PARTICLE SWARM OPTIMIZATION FOR UNSUPERVISED ROBOTIC LEARNING

Jim Pugh and Alcherio Martinoli

Swarm-Intelligent Systems Research Group,
Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland
{jim.pugh, alcherio.martinoli} @epfl.ch

ABSTRACT

We explore using particle swarm optimization on problems
with noisy performance evaluation, focusing on unsuper-
vised robotic learning. We adapt a technique of overcoming
noise used in genetic algorithms for use with particle swarm
optimization, and evaluate the performance of both the orig-
inal algorithm and the noise-resistant method for several nu-
merical problems with added noise, as well as unsupervised
learning of obstacle avoidance using one or more robots.

Index Terms — particle swarm optimization, unsuper-
vised learning, noisy optimization, swarm robotics

1. INTRODUCTION

Particle swarm optimization (PSO) is a promising new opti-
mization technique which models the set of potential prob-
lem solutions as a swarm of particles moving about in a
virtual search space. The method was inspired by the move-
ment of flocking birds and their interactions with their neigh-
bors in the group. PSO can be used for shaping an Artificial
Neural Network (ANN) controller by having the parameter
set be the weights, and the evaluative function be a measure
of the performance of a desired robot behavior. Thus far,
there has been little exploration of how the PSO algorithm
is affected by noise in the fitness evaluation, and no work
on the effects of non-Gaussian noise, such as that which ap-
pears in unsupervised robotic learning.

Human intuition and current engineering design meth-
ods are often not well-adapted to design robotic controllers.
Depending on computational constraints of the robotic plat-
form and therefore on the type of the controller used, reverse
engineering the perception-to-action map for even simple
robotic behavior can be a non-trivial process due to the large
size of the parameter search space. A solution to this prob-
lem is using robust machine-learning techniques.

In this paper, we will explore the performance of PSO
in noisy environments, focusing on unsupervised robotic
learning, and suggest an augmentation of the original method

Yizhen Zhang

Engineering Design Research Laboratory,
California Institute of Technology
Pasadena, California 91125, USA

yizhen@caltech.edu

which can yield superior performance. Section 2 provides
some background on PSO, optimization in the presence of
noise, and unsupervised robotic learning. Section 3 explains
the modifications in the noise-resistant method and evalu-
ates the PSO techniques on several standard test functions
with Gaussian noise added. Section 4 evaluates the origi-
nal PSO and noise-resistant PSO on the case study of unsu-
pervised learning of obstacle avoidance in several scenarios
with one or two robots. Section 5 discusses the implications
of the results and future work.

2. BACKGROUND

The original PSO method was developed by James Kennedy
and Russel Eberhart ([7] [3]). Every particle in the swarm
begins with a randomized position (z; ;) and randomized
velocity (v; ;) in the n-dimensional search space, where ¢
represents the particle index and j represents the dimension
in the search space. Candidate solutions are optimized by
flying the particles through the virtual space, with attraction
to positions in the space that yielded the best results. Each
particle remembers at which position it achieved its high-
est performance (z; ;). Each particle is also a member of
some neighborhood of particles, and remembers which par-
ticle achieved the best overall position in that neighborhood
(given by the index 4’). This neighborhood can either be a
subset of the particles (local neighborhood), or all the par-
ticles (global neighborhood). For local neighborhoods, the
standard method is to set neighbors in a pre-defined way
(such as using particles with the closest array indices as
neighbors modulo the size of the swarm, henceforth known
as a “ring topology”) regardless of the particles’ positions
in the search space. The equations executed by PSO at each
step of the algorithm are

vij = w-(vij+pw-rand() - (r;; — i)
+nw - rand() - (7 ; — i 5))

Tij = Tij Tt Ui

where w is the inertia coefficient which slows velocity over
time, pw is the weight given to the attraction to the previous
best location of the current particle and nw is the weight
given to the attraction to the previous best location of the
particle neighborhood. rand() is a uniformly-distributed
random number in [0, 1].

