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difficiles. Merci aussi, Oli, pour les bons moments partagés autour d’une bonne bière... belge et les

nombreuses activités sportives comme le beach volley ou le squash.
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Abstract

An important branch of computer vision is image segmentation. Image segmentation aims at extract-

ing meaningful objects lying in images either by dividing images into contiguous semantic regions,

or by extracting one or more specific objects in images such as medical structures. The image seg-

mentation task is in general very difficult to achieve since natural images are diverse, complex and

the way we perceive them vary according to individuals.

For more than a decade, a promising mathematical framework, based on variational models and

partial differential equations, have been investigated to solve the image segmentation problem. This

new approach benefits from well-established mathematical theories that allow people to analyze,

understand and extend segmentation methods. Moreover, this framework is defined in a continuous

setting which makes the proposed models independent with respect to the grid of digital images.

This thesis proposes four new image segmentation models based on variational models and the active

contours method. The active contours or snakes model is more and more used in image segmenta-

tion because it relies on solid mathematical properties and its numerical implementation uses the

efficient level set method to track evolving contours.

The first model defined in this dissertation proposes to determine global minimizers of the active

contour/snake model. Despite of great theoretic properties, the active contours model suffers from

the existence of local minima which makes the initial guess critical to get satisfactory results. We

propose to couple the geodesic/geometric active contours model with the total variation functional

and the Mumford-Shah functional to determine global minimizers of the snake model. It is inter-

esting to notice that the merging of two well-known and “opposite” models of geodesic/geometric

active contours, based on the detection of edges, and active contours without edges provides a global

minimum to the image segmentation algorithm.

The second model introduces a method that combines at the same time deterministic and statisti-

cal concepts. We define a non-parametric and non-supervised image classification model based on

information theory and the shape gradient method. We show that this new segmentation model

generalizes, in a conceptual way, many existing models based on active contours, statistical and

information theoretic concepts such as mutual information.

The third model defined in this thesis is a variational model that extracts in images objects of inter-

est which geometric shape is given by the principal components analysis. The main interest of the

proposed model is to combine the three families of active contours, based on the detection of edges,

the segmentation of homogeneous regions and the integration of geometric shape prior, in order to

use simultaneously the advantages of each family.

Finally, the last model presents a generalization of the active contours model in scale spaces in order

to extract structures at different scales of observation. The mathematical framework which allows

us to define an evolution equation for active contours in scale spaces comes from string theory. This

theory introduces a mathematical setting to process a manifold such as an active contour embedded

xi



xii Abstract

in higher dimensional Riemannian spaces such as scale spaces. We thus define the energy functional

and the evolution equation of the multiscale active contours model which can evolve in the most

well-known scale spaces such as the linear or the curvature scale space.



Version Abrégée

Un domaine de recherche important en vision artificielle est la segmentation d’image. L’objectif

de la segmentation d’image est d’extraire les objects significatifs présents dans les images soit en

divisant les images en régions sémantiques contigües, soit en extrayant un ou plusieurs objects spéci-

fiques dans les images, telles que les structures médicales. La tâche de segmentation d’image est, en

général, très difficile à réaliser puisque les images naturelles sont diverses, complexes et la manière

de les percevoir varie selon les individus.

Depuis plus d’une décennie, un cadre mathématique prometteur, basé sur les modèles variationnels

et les équations différentielles partielles, a été éxaminé pour résoudre le problème de la segmentation

d’image. Cette nouvelle approche repose sur des théories mathématiques bien établies qui permet-

tent d’analyser, de comprendre et de développer les méthodes de segmentation. De plus, ce cadre de

travail s’inscrit dans une approche continue dont les modèles sont indépendants de la grille d’images

numériques.

Cette thèse propose quatre nouveaux modèles de segmentation d’image basés sur des modèles vari-

ationnels et sur la méthode des contours actifs. Le modèle des contours actifs, ou “serpents”, est de

plus en plus utilisé en segmentation d’image car il repose sur des propriétés mathématiques solides et

son implémentation numérique utilise la méthode efficace des courbes de niveaux pour faire évoluer

des contours.

Le premier modèle défini dans cette dissertation propose de déterminer des minimiseurs globaux

du modèle des contours actifs/serpents. Malgré ses grandes propriétés mathématiques, le modèle

des contours actifs souffre de l’existence de minima locaux, qui rend la condition initiale critique

et ne permet pas d’obtenir de résultats satisfaisants. Nous proposons de coupler le modèle des

contours actifs géodésiques/géométriques avec la fonctionelle de la variation totale et la fonction-

nelle de Mumford-Shah pour déterminer des minimiseurs globaux du modèle des serpents. Il est

intéressant de remarquer que la fusion des modèles bien connus et “opposés” des contours actifs

géodésiques/géométriques et des contours actifs sans bords fournit un minimum global à l’algorithme

de segmentation d’image.

Le second modèle présente une méthode qui combine simultanément des concepts déterministes et

statistiques. Nous définissons un modèle de classification d’image non supervisé et non paramétrique

basé sur la théorie de l’information et la méthode du gradient de forme. Nous montrons que ce nou-

veau modèle de segmentation généralise, d’une manière conceptuelle, plusieurs modèles existants

basés sur les contours actifs et des concepts issus de la statistique et de la théorie de l’information

tels que l’information mutuelle.

Le troisième modèle défini dans cette thèse est un modèle variationnel qui extrait des images des

objets d’intérêt dont la forme géométrique est donnée par l’analyse en composantes principales.

L’intérêt principal du modèle proposé est de combiner les trois familles de contours actifs, qui se

fondent sur la détection de bords, la segmentation de régions homogènes et l’intégration a priori de
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formes géométriques, afin d’utiliser simultanément les avantages de chaque famille.

Finalement, le dernier modèle présente une généralisation du modèle des contours actifs dans les

espaces échelles dans le but d’extraire des structures à différentes échelles d’observation. Le cadre de

travail mathématique qui nous permet de définir une équation d’évolution pour les contours actifs

dans les espaces échelles s’inscrit dans la théorie des cordes. Cette théorie présente un environnement

mathématique qui traite une variété telle qu’un contour actif dans des espaces Riemanniens de di-

mension supérieure, comme les espaces échelles. Nous définissons ainsi la fonctionnelle énergétique

et l’équation d’évolution du modèle des contours actifs multi-échelles qui peuvent évoluer dans les

espaces échelles les plus connus comme l’espace échelle linéaire et de courbure.
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KFYCW Kim-Fisher-Yezzi-Cetin-Willsky

MI Mutual Information

PDF Probability Density Function

TYWTTFGW Tsai-Yezzi-Wells-Tempany-Tucker-Fan-Grimson-Willsky

CTTHWG Chen-Thiruvenkadam-Tagare-Huang-Wilson-Geiser

PRR Paragios-Rousson-Ramesh

RPD Rousson-Paragios-Deriche

HPM Huang-Paragios-Metaxas

CTWS Cremers-Tischhäuser-Weickert-Schnörr
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TV Total Variation

RV Random Variable

MRF Markov Random Field

PCA Principal Components Analysis

SDF Signed Distance Function

ST Spatial Transformations

SSD Sum of Square Differences

ES Euclidean Space

SS Scale Space

MAC Multiscale Active Contour

LSS Linear Scale Space



Notations and Symbols 3

Miscellaneous

Ω Open subset of RN , usually the image domain

∂Ω Boundary of Ω

Ω̄ Closure of set Ω

{Ωi}NR
1 Subsets of Ω s.t. Ω = ∪NR

i=1Ωi and Ωi ∩ Ωi = ∅, i 6= j

∂Ωi Boundary of Ωi
|Ωi| Area of region Ωi
∗ Convolution operator

∝ Symbol for proportional to

Functions

∂u
∂ζ , ∂ζu, uζ Differentiation of the function u w.r.t. the variable ζ, e.g. ∂u

∂x , ∂yu, ut
∂Pu

∂ζ1...∂ζP
,

∂ζ1,...,ζP
u,

uζ1,...,ζP

Higher order differentiation of the function u, e.g. ∂2u
∂x∂y , ∂xyu, uxy

∇u Gradient of the function u in RN s.t. ∇u = (∂x1
u, . . . , ∂xN

u)

∇2u = ∆u Laplacian of the function u in RN s.t. ∆u =
∑N
i=1 ∂

2
xi
u

I0 A given image s.t. I : RN → RM , e.g. a gray-scale (M = 1), a color (M = 3)

or a multi-dimensional (M > 1) image

I Scale space representation or piecewise-smooth approximation of the given image I0
C Symbol for a curve in RN

Γ Symbol for a curve/surface/hyper-surface in RN

Gσ N -D Gaussian function s.t. Gσ(x) = 1
(2πσ2)N/2 exp

(

−∑N
i=1 x

2
i /2σ

2
)

φ Symbol of a level set function embedding a curve/surface/hyper-surface Γ in RN

∇.U Divergence of the vector field U = (Ux1
, . . . , UxN

) in RN s.t. ∇.U =
∑N
i=1 ∂xi

Uxi

δ Dirac function

H Heaviside function

He Entropy

dΓ Signed distance function/representation of the closed curve/surface/hyper-surface Γ in RN

s.t. dΓ(x) = {x ∈ RN | ± inf
y∈Γ

|x − y|}, with ± if x inside/outside Γ

(u)+ max(u, 0)

(u)− min(u, 0)

χΩ, 1Ω Characteristic/binary function of the set Ω ⊂ RN s.t. χΩ(x) = 1 if x ∈ Ω

and 0 otherwise

sign(ζ) Sign function s.t. sign(ζ) = ±1 if ζ > 0, ζ < 0 and sign(ζ) = 0 if ζ = 0



4 Notations and Symbols

Functionals
∂F
∂u First derivation of the functional F w.r.t. the function u

called the Euler-Lagrange equation

x point in RN s.t. x = (x1, . . . , xN )

dx Lebesgue measure in RN

dΩ

HN N -dimensional Hausdorff measure

L(C) Euclidean length of the curve C s.t. L(C) =
∫ p1
p0

|Cp|dp =
∫ L(C)

0
ds,

with p0 = 0 and p1 = 1 without loss of generality

Per(Ω) Perimeter of the region Ω ⊂ RN s.t. Per(Ω) =
∫

RN |∇χΩ|dx =
∫

∂Ω
|∂Ωp|dp

TV (u) Total variation of the function u s.t. TV (u) =
∫

RN |∇u|

Spaces and Norms

Lp(Ω) Banach space with the norm |u|Lp(Ω) =
(∫

Ω
|u|pdx

)1/p
< +∞

Wm,p Sobolev space

〈·, ·〉 Euclidean scalar product or inner product in RN

| · | Euclidean norm in RN

Differential Geometry

p General curve parametrization

s Specific parametrization of a curve C when
∣
∣dC
ds

∣
∣ = 1,

called Euclidean arc length

[·] Symbol of metric tensor

[δij ] Kronecker Delta for the Euclidean metric tensor in RN

N Unit normal vector to the curve/surface/hyper-surface in RN

T Unit normal vector to a curve in R2

κ Mean curvature of a curve/surface/hyper-surface in RN

κi Principal curvatures s.t. κ = 1
N

∑N
i=1 κi

Pp Projection operator onto the space normal to the vector p s.t. Pp = I − p⊗p
|p|2

In n× n identity matrix

Diag Diagonal matrix s.t. Diag (λ1, . . . , λn) =






λ1 0
. . .

0 λn






Γijk Levi-Civita connection coefficients in a Riemannian manifold defined by the

metric tensor [gij ] s.t. Γijk = 1
2g
il(∂jglk + ∂kgjl − ∂lgjk)

∆gu Beltrami operator w.r.t. the metric tensor [gij ] s.t. ∆gu = g−1/2∂µ(g
1/2gµν∂νu),

where g is the determinant of [gij ] and [gij ] is the inverse metric of [gij ]

Numerical Analysis

D+
ζ u Forward difference operator s.t. D+

ζ u = (φ(ζ + ∆ζ) − φ(ζ))/∆ζ,

with e.g. ζ = x, y, z, t

D−
ζ u Backward difference operator s.t. D−

ζ u = (φ(ζ) − φ(ζ − ∆ζ))/∆ζ

D0
ζu Central difference operator s.t. D−

ζ u = (φ(ζ + ∆ζ) − φ(ζ − ∆ζ))/2∆ζ
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1.1 Computer Vision and Image Segmentation

Computer vision is the field of research of this thesis. It is a branch of artificial intelligence that

aims at giving vision to machines, which means to develop mathematical models, algorithms and

technologies to build a machine with vision capabilities as advanced, at least, as human eyesight.

More mathematically speaking, the purpose of computer vision is to process images acquired with

cameras to produce a mathematical representation of semantic objects in the world. This is a high-

challenging issue because images such as landscapes, medical images, astronomical images, paintings,

can be very diverse and even the way we perceive them vary a lot according to individuals.

Computer vision is divided into many subfields including image processing, pattern recognition,

graph theory, statistical learning, etc. which objectives are as varied as detection and recognition

of objects in images, registration of different views of the same scene, tracking of objects through

image sequences, searching for images by their content and so on. Thus, the range of computer vi-

sion applications is very large, the methods carried out can be very different, inspired from physics,

5
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biology, statistics theory, functional analysis, etc.

