since the result of these “xor” operations is a random
number from the set S (we prove this later), the selec-
tion criterion does not really matter (e.g., taking the
first κ log2 |M | bits is a possible strategy). Note here
that we assume |M | = 2l, l ∈ N, with only negligible
loss of generality. Also note that κ log2 |M | should be
less than the number of binary digits in the representa-
tion of the prime p. Typically, κ = 4 and log2 |M | = 10,
while log2 |Z

∗
p | ≈ 1024.

5Meaning, to reduce the number of messages to be ex-
changed between the two parties.
6If this were the case, then we would need no commitment
scheme in our protocol.

Finally, in Step 5, A and B take the binary representa-
tion of iAB and iBA, respectively, and then simply break
it into κ l-bits binary words, where l = log2 |M |. These
κ binary words are in turn used as indices into the set
M . If the κ ordered items, retrieved from the common
set M , match, users A and B accept the exchanged DH
public keys as being authentic and simply calculate the
shared DH key K = gxy mod p. Note here that κ
specifies the number of items to be compared by users
A and B and thus directly influences the usability of
our approach.

In the following section, we assess the security of our
protocol. We also study the overhead induced to the
basic DH protocol.

4. ASSESSMENT

4.1 Security analysis
In this study, we assume that all messages exchanged
over a radio link pass through an attacker (which we call
Mallory (M), Figure 5). Thus M can do whatever he
wants (and is capable of doing) with messages. For ex-
ample, M can drop an arbitrary message, he can modify
messages, insert a new message etc. However, we as-
sume that the attacker is computationally bounded (as
described in Section 2.2). We believe that this model
represents a very strong attacker for the problem at
hand.

cA
-

c1
-

A c2
¾ M cB

¾ B
dA

-
d1

-

d2
¾

dB
¾

Figure 5: Attacker model

We next study possible attacking strategies for M. Let
us first introduce the following notation. Let (i, j) be a
tuple of two binary digits with the following meaning:

i =

{

1, M tampers with A’s messages
0, M passes through A’s messages.

j =

{

1, M tampers with B’s messages
0, M passes through B’s messages.

With the above notation we can define the following
possible7 attacks by M:

(0,1)-attack In this attack, M simply wants to deceive
A into believing that M is actually B. We term
this attack a “half man-in-the-middle” (1

2 -MITM)
attack.

(1,0)-attack This attack is exactly the same as (0,1)-
attack, but with swapped roles between A and B.

(1,1)-attack In this attack, M aims at fooling both,
A and B, into believing that M is actually B and
A, respectively. We call this attack simply the
“man in the middle” (MITM) attack.

Eavesdropping attack. Note that the (0,0)-attack
actually corresponds to an eavesdropping attack. Since
we assume that M cannot solve the Diffie-Hellman
problem, we do not take the (0,0)-attack as being part
of M’s attacking strategy.

Mirroring attack. In this attack, M simply “mir-
rors” all messages he receives back to the messages’
originators. Following the notation in Figure 5, M sets
c2 = cA, d2 = dA, c1 = cB and d1 = dB . Clearly,
the verification phase will be successful, since (xm ⊕
gx ⊕ xm ⊕ gx) = (ym ⊕ gy ⊕ ym ⊕ gy) = 0,

even though the keys K = gxx and K
′

= gyy are not
the same. Fortunately, this attack is easy to detect by
simply to checking if the result of the above “xor” op-
eration is equal 0. The probability that this happens is
extremely small (as we will see shortly, this probability
can be as small as 2−1024). Moreover, this attack gives

no advantage to M (i.e, M still does not learn gx2

or

gy2

). In the rest of the paper, we will assume that the
detection of the mirroring attack is always performed.