PSO has been shown to perform as well as or better than
genetic algorithms (GA) in several instances. Eberhart and
Kennedy found PSO performs on par with GA on the Schaf-
fer f6 function [3, 7]. In work by Kennedy and Spears [8],
a version of PSO outperforms GA in a factorial time-series
experiment. Fourie showed that PSO appears to outperform
GA in optimizing several standard size and shape design
problems [6].

Considering the amount of literature on evolutionary al-
gorithms, there have been relatively few publications on
dealing with noisy fitness evaluation. Beyer showed that
noise causes a decrease in convergence velocity and a resid-
ual location error in the final solution [2]. Fitzpatrick and
Grefenstette found that in noisy environments, it can be
preferable to sacrifice the accuracy of evaluations (by tak-
ing few samples of the noisy fitness value) to increase either
population size or number of generations of a genetic al-
gorithm [4]. Miller and Goldberg expanded on this idea to
find a lower bound for the optimal number of samples [11].
In work by Stagge [15], a modification of GA where only
high-performing candidate solutions were resampled is in-
troduced. A similar technique is used in [1] by Antonsson
et al. for evolving robots, where the parent population is
reevaluated at each iteration.

There has been very little exploration of the effects of
noisy fitness evaluation on PSO. Parsopoulos and Vrahatis
found that PSO worked much of the time, but with degraded
performance on a set of numerical problems with multi-
plicative Gaussian noise [13]. No modification to the al-
gorithm was suggested to cope with noise.

Evolutionary algorithms have been used extensively for
unsupervised learning of robotic behavior. Standard GA has
been shown to be effective in evolving simple robotic con-
trollers [5]. To the best of our knowledge, there has been no
work on using PSO for unsupervised learning in robotics.

3. NOISE-RESISTANT PSO

We take our inspiration from the modification of GA pre-
sented by Antonsson et al. in [1], since the technique is
very simple, and it has been used for robot evolution in the
past. The workings of the algorithm are described in Fig.
1. High-performing solutions which remain in the popula-
tion over multiple generations are evaluated multiple times;
the final performance is taken to be an aggregate of all eval-
vations. This should decrease the noise of that candidate

solution over time. For combining the multiple evaluations
of a high-performing solution, the “aggregation function”
described in [14] is used:

I~
Pi(jn) = (=D _ui)* (1)
i=1

where p; are the performance values over n evaluations,
and s is the “degree of compensation”; s determines how
much weight is given to high-performing values versus low-
performing values. For instance:

P-oo = lim Py =min(n)
Psx = lim Ps = max(fi)
Pr = avg(p)

In [1], min() was used to aggregate the performance
values, and so the final performance was the worst perfor-
mance over all evaluations (GAmin). This ensures that a
poor-performing solution which randomly achieved an ini-
tial good performance will be removed after very few gener-
ations, not allowing it to significantly influence the genetic
code of the population.

| Generate initial population randomly |

| Evaluate the initial population |

I
¥

Selecting parents according to a
given selection scheme

i

Apply crossover to pairs of selected
parents and generate offspring

!

Apply mutation genewise to each
individual in the population and
generate more offspring

'
Evaluate the offspring

If the fitness is not deterministic, also
re-evaluate the original population

!

Select the best individuals from the
offspring and original population to
generate the new population

— T No

<Tlast generation 7>

“Yes
End

Figure 1. Evolutionary optimization loop used by GA

We can form an analogy between the parent set of GA
and the 2™ positions in PSO; both are sets of high-performing

candidate solutions which have the potential to exist over
multiple iterations of the algorithms. Therefore, we can
modify PSO in much the same way as GA: at each itera-
tion of PSO, the z* positions are reevaluated (see Fig. 2).
For determining the final fitness, we explore using both the
original method of taking the worst performance (PSOmin)
as well as averaging all performances (PSOavg).