This thesis will focus on a specific branch of computer vision called image segmentation. The

objective of image segmentation is to extract the semantic objects lying in images either by dividing

any given image into meaningful contiguous regions, or by extracting one or more important objects

in images. This task is obviously very difficult to achieve and there exist many methods to realize

it.

In two decades, several mathematical models have been developed to achieve image segmenta-

tion. The last promising models to solve the image segmentation problem are based on variational

approaches and partial differential equations (PDE). These models benefit from well-founded math-

ematical theories that allow us to analyze, understand, improve the existing methods and to work

in a continuous setting which makes the proposed models independent with respect to the grid of

digital images. The next section introduces the general paradigm used throughout this thesis and

coupled with other mathematical theories such as information theory and differential geometry to

define new image segmentation models.

1.2 Variational Models and Partial Differential Equations

Digital images are representations of the visual world surrounding us. The common point between

all digital images is the fact that they are defined in a discrete setting although they come from a

continuous world. The transfer process is done by sampling and quantizing the ”continuous images”.

Even if all image processing methods are developed for digital/discrete images, it is generally more

powerful to use a continuous formulation of methods to analyze, understand, and solve the problems

since continuous mathematics are more developed than their discrete version. At the beginning of

image processing history, the techniques used to process images such as filter theory or spectral

analysis were based on a discrete setting. Today, new techniques such as wavelets theory or varia-

tional models are based on a continuous setting.

In this thesis, we will therefore focus on partial differential equations and variational models to

solve the image segmentation problem in different ways. PDEs, variational models, and functional

analysis in general are mathematical theories closely related to physics such as propagation equations

or conservation laws. PDEs and variational models are linked through an optimization problem.

Indeed, let us assume that an image processing problem can be formulated as

u? = min
u∈S

F (u), (1.1)

where u?, defined in an appropriate space S for the given problem, is an optimizer of a Function-

al/Energy F (.) which gives the solution to the given image processing problem. If F is continuous

and differentiable, it is possible to compute the first variation to determine the Euler-Lagrange

equation:

∂F

∂u
= 0, (1.2)

which gives a necessary condition for u? to be an optimizer of F such that ∂F
∂u

∣
∣
u? = 0. Then, a way
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to compute an optimizer (usually a local optimizer) is to use the gradient descent/ascent method

by introducing an artificial time t such that:

∂u

∂t
= ±∂F

∂u
, (1.3)

and look for the steady state solution. In his book [158] Sapiro proposes a good example to illustrate

the previous ideas. If we want to denoise an image, an example of variational model is:

I? = min
I∈L2(R2)

F (I) =

∫

R2

|∇I|2dx, (1.4)

where F is, in this case, the Dirichlet functional. The Euler-Lagrange equation of F provides us the

famous isotropic/linear heat flow:

∂I

∂t
= ∆I. (1.5)

Throughout this thesis, the previous paradigm will be applied to solve the image segmenta-

tion problem. The main difference between the proposed methods will rely on the definition of

energy functionals. They will be defined from fundamental functionals such as the Rudin-Osher-

Fatemi/Total Variation functional [155] and the Mumford-Shah functional [125] in Chapter 3, but

also from information theory in Chapter 4, from a statistical shape model in Chapter 5 and finally

from string theory introduced by Sochen-Kimmel-Malladi in image processing [167] in Chapter 6.

1.3 Organization of the Dissertation and Main Contributions

This thesis presents four new variational models to carry out the image segmentation task. All these

models use the active contour/snake approach, which means that the boundaries of the meaningful

objects in images are identified with a curve/surface which evolves according to a partial differential

equation derived from the minimization of a given energy functional.

Chapter 2 introduces the state-of-the-art variational and PDE-based models used to segment im-

ages. The first part of Chapter 2 presents the three generations/families of active contours that have

been defined since the original work of Kass-Witkin-Terzopoulos in [103]. The first generation of

active contours localize the edges of objects lying in images, the second generation use region-based

criteria to evolve the active contours toward smooth regions and the third generation incorporate

prior shape information into the segmentation process. In this chapter, the most important models

of these three families are reviewed, which is useful to introduce our first three image segmentation

models in Chapters 3, 4 and 5.

Chapter 3 proposes an image segmentation model based on the first and second generation of

active contours. More precisely, this model merges the geodesic/geometric active contours model of

[35, 105], which detects edges, with Rudin-Osher-Fatemi’s image denoising model [155] and Chan-

Vese’s image segmentation model of active contours without edges [42]. What makes our model

interesting is that the merging is done in a global minimization framework where the global min-

imizers of the active contours/snakes model are determined. Usually, the active contours models
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capture a local minimum, which is the main mathematical weakness of these approaches.

Chapter 4 introduces a new second-generation active contour model that uses at the same time

determinist and statistical concepts. In this chapter, we use information theory to carry out seg-

mentation by defining a non-parametric and non-supervised image classification model based on

Butz-Thiran’s information theory approach [32, 33]. Our classification framework includes most of

the existing second-generation active contours model that use concepts of statistics and information

theory such as mutual information.

Chapter 5 proposes a third-generation of active contours by defining a variational model to seg-

ment an object belonging to a given shape space and using the boundary-based active contours

[35, 105], a geometric shape prior based on the principal components analysis (PCA) [113] and the

Mumford-Shah functional [179] used by Vese-Chan [179]. This method integrates the three families

of snakes in order to use simultaneously the advantages of each family.

Finally, the second part of Chapter 2 enables us to review some image denoising and enhanc-

ing models including the model of Sochen-Kimmel-Malladi [167] that proposes to denoise multi-

dimensional images using string theory and differential geometry. This model is used in Chapter 6

to define a multiscale image segmentation model to simultaneously extract structures at different

scales of observation/resolution. The approach of [167] is used to embed the active contours into

multi-scale spaces derived from well-known diffusion equations used in image processing.

Thus, the main contributions presented in this dissertation are as follows:

• a novel method to determine global minimizers of the well-known active contours/snakes mod-

el, which allows us to merge the geodesic/geometric active contours model [35, 103, 105],

the Rudin-Osher-Fatemi’s model [155] and the models of Chan-Vese [42, 179] based on the

Mumford-Shah functional [125].

• an image classification model that uses at the same time determinist and statistical concepts.

The statistical part comes from information theory, with the promising approach of Butz-

Thiran [32, 33] and the determinist part is based on the shape gradient method of Delfour-

Zolesio [13, 69, 99].

• a variational model to segment an object of interest which geometric shape is a priori known

thanks to a principal components analysis defined by Leventon [113]. We also benefit from the

first and second generation of active contours by using the geodesic/geometric active contours

model [35, 103, 105] and the Vese-Chan’s model [179]. The proposed model simultaneously

uses the advantages of three generations of snakes.

• a generalization of the geodesic/geometric active contours model to scale spaces in order to

define a multiscale image segmentation model to capture structures at different scales of obser-

vation. We use the framework of Sochen-Kimmel-Malladi [167] who introduced the Polyakov

action in image processing from string theory.
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c© Diego Porcel

This chapter presents the state-of-the-art in the field of image segmenta-

tion using variational models and partial differential equations (PDEs).

This restriction of image segmentation models to variational approach-

es and PDEs is voluntary for two main reasons. Firstly, the methods

proposed in this thesis are all based on these mathematical concepts

and secondly, an exhaustive review of all image segmentation models is

not possible in a single chapter. The presentation of the state-of-the-

art papers is organized like our thesis. First of all, the classical model

of boundary-based snake/active contour is presented, then the region-

based and the shape-based active contours and finally, the models of

image denoising are introduced.

2.1 Variational Image Segmentation Models

In image analysis, image segmentation is a fundamental component toward automated vision systems

and useful to medical applications. Its main objective consists in determining the semantically im-

portant parts of images. Several approaches have been considered to perform the image segmentation

process. The book of Sonka-Hlavac-Boyle [168] gives an exhaustive review of image segmentation

models such as the thresholding approach, the region merging algorithm, the watershed segmenta-

tion and so on. Most of them are based on a discrete setting, which makes them dependent with

respect to (w.r.t.) the parametrization. Moreover, they are not defined in a rigorous mathematical

framework. Recently, new image segmentation models based on a variational approach have been

introduced. These models are defined in a continuous setting and they are mathematically well

studied. We propose to describe two well-known variational image segmentation models, namely

the Mumford-Shah model [124, 125] and the active contour method [103].

9
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(a) Original image I (b) Piecewise smooth image u (c) Boundaries C of u

Figure 2.1: Image segmentation based on the Mumford-Shah model.

In the Mumford-Shah (MS) approach, the goal is to find a partition of the image into distinct

homogeneous regions. This is realized by minimizing the Mumford-Shah functional [124, 125] which

provides an optimal piecewise smooth approximation of a given image, in other words an image

made up of homogeneous regions which common boundaries are sharp and piecewise regular [15].

The Mumford-Shah functional is defined as follows for any observed image I0 ∈ L1(Ω) and any

positive parameters µ, ν:

FMS(I, C) =

∫

Ω

|I − I0|2dx + µ

∫

Ω\C
|∇I|2dx + νHN−1(C), (2.1)

where I0 is defined on a domain Ω, I corresponds to a piecewise smooth approximation of the

original image I0, C is a discontinuity set (representing the edges of I) and the length of C is given

by the (N -1)-dimensional Hausdorff measure HN−1(C) (see [73] for an accurate definition but H0

is the counting measure, H1 the length and H2 the area). The first term of (2.1) is a fidelity term

w.r.t. the given data I0, the second term is a regularization term that constraints the function I to

be smoothed inside the region Ω \ C and the last term imposes a regularization constraint on the

discontinuity set C, i.e. the boundaries between smooth regions. Figure 2.1(b) shows the optimal

piecewise constant approximation u of the original image I0 presented on Figure 2.1(a) (I has been

computed with the software Megawave2 [126]).

Observing Figure 2.1(b), we notice that the Mumford-Shah model can not directly capture

texture objects such as the snake because the snake-object is not composed of one smooth region

but many. More generally speaking, the Mumford-Shah model efficiently realizes the segmentation

of homogeneous intensity regions but not the segmentation of homogeneous texture regions.

The minimization of Functional (2.1), which belongs to the class of free discontinuity problems,

is not easy to realize as explained in the books of Aubert-Kornprobst [15] and Morel-Solimi [122]

and the paper of Vese-Chan [179]. Indeed, the Mumford-Shah functional needs to be reformulat-

ed to define a correct mathematical framework to prove the existence of minimizers (not unique

in general). Thus, De Giorgi-Ambrosio in [6, 83] defines a new formulation of the Mumford-Shah

functional, called the weak formulation, by replacing C by the set of jumps of I and defining SBV ,

the space of special functions of bounded variation. Then, Ambrosio in [6, 7, 8] established the

equivalence between both formulations by proving that a solution of the weak formulation is also

a minimizer of the initial Mumford-Shah functional. Having proved the existence of (at least) a

minimizer, its computation is the next step. Unfortunately, this issue remains an open question in

the general setting. Nevertheless, it is possible to determine a minimizer by introducing a constraint

of connectedness. That was proposed in the original work of Mumford-Shah [124, 125] where the

authors conjectured that their functional admits a minimizer satisfying two regularity hypotheses.

Based on these two hypotheses and an hypothesis of connectedness, Mumford-Shah [125] and Bon-
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(a) Initial active contour (b) Final active contour (c) Final active contour

Figure 2.2: Image segmentation based on the active contour model.

net [22] established two theorems which characterize the properties of the minimizer. The numerical

approximation of the Mumford-Shah functional is usually based on the technique of Euler-Lagrange

equations. However, the term HN−1(C) is not lower semi-continuous w.r.t. any compact topology

([15]) which prevents us from applying the calculus of variations. Hence, many authors proposed

to approximate the functional FMS(I, C) by a sequence of regular functionals defined on Sobolev

spaces. The sequence Γ-converges [84, 120] to the initial Mumford-Shah functional. Several approx-

imation models of the Mumford-Shah functional were proposed in the literature [10, 23, 24, 38, 39].

Finally, Chan-Vese [42, 179] proposed to approximate the term HN−1(C) by the length of a set of

curves in order to use the Euler-Lagrange equations technique. This will provide the model of active

contours without edges [42] that we will describe in Section 2.4.1.

Although the first segmentation model has proposed to extract all significant parts in images,

some specific parts of images can be more important than others depending on applications such

as in medical imaging. This makes the link with the second segmentation model, in the context

of variational models, which aims at detecting objects in images. Indeed, the active contour model

proposes to detect the closest contour(s) (such as the snake on Figure 2.2(b)) from an initial posi-

tion (Figure 2.2(a)). The active contour/snake model was introduced by Kass-Witkin-Terzopoulos

(KWT) in [103]. This model locates sharp image intensity variations by deforming, like a snake,

a curve C toward the edges of objects. The evolution equation of the parametric planar curve

C(p) = (x(p), y(p)) ∈ Ω, p ∈ [0, 1] is given by the minimization of the following energy functional

defined for any observed image I0 ∈ L1(Ω) and any positive parameters α, β, λ:

FKWT (C) = α

∫ 1

0

∣
∣
∣
∣

∂C(p)

∂p

∣
∣
∣
∣

2

dp+ β

∫ 1

0

∣
∣
∣
∣

∂2C

∂p2

∣
∣
∣
∣

2

dp+ λ

∫ 1

0

f2(I0(C))dp, (2.2)

where the first two terms are physics-based smoothness constraints on the geometry of the curve

since the first term makes the snake act like a membrane and the second term makes it act like a

thin plate. The sum of both terms is called the internal energy. The third term of (2.2), namely

the external energy, attracts the curve toward the boundaries of objects using an edge detecting

function f vanishing at infinity such as the function:

f(I0) =
1

1 + γ|∇(I0 ∗Gσ)|2
, (2.3)

where Gσ is the Gaussian function with standard deviation σ, I0 ∗Gσ is a smoothed version of the

original image I0 and γ is an arbitrary positive constant. Figure 2.3(b) presents an edge-detecting

function f .