We next justify the need for mask elements xm and ym.
For this purpose, first note that value c = a ⊕ b is
unique for fixed a and b. In the context of our protocol,
this means that xm ⊕ gx, for example, uniquely maps
A’s DH public key gx to the set S = {0, 1}n, for fixed
xm and gx. As a consequence, checking the integrity of

7Without loss of generality, we will consider that A sends
her commitment before B; in practice, however, this order
does not have any impact on the robustness of the protocol
(the protocol is symmetric).

gx ∈ Z
∗
p\{1} is equivalent to checking the integrity of

(xm ⊕ gx) ∈ S for the fixed xm. Note that gx and xm

do not necessarily belong to the same set, i.e., xm ∈ S.
Hence, for xm chosen uniformly at random from S, we
have that the probability of selecting any value from
this set is equal to 2−n, that is, the probability of an
arbitrary bit in the binary representation of the selected
number being 0 (or 1) is equal to 2−1 (S comprises all
the n-bits vectors). Note that this does not apply to the
set Z

∗
p\{1}, i.e., the probability of an arbitrary bit, of

the randomly selected number from Z
∗
p\{1}, being 0 (or

1) 6= 2−1 (e.g., for Z
∗
5\{1} = {010(2), 011(2), 100(2)}, the

probability of the first bit of a randomly selected 3-bit
vector being 0 (1) is 2/3 (1/3)). We can now formulate
the following straightforward lemma.

Lemma 1. Let X1, X2 ∈ {0, 1}n be two independent
random variables such that the distribution of X1 is uni-
form (i.e., Pr{X1 = x} = 2−n,∀x ∈ {0, 1}n) and the
distribution of X2 is unknown. Then, the distribution
of X1 ⊕ X2 is uniform.

Proof:

Pr{X1 ⊕ X2 = x} =

=
∑

∀y Pr{X1 = x ⊕ y}Pr{X2 = y}

= 2−n
∑

∀y Pr{X2 = y}

= 2−n

2

Consequently, the probability of an arbitrary bit of
xm ⊕ gx being 0 (or 1) is 2−1. This is exactly why
in Step 4 of our protocol (Figure 4) we are indiffer-
ent about the selection strategy of κ log2 |M | bits to be
compared by users A and B.

We are now ready to prove the following theorem.

Theorem 1. Assuming that the employed commit-
ment scheme is perfect-hiding and computationally
binding, the probability that a computationally bounded
attacker successfully performs any (i, j)-attack, with
i, j ∈ {0, 1} and i + j 6= 0, is no more than 1

|M |κ .

Proof: Let (zm1, g
z1) and (zm2, g

z2) be M’s fake DH
public keys and mask elements in the case of (1,0)-
attack and (0,1)-attack, respectively. We also define

two variables v, v
′

as follows:

v = (xm ⊕ gx ⊕ zm2 ⊕ gz2)

v
′

= (ym ⊕ gy ⊕ zm1 ⊕ gz1)

In the first part of the proof, we will show that variables
v and v

′

are two iid uniform random variables over the

set S = {0, 1}n for any attacking strategy chosen by
M. Then, in the second part, we will use this fact to
evaluate the probability of a successful attack.

1st part. In this part we show that v and v
′

are indeed
two iid uniform random variables over the set S for any
possible attacking strategy chosen by M.

(0,1)-attack Recall that in this attack M tampers with
B’s DH parameter and mask element only. Thus we
have v = (xm ⊕ gx ⊕ zm2 ⊕ gz2), while v

′

=
(ym ⊕ gy ⊕ xm ⊕ gx) (i.e., gz1 = gx and zm1 = xm,
although Mallory learns neither x nor xm). It is easy to

see that v
′

in this case is a random variable uniformly
distributed over the set S. This follows from the fact
that xm and ym are two random variables and uniformly
distributed over S. Moreover, A and B chose xm and ym

independently of each other.

Let us now check variable v. Notice first that nei-
ther A nor B reveal their contributions (gx, xm) and
(gy, ym), respectively, before sending her/his own com-
mitment to and receiving a commitment from the other
side (which can be M). Since the employed commit-
ment scheme is perfect hiding, the receiver of a com-
mitment gains no information about a value committed
to by the sender before the sender actually opens the
commitment. Thus, if M wants to learn about any
tuple (DH public key, mask element) in order to adjust
his DH public key (or mask element) accordingly, he has
two choices: (i) M waits until the party in question gets
a commitment from the other legal party; (ii) M sends
out his own faked commitment to the party whose DH
public key (or mask element) M wants to learn. Since
the employed commitment scheme is computationally
binding (and M is computationally bounded), in nei-
ther of these two cases will M be able to change the
commitment received by the party in question.