Generate initial swar and
velocities randomly

Esrahaate the initial swatn, using
the initial performatice as the initial
personal hest and using that to find
the initial neighbothood best

I
¥

Update velocities of patticles using
personal best and neighborhood best

i

& pply velocities to positions of particles

!

Ewaluate new particle positions

If the fitness is not determindstic, also
tre-evaluate the personal best positions

Find the new personal best for each
patticle and use that to find the new
neighbothood hests

A

-

= lastiteration?
p 50

Mo

e

o "ot
Yes
Figure 2. Evolutionary optimization loop used by noise-
resistant PSO

3.1. Test Function Evaluation

For an initial evaluation, we try to minimize several standard
test functions used in [9] with additive Gaussian noise. We
optimize using GA, GAmin, PSO, PSOmin, and PSOavg.
Functions can be found in Table 1, along with the number of
iterations run on each algorithm. The number of iterations
was chosen based on empirical evidence for how long the
algorithms took to converge.
The functions are defined as follows:

f@ = Y af 2)
i=1
n—1

fo() =) [100(7 — wip1)? + (1—2:)?] (3)

i=1

Table 1. Test Functions

Function | Function Name Number of Iterations
f1 Sphere 400
f2 Generalized Rosenbrock | 20000
f3 Rastrigin 400
fa Griewank 400
n
f3() = Y [xF — 10cos(2mx;) + 10])
=1
1 n n T
_ 2 [
W) = 14— x5 — cos(—= 5)
f4(2) 400021 1_11 (Z)

For all functions, n = 30, and x; was constrained to
[—5.12,5.12], the range used in [9]. Noise was introduced
by adding a 0-mean Gaussian random variable:

£(@) = N(0,0%) + f(2)

We use sigma values of 0.03, 0.5, 1.0, 5.0, and 20.0. The
parameters used for GA and PSO are given in Table 2. For
the PSO neighborhood, we use a ring topology and assign
the nearest particle on each side to be a neighbor. We chose
this instead of a global neighborhood because preliminary
results showed that better performance was achieved with
this type of neighborhood on the tests we are doing. For
GA, propagation is done using a Roulette Wheel scheme.
Mutation applies a numerical adjustment to a gene, selected
uniformly randomly over a fixed range. Once the candidate
solutions have been evaluated, the best-performing half of
the particles from the children and previous parent set are
selected to be the new parent set.

Table 2. GA and PSO Parameters for Test Functions

GA PSO
Population Size 20 Swarm Size | 20
Crossover Probability | 0.6 pw 2.0
Mutation Probability 0.05 nw 2.0

Mutation Range [-0.5,0.5] | w 0.6

For GAmin, PSOmin, and PSOavg, because good can-
didate solutions are reevaluated, twice as many performance
evaluations are executed as in standard GA or PSO. To com-
pensate for this, these algorithms only run for half of the
listed iterations (e.g.,200 instead of 400 for f7).

3.2. Test Function Results

The results of the algorithms on the test functions can be
seen in Tables 3-6. We see similar results for the first three

functions; with no noise, the standard algorithms perform
as well or better than the noise-resistant algorithms, since
they execute more iterations. As noise is increased, perfor-
mance of the standard algorithms rapidly degrades, while
the noise-resistant ones maintain reasonable results. PSO
seems to outperform GA on f] and f} with noise, and the
performance is comparable on f4 with noise. PSOmin and
PSOavg obtain the best results in the presence of noise, with
neither offering clear superior performance; PSOmin does
slightly better on f} and PSOavg does slightly better on f7.

The performance on f; differs from that of the other
functions. Performance without noise is similar, with all
functions converging to values near zero. The function ap-
pears very sensitive to noise, however, and all algorithms
achieve very poor performances with standard deviation of
0.5 or higher. With standard deviation of 0.03, only stan-
dard PSO and PSOavg perform fairly well, with PSOavg
outperforming PSO.