It is interesting to note that the active contour model of Kass et al. allows us to use directly

closed and open curves, which is not the case with the geodesic/geometric active contour model
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[35, 105] that we present in the next section (even if the level set framework proposes a solution to

evolve open curves in the context of the geodesic/geometric active contour model [30]).

The energy FKWT (C) admits at least a global minimum in the Sobolev space (W 2,2(0, 1))2, [15].

Unfortunately, FKWT is not convex which implies no direct uniqueness result. However, a local

minimum of FKWT can be reached by solving the following Euler-Lagrange equations of FKWT :

− α
∂2C

∂p2
+ β

∂4C

∂p4
+ λ∇f2(C) = 0. (2.4)

In [103], Kass et al. numerically solved the fourth-order partial differential equation (2.4) with a

finite differences method. This provides a fast numerical algorithm but, in the case of closed curves,

it does not allow changes of topology since the final curve has the same topology as the initial one.

In other words, it is not possible to detect more than one object as we can see on Figure 2.3(c-d).

(a) Original image I0 (b) Associated edge detect-

ing function f(I0)

(c) (d)

Figure 2.3: Figure (b) presents an edge detecting function from a given image (a). Figures (c-d)

shows the snake at the beginning and at the end of the evolution process. Figure (d) proves that

the snake model can not naturally change its topology during the evolution process since the final

contour has captured only one object.

Another drawback of the snake segmentation model is the dependence of the functional FKWT

w.r.t. the parametrization of the curve C, in other words FKWT is not intrinsic. This means that

different parametrizations of the curve may give different solutions for the same initial condition,

which is not satisfactory.

To overcome the limitation of the changes of topology, Osher-Sethian proposed the powerful

level set method in [127, 129, 164] that we develop in Section 2.3. The curve C is then implicitly

represented by a function of higher dimension φ, called the level set function, and the curve evolution

equation can be re-written in a level set formulation.

Finally, the problem of local minimizers of the active contour model will be studied in Chapter

3. We will propose a method to determine global minimizers of the active contour/snake model.

2.2 The Geodesic/Geometric Active Contour Model

Caselles-Kimmel-Sapiro [35] and Kichenassamy-Kumar-Olver-Tannenbaum-Yezzi [104, 105] pro-

posed a new energy, based on the Kass-Witkin-Terzopoulos model (2.2), that is invariant w.r.t.

a new curve parametrization. The new intrinsic energy functional is

FGAC(C) =

∫ 1

0

f(|∇I0(C(p))|)|Cp|dp =

∫ L(C)

0

f(|∇I0(C(s))|)ds, (2.5)

where GAC stands for Geodesic/Geometric Active Contour, ds is the Euclidean element of length

and L(C) is the Euclidean length of the curve C defined by L(C) =
∫ 1

0
|Cp|dp =

∫ L(C)

0
ds. Hence,
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the functional (2.5) is actually a new length obtained by weighting the Euclidean element of length

ds by the function f which contains information concerning the boundaries of objects [15]. The

function f is the edge detecting function introduced in the previous section and defined e.g. by

Equation (2.3).

The equivalence between minimizing FGAC and minimizing FKWT was studied by Caselles et

al. in [35] and Aubert-Blanc Féraud in [14]. They started from the energy FKWT and remove the

second-order smoothness component by setting β = 0. They justified this choice by the fact that the

first two terms of FKWT decrease the curvature, hence, they are redundant. Moreover, setting β = 0

allows second-order discontinuities as corners. Then, Caselles et al. used concepts of Hamiltonian

theory and Aubert-Blanc-Féraud concepts of calculus of variations to prove the equivalence between

minimizing FGAC and FKWT .

Caselles et al. also proved in [35] that the curve minimizing FGAC is actually a geodesic in a

Riemannian space which metric tensor is [hij ] = f(|∇I0|)[δij ] where f is the edge detecting function.

This geodesic is computed by the calculus of variations. Let us introduce an artificial time t and let

us consider a family of curves C(t) such that:

FGAC(t) =

∫ 1

0

f(|∇I0(C(p, t))|)|Cp(p, t)|dp. (2.6)

The first variation of the energy FGAC is then:

dFGAC
dt

=

∫ 1

0

〈
∂C

∂t
, 〈∇f,N〉N − κfN

〉

|Cp|dp, (2.7)

see [35] for details. Hence, the direction for which FGAC decreases most rapidly provides us the

following minimization flow:

∂C

∂t
= (κf − 〈∇f,N〉) N , (2.8)

where N is the unit normal to the curve C and κ is its curvature. The right hand side of the equa-

tion (2.8) corresponds to the Euler-Lagrange of Energy (2.5). The first term is the mean curvature

motion, also called curve shortening flow, weighted by the edge detecting function f . It smoothes

the curve shape by decreasing its total length as fast as possible. The second term of (2.8) attracts

the curve toward the boundaries of objects by creating an attraction valley centered on the edges.

Hence, the function f does not need to be equal to zero to stop the evolution of the snake on the

contours of objects.

Cohen in [49] proposed to artificially introduce a constant force in the model (2.8), called a

balloon force:

∂tC = (κf − 〈∇f,N〉 + αf) N , (2.9)

α > 0. When f = 1, this flow minimizes the following functional:

F (C) =

∫ 1

0

f(|∇I(C(p))|)|Cp|dp+ αA, (2.10)

where A is the area of the region inside the closed curve C, [15]:

A = −1

2

∫ 1

0

〈

C,

(

−yp
xp

)〉

dp. (2.11)
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The two main reasons to use the balloon force is to significantly increase the speed of convergence

toward the steady state solution and to allow the detection of non convex objects.

The geodesic/geometric active contours were extended to higher dimensions by Caselles et al.

[36] and Kichenassamy et al. [104, 105]. In a 3-D Euclidean space, the curve becomes a surface and

in higher dimensions a hyper-surface. In all situations, the problem is to find a curve, a surface,

a hyper-surface which minimize the Euler functional that corresponds to the length, the area, the

hyper-area of the associated curve, surface, hyper-surface. In differential geometry, they are called

harmonic maps. We will come back on this concept at the end of Section 2.5.

To summarize this section, we started from the model of Kass et al. which is a physics-based

deformable model which evolution equations are based on a Lagrangian formulation, i.e. a para-

metric formulation of the curve evolution. Then, we solved the problem of the dependence of the

parametrization of the curve C in the energy functional FGAC . In other words, FGAC is invariant

w.r.t. the way we parametrically represent the curve. In the next section, we introduce the powerful

level set method which is based on an Eulerian formulation, i.e. an implicit formulation, of the

curve. This will give us efficient and accurate numerical schemes to deal with propagating fronts

and solving the problem of topology changes as seen on Figure 2.3 since we will be able to segment

more than one object.

2.3 The Level Set Method

2.3.1 Generality

The level set method for tracking moving fronts was introduced by Osher and Sethian in [129].

This method have had a great success because it has been used in many applications from physics,

by capturing multiphase fluid dynamics flows, to graphics, e.g. special effects in Hollywood, vi-

sualization, image processing, computer vision, control, epitaxial growth, visibility, ray tracing,

segmentation, restoration and many others [116, 127, 164]. In this section, we introduce the level

set method applied to the theory of curve/surface evolution. We show that the level set formulation

of a curve/surface evolution equation allows us to efficiently solve the problem of moving fronts, in

particular the problem of changes of topology.

The general evolution equation of a curve C(p, t) : [0, 1]× [0, T ) → R2, where p parametrizes the

curve geometry and t parametrizes the family of evolving closed curves, is given by the PDE:

{
∂C
∂t = V‖T + V⊥N
C(t = 0) = C0

, (2.12)

where T and N are respectively the unit tangential and the outward/inward (arbitrary choice) unit

normal to the curve C and V‖ and V⊥ are respectively the tangential and normal velocities. Epstein-

Gage showed in [72] that the geometry of the curve deformation is not affected by the tangential

velocity V‖. This result is due to the fact that the tangential velocity does not change the geometry

of the curve but its parametrization. Hence, Equation (2.12) can be replaced by

{
∂C
∂t = V⊥N
C(t = 0) = C0

, (2.13)
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from a strict geometric point of view. The same result holds for surface and hyper-surface. Thus,

the general geometric evolution equation of a curve/surface/hyper-surface Γ is:

{
∂Γ
∂t = V⊥N
Γ(t = 0) = Γ0

, (2.14)

where N is the unit normal to the curve/surface/hyper-surface Γ.

At this stage, we leave the parametric/explicit representation of a contour (curve, surface or

hyper-surface) to get interest in the geometry/implicit representation of the contour. This leads to

the level set representation which is independent to the parametrization of the contour. The core

idea in the level set method is to implicitly represent an interface Γ in Rn as a level set of a function

φ, called level set function, of higher dimension and compute the geometric characteristics and the

motion of the front with this level set function. The level set function φ of the closed front Γ is

defined as follows, [127]:







φ(x, t) > 0 for x ∈ Ωin(t)

φ(x, t) < 0 for x ∈ (Ω \ Ωin)(t)

φ(x, t) = 0 for x ∈ ∂Ωin = ∂(Ω \ Ωin) = Γ(t)

, (2.15)

where Ω is an open region in Rn, Ωin is a (multiply connected) region in Ω bounding by Γ.

As we said, the geometric characteristics of the interface can be computed with the level set

function. The unit normal N and the mean curvature κ to Γ(t) are given by

{ N = − ∇φ
|∇φ|

κ = ∇. N = ∇.
(

− ∇φ
|∇φ|

) . (2.16)

The area/volume of the region Ωin(t) bounding by Γ and the length/area of the interface Γ(t) are

{ ∫

Rn H(φ)dx
∫

Rn |∇H(φ)|dx =
∫

Rn δ(φ)|∇φ|dx , (2.17)

where δ and H are respectively the Dirac and the Heaviside functions.

The motion of the front Γ(t) evolving according to Equation (2.14) is given by the evolution of the

zero level set of φ(t) which is solution of the following PDE:

{
∂φ
∂t = V⊥|∇φ|
φ(t = 0) = d(Γ0) = φ0

, (2.18)

where d is a function (usually a signed distance function, dΓ0
) which zero level set is the initial

contour Γ0. The equivalence between the front evolution given by Equation (2.14) and Equation

(2.18) was shown e.g. by Caselles et al. in [35].

Equation (2.18) raises a number of comments:

• The zero level set of Γ and all its level sets follows the front evolution equation (2.14).

• The level set evolution is computed on a fixed coordinate system since the level set is a

parametrization free formulation.
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• The evolution of the contour is independent of the initial embedding φ0, see e.g. [47, 74, 75, 76]

and the classical solution, if it exists, of (2.14) coincides with the classical solution of (2.18).

• Singularities, called kinks, can arise with PDE (2.18).

The last comment raises the important issue of singularities which can happen even with the

simplest velocity V⊥ = 1, i.e. when (2.18) is a nonlinear first order Hamilton-Jacobi equation. In

this case, the front Γ at time t corresponds to the set of points at a distance t from the original front

Γ0. Singularities develop when we start with a square Γ0 and move inward. The question is how to

correctly do the propagation? The solution is given by the theory of viscosity solutions developed by

Crandall-Lions-Evans [55, 56, 57]. In the case of development of discontinuities, the theory chooses

the unique Lipschitz continuous solution which obeys to the Hüygens principle known in optics for

the light propagation and in thermodynamics for the flame propagation. In the later situation, the

front is seen as a burning front in a forest. Once a tree is burnt, it remains burnt and the front

continues its propagation. In the case of hyperbolic conservation laws, the Hüygens principle is

equivalent to choose the unique entropy solution that we numerically find with a special numerical

scheme called upwind scheme that we will see in the next section. Finally, viscosity solutions are

useful to prove the existence and uniqueness of non-smooth solutions of PDEs such that (2.18) for a

large class of velocities V⊥. They are consistent with classical smooth solutions since they coincide

with them when classical solutions exist.

Finally, the level set method allows us natural curve topological changes, such as breaking or

merging, as we can see on Figure 2.4 since the topology of the level set function remains unchanged.

Hence, there is no need complementary functions to handle topological changes, and so no emotional

involvement [127]!

The next section will be focused on the numerical implementation of PDE (2.18). We need

special numerical schemes to compute the unique entropy solution satisfying (2.18).