The best that M can do is to try to send his own
fake commitment c2 to A while intercepting and drop-
ping the one of B. However, this means that he
has to choose his DH public key (and the mask el-
ement) independently of A; the commitment scheme
is binding and thus M cannot change the value he
committed to once A reveals xm (gx). Now, since
v = (xm ⊕ gx ⊕ zm2 ⊕ gz2) and xm is a uniform
random variable over S, v must be a uniform random
variable over S as well. This follows from Lemma 1 and
the fact that xm is chosen randomly and independently
of gx, zm2 and gz2). Finally, since xm and ym are chosen
independently of each other, then it must be that v and
v

′

are two independent random variables. Q.e.d.

(1,0)-attack The fact that v and v
′

are two iid uniform
random variables in this attack follows trivially from the
(0,1)-attack.

(1,1)-attack In this attack, v = (xm ⊕ gx ⊕ zm2 ⊕

gz2) while v
′

= (ym ⊕ gy ⊕ zm1 ⊕ gz1). Note that
in order to perform this attack, M has to successfully
mount the combination of (0,1) and (1,0)-attacks. We
showed above that in both (0,1) and (1,0) attacks, v and

v
′

are two iid uniform random variables. Consequently,
v and v

′

are iid uniform random variables in the (1,1)-
attack as well.

Thus, any attempt by M to tamper with DH public
keys will result in two iid uniform random variables
over the set S {0, 1}n, namely, v and v

′

. Consequently,
the best M can hope to achieve is to provoke a collision
between κ log2 |M | bits of v and v

′

, selected in Step 4 of
the protocol. It is exclusively in this case that κ indices
generated from v and v

′

(as specified in Step 4 of the
protocol) will match.

Now we are ready to evaluate the probability of suc-
cessfully performing a (i, j)-attack, with i, j ∈ {0, 1}
and i + j 6= 0, that is, the probability that κ log2 |M |

chosen bits of v and v
′

match.

2nd part. Let us introduce the following three events:

A = { MITM attack attempted }

As = { MITM attack successful }

C = { κ log2 |M | bits of v = κ log2 |M | bits of v
′

}.

In addition, let bv
i denote the ith bit to be compared

in Step 5 of Figure 4, extracted from the random vari-
able v. As we argued above, the only hope for M is to
wait for the event C to happen; whatever M does, v
and v

′

are two iid random variables over S {0, 1}n. In
other words, we have the following satisfied:

Pr{As|A} = Pr{C}

=

κ log
2
|M |

∏

i=1

Pr{bv
i = bv

′

i }

=

κ log
2
|M |

∏

i=1

1

2

=
1

2κ log
2
|M |

=
1

|M |κ

2

An interesting aspect of the proposed protocol is that
an attacker is given only one chance to guess the DH
public key (or/and mask value) of A and B. For this
reason, the birthday attack against κ log2 |M | bits to be
compared is not a concern here.

Example: For κ = 4 (items to be verified) and |M | =
1024 (stored objects in the dictionary), the probability
of M successfully mounting an attack is at most 1

|M |κ =

1
240 < 10−12. As pointed out above, an attacker has only
a single chance to guess the string of 40 random bits.

4.2 Optimization and overhead estimation
As we already stated, by exploiting the intrinsic asym-
metry of the unfolding of our protocol, we can reduce
the number of messages exchanged between the two
users. In most cases, one of the users receives a com-
mitment before the other one sends his own8.

cA
-

A gy

¾ B
dA

-

Figure 6: Optimization of the basic protocol
(only messages exchanged over a radio link are
shown)

Without any loss of generality, we assume that A sends
her commitment first. Since the commitment scheme
is computationally binding, having received the com-
mitment from A (or M in case of an attack), B does
not have to hide his DH public key. Thus, B simply
replies with his DH public key gy. Note that the bits
to be compared as in Step 5 (Figure 4) of the symmet-
ric version, are now obtained from the following value:
v = (xm ⊕ gx ⊕ gy). Since xm is selected uniformly
at random from S = {0, 1}n, and independently of gy

(or gz2 , potentially selected by Mallory), it follows from
Lemma 1 that v is uniformly distributed over the set
S = {0, 1}n. Consequently, Theorem 1 applies to this
optimized version of the key agreement protocol as well.

As can be seen from Figure 6, this optimization re-
duces the number of necessary messages to only three.
This, in conjunction with the computationally inexpen-
sive Halevi-Micali commitment scheme [13], makes our
approach very efficient and practical.