Table 3. Performance on f; over 20 runs (mean/standard
deviation)

o GA GAmin PSO PSOmin | PSOavg
0.0 0.02/0.01 | 0.80/0.51 | 0.00/0.00 | 0.04/0.06 | 0.05/0.04
0.03 | 0.12/0.03 | 0.69/0.55 | 0.07/0.03 | 0.14/0.20 | 0.09/0.05
0.5 1.06/0.24 | 1.82/1.35 | 1.13/0.48 | 0.59/0.25 | 0.59/0.58
1.0 2.95/0.65 | 3.80/1.96 | 2.01/0.84 | 1.15/0.41 | 1.08/0.65
5.0 50.0/10.4 | 26.1/6.59 | 6.82/1.63 | 4.43/0.90 | 3.79/1.46
20.0 115204 | 69.5/16.1 | 19.1/3.69 | 14.6/2.91 | 10.2/1.85

Table 4. Performance on f5 over 20 runs (mean/standard
deviation)

o GA GAmin PSO PSOmin | PSOavg
0.0 34.6/18.9 | 33.1/19.6 | 7.38/3.27 | 13.3/7.35 | 15.2/6.32
0.03 | 44.8/27.5 | 38.8/23.9 | 42.4/259 | 28.9/21.5 | 23.8/14.6
0.5 60.4/30.7 | 47.1/45.8 | 69.4/47.0 | 25.0/16.4 | 42.2/29.0
1.0 67.2/42.2 | 45.0/29.6 | 66.9/41.2 | 27.2/18.2 | 38.2/25.3
5.0 111/70.0 | 52.7/37.0 | 87.4/41.0 | 38.2/24.0 | 36.8/23.5
20.0 133/62.8 | 49.8/34.3 | 134/83.8 | 47.2/22.4 | 48.5/24.6

4. CASE STUDY

4.1. Unsupervised Robotic Learning

Our case study is to evolve high-performing controllers for
robots learning obstacle avoidance behavior in an unsuper-
vised fashion. Unsupervised robotic learning is an interest-

Table 5. Performance on f4 over 20 runs (mean/standard
deviation)

o GA GAmin PSO PSOmin | PSOavg
0.0 157/21.8 | 154/24.4 | 48.3/14.4 | 78.0/19.9 | 89.4/40.6
0.03 160/26.7 | 151/33.8 | 61.0/20.2 | 89.3/46.1 | 76.9/30.5
0.5 170/34.5 | 169/32.9 | 56.3/18.7 | 82.9/39.9 | 72.0/38.5
1.0 163/20.0 | 175/28.9 | 65.5/30.3 | 82.1/35.5 | 87.9/39.6
5.0 180/32.2 | 178/38.0 | 62.1/11.0 | 77.8/39.3 | 93.0/41.7
20.0 | 213/29.0 | 182/24.9 | 108/26.8 | 76.1/16.1 | 96.7/41.8

Table 6. Performance on f; over 20 runs (mean/standard
deviation)

o GA GAmin PSO PSOmin | PSOavg
0.0 0.01/0.01 | 0.07/0.04 | 0.01/0.03 | 0.01/0.01 | 0.01/0.01
0.03 1.04/0.01 | 0.95/0.21 | 0.21/0.26 | 0.68/0.45 | 0.10/0.09
0.5 1.06/0.01 | 1.06/0.01 | 1.04/0.01 | 1.12/0.01 | 1.09/0.01
1.0 1.06/0.01 | 1.07/0.01 | 1.04/0.01 | 1.12/0.01 | 1.10/0.01
5.0 1.06/0.01 | 1.06/0.01 | 1.04/0.01 | 1.12/0.01 | 1.10/0.01
20.0 1.06/0.01 | 1.06/0.01 | 1.04/0.01 | 1.13/0.01 | 1.10/0.01