2.3.2 Numerical Implementation of the Level Set Method

This section is devoted to the numerical implementation of PDE (2.18) which velocity field V⊥ has

the general form [127]:

V⊥ =

〈

Ξ(x),
∇φ
|∇φ|

〉

− ξ(x)∇.
( ∇φ
|∇φ|

)

, (2.19)

where Ξ(x) is a vector field and ξ(x) a scalar field. Given the velocity V⊥, PDE (2.18) is a Hamilton-

Jacobi equation which solutions can develop kinks which are discontinuities defined by jumps in

derivatives. Special numerical methods are necessary to handle these discontinuities. These schemes

were presented by Osher-Sethian in [129] based on upwind differencing, then extended to higher-

order accuracy with the essentially non-oscillatory (ENO) and weighted essentially non-oscillatory

(WENO) schemes defined in [100, 130].

Putting the velocity (2.19) in Equation (2.18), we obtain:

∂φ

∂t
= 〈Ξ,∇φ〉 − ξ|∇φ|∇.

( ∇φ
|∇φ|

)

. (2.20)

The first term of the right hand side of Equation (2.20) is a convection term. In the active contour

framework, the function Ξ(x) represents either an attraction force toward the boundaries of objects,

i.e. Ξ = ∇f (see Section 2.2) or a balloon force such as Ξ = ΞN = −Ξ ∇φ
|∇φ| . The second term of

the right hand side of Equation (2.20) is a contour smoothing term based on the curvature of level
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Figure 2.4: Natural changes of topology in the level set framework. The right column presents the

evolution of the curve and the left column shows the evolution of the associated level set function.

We note that the curve changed its topology but not the level set function.
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sets of φ. In the following, we present the three corresponding discretization schemes.

The balloon force with the velocity Ξ = ΞN is approximated using the concept of hyperbolic

conservation laws presented in the books of Osher-Paragios [128] (chapter 1), Sethian [164] (chapter

5) and Sapiro (chapter 1) [158]. We directly use their results: the balloon force term is equal to

〈Ξ,∇φ〉 = 〈−Ξ
∇φ
|∇φ| ,∇φ〉 = −Ξ|∇φ| (2.21)

and can be approximated by the first-order numerical scheme:

− Ξ(x)|∇φ| = (−Ξ(x))+ · ∆+ + (−Ξ(x))− · ∆−, (2.22)

where

∆+ =
[
((D−

x φ)+)2 + ((D+
x φ)−)2 + ((D−

y φ)+)2 + ((D+
y φ)−)2

]1/2
(2.23)

∆− =
[
((D+

x φ)+)2 + ((D−
x φ)−)2 + ((D+

y φ)+)2 + ((D−
y φ)−)2

]1/2
, (2.24)

and (ζ)+ = max(ζ, 0), (ζ)− = min(ζ, 0), D±
x φ = ±(φ(x ± ∆x) − φ(x))/∆x and D±

y φ = ±(φ(y ±
∆y) − φ(y))/∆y. We illustrate this numerical scheme on Figure 2.5 by propagating a square curve

inward and outward considering Ξ(x) = ±1.

(a) Ξ(x) = −1 (b) Ξ(x) = 1

Figure 2.5: Evolution of a square curve inward and outward. The inward propagation, Figure

2.5(a), creates singularities (shocks) which are handled with the numerical scheme (2.22).

For a force different from the balloon force, the term 〈Ξ,∇φ〉 is a pure passive advection term

[127, 164]. It can be computed using simple upwind schemes by choosing the correct difference

scheme in the appropriate direction depending on the sign of each component of Ξ:

〈Ξ,∇φ〉 = (Ξx)
+ ·D−

x φ+ (Ξx)
− ·D+

x φ+ (Ξy)
+ ·D−

y φ+ (Ξy)
− ·D+

y φ, (2.25)

with the vector field Ξ = (Ξx,Ξy).

Then, the second term of the right hand side of Equation (2.20) is a regularization term based on

the mean curvature. This term is parabolic and therefore it does not need an upwind scheme which

has been designed for hyperbolic advection term which needs to know the propagation direction.

For a parabolic term, the propagation is in all direction, hence the central difference approximation

scheme fits well to approximate the term ξ|∇φ|∇.
(

∇φ
|∇φ|

)

at a first-order of accuracy. In 2-D images,

the curvature of the level sets is

∇.
( ∇φ
|∇φ|

)

=
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

(2.26)
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and the associated numerical scheme is

ξ|∇φ|∇.
( ∇φ
|∇φ|

)

= ξ
D0
xxφ(D0

yφ)2 − 2D0
xφD

0
yφD

0
xyφ+D0

yyφ(D0
xφ)2

((D0
xφ)2 + (D0

yφ)2)1/2
, (2.27)

whereD0
xφ = (φ(x+∆x)−φ(x−∆x))/2∆x, D0

xxφ = D0
xD

0
xφ = (φ(x+∆x)−2φ(x)+φ(x−∆x))/∆x2

and D0
xyφ = D0

xD
0
yφ = (φ(x+∆x, y+∆y)+φ(x−∆x, y−∆y)−φ(x+∆x, y−∆y)−φ(x−∆x, y+

∆y)/4∆x∆y. This smoothing term is illustrated on Figure 2.6.

Figure 2.6: Smoothing of contours represented by the zero level set of a level set function

Finally, the three previous numerical schemes are combined to get the numerical model approx-

imating the geodesic/geometric active contours (2.9) embedded in the level set formulation:

∂φ

∂t
=

(

α+ ∇.
( ∇φ
|∇φ|

))

f |∇φ| + 〈∇f,∇φ〉 , (2.28)

where the first term is a balloon term approximated by the scheme (2.22), the second term is a curva-

ture term implemented by (2.27) and the last term is a advection term computed by (2.25). Figure

2.7 presents the numerical model of the geodesic/geometric active contours which can naturally

handle topological changes.

(a) (b) (c) (d)

Figure 2.7: Evolution of the geodesic/geometric active contour model in a level set formulation.

Contrary to Figure 2.3(d) where the final contour captured only one object, Figure 2.7(d) shows

that both objects have been successfully captured thanks to the level set method.

Finally, the model can be extended to 3-D images as seen on Figure 2.8.
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Figure 2.8: Minimal active surface model. This model is the extension of the geodesic/geometric

active contour model to surface lying in 3-D images. These figures present the extraction of the

cortical brain surface.
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2.4 New Families of Active Contours

Section 2.2 presented the variational model of geodesic/geometric active contours which is basical-

ly based on the detection of edges in images. Combined with the level set method that provides

efficient numerical schemes and natural extension to higher dimensions, this model have had great

success to detect fine real-world shapes such as medical structures [101, 115, 188]. However, despite

of their great advantages, these first-generation active contours, are highly sensitive to the presence

of noise and poor image contrast, which can lead to bad segmentation results. To overcome this

drawback, some authors incorporated region-based evolution criteria into active contour energy func-

tionals built from intensity statistics and homogeneity requirements. We propose to review some

of the well-known ones in Section 2.4.1. Yet the segmentation of structures of interest with these

second-generation active contours is not able to deal with occlusion problems or presence of strongly

cluttered background. Therefore the integration of prior shape knowledge about the objects in the

segmentation task represents a natural way to solve these problems and can be considered as a third

generation of active contours. Section 2.4.2 presents these active contours. As we will see in Chapter

4, we propose a segmentation model based on a region-based evolution criterion and information

theory and in Chapter 5, a method that exploits the advantages of the three generations of active

contours.

2.4.1 Region-Based Active Contours

In [192], Zhu-Yuille (ZY) proposed a variational and statistical image segmentation model based on

the snake/balloon model and the region growing algorithm. They derived their evolution equation

from a generalized Bayes/Minimum Description Length criterion, the Euler-Lagrange equations

technique and the Green’s theorem which states how to go from integrals defined over regions to

functionals defined along contours. Their main contribution is the introduction of a region-based

criterion into the snake model. However, the model does not use any boundary-based information

such as in the original model and the active contour can not change its topology since it is based on

a Lagrangian formulation. Their functional is a follows:

FZY (C, {αi}) =

NR∑

i=1

{
µ

2

∫

∂Ωi

ds−
∫

Ωi

logP (I0(x)|αi)dx
}

, (2.29)

where C = ∪NR
i=1∂Ωi is the segmentation boundaries, P is a Gaussian probability density distribution

which {αi} are the parameters and µ is a positive arbitrary parameter.

In [132, 133, 134, 139], Paragios-Deriche merged the previous model with the geodesic/geometric

active contour model and the level set method to define the geodesic active regions (GAR) mod-

el. Their image segmentation method is able to unify boundary and region-based knowledge in a

variational and statistical framework. Indeed, the boundary and the region information are based

on a statistical estimation (Minimum Description Length criterion and Maximum Likelihood Prin-

ciple) of the image histogram using a mixture of Gaussians distributions, each one representing an

homogeneous region to be segmented. Their proposed energy functional is minimized using the

Euler-Lagrange equations technique and the gradient descent method to get a set of PDEs, each

PDE acting on a boundary, represented by a level set function, of a region to be segmented. Their

method efficiently segments all homogeneous regions in images and presents a good robustness w.r.t.

local minima. Moreover, the changes of topology are naturally handled with the level set formulation
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of the evolution equations. The geodesic active region functional is as follows:

FGAR(C) =

NR∑

i=1

{

(1 − α)

∫ 1

0

gB,i(I0(∂Ω(pi)))|∂Ωpi
|dpi + α

∫

Ωi

gR,i(I0(x))dx

}

, (2.30)

where NR is the number of homogeneous regions estimated from the image histogram, C = ∪NR
i=1∂Ωi

are the boundaries between the different regions, gB,i is the boundary probability density functions

of the region Ωi and gR,i is the region probability density functions of the region Ωi, pi is the

parametrization of the curve ∂Ωi and α is a positive arbitrary parameter. See Figure 2.9 for an

example of the geodesic active regions model. Finally, the authors extended their model to texture

supervised segmentation [133] and video [134].

(a) Original image (b) Image histogram and its

approximation

(c) 4 Gaussian components

(d) Initial con-

tours

(e) Final con-

tours for Compo-

nent 1

(f) Final con-

tours for Compo-

nent 2

(g) Final con-

tours for Compo-

nent 3

Figure 2.9: Segmentation model of geodesic active regions [132, 133, 134, 139]. Figure (b) presents

the image histogram of Image (a) and its approximation. Figures (e-f) present the segmentation

results for the first 3 Gaussian components.

More recently, Rousson-Deriche extended the model of geodesic active regions. In the orig-

inal work, the statistical information concerning the homogeneous regions was estimated in an

independent stage from the segmentation process. In [151, 152], they integrated this stage in the

segmentation process. Finally, in [149, 150], Rousson-Brox-Deriche extended the supervised texture

segmentation model [133] to an unsupervised texture segmentation by extracting a small set of fea-

tures based on the structure image tensor (I0, I0
2
x, I0

2
y, I0xI0y) and nonlinear diffusion, see Figure

2.10.

Samson-Blanc Féraud-Aubert-Zerubia in [156] presented a supervised classification model based

on known intensity means and variances for each region to be segmented. They applied the mul-

tiphase level set model of Zhao-Chan-Merriman-Osher [191] to efficiently handled the evolution

process of each regions to be classified, see Figure 2.11.
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(a) Four smoothed components of the structure image tensor (b) Segmentation re-

sult

Figure 2.10: Figure (a) presents the 4 feature channels obtained by smoothing (I0xI0y, I0
2
y, I0, I0

2
x)

from left to right and Figure (b) is the segmentation provided by the unsupervised texture segmen-

tation model [149, 150] that use the 4 previous feature channels. Note that all figures are reproduced

from [149].

(a) Original image (b) Initial contours (c) Final contours (d) Classified im-

age

Figure 2.11: Supervised classification method of Samson et al. [156]. Figure (a) is a SPOT satellite

image, Figures (b) and (c) show the initial and final active contours and Figure (d) the four classified

homogeneous regions. Note that all figures are reproduced from [156].

As we explained in Section 2.1, the variational segmentation problem of Mumford-Shah [124, 125]

for segmentation and partition is difficult to solve for many reasons. In [42, 178, 179], Chan-Vese

proposed a method to minimize the Mumford-Shah functional in the context of active contours.

Indeed, the active contour framework is useful to define a mathematical framework suitable to de-

termine a solution to a variational model thanks to the calculus of variations. Moreover, PDEs

computed from the Euler-Lagrange equations technique naturally use geometric regularization con-

straints such as the ones conjectured by Mumford-Shah in [125]. Finally, the last (and difficult) term

of the Mumford-Shah functional (2.1) which imposes a smoothing constraint on the discontinuity set

C between smooth regions can be approximated by the length of a set of curves. The Mumford-Shah

(MS) functional in the approach of Chan-Vese (CV) is as follows:

FCVMS (I, C) =

∫

Ω

|I − I0|2dx + µ

∫

Ω\C
|∇I|2dx + ν

∫

C

ds, (2.31)

where I corresponds to a piecewise smooth approximation of the original image I0, C represents the

set of curves separating the smooth regions in the given image,
∫

c
ds is the length of C and µ, ν are

positive parameters.