To assess the overhead due to our extension to the ba-
sic DH protocol, we begin with the Halevi-Micali com-
mitment scheme. Let k be the security parameter9 of
the employed commitment scheme and r the length of
the message (in bits) being committed to. According
to [13], the length of commitment c in the Halevi-Micali
scheme is equal to O(k) (typical k equals 128 bits), i.e.,
the length of c is independent of r (e.g., r = 2× 1024)).
In terms of local computation, the Halevi-Micali scheme
takes: 1 collision-free hashing of r-bits message; 1
collision-free hashing of O(k)-bit string; 1 universal-
hashing of O(k)-bit string. Finally, in Step 4 of Figure 4,
8The users cannot receive and transmits simultaneously; at
least not with CSMA/CA protocols (e.g., IEEE 802.11).
9The security parameter may control the success probability
of the commitment sender in changing her message after
having committed to it, as well the probabilistic advantage
the commitment receiver may get about the message from
its commitment [13].

each device should still perform three computationally
cheap “xor” operation.

As far as the communication cost is concerned, in the
optimized version of our protocol (Figure 6), A transmis
O(k)-bits in her first message (the commit stage) and
r + O(k) bits in her second message (the de-commit
stage), whereas B transmits only his DH public key gy

(i.e., typically 1024 bits). Note that in terms of the
number of packets to be exchanged between A and B,
this amounts to only 3 packets (even at the MAC layer).

Based on the above analysis, we conclude that our pro-
tocol induces modest communication and computation
overhead to the basic DH key agreement protocol.

5. IMPLEMENTATION
We have implemented a prototype of the described ap-
proach to the key agreement in Java [4]. The key agree-
ment scheme we actually implemented is shown in Fig-
ure 7. We use the SHA-1 hash function to construct
the commitment scheme; to commit to a value m, the
sender simply runs SHA-1(m) and sends the obtained
value to the receiver. In the de-commit phase, the
sender simply sends m, while the commitment receiver

checks if m
?
= SHA-1(m). We believe that such a con-

struction of the commitment scheme is still sufficiently
secure, although we cannot provide mathematical evi-
dence to backup this statement. However, if a provable
security is required, one can always resort to the Halevi-
Micali commitment scheme at the expense of one addi-
tional collision-free hashing and one universal-hashing;
evaluating a universal-hash function is typically cheaper
than evaluating a collision-free hash function [13]. At
the end, an adversary is quite restricted in terms of
the available time to analyze the messages exchanged
between two legal parties; it is quite obvious that the
legal parties will not wait forever to receive messages
from each other (this delay will be in the order of mil-
liseconds).

SHA−1(xm,gx)
-

A gy

¾ B
xm,gx

-

Figure 7: Implemented key agreement protocol

In our design, we use a simple and well established dis-
tributed programming client/server paradigm. At ap-
plication startup, users are offered two options: either
(i) to run the client process or (ii) to run the server
process. Note in this implementation, that two users
must agree on the roles prior to the protocol execution;
as future work we plan to automate this procedure. In
the current implementation, the client and the server
learn about each other via their IP addresses. In terms

of users’ involvement, this amounts to the server user
simply waiting after having started the server process.
The client user, on the contrary, is more involved; he
has to enter the IP address of the server’s machine into
a particular text field, and in turn initiate the protocol
by clicking on a given button. From this point on, the
application takes over the control and finishes the pro-
tocol. The two users then compare their displays. The
application state diagram is shown in Figure 8.

As can be seen in Figure 8, all cryptographic operations
(DH key generation, key agreement) are done on the
spot. Clearly, such an implementation design is suit-
able for computationally powerful devices (i.e., laptops
and state of the art handheld computers). However,
for computationally “light” devices, the design strategy
should be appropriately adapted. We will study this
case later in the section.

1. Listen on port

Client

2. Generate (DH key pair, mask)

Server

1. Listen on port

Connection established

3. Send commitment 2. Receive client's commitment

3. Generate DH key pair

4. Send own public key4. Receive server's commitment

5. Send own (public key, mask) 5. Receive client's (public key, mask)

6.Verify client's commitment

6. Generate visual check 7. Generate visual check

Connection closed

Button click

Figure 8: The application state diagram

At the network layer, our application uses the reliable
transport protocol TCP. This is to avoid dealing with
packet losses, acknowledgments and similar issues at
the application layer. Such a choice is an important
aspect in our implementation, since all the functionality
for the proposed key agreement protocol remains in the
application layer.