ing test, because it is inherently noisy, due to sensor and ac-
tuator noise and the local perception of the robots. The noise
is not necessarily Gaussian, and therefore may yield signifi-
cantly different results than a scenario with Gaussian noise.
We use Webots, an embodied simulator, for our robotic sim-
ulations [10], using the Khepera robot model [12]. The
robot(s) operate in a 1.0 m x 1.0 m square arena, with the
corners cut off by small diagonal blocks (see Fig. 3). The
robotic controller is a single-layer discrete-time artificial neu-
ral network of two neurons, one for each wheel speed, with
sigmoidal output functions. The inputs are the eight prox-
imity sensors (six in front, two in back), as well as a recur-
sive connection from the previous output of the neuron and
lateral inhibitions (see Fig. 4). Sensors have a maximum
range of 5.0 cm, and sensor output varies linearly from 0.0
at maximum range to 5.11 at minimum range (0.0 cm) with
10% noise. Slip noise of 10% is applied to the wheel speed.
The time step for neural updates is 128 ms. We base our
fitness function for obstacle avoidance on that proposed by
Floreano and Mondada [5]. The fitness function is given by:

F=V-(1-VAv)-(1-1)
0<v<i

0<Av<1

0<i<l1

where V is the average absolute wheel speed of both wheels,
Auw is the average of the difference between the wheel speeds,
and 1 is the average activation value of the most active prox-
imity sensor over the evaluation period. These factors re-
ward robots that move quickly, turn as little as possible, and
spend little time near obstacles, respectively. The evaluation
period of the fitness tests for these experiments is 240 steps,
or approximately 30 seconds. Between each fitness test, the
position and bearing of the robots are randomly set by the
simulator to ensure the randomness of the next evaluation.

Figure 4. Representation of the artificial neural network
used for the robot controller. Grey boxes represent proxim-
ity sensor inputs while the white boxes on the side represent
the motor outputs. Curved arrows are recurrent connections
and lateral inhibitions.

The parameters we use for GA and PSO for the unsuper-
vised robotic learning are given in Table 7. These parame-
ters are based upon those used in [1] for GA and [9] for
PSO and adjusted based on initial empirical results to im-
prove performance. For the PSO neighborhood, we again
use a ring topology and assign the nearest particle on each
side to be a neighbor. The initial neural weights are uni-
formly randomly generated within [-20, 20], but their value
is not limited to that range by the algorithms.

We tested the unsupervised learning in three different
scenarios. In scenario 1, there is a single robot evolving
the controller in the arena, with no other obstacles. In sce-
nario 2, there is again a single robot evolving the controller,

Table 7. GA and PSO Parameters for Unsupervised Learn-
ing

GA PSO
Population Size 60 Swarm Size | 60
Crossover Probability | 0.2 pw 2.0
Mutation Probability 0.15 nw 2.0

Mutation Range [-5.0,5.0] | w 0.6

but there is also another robot running a pre-evolved high-
performance obstacle avoidance routine; we suspect this may
increase the noise of the evolution, as the second robot acts
as a moving obstacle. In scenario 3, there are two robots
jointly evolving a common shared controller. We assume
that all performance information can be communicated be-
tween the robots, and that they can and do evaluate different
candidate solutions simultaneously. This should allow for
twice the overall evaluation speed of a single robot, and thus
twice the evolution speed, but may have a penalty in further
increasing the noise of the evolution.

4.2. Unsupervised Robotic Learning Results

The results for the best evolved controllers can be seen in
Fig. 5. Best controllers were selected by evaluating ev-
ery controller in the final population/swarm five times and
selecting the controller with the best average performance.
This controller was then evaluated 30 times, and the final
best performance taken as the average of these performances.
For all charts, error bars represent the standard deviation of
performances over the different evolutions (20 evolutions
per algorithm per scenario).