In [42], Chan-Vese defined the model of Active Contour Without Edges (ACWE) based on a reduced

form of the Mumford-Shah functional when the gradient-based term of (2.31) is removed. This case

corresponds to the piecewise-constant case of the Mumford-Shah model, also called the minimal

partition problem, since the optimal solution is an image composed of regions of approximatively

constant intensities equal to the mean value of intensities in the corresponding region. The general
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case (2.31) is called the piecewise-smooth case. In what follows, we consider only two regions

Ωin and Ω \ Ωin even if Chan and Vese have solved the complete image partitioning problem.

The variational segmentation model of active contours without edges, i.e. the two-phase piecewise

constant Mumford-Shah segmentation model, is as follows:

min
Ωin,c1,c2

FACWE(Ωin, c1, c2) = Per(Ωin)+

λ

(∫

Ωin

(c1 − I0(x))
2
dx+

∫

Ω\Ωin

(c2 − I0(x))
2
dx

)

,
(2.32)

where the region Ωin ⊂ Ω, c1, c2 ∈ R and Per(Ωin) is the perimeter of the region Ωin.

The variational model (2.32) determines the best approximation, in the L2 sense of the image I0 as

a set of regions with only two different values, c1 and c2. If Ωin is fixed, the values of c1 and c2 which

minimize Energy FACWE are the mean values inside and outside Ωin. Finally the term Per(Ωin)

imposes a smoothness constraint on the geometry of the set Ωin which separates the piecewise

constant regions. Functional (2.32) can be re-written in a level set formulation by representing

the regions Ωin and Ω \ Ωin with the Heaviside function H of a level set function (which models

a characteristic function). Hence Energy FACWE can be written w.r.t. a level set function φ as

follows:

FACWE(φ, c1, c2) =

∫

Ω

|∇Hε(φ(x))|dx+

λ

∫

Ω

(

Hε(φ) (c1 − I0(x))
2

+ Hε(−φ) (c2 − I0(x))
2
)

dx,

(2.33)

where Hε is a regularization of the Heaviside function which allows us to differentiate FACWE . To

minimize FACWE , the natural way is a two-steps method. Firstly, φ is fixed and FACWE(φ, c1, c2)

is minimized w.r.t. the constants c1 and c2, we get:

c1 =

∫

Ω
I0(x)Hε(φ(x))dx
∫

Ω
Hε(φ)dx

, c2 =

∫

Ω
I0(x)Hε(−φ)dx
∫

Ω
Hε(−φ)dx

. (2.34)

Secondly, c1, c2 are fixed and FACWE(φ, c1, c2) is minimized w.r.t. φ to provide the following mini-

mization flow:

∂φ

∂t
= δε(φ)

{

∇.
( ∇φ
|∇φ|

)

− λ
(

(c1 − I0(x))
2 − (c2 − I0(x))

2
)}

, (2.35)

where δε(φ) = H ′
ε(φ).

Figure 2.12(c) underlines well the name of the Chan-Vese’s model that is able to stop the curve

evolution even in the absence of boundary (2.12(c)) whereas the standard snake model fails to stop

(Figure 2.12(b)). This is due to the fact that the active contours without edges use a global stopping

criterion which measures the homogeneity of both regions whereas the standard active contours use

a local stopping criterion which measures the presence of an edge. Another advantage of the Chan-

Vese model is the robustness in the presence of noise and the detection of interior contours with a

non-compactly supported smooth strictly monotone approximation Hε(.) of the Heaviside function.

In [102], Jonasson-Hagmann-Bresson-Thiran-Wedeen applied the previous segmentation model

to the extraction of white matter tracts in high angular resolution diffusion magnetic resonance

images [181]. The segmentation is done in a 5-dimensional space of position and orientation to

separate crossing fiber tracts that merge in 3-D position space. The level set formulation of active

contours without edges is easily extensible to a 5-D space. The only implementation issue is the
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(a) Initial contour (b) Standard active

contour

(c) Active contour with-

out edges

Figure 2.12: Comparison between the standard model of active contours [35, 103, 105] (b) and the

model of active contours without edges [42] (c). Standard snake fails to stop on the borders of the

ellipse (b) because edges do not exist whereas the Chan-Vese model separates the image into two

homogeneous regions (c) which boundary is represented by an active contour.

computation of the mean curvature in this high-dimensional space. Fortunately, a lot of work has

already been done for N -D mean curvature flows such as Ambrosio-Soner in [9] who determine the

mean curvature of level sets of a function φ : RN → R as the mean value of the principal curvatures

κi, i = 1, . . . , N − 1 given by the N − 1 smallest eigenvalues of the N ×N matrix 1
|∇φ|2P∇φ∇2φP∇φ

where Pp is a projection operator onto the space normal to the vector p: Pp = I − p⊗p
|p|2 . Figure 2.13

illustrates the 5-D segmentation of crossing fiber tracts.

(a) High angular resolution diffusion mag-

netic resonance image

(b) Fibers tract segmentation

Figure 2.13: 5-D segmentation of crossing fibers [102]. Figure (a) is an example of high angular

resolution diffusion magnetic resonance image and Figure (b) is the segmentation of fiber tracts

obtained in a 5-D space where the red surface is a part of the cortical spinal tract, the blue surface

is the corpus collosum and the green is the arcuate fasciculus.

In [178, 179], Vese-Chan considered the segmentation with the whole Mumford-Shah functional

(2.31), i.e. the piecewise-smooth case. This model is also the extension of two-phase piecewise

smooth Mumford-Shah segmentation model. In this situation, the variational problem to solve is

given by:

min
Ωin,s1,s2

FV C(Ωin, s1, s2) = Per(Ωin)+

λ

(∫

Ωin

(s1(x) − I0(x))
2

+ µ|∇s1(x)|2dx+

∫

Ω\Ωin

(s2(x) − I0(x))
2

+ µ|∇s2(x)|2dx
)

,
(2.36)

where the region Ωin ⊂ Ω and s1 and s2 are two C1 functions on Ωin and on Ω \ Ωin respectively.



26 Chapter 2. State of the Art

The variational problem (2.36) determines the best approximation, in the L2 sense, of the image I0
as a set of smooth regions represented by the function s(x) such that

s(x) =

{

s1(x) if x ∈ Ωin,

s2(x) if x ∈ Ω \ Ωin,
(2.37)

and ∂Ωin = ∂(Ω\Ωin) is the boundary between the smooth regions. As in the previous model, both

regions Ωin and Ω \Ωin are represented by the Heaviside function of a level set function. This leads

to the following energy:

FV C(φ, s1, s2) =

∫

Ω

|∇Hε(φ(x))|dx+

λ

(∫

Ω

Hε(φ)((s1 − I0)
2

+µ|∇s1|2)dx +

∫

Ω

Hε(−φ)((s2 − I0)
2

+ µ|∇s2|2)dx
)

.

(2.38)

φ being fixed and minimizing EV C w.r.t. the functions s1 and s2 using the calculus of variations

gives us the evolution equations of si and their Neumann boundary conditions:

{

s1 − I0 = µ∆s1 in Ωin,
∂s1
∂N = 0 on ∂Ωin ∪ ∂Ω,

{

s2 − I0 = µ∆s2 in Ω \ Ωin,
∂s2
∂N = 0 on ∂(Ω \ Ωin) ∪ ∂Ω.

(2.39)

The flow minimizing Energy (2.38) is as follows:

∂φ

∂t
= H ′

ε(φ)

{

∇.
( ∇φ
|∇φ|

)

−

λ
(

(s1 − I0)
2 − (s2 − I0)

2
+ µ|∇s1|2 − µ|∇s2|2

)}

(2.40)

This model segments and also denoises objects in images as we can see on Figure 2.14.

(a) Initial contour (b) Final contour (c) Image denoising

Figure 2.14: Figures (a-c) present the Vese-Chan model of active contours [179] based on the whole

Mumford-Shah functional (2.31) that segmented Rosa’s hand and denoised it simultaneously.

Chan-Vese also proposed to extend the 2-phase segmentation model to a higher number of regions to

be segmented. In [178, 179], they defined a multiphase level set formulation which, by construction,

automatically avoids the problems of vacuum and overlap. Only log n level set functions for n

phases are necessary in the piecewise constant case and only two level set functions are needed to

represent any partition based on the Four-Color Theorem [79] presented on Figure 2.15. These

multiphase segmentation models can represent boundaries with triple junctions as shown on Figure

2.15. Concerning the coupling between the level set functions, Zhao-Chan-Merriman-Osher in [191]

defined a variational level set approach to multiphase motion of junctions (of e.g. solid, liquid and

grain boundaries) where each phase is represented by a level set function φi coupling by a term of

the form
∫

Ω
(
∑

iH(φi) − 1)2dx which keeps the phases disjoint and avoids vacuum.
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(a) Four color image (b) Initial contours (c) Final contours

Figure 2.15: Figure (a) illustrates the Four Color Theorem [79]: all the regions in a partition can

be ”colored” using only four colors such that any two adjacent regions have different colors. Figures

(b-c) shows the segmentation of a triple junction based on two level set functions [178, 179].

In [157], Sandberg-Chan-Vese extended the model of active contour without edges to vector val-

ued images to segment texture images. They used a decomposition of the given image by the Gabor

transforms and they chose in a supervised or unsupervised way the best Gabor transforms to realize

the texture segmentation.

Finally, we mention that Tsai-Yezzi-Willsky [176] proposed (independently) a very similar work

of Chan-Vese to segment and regularize images from the Mumford-Shah model and the curve evo-

lution theory. The main differences between both works lie in the numerical implementations, the

extraction of holes and triple points (which is done in a multiphase level set approach in Vese-Chan

[178, 179]) and the extension of the model to missing data and magnification (which is not done in

[178, 179]), see Figure 2.16.

Figure 2.16: Segmentation and smoothing of an image given with regions of missing data with the

model of Tsai et al. [176]. Note that all figures are reproduced from [176].

Contrary to the standard snake model, based on a boundary (B) functional s.t. JB(∂Ω) =
∫

∂Ω
fB(∂Ω(s))ds where ds is the arc length/area element, all the previous region-based image seg-

mentation models are based on a region (R) functional s.t. JR(Ω) =
∫

Ω
fR(x,Ω)dx. Aubert-

Barlaud-Faugeras-Jéhan-Besson (ABFJB) studied in [12, 13, 98, 99] the links between both types of

functionals. They showed that boundary functionals are equivalent to region functionals by solving

Poisson’s or Helmotz’s equation with well-chosen boundary conditions:

Theorem 1: (Transformation of region functionals into boundary functionals) Let Ω be

a bounded open set with regular boundary ∂Ω. Let fR : Ω̄ → R be a continuous function and u be

the unique solution of Poisson’s equation:

{

−∆u = fR in Ω

u = 0 on ∂Ω.
(2.41)
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Then we have the following equality:

∫

Ω

fR(x,Ω)dx =

∫

∂Ω

∇u · Nds, (2.42)

where N is the inside pointing unit normal to ∂Ω.

Theorem 2: (Transformation of boundary functionals into region functionals) Let Ω be

a bounded open set with regular boundary ∂Ω. Let fB : Ω̄ → R be a continuous function and u be

the unique solution of Helmotz’s equation:

{

−∆u+ u = 0 in Ω
∂u
∂N = −fB on ∂Ω.

(2.43)

Then we have the following equality:

∫

∂Ω

fB(∂Ω(s))ds =

∫

Ω

u(x,Ω)dx. (2.44)

Hence, image segmentation problems can be studied either through boundary functional by changing

all region functionals into boundary functionals using Theorem 1 and applying standard methods of

the calculus of variations to derive the corresponding Euler-Lagrange equations. The dual approach

can also be used. Indeed, all boundary functionals can be transformed into region functionals using

Theorem 2 and the tools of shape derivatives developed by Delfourd-Zolesion [69] can be applied to

derive an evolution equation of the boundary of regions to be found. This general framework can

be applied to many image processing problems invoking contours or, by complementarity, regions

of the corresponding contours that minimize a functional of the form:

FABFJB(Ωin, C) =

∫

C

fB(C(s))ds+

∫

Ωin

f inR (x,Ωin)dx +

∫

Ω\Ωin

foutR (x,Ω \ Ωin)dx, (2.45)

where Ωin, Ω \ Ωin are respectively the inner and the outer region of the closed active contour C,

f inR and foutR are the descriptors of these regions and fB is the boundary descriptor.

Applications of this general paradigm for the active contours derived from functionals including

local and global measures concerning the regions to be segmented were proposed. In [12, 13], Aubert-

Barlaud-Faugeras-Jéhan-Besson applied their framework to the problem of matching histograms and

in [98, 99] the face segmentation in real video sequences. In [90, 91], Herbulot-Jéhan-Besson-Barlaud-

Aubert (HJBBA) proposed an image segmentation model based on information theory (entropy

and joint entropy) and non-parametric density probability estimations. Contrary to the model of

geodesic active regions [132] which is based on the parametric assumption that all the regions in

images follow a Gaussian density probability function (PDF), no particular hypothesis about the

PDFs of the regions to be segmented is done such that they are non-parametrically estimated during

the evolution process. One of the proposed functional is as follows:

FHJBBA(Ωin, C) = λ

∫

C

ds+ He(Ωin) + He(Ω \ Ωin), (2.46)

where
{

He(Ωζ) =
∫

Ωζ
−q(I0(x),Ωζ) ln q(I0(x),Ωζ)dx

q(I0(x),Ωζ) = 1
|Ωζ |

∫

Ωζ
Gσ(I0(x) − I0(x̂))dx̂

, Ωζ = Ωin or Ω \ Ωin, (2.47)
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where He corresponds to the entropy to the regions Ωin and Ω \Ωin and Gσ is the Gaussian kernel.