Prior to using the DH key agreement protocol, users
have to agree on the same numerical values for the mod-
ulus (p) and the key basis (g). In our implementation,
these parameters are preconfigured; we use the Simple
Key-management for Internet Protocols (SKIP) specifi-
cations [7]. For all cryptographic operations, including
generation of DH key pairs, Java Cryptography Exten-
sion (JCE) 1.2.2 [4] is used. This cryptographic li-
brary also provides a framework and implementations
for encryption and Message Authentication Code algo-
rithms. JCE 1.2.2 has a provider-based architecture.

Providers signed by a trusted entity can be plugged
into the JCE 1.2.2 framework, and new algorithms can
be added seamlessly. For our purpose, we utilize the
SunJCE provider included with the JCE 1.2.2 release.

After the last message has been delivered, the applica-
tion composes and displays the set of 5 words to be
compared (visually or verbally) by the users. Each
word encodes 8 bits, while the whole set encodes 40
bits. For this purpose, we borrowed a part of the dic-
tionary of short words (up to four characters) from
RFC 2289 [2]. Our pre-configured dictionary comprises
256 different words as opposed to 2048 words in the case
of RFC 2289.

Finally, on each side the application computes the
shared DH key. In the current implementation, we are
not concerned with the key management issues, how-
ever, we will include this important aspect in a future
version.

Performance

We evaluated the performance of cryptographic prim-
itives of the JCE 1.2.2 cryptographic library, which is
used in our implementation. Particularly, we assessed
the performance (measured in milliseconds) of the DH
key pair generator and the DH shared key generator,
since these are the most time consuming operations in
our protocol. To estimate the time needed to generate
a single DH key pair, we use the following Java code:

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DH");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
random.setSeed(seed);
kpg.initialize(PARAMETER_SPEC, random);
KeyPair kp = kpg.generateKeyPair();

Note from the above code that the measured time also
accounts for side operations needed for the DH key pair
calculation. Similarly, the code to estimate the time
needed to calculate the shared DH key is given below.

KeyPair kp = (KeyPair) session.get(CLIENT_KEY_PAIR);
KeyAgreement = ka.init(kp.getPrivate());
kp = (KeyPair) session.get(SERVER_KEY_PAIR);
Key key = ka.doPhase(kp.getPublic(),true);
byte[] secret = ka.generateSecret();

Note here that the measured time includes the time it
takes to retrieve private and public DH keys from the
storage structure called session (a Java Hashtable in
our implementation).

In all experiments we use 1024-bit prime modulus p.
The experiments are performed on a 700MHz Pentium
III Windows 2000 PC. The average and the standard
deviation of the elapsed time are calculated for 25 runs
and are presented in Table 1.

Table 1: Performance of the Diffie-Hellman key
pair and the Diffie-Hellman shared key compu-
tations (expressed in milliseconds)

Operation avg stdv

DH key pair calculation 149.29 8.77
DH shared key calculation 118.41 5.67

An important message from the numerical values in Ta-
ble 1 is that the delay due to the demanding crypto-
graphic operations does not deteriorate the usability of
our approach. Even if all cryptographically demanding
operations are done on the spot, this is not a problem
from the usability point of view. We suspect that an
optimized implementation is C/C++ would yield even
better results.

To tailor our protocol for computationally “lighter” de-
vices than our test-bed machine, we should first under-
stand their limitations. In [28], Wong et al. evaluated
several cryptographic system libraries for Palm devices.
The platforms they have tested these libraries was a
2MB Palm V and 8MB PalmIIIc running on a 16MHz
and a 20MHz microprocessor. In terms of processing
power, these devices are indeed “light” compared to
our test-bed machine. Notice, however, that these Palm
devices are still memory rich. For us, the most impor-
tant results are the ones related to the measured perfor-
mance of hash functions and modular exponentiations.
Thus, for example, the throughput achieved with SHA-
1 for a message size of 2KB is around 17,429 Bps. On
the other hand, a 512-bit modular exponentiation takes
around 96.91 seconds.