For all algorithms, performance consistently decreases
from scenario 1 to scenario 2 to scenario 3. This follows
our predictions about the increased noise. GAmin outper-
forms GA on all three scenarios. In Scenario 1, GA would
sometimes converge to very good solutions (fitness of 0.7)
and sometimes to poor solutions (fitness of 0.3), causing
a large standard deviation in performance. Performances
of the different PSO methods are fairly comparable; it is
only in Scenario 3 that we see a distinct improvement using
noise-resistant methods. GAmin and PSOmin achieve sim-
ilar performance in all scenarios. PSOavg performs the best
on all three scenarios, but within the margin of error of the
other noise-resistant methods. Also, it should be noted that
the performance of PSOavg on Scenario 3, although less
than Scenario 1, is within the margin of error.

It is useful to observe the average performance of the
population/swarm over the evolution process to gain some
insight into the workings of the algorithms. Fig. 6 shows

Il Scenario 1
1r [Scenario 2 —
Il Scenario 3

Fitness

GA GAmin PSO PSOmin PSOavg

Figure 5. Average of final best performance over 20 evolu-
tions

the average performance of the final population/swarm for
each algorithm; this value was obtained by averaging the
final performances of all elements in the population/swarm,
without any additional reevaluations.

The average population performances of both GA meth-
ods closely reflect the best performances. However, there is
a large difference between the average swarm performance
and the best performance in all PSO methods. This is most
pronounced in standard PSO. The likely cause of this is the
local neighborhoods in PSO, which would allow for a het-
erogenous swarm to be maintained over the evolutionary
process. This results in a large range of performances in
the swarm at the end of evolution, which causes the average
performance to be significantly lower than the best. GA, on
the other hand, has no feature to maintain diversity, and all
chromosomes will tend to converge to a homogenous so-
Iution. This will cause the average performance to closely
resemble the best performance.

We can see the progression of the average population/
swarm performance over the evolutionary process in Fig. 7-
10. For these figures, “step” refers to one iteration of the
noise-resistant algorithms or two iterations of the standard
algorithms, as the standard algorithms were run for twice as
many iterations. We see in Fig. 7 and 8 that while the stan-
dard algorithms cease their evolutionary progress after few
iterations, the noise-resistant algorithms continue through-
out the entire process. In the cases of PSOmin and PSOavg,
this would allow the average swarm performance to more
closely approach the best performance, which would ex-
plain why the difference is most pronounced in standard
PSO. Fig. 9 and 10 show that GA has greater growth in
the early iterations of the evolution. From Fig. 10, however,
we see that noise-resistant PSO has greater growth in the
later stages.

Il Scenario 1
1r [Scenario 2 —
Il Scenario 3

HH
=

Fitness

GA GAmin PSO PSOmin PSOavg

Figure 6. Average performance of final population/swarm
over 20 evolutions

0.9 GAmin
0.8r A
0.7+

0.2r 1

00 20 40 60 80 100

Steps

Figure 7. GA vs. GAmin, average performance of popula-
tion over 20 evolutions in Scenario 1

5. DISCUSSION

Standard GA had unexpectedly poor performance in the un-
supervised learning task, especially since it was shown to
yield very good results in [5]. We suspect this may be due
to the fast convergence rate of the algorithm; if all candi-
date solutions converge to homogeneity before much explo-
ration is done, it increases the chance of pre-converging to
a medium-performance local maximum as opposed to one
with good performance. This problem was overcome in the
noise-resistant version, since it continues to converge over
the entire evolution, and was not present in PSO because of
its slower convergence rate.