Then, they used shape derivatives tools [69] to derive the evolution equation of boundaries of the

homogeneous regions. Their model was used to segment one specific region in multi-modal images.

Indeed, they used a parametric representation of the contour based on the B-splines technique [144].

This allows to speed up the algorithm but it does not allow to segment more than one object. Figure

2.17 illustrates the segmentation model of Herbulot et al..

(a) Initial contour (b) Final contour (c) Initial contour (d) Final contour

Figure 2.17: Segmentation using information theory-based models of Herbulot et al. [90, 91].

Figures (a-b) use Equations (2.46)-(2.47). Note that all figures are reproduced from [90, 91].

Another model based on information theory, non-parametric PDF and curve evolution theory was

proposed for image segmentation by Kim-Fisher-Yezzi-Cetin-Willsky (KFYCW) in [106, 107]. They

proposed to solve the segmentation problem by maximizing the mutual information (MI) between

the image intensities I0(X) and the region labels L(X) assuming that the probability distributions

for each region is unknown and, therefore, is non-parametrically estimated during the evolution

process:

FKFY CW (C) = −MI(I0(X);L(X)) + α

∫

C

ds, (2.48)

which becomes after some computations [106]:

FKFY CW (C) = 1
|Ωin|

∫

Ωin
log
(

1
|Ωin|

∫

Ωin
Gσ(I0(x) − I0(x̂))dx̂

)

dx+

1
|Ω\Ωin|

∫

Ω\Ωin
log
(

1
|Ω\Ωin|

∫

Ω\Ωin
Gσ(I0(x) − I0(x̂))dx̂

)

dx + α
∫

C
ds,

where I0(X) is the image intensity at a random location X, L(X) is a binary label, |Ωin| is the

area of the region Ωin, Ω \ Ωin is the complementary region, C is the boundary between Ωin and

Ω \ Ωin, Gσ is Gaussian kernel coming from the non-parametric Parzen density estimate model

[140], and α is a positive arbitrary parameter. Then, they derived the curve evolution equations

that maximize the mutual information functional using the calculus of variations. Finally, they

proposed a multiphase level set formulation to segment up to 2m regions using m curves based on

the approach of Vese-Chan. Experimental results demonstrate a very good behavior of the proposed

segmentation approach as presented on Figure 2.18.

2.4.2 Shape-Based Active Contours

This section is dedicated to the identification of structures of interest which geometric shape is given.

This topic is fundamental in the fields of computer vision and image processing since it is a core

component toward e.g. automated vision systems and medical applications. We review the main

variational models of active contours that use a geometric shape prior. In Chapter 5, we will propose
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(a) Initial contour (b) Final contour (c) Initial con-

tours

(d) Final contours

Figure 2.18: Segmentation using the information theory-based model of Kim et al. [106, 107].

Figures (a-b) presents the segmentation with Equations (2.48) and (2.49) of two regions having the

same two first statistic moments, i.e. mean and variance, but different PDFs and Figures (c-d) show

a multiphase segmentation of four regions with different intensity variances. Note that all figures

are reproduced from [106, 107].

a variational model to extract structures of interest in images.

In [111, 113], Leventon-Grimson-Faugeras were the first authors to incorporate shape informa-

tion into the segmentation process based on active contours intrinsically represented by a level set

function. The shape model used by the authors is the principal components analysis (PCA) that

aims at capturing the main variations of a training set while removing redundant information. In

[51, 52], Cootes-Taylor used this technique on parametric active contours, called deformable models,

to segment different kind of objects. The new idea proposed by Leventon et al. is to apply the PCA

not on the parametric geometric contours but on the signed distance functions (SDFs) of these con-

tours which are implicit and parameter free representations. They justified this choice in two ways.

Firstly, SDFs provide a stronger tolerance than the parametric curves to slight misalignments during

the alignment process of the training data since the values of neighboring pixels are highly correlated

in a SDF. Secondly, this intrinsic contour representation improves the shape registration process in

terms of robustness, accuracy and speed. Indeed, the problem of the point-wise correspondence of

contours, landmarks correspondence, is replaced by a problem of intensity correspondence on grid

points which is easier to solve. Thus, active contours defined by Leventon et al. evolve locally based

on image gradients and curvature and globally towards the maximum a posteriori probability of

position and shape of the prior shape model. However, this a posteriori probability is maximized at

each iteration by an independent optimization process, which means that the final evolution equa-

tion is not a PDE since two independent stages are necessary to evolve the surface. The evolution

equation is the following:

φ(t+ 1) = φ(t) + λ1 (f(c+ κ)|∇φ(t)| + 〈∇φ(t),∇f〉) + λ2(φ
?(t) − φ(t)), (2.49)

where φ? is the shape prior and λ1, λ2 are positive parameters. The second term of the right-hand

side of (2.49) weighted by λ1 represents the classical term of the geodesic active contours. And the

third term depending on λ2 drives the shape of the active contour toward the shape prior given by

the MAP estimation. They used their model in 2-D and 3-D synthetic and medical imagery data as

shown on Figure 2.19.

In [111, 112], Leventon-Grimson-Faugeras-Wells presented a new method to incorporate prior

knowledge concerning the intensity and curvature profile of a structure of interest from a training

set of images and boundaries. More precisely, they defined a joint distribution between intensity

value and distance to the boundaries given a distance function thanks to the Parzen non-parametric
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Figure 2.19: Segmentation with prior shape information [113], Equation (2.49). Evolution of a

surface in 3-D and on three 2-D orthogonal slices. Note that all figures are reproduced from [113].

density estimation. They used a surface regularization term based on two statistic regularization

processes, one in the local normal direction N and one in the tangent direction T . Finally, the

segmentation process estimates the signed distance function to the boundary of the object to be

segmented by maximizing the maximum a posteriori probability:

P (φ(x)|I0(x), φN(x)) ∝ P (I0(x), φ(x))P (φT + , φT − |φ(x))P (φN+ , φN− |φ(x)), (2.50)

where φ(x) is the height of the surface (the signed distance function) at location x, I0(x) is the in-

tensity value at x, N(x) is the neighborhood of x, φT ± is the height of the surface at location x±T
and φN± is the height of the surface at location x ±N . Their model presented good segmentation

results on 2-D synthetic and magnetic resonance imagery data.

In [173, 174, 175], Tsai-Yezzi-Wells-Tempany-Tucker-Fan-Grimson-Willsky (TYWTTFGW) in-

tegrated the shape model of Leventon et al. [113] into region-based segmentation energy functionals

to identify 3-D images containing known medical object types. In the three papers, the implicit

shape prior, namely φ[vS,vT], depends on a shape vector vS for the shape variations and a pose

vector vT for the spatial transformations. For example, in [174, 175], Tsai et al. defined a functional

based on the reduced version of the Mumford-Shah functional proposed by Chan and Vese in [42]:

F 1
TYWTTFGW (vS,vT) = −(

S2
in

Ain
+
S2
out

Aout
), (2.51)

where Ain =
∫

Ωin
H(−φ[vS,vT])dx, Sin =

∫

Ωin
I0.H(−φ[vS,vT])dx are the area and the sum

intensity (I is the given image) in the region Ωin = {x ∈ R2|φ(x, y) > 0} and Aout =
∫

Ωout
H(φ[vS,vT])dx, Sout =

∫

Ωout
I0.H(φ[vS,vT])dx are the area and the sum intensity in the

region Ωout = Ω \Ωin = {x ∈ R2|φ(x, y) < 0}. Parameters vS and vT that optimize the segmenta-

tion energy functional (2.51) are given by two gradient descents.

In [175], Tsai et al. also proposed two other segmentation energies, coming from Yezzi et al. in

[187], which use the image mean and the image variance to partition an image into two homogeneous

regions. Figure 2.20 illustrates the energy based on the image variance.

Finally, they proposed in [173] to extend their segmentation model to a multiple segmentation of

shapes and to a mutual information-based functional proposed by Kim et al. in [106, 107] (see

Section 2.4.1):

F 2
TYWTTFGW (vS,vT) = −MI(I0(X);L(X)) (2.52)

∼
(
NR∑

i=1

PΩi
ĥ(I0|L = Ωi)

)

+ PΩc
ĥ(I0|L = Ωc), (2.53)
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(a) Original image (b) Image sur-

rounded by line

clutter

(c) Image (b) with

noise

(d) Initial contour (e) Final contour

Figure 2.20: Segmentation of a noisy number four using the model [175]. Note that all figures are

reproduced from [175].

where MI(I0(X);L(X)) is the mutual information between the image pixel I0 and the segmentation

label L at a random location X, NR + 1 is the number of regions handled with this segmentation

model, PΩi
denotes the prior probability of pixel values in the i-th region Ωi, PΩc

is the prior

probability of pixel values in Ωc (the area outside of the NR regions), ĥ(.|.) denotes the estimate

of the conditional entropy which is estimated using the non-parametric Parzen density estimation

method [140] to compute these densities from the training data as proposed by Kim et al. [106, 107]:

{

ĥ(I0|L = Ωi) = − 1
|Ωi|

∫

Ω
log(p̂Ωi

(I0(x)))H(−φi(x))dx

ĥ(I0|L = Ωc) = − 1
|Ωc|

∫

Ω
log(p̂Ωc

(I0))H(φi)dx
, (2.54)

where p̂Ωi
(I0) and p̂Ωc

(I0) are estimates of the probability density functions of I0 in regions Ωi and

Ωc, |Ωi| and |Ωc| are the areas of Ωi and Ωc, φi is the level set function of region Ωi and H is the

Heaviside function. Finally, the shape vector vS and the pose vector vT are determined by two

gradient descents.

In [45, 46], Chen-Thiruvenkadam-Tagare-Huang-Wilson-Geiser (CTTHWG) designed a varia-

tional model that incorporates prior shape knowledge into the geometric/geodesic active contours

which detect edges from the image gradient. Contrary to Leventon-Grimson-Faugeras-Wells’ ap-

proach [113], the shape prior of Chen et al. only uses the first geometric moment: the mean.

Indeed, the prior is given by the average shape of a training set of rigidly aligned parametric curves.

However, the variational approach of Chen et al. is mathematically justified by the proof of the

existence of a solution to the energy minimization problem. This mathematical justification is not

possible with the probabilist approach of Leventon et al.. The energy functional of et al. which is

minimized once the active contour has captured high image gradients and formed a shape close to

the prior model of the object to be segmented is as follows [45, 46]:

F 1
CTTHWG(C, µ, θ, T ) =

∫ 1

0

(

f(|∇I0(C(p))|) +
λ

2
d2
C?(µRθC(p) + T )

)

|Cp|dp, (2.55)

where C is the active contour, (µ,θ,T ) are the parameters of a rigid transformation (scale, orientation

and translation), Rθ is the rotation matrix, f is an edge detecting function, d2
C?(x) = d2(C?,x) is

the square distance of the point x from C?, the target shape and λ > 0 a parameter. They also

presented a level set formulation of the energy functional (2.55):

F 1
CTTHWG(φ, µ, θ, T ) =

∫

Ω

(

f(|∇I0(x)|) +
λ

2
d2
C?(µRθx + T )

)

δ(φ(x))|∇φ|dx, (2.56)
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Their model showed a good ability to extract real-world structures in 2-D ultrasound and fMRI

images in which the complete boundary was either missing or had low resolution and bad contrast.

In [44], they incorporated in the previous variational segmentation model prior fixed locations of a

small number of points which can be given e.g. by a medical expert. The new variational model is

as follows:

F 2
CTTHWG(φ, µ, θ, T ) =

∫

Ω

(

f(|∇I0(x)|) +
λ

2
d2
C?(µRθx + T )

)

δ(φ(x))|∇φ|dx

+
α

2

∫

Ω

gσ(x)φ2(x)dx, (2.57)

where gσ is equal to the convolution of g and Gσ, g being a function taking value 1 on the prior

points and 0 elsewhere and Gσ is the standard Gaussian kernel. The two first terms constraint the

active contour being on the location where the magnitude of image gradient is high and forming

a shape similar to the prior. Finally, the last term forces the interface passing through the given

points. Figure 2.21 illustrates the segmentation of an endocardium image without and with a set of

prior points.

(a) Minimization of

F 1

CTTHWG

(b) Minimization of

F 2

CTTHWG

Figure 2.21: Figures (a-b) presents the segmentation of an endocardium image using the models

[44, 45, 46]. Figure (a) is given by the model [45, 46], the solid contour is the expert’s contour and

the dotted contour is the contour minimizing F 1
CTTHWG, Equation (2.55). Figure (b) shows the

result provided by the model [44], solid contour is the expert’s contour and the dotted contour is

the contour minimizing F 2
CTTHWG, Equation (2.57). Energy F 2

CTTHWG is better than F 1
CTTHWG

since it uses a set of prior points given e.g. by a medical expert. Note that all figures are reproduced

from [44].