The limitations of computationally “light” devices sug-
gest the following protocol design strategy. Prior to en-
gaging in any communication, we simply pre-load the
devices with an adequate number of pre-computed DH
key pairs and corresponding mask values (of course,
these should still be generated at random (e.g., on a
PC)). Recall that we are not limited in memory re-
sources. When two users engage in key establishment,
they follow the steps as shown in Figure 8, with the
only difference that: (i) instead of generating new DH
key pairs, the users take the preloaded ones and (ii) the
users do not generate the shared DH key at the proto-
col termination; they postpone this for some later time
when secure communication is needed. In this adapted
version of our protocol, the users only have to perform
computationally cheap hash function evaluations and
“xor” operations. Note that the protocol design strat-
egy just described is adapted to scenarios where secure
communication is not needed on the spot. As we al-
ready observed in Section 2, this will often be the case;
people usually meet in person, and secure communica-

tion is usually needed after their first physical meeting.

Thanks to the high adaptivity and simplicity of our pro-
tocol, we are able to meet diverse requirements from
different operational scenarios.

6. RELATED WORK
The problem of key establishment is a very active area
of research.

Stajano and Anderson propose the resurrecting duckling
security policy model [27, 26], in which key establish-
ment is based on the physical contact between com-
municating parties (their PDAs). A physical contact
acts as a location limited channel, which can be used
to transmit a key (or a secret) in plaintext. Thus, no
cryptography is required at this stage10. The potential
drawback of this approach is realization of the physical
port. Moreover, realization of a physical contact could
be a bit cumbersome with bulky devices (e.g., laptops).

An approach inspired by the resurrecting duckling se-
curity policy model is proposed by Balfanz et al. [8].
In this work, the authors go one step further and re-
lax the requirement that the location limited channel
has to be secure against passive eavesdropping; they in-
troduce the notion of a location-limited channel (e.g.,
an infrared link). A location-limited channel is used to
exchange pre-authentication data and should be resis-
tant to active attacks (e.g., man-in-the-middle). Once
pre-authentication data are exchanged over a location-
limited channel, users switch to a common radio chan-
nel and run any standard key exchange protocol over
it. Possible candidates for a location-limited channel
include: physical contact, infrared, and sound (ultra-
sound) [8]. The disadvantage of this approach is that it
may be a bit cumbersome (i.e., requires a high degree of
precision by user). In addition, the infrared link itself
is not well studied in the context of secure communica-
tion. Actually, the technique we propose in this paper
could be a supplement to the infrared link.

Asokan and Ginzboorg propose another solution based
on a shared password [6]. They consider the problem of
setting up a session key between a group of people (i.e.,
their computers) who get together in a meeting room
and who share no prior context. It is assumed that they
do not have access to public key infrastructure or third
party key management services. The proposed solution
is the following. A fresh password is chosen and shared
among those present in the room (e.g., by writing it on
a sheet of paper or a blackboard). The shared pass-
word is then used to derive a strong shared session key.
This approach requires users to type the chosen pass-
word in their personal devices. The major disadvantage

10This means that the location limited channel should be
resistant to eavesdropping, a reasonable assumption in this
case.

of this approach is that users should prevent the pass-
word leakage (which may be tricky for the problem at
hand). In addition, weak passwords are vulnerable to
dictionary attacks.

It is well known that IT security systems are only as
secure as the weakest link in these systems. In most
IT systems the weakest link are the users themselves.
People are slow and unreliable when dealing with mean-
ingless strings, and, they have difficulties remembering
strong passwords. In [22], Perrig and Song suggest us-
ing hash visualization to improve the security of such
systems. Hash visualization is a technique that replaces
meaningless strings with structured images. However,
images (and patterns) used in this system are too com-
plex, which in the end may lead to error-prone verifi-
cation. Using such complex image patterns is not well
suited for computationally “light” devices. Moreover,
this technique works only if the users are at the same
location.

It was recently brought to our attention that Dohrmann
and Ellison [12] proposed a method for key verification
that is similar to our approach; this method is based on
converting key hashes to readable words or to an ap-
propriate graphical representation. However, it seems
that users are required to compare too many words (or
graphical objects); this task could take them as much
as 24 seconds according to [12]. This time is signif-
icantly reduced when the graphical representation is
used. However, as we already pointed out, comparing
images (as suggested in [12]) remotely (e.g., a phone)
seems to be a very painful (and time consuming) task.
In addition, Dohrmann and Ellison provide no security
analysis of their approach. In contrast, in our paper,
we show that even if the list of items to be compared
is very short (e.g., 5 words of up to 4 characters, as in
our implementation), we can still provide a satisfactory
level of security (e.g., the probability that the MITM
attack goes undetected is as small as 10−12).