Although PSOmin and PSOavg offered comparable per-
formances overall, there were various situations in which

‘ ‘ ‘ —Pso
0.9r PSOmin
PSOavg

0.7 1

S Nk

0.1+ 1

0 1 1 1 1
0 20 40 60 80 100

Steps

Figure 8. PSO vs. PSOmin vs. PSOavg, average perfor-
mance of swarm over 20 evolutions in Scenario 1

— GA
0.9 PSO

0.8 B
0.7
06r

tness
|
L

c 05+ |~

Fi
ey

0.4

0.3j
0.2r B
0.1} 1

O 1 1 1 1
0 20 40 60 80 100

Steps

Figure 9. GA vs. PSO, average performance of popula-
tion/swarm over 20 evolutions in Scenario 1

one or the other performed slightly better. What caused
these variations is not clear. We hypothesize that in situ-
ations in which we are concerned only with false positives
(poor solutions masquerading as good ones), PSOmin will
offer superior performance, as it can more quickly correct
these mistakes and remove the poor solutions. It also en-
sures that final solutions will be very robust and not suscep-
tible to occasional poor performances. However, in situa-
tions with both false positives and false negatives (good so-
lutions that get a poor performance due to external factors,
e.g.,.being boxed into a corner by another robot), it could be
preferable to use PSOavg, since PSOmin could remove very
good solutions if they happened to score badly once.
Although not explored here, PSO could offer an addi-
tional benefit over GA for unsupervised learning in multi-

ﬁrww+%f :

0 1 1 1 1
0 20 40 60 80 100

Steps

Figure 10. GAmin vs. PSOavg, average performance of
population/swarm over 20 evolutions in Scenario 3

robot systems. The population manager for GA must use all
candidate solutions to create the next generation of the pop-
ulation, requiring global knowledge of their performances.
In PSO with a local neighborhood, a particle can be up-
dated knowing only the performances of several other par-
ticles. This gives PSO the potential to be implemented effi-
ciently in a distributed fashion without a global supervisor.
In multi-robot systems, communication is often very expen-
sive and sometimes not possible when there is a large dis-
tance or obstacles between robots. PSO could be adapted to
allow robots to use other robots in the physical proximity as
neighbors, and thereby implement a distributed version of
the algorithm on a robotic swarm, with each robot responsi-
ble for one or more particles. Since we have shown that un-
supervised learning can be accomplished by multiple robots
simultaneously, this could prove an effective technique for
very fast evolution of robotic controllers. It remains to see
how this type of neighborhood will affect the optimization
process.

6. CONCLUSION AND OUTLOOK

Adding the noise-resistance modification to PSO results in
an improvement very similar to what is observed in GA
when dealing with noisy fitness evaluations. For very low
noise values or very few iterations, the standard algorithms
perform better, since more evaluations are required for the
noise-resistant versions, making them slower. However, as
noise increases, the standard algorithms will prematurely
converge on poorer results. The noise-resistant algorithms
continue to improve throughout the full evolutionary pro-
cess, allowing them to avoid the major decrease in perfor-
mance and offer better results than the standard algorithms
in these situations. This indicates that the noise-resistant

algorithm is able to at least partially overcome the conver-
gence error described in [2].

While it had previously been shown in [5] that genetic
algorithms could be used for unsupervised robotic learning,
we have shown that particle swarm optimization can also
be used for this purpose. PSO had comparable performance
to GA on the unsupervised learning task described in this
paper. Although the results obtained by PSO were superior
to those obtained by GA in several instances, this could be
partially due to parameter settings of the algorithms, and is
therefore not conclusive evidence that PSO would consis-
tently work better in these situations.

We hope to continue to expand on the work in this area.
The costs and benefits of different aggregation functions for
combining performance values needs to be explored. Un-
supervised learning with more than 2 robots and using dif-
ferent methods of sharing information would allow us to as-
sess the scalability potential of swarm unsupervised learn-
ing. We also want to explore moving the implementation of
the PSO algorithm closer to one which could be used effec-
tively with real robots.

7. ACKNOWLEDGEMENTS

Jim Pugh and Alcherio Martinoli are currently sponsored by
a Swiss NSF grant (contract Nr. 11 P00268647/1). Yizhen
Zhang is currently sponsored by the Engineering Research
Centers Program of the National Science Foundation under
Award Number EEC-9402726.