In [135, 137, 138], Paragios-Rousson-Ramesh (PRR) defined a variational framework to perform

a rigid-invariant registration of level set-based geometric shapes. Indeed, they used the level set

representation to represent shapes and to register them globally (with a rigid transformation) and

locally (thanks to a local deformation field). The optimization matching criterion is the sum of

square differences and the definition of this criterion is invariant w.r.t. translation, rotation and

scaling:

F 1
PRR(µ, θ, T, (U, V )) = α

∫

Ω

Nδ1(φD, φS)(µφD − φS(A))2dx

+(1 − α)β

∫

Ω

Nδ2(φD, φS)(µφD − φS(A− (U, V )))2dx

+(1 − α)(1 − β)

∫

Ω

Nδ2(U
2
x + U2

y + V 2
x + V 2

y )dx, (2.58)
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where (µ, θ, T ) are the parameters (scale, angle and translation) of a global rigid deformation be-

tween S, the shape source, and D, the shape target represented by two signed distance functions

φS and φD, A = µRθx + T , (U, V ) is a local deformation field (non-rigid deformation), Nδ is a

binary function such that Nδ(φ1, φ2) = 1 for min(|φ1|, |φ2|) ≥ δ and 0 otherwise. Paragios et al.

interpreted Energy (2.58) in [138]. The first term of the energy aims at finding pixel-wise intensity

correspondences according to a global motion model (rigid transformation). The second term has

the objective to correct the correspondences in the pixel level using a local deformation field on top

of the existing global model, while the third term constrains these deformations to be locally smooth.

Paragios et al. demonstrated the efficiency of their registration model on synthetic results which

exhibit large global motions as well as important local deformations, see Figure 2.23 as example.

Figure 2.22: Global-to-local registration with Equation (2.58) given in [138]. Note that all figures

are reproduced from [138].

They also considered the registration process between a shape and a shape target with local

degrees of variability. This shape model can be built from a training set of Ns aligned signed

distance functions φi representing the shape of interest. They estimated a mean (M) shape image

φM (x) and a map of local shape deformations σS(x) from a variational minimization model as

follows:

F 2
PRR(φS , σS) = α

Ns∑

i=1

∫

Ω

log[pS(φi(x))]dx,

+(1 − α)

∫

Ω

[

(
∂σS(x)

∂x

)2

+

(
∂σS(x)

∂y

)2

]dx, (2.59)

pS(φ(x)) =
1√

2πσS(x)
exp

[

− (φ(x) − φM (x))2

2σ2
S(x)

]

, (2.60)

subject to the constraint: |∇φM (x)|2 = 1 ∀x ∈ Ω. (2.61)

Figure 2.23 illustrates this statistical shape model. And in [136], they used the previous statistical

shape model to segment the left ventricle in Magnetic Resonance images with a modified version of

the geodesic active regions defined in [132].

In [153, 154], Rousson-Paragios-Deriche (RPD) integrated the active shape model of Cootes et al.

[52] into the level set framework. More precisely, they applied the principal components analysis on

the level set functions embedding the training contours of an object of interest as Leventon et al. did

in [113]. This allows them to represent variations of shapes with complex topologies such as the left

ventricle over a cardiac cycle composed by two separated objects [153] or the two brain ventricles

[154]. The functional proposed by the authors to realize the shape registration is as follows:

FRPD(φ,vS,vT) =

∫

Ω

δε(φ)

(

µφ−
(

φM (vT) +

Ns∑

i=1

vSi φVi
(vT)

))2

dx, (2.62)
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(a) Training samples (b) Aligned train-

ing shapes {φi =

0}

(c) Mean shape

function φM (x)

(d) Variance func-

tion σS(x)

Figure 2.23: Shape prior model determined by Equations (2.59)-(2.61) in [135, 138]. Note that all

figures are reproduced from [135].

where φ is the level set function embedding the evolving interface, δε(.) is an approximation of the

Dirac function, vT = (µ, θ, T ) models a rigid transformation, vS = (vS1, . . . , vSNs
) are the weight

factors of the eigenmodes of variation (V) (φV1
, . . . , φVNs

) determined by the PCA on the training

set of the object of interest and φM is an approximation of the mean (M) shape of the level set

functions embedding the training data subject to the constraint that φM is a true signed distance

function.

The energy functional (2.62) is minimized using two flows: one minimizing flow for the level set

function φ and one minimizing flow for the parameters of the global rigid transformation A. Finally,

the shape weights λ are optimally estimated by solving a linear system. The variational formulation

of the registration process allows them to combine it with variational segmentation models such

as the geodesic/geometric active contour model [35, 105] or the geodesic active region model [132]

to simultaneously realized the registration/segmentation tasks, which gives promising experimental

results in 2-D and 3-D images, see Figure 2.24.

Figure 2.24: Segmentation of lateral Brain ventricles with shape prior of a noisy MR image using

Equation (2.62) from [153, 154]. Evolution of a surface in 3-D and three 2-D orthogonal slices.

Surface cuts are in green and their projection in the shape space in red. Note that all figures are

reproduced from [154].

In [93, 94], Huang-Paragios-Metaxas (HPM) proposed a global-to-local registration method that

integrates statistical and variational techniques. They used a distance functions to implicitly repre-

sent shapes and the mutual information is considered as a global registration criterion:

F 1
HPM (A(vT)) = −MI(φS , φT (A)) = −

∫

Ω

pφS ,φT
(ζ1, ζ2) log

pφS ,φT
(ζ1, ζ2)

pφS
(ζ1)pφT

(ζ2)
dζ1dζ2 (2.63)

pφS ,φT (ζ1, ζ2) = α

∫

Ω

Gσ(ζ1 − φS(x), ζ2 − φT (A(vT;x)))dx, (2.64)
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where vT is the vector of parameters of a parametric global transformation A such as a rigid, affine,

homographic or quadratic transformation, MI(φS , φT (A)) is the mutual information between φS
and φT (A) where φS and φT are the distance representations of the shape source (S) and the shape

target (T), pφS
, pφT

and pφS ,φT
correspond to the probability density in φS , in φT (A) and the joint

density, Gσ is a 2-D Gaussian kernel and α is a normalization constant.

The local correspondences are recovered by a B-spline approximation of grid within a free-from

deformation criterion that guarantees a one-to-one mapping:

F 2
HPM (Θ) =

∫

Ω

(φT (A(x)) − φS(L(Θ;x)))2dx (2.65)

L(Θ;x) = x + δL(Θ;x) =

3∑

k=0

3∑

l=0

BkBl(P
0
i+k,j+l + δPi+k,j+l), (2.66)

where φS and φT (A) are the implicit representations of the source shape S and the transformed

target shape T , L is the local deformation field, P 0
m,n and δPm,n are the control point (m,n) on

the grid and the deformation of the control point (m,n), Θ = (δP xm,n, δP
y
m,n) is the deformation of

the control points in x and y directions and Bk is the kth basis function of a Cubic B-spline (Bl is

similarly defined).

Hence, their registration model benefits to the advantages of implicit representations, i.e. the robust-

ness w.r.t. noise, the extension to higher dimensions and the handling of complex shapes with e.g.

occlusions, missing parts and strong local variations. Figure 2.25 shows an example of registration.

(a) (b) (c) (d) (e)

Figure 2.25: Registration of structures defined in [93, 94]. Figure (a) presents the initial contours.

Figure (b) shows the global alignment using mutual information, Equations (2.63) and (2.64). Figure

(c) establishes correspondences with B-splines free-form deformations and Figure (d) is the local

registration. Finally, Figure (e) presents the grid deformation. Note that all figures are reproduced

from [94].

Their method also deals with open contours since they used a distance function to represent contours

and not a signed distance function. Finally in [93], the authors demonstrates the efficiency of their

alignment method to solve the correspondence problem in systolic left ventricle in ultrasonic images.

In [62, 66, 67], Cremers-Tischhäuser-Weickert-Schnörr (CTWS) modified the Mumford-Shah

functional and its cartoon limit to segment known object types in a variational framework. They

proposed to add a quadratic shape energy to ”convexify” the Mumford-Shah functional which has,

in general, a non-convex dependency w.r.t. the contour. The shape energy is as follows:

FCTWS(C) = − log(P (C)) + const. (2.67)

P (C) ∝ exp

(

−1

2
(C − CM )tΣ−1

⊥ (C − CM )

)

, (2.68)

where C = (x1, y1, . . . , xN , yN ) represents the contour parametrized by a vector of N control points,

P (C) is a Gaussian probability distribution defined by a mean (M) control point vector CM and a
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covariance matrix Σ estimated from a training set of the object of interest. We notice that Cremers et

al. used a parametric formulation of the contour which is numerically implemented with a quadratic

B-spline technique. This contour formulation is faster than an intrinsic formulation but it decreases

the degree of variation and does not allow changes of topology. The shape energy (2.68) is then

modified to be invariant to rigid transformation (translation, rotation and scale) and it is added to

the following modified Mumford-Shah energy:

FCTWS
MS (I, C) =

1

2

∫

Ω

(I − I0)
2dx + λ2 1

2

∫

Ω

wc(x)|∇I|2dx + νL(C), (2.69)

where I is the piecewise-smooth approximation of the given image I0, C is the contour of the

smooth regions, L(C) is the length of the contour C and wc is an indicator function such that

wc(x) = 0 if x ∈ C and 1 otherwise. The flow minimizing FCTWS
MS w.r.t. u is given by the following

inhomogeneous diffusion process:

∂I

∂t
= ∇.(wc∇I) +

1

λ2
(I0 − I), (2.70)

which gave rise to the term diffusion snake by the authors [62, 66]. Experimental results show that

the proposed model efficiently segment known 2-D objects in presence of misleading information due

to noise, occlusion and strongly cluttered background as we can see on Figure 2.26.

Figure 2.26: Contour evolution with a statistical shape prior based on the model of Cremers et

al. [62, 66]. The segmentation model can deal with occlusion. Note that all figures are reproduced

from [66].

Equation (2.68) implicitly makes the assumption that the probability density function of the

shape of interest is Gaussian which can be limited in some situations. In [58, 59, 67], Cremers-

Kohlberger-Schnörr (CKS) extended the linear shape model of [62, 66] to a nonlinear statistic

model. The nonlinear statistic shape model is computed from a training set by a new method

of density estimation which can be considered as an extension of kernel PCA to a probabilistic

framework. More precisely, Cremers et al. applied a nonlinear mapping to the training data in

order to represent them in a higher-dimensional feature space where the training data are supposed

to form a Gaussian distribution. If C1, . . . , CNs
∈ Rn is a given set of training data and ω is

a nonlinear mapping from the input space to a higher-dimensional space Y . The mean and the

covariance matrix of the mapped training data are given by

ωM =
1

Ns

Ns∑

i=1

ω(Ci), (2.71)

Σ̃ω =
1

Ns

Ns∑

i=1

(ω(Ci) − ωM )(ω(Ci) − ωM )t, (2.72)
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and the new shape energy is defined by

FCKS(C) = ω̃(C)t Σ−1
ω ω̃(C), (2.73)

=

r∑

k=1

(
Ns∑

i=1

αki k̃(Ci, C)

)2

· (λ−1
k − λ−1

⊥ ) + λ−1
⊥ · k̃(C,C), (2.74)

where ω̃(C) = ω(C)−ωM , Σω is a regularized covariance matrix obtained by replacing all zero eigen-

values of the matrix Σ̃ω by a constant λ⊥, k̃(., .) := (ω̃(.), ω̃(.)) denotes the corresponding scalar

product in Y by the Mercer kernel [53], r is the number of nonzero eigenvalues λk of the covariance

matrix Σ̃ω and αki are the expansion coefficients obtained in terms of eigenvalues and eigenvectors

of a kernel matrix given in [59]. Applications of the proposed method in segmentation and tracking

of 2-D and 3-D objects shows the ability of the nonlinear shape model to segment different complex

real-world shapes in presence of noise, clutter, occlusion and misleading information as shown on

Figure 2.27.

(a) Aligned

contours

(b) Single

Gaussian

(c) Mixture of

Gaussians

(d) Feature

space Gaussian

(e) Segmentations with prior

Figure 2.27: Figures (b-d) compares different models of density estimation. Figure (d) presents

the density estimation in the feature space and produces level lines which are not necessary ellipses

as in the case of Gaussians. Figure (e) shows three contours from a tracking sequence in the presence

of occlusion. Note that all figures are reproduced from [59].

In [63], Cremers-Soatto (CS) proposed a novel dissimilarity measure for shapes implicitly rep-

resented by the signed distance function. It has the main advantage to be symmetric compared

to previous presented measures in this Section which allows them to segment corrupted images of

known objects which consist of multiple components, see Figure 2.28. Their symmetric dissimilarity

measure, not biased toward small areas, is defined as follows:

d2
CS(φ1, φ2) =

∫

Ω

(φ1 − φ2)
2 f(φ1) + f(φ2)

2
dx, (2.75)

f(φ) =
H(φ)

∫

Ω
H(φ)dx

, (2.76)

where H(.) is the Heaviside function. Finally, the measure (2.75) is a pseudo-distance since it does

not satisfy the triangle inequality.