In US patent no. 5,450,493 [19], Maher presents sev-
eral methods to verify public keys exchanged between
users. The first method described in [19] is the most
relevant one for the problem we consider in this paper;
other methods are based on certificates and/or shared
secrets11. Thus, A and B first perform the DH key ex-
change protocol and in turn report to each other values
a = f(KA) and b = f(KB), where KA and KB are
the shared DH keys as computed by A and B, respec-
tively, and f is a compression function (i.e., f maps
a key to 4-digit hex vectors [19]). Unfortunately, this
technique has a flaw, which was discovered by Jacobs-
son [15]. The problem with Maher’s technique is the
following. An attacker M, who knows f , first gen-

11Recall that we assume that users share no authenticated
information about each other, prior to engaging in a key
exchange.

erates his secret exponents x1 and x2 and the corre-
sponding public keys gx1 and gx2 . Since M knows that
A and B will compare f(gxAx2) and f(gxBx1), he checks
if f(gxAx2) = f(gxBx1). If this is the case, M sends gx2

to A, and gx1 to B. If these are not equal, M generates
new values for x1 and x2 and repeats the above proce-
dure. Since f outputs a very short string (4-digit hex
vector [19]), M will find a collision after a relatively low
number of attempts (thanks to the birthday paradox).

Motivated by the flaw in [19], Jakobsson [15] and Lars-
son [18] proposed two solutions. However, both solu-
tions are based on a temporary secret shared between
the two users (thus, for example, SHAKE stands for
Shared key Authenticated Key Exchange). In our paper,
we consider the same problem but in a more demanding
setting, as we assume that the users share no secret key
prior to the key exchange.

We have to mention other key-exchange protocols, pro-
posed primarily for the use in the Internet: IKE [3],
JFK [5], SIGMA [16]. All these protocols involve
authentication by means of digital signatures, which
clearly does not fit the problem we study here. We also
have to mention the work of Corner and Noble [9, 10],
who consider the problem of transient authentication
between a user and his device.

7. CONCLUSION
In this paper, we have provided a solution to the funda-
mental problem of key agreement over a radio link. As
user-friendliness is extremely important for the accep-
tance of any security scheme, we have minimized the
burden on the user: there is no need of physical con-
tact or of infrared communication between the devices;
moreover, the contribution of the user is limited to the
comparison of a short string of usual words displayed on
each of their devices. We have shown that the proposed
scheme can work even if the devices have very limited
computing power.

As we have mentioned, the research community recog-
nized the relevance of this problem several years ago
and has proposed a number of solutions. However, to
the best of our knowledge, the solution we propose is
the most flexible one; moreover, it is the only one for
which the trade-off between security and usability is
quantified.

The scheme proposed in this work is not restricted to
wireless networks. For example, the exchange of data
could take place over the Internet and the users could
compare the strings by speaking on the phone (assum-
ing that they can authenticate each other in this way).

From the security point of view, this new setting for the
key exchange reveals an interesting intrinsic advantage:
we do not have to pay a special attention to users’ iden-

tities anymore, as is the case when certificates are used.
Upon the key exchange protocol termination, users are
free to bind an arbitrary string (or name) with the key
just verified.

In terms of future work, we intend to study the simul-
taneous key agreement between more than two users.
We also plan to provide an implementation for PDAs.

8. ACKNOWLEDGMENTS
We thank Levente Buttyán, Serge Vaudenay, Markus
Jakobsson, Adrian Perrig and Gildas Avoine for helpful
discussions and comments.

9. REFERENCES
[1] PGP. http://www.pgpi.org/.

[2] RFC 2289 - A One-Time Password System.
http://www.ietf.org/rfc/rfc2289.txt?number=2289.

[3] RFC 2409 - The Internet Key Exchange (IKE).
http://www.ietf.org/rfc/rfc2409.txt?number=2409.

[4] Sun Microsystems Inc. http://sun.java.com.