8. REFERENCES

[1] Antonsson E. K, Zhang Y., & Martinoli A. “Evolving
Engineering Design Trade-Offs”. Proc. of the ASME
Fifteenth Int. Conf. on Design Theory and Methodol-
ogy, September 2003, Chicago, IL.

[2] Beyer, H.-G. “Evolutionary algorithms in noisy envi-
ronments: theoretical issues and guidelines for prac-
tice”. Computer Methods in Mechanics and Applied
Engineering, 2000, pages:239-267, vol.186.

[3] Eberhart, R. & Kennedy, J. “A new optimizer using par-
ticle swarm theory” Micro Machine and Human Sci-
ence, 1995. MHS ’95., Proceedings of the Sixth In-
ternational Symposium on, Vol., Iss., 4-6 Oct 1995,
pages:39-43

[4] Fitzpatrick, J. M. & Grefenstette, J. J. “Genetic Al-
gorithms in Noisy Environments” Machine Learning:
Special Issue on Genetic Algorithms, 1988, pages:101-
120, vol.3.

[5] Floreano, D. & Mondada, F. “Evolution of Homing
Navigation in a Real Mobile Robot” Systems, Man

and Cybernetics, Part B, IEEE Transactions on, Vol.26,
Iss.3, Jun 1996, pages:396-407

[6] Fourie, P. C. & Groenwold, A. A. “The particle swarm
optimization algorithm in size and shape optimization”
Struct. Multidisc. Optim., 2002, pages:259-267 vol.23

[7] Kennedy, J. & Eberhart, R. “Particle swarm optimiza-
tion” Neural Networks, 1995. Proceedings., IEEE In-
ternational Conference on, Vol.4, Iss., Nov/Dec 1995,
pages:1942-1948 vol.4

[8] Kennedy, J. & Spears, W. M. “Matching algorithms to
problems: an experimental test of the particle swarm
and some genetic algorithms on the multimodal prob-
lem generator” in Proceedings of IEEE International
Conference on Evolutionary Computation, Anchorage,
May 1998, pp. 78-83.

[9] Kennedy, J. & Eberhart, R. Swarm Intelligence, Mor-
gan Kaufmann Academic Press, 2001.

[10] Michel, O. “Webots: Professional Mobile Robot Sim-
ulation” Int. J. of Advanced Robotic Systems, 2004,
pages:39-42, vol.1

[11] Miller, B. L. & Goldberg, D. E. “Optimal Sampling for
Genetic Algorithms” Intelligent Engineering Systems
Through Artifical Neural Networks, 1996, pages:291-
298, vol.6.

[12] Mondada, F., Franzi, E. & Ienne, P. “Mobile robot
miniaturisation: A tool for investigation in control algo-
rithms” Proc. of the Third Int. Symp. on Experimental
Robotics, Kyoto, Japan, October, 1993, pages:501-513

[13] Parsopoulos, K. E. & Vrahatis, M. N. “Particle Swarm
Optimizer in Noisy and Continuously Changing Envi-
ronments” M.H. Hamza (Ed.) , Artificial Intelligence
and Soft Computing, TASTED/ACTA Press, 2001,
pages:289-294

[14] Scott, M. J., & Antonsson, E. K. “Aggregation func-
tions for engineering design trade-offs”. Fuzzy Sets and
Systems, 99 (3) November 1998, pp. 253264.

[15] Stagge, P., “Averaging efficiently in the presence of
noise” Parallel Problem Solving from Nature, PPSN 5,
LNCS 1498, 1998, pages:188-197.

[16] Winfield, A.F.T. & Holland, O.E. “The application of
wireless local area network technology to the control
of mobile robots”, Microprocessors and Microsystems,
2000, Vol. 23, pp. 597-607.