[5] W. Aiello, S. M. Bellovin, M. Blaze, R. Canettia,
J. Ioannidis, A. D. Keromytis, and O. Reingold.
Efficient, DoS-Resistant, Secure Key Exchange for
Internet Protocols. In Proceedings of ACM
Computer and Communications Security (CCS)
Conference, pages 48–58, Washington, DC, 2000.

[6] N. Asokan and P. Ginzboorg. Key Agreement in
Ad-hoc Networks. Computer Communications,
23(17):1627–1637, November 2000.

[7] A. Aziz, M. Patterson, and G. Baehr. Simple
Key-Management for Internet Protocol (SKIP).
In INET’95.
http://www.isoc.org/HMP/PAPER/244/abst.html.

[8] D. Balfanz, D. Smetters, P. Stewart, and
H. Wong. Talking to Strangers: Authentication in
Ad-Hoc Wireless Networks. In Proceedings of the
9th Annual Network and Distributed System
Security Symposium (NDSS), 2002.

[9] M. Corner and B. Noble. Zero-interaction
authentication. In Proceedings of MobiCom’02,
Atlanta, Georgia, September 2002.

[10] M. Corner and B. Noble. Protecting applications
with transient authentication. In First
ACM/USENIX International Conference on
Mobile Systems, Applications and Services
(MobiSys’03), San Francisco, CA, May 2003.

[11] W. Diffie and M. Hellman. New Directions in
Cryptography. IEEE Transactions on
Information Theory, 1976.

[12] S. Dohrmann and C. Ellison. Public-key Support
for Collaborative Groups. In Proceedings of the
1st Annual PKI Research Workshop, 2002.

[13] S. Halevi and S. Micali. Practical and
Provably-Secure Commitment Schemes from
Collision-Free Hashing. In N. Koblitz, editor,
Advances in Cryptology–CRYPTO ’96, pages
201–215. Lecture Notes in Computer Science,
Springer-Verlag, 1996.

[14] M. Jacobsson and S. Wetzel. Security weaknesses
in Bluetooth. Technical report, Bell Labs, 2001.

[15] M. Jakobsson. Payments and Diffie-Hellman key
exchange (presentation slides).
http://www.rsasecurity.com/rsalabs/-
staff/bios/mjakobsson/teaching/index.html.

[16] H. Krawczyk. SIGMA.
http://www.ee.technion.ac.il/ hugo/sigma.html.

[17] D. Kügler. Man in the Middle Attacks on
Bluetooth. In Financial Cryptography ’03, Long
Beach, 2003. Lecture Notes in Computer Science,
Springer-Verlag.

[18] J.-O. Larsson and M. Jakobsson. SHAKE. Private
communication with M. Jakobsson.

[19] D. Maher. United States Patent (No. 5,450,493):
Secure communication method and apparatus,
1993.

[20] A. J. Menezes, P. C. van Orschot, and S. A.
Vanstone. Handbook of Applied Cryptography.
CRC Press LLC, 1997.

[21] T. Pedersen. Non-Interactive and
Information-Theoretic Secure Verifiable Secret
Sharing. In Advances in Cryptology–CRYPTO
’91, pages 129–140. Lecture Notes in Computer
Science, Springer-Verlag, 1992.

[22] A. Perrig and D. Song. Hash Visualization: A
New Technique to Improve Real-World Security.
In Proceedings of the 1999 International
Workshop on Cryptographic Techniques and
E-Commerce (CrypTEC ’99), pages 131–138, July
1999.

[23] D. Plummer. An Ethernet Address Resolution
Protocol, 1982. IETF Standards Track RFC 826.

[24] J.-F. Raymond and A. Stiglic. Security Issues in
the Diffie-Hellman Key Agreement Protocol,
September 2000.
http://citeseer.nj.nec.com/453885.html.

[25] D. Song. dsniff.
http://naughty.monkey.org/∼dugsong/dsniff/.

[26] F. Stajano. Security for Ubiquitous Computing.
John Wiley & Sons, Ltd., 2002.

[27] F. Stajano and R. Anderson. The Resurrecting
Duckling: Security Issues for Ad-hoc Wireless
Networks. In Proceedings of the 7th International
Workshop on Security Protocols, 1999.

[28] D. S. Wong, H. H. Fuentes, and A. H. Chan. The
Performance Measurement of Cryptographic
Primitives on Palm Devices. In Proceedings of the
17th Annual Computer Security Applications
Conference (ACSAC 2001).