In [60, 61], Cremers-Osher-Soatto (COS) dealt with the problem of image segmentation with

statistical shape priors in the level set framework. They defined a shape dissimilarity measure

invariant w.r.t. translation and scaling, which avoid to compute them by gradient flows that are local

optimization methods that require appropriate time steps. Then, they proposed a new statistical

shape measure based on Parzen-Rosenblatt [140, 148] density estimation in the level set domain
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(a) Initial contour (b) Final contour

with asymmetric

measure

(c) Final contour

with symmetric

measure

Figure 2.28: Figure (c) presents the advantage of using a symmetric dissimilarity measure com-

pared to a asymmetric measure on Figure (b). The asymmetric measure is not able to propagate

the shape information outside the initial shape area. Note that all figures are reproduced from [63].

such that:

PCOS(φ) ∝ 1

Ns

Ns∑

i=1

exp

(

− 1

2σ2
d2(Hφ,Hφi)

)

, (2.77)

d2(Hφ1, Hφ2) =

∫

Ω

(H(φ1(x)) −H(φ2(x)))2dx, (2.78)

where φi=1,...,N are the N training shapes, σ is the kernel width of the Parzen-Rosenblatt method,

Hφ is the Heaviside function applied to the level set function φ and d is a symmetric difference mea-

sure. Their segmentation model is formulated in the Bayesian framework, hence the segmentation

process is seen as maximizing the conditional probability:

P (φ|I0) =
P (I0|φ)P (φ)

P (I0)
(2.79)

with respect to the level set function φ which is equivalent to minimizing the negative log-likelihood:

FCOS(φ) =
1

α
FACWE(φ) + Fshape(φ) (2.80)

with α > 0 and Fshape(φ) = − logPCOS(φ) and FACWE is the energy of Chan-Vese given by Equa-

tion (2.32). They successfully applied their segmentation method to track a walking person partially

occluded, see Figure 2.29.

In [64, 65], Cremers-Sochen-Schnörr (CSS) defined a variational approach based on the level set

representation for integrating multiple shape priors in the segmentation task. For this, they intro-

duced a labeling function which indicates where to apply which prior. This function is simultaneously

optimized with the level set function to jointly segment and partition the image domain between

the objects of interest. The energy functional proposed in [65] to encode NR different regions is:

FCSS(φ,L) =

NR−1∑

i=1

∫

Ω

(φ− φi)
2

σ2
i

χi(L)dx +

∫

Ω

λ2χNR
(L)dx + γ

NR∑

i=1

∫

Ω

|∇H(Li)|dx, (2.81)

where φ is the level set function, L(x) = (L1(x), . . . , Ln(x)),x ∈ Ω, Lj ∈ {+1,−1} is the vector-

valued labeling function such that NR = 2n, χi, i = 1, . . . , NR correspond to the indicator function

for each label region and each φi corresponds to a particular known shape with its variance given

by σi. Experimental results demonstrate the performance of their approach since it allows them to
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Figure 2.29: Segmentation given by minimizing Energy (2.80) defined in [60, 61]. The first row

represents the sample training shapes and the second row shows the segmentation of a sequence of

a walking person using a prior shape information. Note that all figures are reproduced from [61].

(a) Initial contour (b) Final contour

without prior

(c) Final contour

with prior in yellow

Figure 2.30: Evolution of the segmentation with multiple dynamic labeling given by Equations

(2.81) in [65]. Figure (c) presents the final active contours in yellow and the final labeling contours

in blue. Note that all figures are reproduced from [65].

segment multiple independent objects in an image as we can see on Figure 2.30.

Let us finally mention the paper [147] of Riklin Raviv-Kiryati-Sochen which addresses the prob-

lem of general projective transformations between a prior shape and an image to be segmented in

the level set framework.
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2.5 Variational Models and Partial Differential Equations for

Image Denoising/Enhancing

Since fifteen years, partial differential equations (PDEs) and variational models have been more and

more used to perform image restoration. As we said in Section 1.2, one of the main reasons to

use PDEs in image analysis is to work in the continuous domain to become grid-independent and

isotropic. Before that, the signal/image processing had been done with filters, i.e. in the discrete

domain. The link between both approaches is to see PDEs as the iteration of local filters with an

infinitesimal neighborhood [158]. This novel view of image analysis proposes two main advantages.

Firstly, the continuous approach is independent w.r.t. the grid. Secondly, PDEs are well-founded

mathematical domains, which allows us to generalize classical methods, classify and create PDEs

according to conditions of causality, regularity, morphological invariance, affine invariance, locality,

etc. [4].

The original idea to use PDEs in image analysis started with Gabor in 1965 [80] who noticed that

the difference between the original and the blurred image is roughly proportional to its Laplacian

[87]. If we call Gh the Gaussian blur kernel with the scale parameter h and the given image

I0 ∈ L1(Ω ⊂ R2), then

I0 ∗Gh(x) − I0(x)

h
∝ ∆I0(x), (2.82)

where ∗ stands for the convolution operator. Hence, when h gets smaller, the blur process (2.82)

looks more and more like the linear isotropic heat diffusion equation:

{
∂I
∂t = ∆I (t > 0)

I = I0 (t = 0)
(2.83)

In 1983-1984, Witkin [185] and Koenderink [109] proposed to formalize the smoothing process in

image analysis by introducing the notion of scale space which generally corresponds to the represen-

tation of images at different levels/scales of observation. In their work, the multiple representation

of images is obtained by applying the simplest diffusion flow (2.83) to the original image. In [97],

Hummel defined a scale space as an evolution equation that satisfies the maximum principle which

basically states that the maximum of the solution of a certain class of PDEs is obtained at the spa-

tial or the temporal boundaries of the PDE domain [145, 158]. This principle is useful to prove the

uniqueness of solutions and other properties. In the case of parabolic PDEs (2.83), the maximum

principle states that [184]:

inf
x∈Ω

I0 ≤ I(t) ≤ sup
x∈Ω

I0, ∀t > 0 (2.84)

In a general way, analytic solutions do not exist for all PDEs. However, there exists an analytic

solution for the image smoothing PDE (2.83):

{

I = G√
2t ∗ I0 (t > 0)

I = I0 (t = 0)
(2.85)

where Gσ is the Gaussian kernel with standard deviation σ. In other words, the Gaussian convolu-

tion (2.85) and the linear diffusion flow (2.83) are equivalent when σ =
√

2t.

Recently, Weickert-Ishikawa-Imiya in [183] discovered that the previous linear scale space was deter-

mined by Iijima in 1962 using 5 axioms: linearity, translation invariance, scale invariance, semi-group

property and positive preservation.
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In fact, the linear/Gaussian scale space has been deeply studied and widely used in image processing

not only to regularize images but also to detect edges by the zero-crossings of the Laplacian of a

Gaussian, see the work of [119].

We apply the linear heat diffusion flow (2.83) on Figure 2.31.

(a) Original Image (b) scale s1 (c) scale s2 > s1

Figure 2.31: Scale space produced by the linear isotropic diffusion equation (2.83). The noise has

been removed but the location of edges have been lost at the same time.

It is interesting to notice here that the smoothing equation (2.83) is actually a diffusion equation

based on a physical process. The analogy between physics and image processing is done as the

following way. The image intensity (grey-level, color, etc.) I is seen as a physical variable such

as temperature. The existence of a concentration gradient ∇I creates a flux according to the first

Fick/diffusion law in order to equilibrate the concentration differences in the diffusing medium Ω:

J = D · ∇I, (2.86)

where D is the diffusion tensor which characterizes the diffusing medium and which determines

the type of diffusion processes we apply on images. It is reasonable to think that the quantity of

image intensities remains unchanged in Ω, in other words, the mass conservation hypothesis is valid.

Hence, the temporal variation of I inside Ω is equal to the flux of I across the boundary of Ω:

∂

∂t

∫∫

Ω

I dx =

∫

∂Ω

J · N ds =

∫∫

Ω

∇ · J dx, (2.87)

=⇒
∫∫

Ω

(
∂I

∂t
−∇ · (D · ∇I)

)

dx = 0, (2.88)

thanks to the Navier-Stokes equation, which implies the second Fick/diffusion law:

∂I

∂t
= ∇ · (D · ∇I), (2.89)

which is the general diffusion equation in physics (up to the density function equal to 1).

In the context of diffusion equations, the smoothing flow (2.83) is obtained when the diffusion

matrix D is reduced to a scalar. Thus, the flux J is parallel to ∇I which means that the diffusion is

isotropic [184]. Despite of many advantages of the linear heat flow (2.83), this one presents two main

shortcomings: it blurs everything in images, the noise but also the edges as we can see on Figure

2.31, then it can create new extrema for signals N -D, N ≥ 2. The solution of both drawbacks is to

extend the linear isotropic diffusion equation (2.83) to nonlinear anisotropic ones.
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In this direction, Perona-Malik in [141] proposed a PDE-based model to denoise images while

keeping edges well-localized. They chose a scalar-valued diffusion matrix D = f(|∇I|2) such that

the diffusion equation is equal to:

∂I

∂t
= ∇ · (f(|∇I|2)∇I), (2.90)

where f is called the diffusivity function, e.g. f(ζ) = 1
1+ζ/λ . The diffusion process defined by

Equation (2.90) is anisotropic since the diffusion intensity depends on the direction. Indeed, if (ξ, η)

denotes the local orthogonal coordinate system, where the η-axis indicates the direction parallel to

the gradient ∇I and the ξ-axis is orthogonal to the gradient direction, then the diffusion equation

(2.90) can be re-written [15, 158]:

∂I

∂t
= f(|∇I|2)Iηη + (|∇I|f(|∇I|2))′Iξξ. (2.91)

Thus, the diffusion process (2.91) does not diffuse in the same way in the ξ-direction and the η-

direction. In general, the diffusion flow (2.90) is bad-posed but one solution consists of introducing

a slight Gaussian convolution in the diffusivity function f such that:

f(|∇Iσ|2) =
1

1 + |∇(Gσ ∗ I)|2/λ. (2.92)

The PDE-based denoising flow using (2.92) is well-posed since Catté-Coll-Lions-Morel proved in

[5, 37] the existence, the uniqueness and the stability w.r.t. the initial image of a solution. Figure

2.32 shows the scale space produced by the regularized version of the Perona-Malik model.

(a) Original Image (b) scale s1 (c) scale s2 > s1

Figure 2.32: Scale space produced by the regularized nonlinear diffusion equation (2.90) of Perona-

Malik [141]. The noise has been removed from homogeneous regions while preserving the location

of edges. However, the edges are still noised since there is no diffusion on these locations.

In the model of Perona-Malik, the edges between homogeneous regions are well preserved thanks

to the function f . However, even if homogeneous regions are efficiently denoised, noisy edges are

badly/not regularized since the diffusivity function f is null on the edges. Hence, Weickert [184]

proposed to take into account the direction of local structures instead of the edge localization in the

diffusion process. He considered the whole diffusion tensorD in Equation (2.89) which is decomposed

into eigenvectors and eigenvalues with the fundamental theorem of singular values decomposition:

D = Σ · Λ · ΣT , Σ = (v1;v2) and Λ = Diag (λ1, λ2). (2.93)

The unit eigenvectors (v1;v2) are respectively parallel and orthogonal to the gradient ∇Iσ and the

eigenvalues are, for example, equal to λ2 = 1 and λ1 = 1− exp
(

−3.31488
(|∇Iσ|/λ)8

)

if |∇Iσ| > 0 and λ1 = 1
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if |∇Iσ| = 0 [184]. The scale space produced by the diffusion equation (2.89) with D given by

(2.93) is illustrated on Figure 2.33. We can see that this diffusion denoises homogeneous regions and

also edges while keeping them well localized. Weickert also proposed a new nonlinear anisotropic

diffusion equation in [182, 184] to regularize and enhance coherent flow-like structures, see Figure

2.34.

(a) Original Image (b) scale s1 (c) scale s2 > s1

Figure 2.33: Scale space produced by the edge-enhancing diffusion equation defined by Weickert

[184] and the diffusion tensor (2.93). The noise has been removed from homogeneous regions and

edges while keeping them well localized..

(a) Original Image (b) Regularized Image (c) Original (d) Regularized

Figure 2.34: Scale space produced by the coherence-enhancing diffusion model of Weickert [182]

which applies a 1-D smoothing along flow-like structures.

The previous models were extended to higher dimensions to process e.g. color images [82, 184].

The generalization does not introduce difficulties in the theory and the new PDEs are also well posed.

Nevertheless, there are different ways to extend the models to higher dimensions and the simplest

solution to extend to vector-valued images is to diffuse each channel separately and recombine them

after the denoising process. However, the coupling between channels is a better approach since

structures can be constructed by different channels which do not appear at each channel. For

example, the m vector-valued formulation of the Perona-Malik’s model is as follows [82]:

∂Ii
∂t

= ∇ ·



f





M∑

j=1

|∇Ij,σ|2


∇Ii



 , i = 1, . . . ,M, (2.94)

where Ii is the ith component of the vector-valued image I.

Before presenting the mean curvature flow which satisfies the morphological invariance which

is equivalent to the contrast invariance, we review the link between PDEs and the mathematical
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morphology. Mathematical morphology is a well-established domain in image processing from a

theoretical and a numerical points of view [89, 121, 162]. Although all mathematical morphology

definitions and theorems are established in the continuous setting, the application of the theory is

often done in the discrete setting for binary images. The continuous/grey-scale morphology is more

difficult to implement. However, a novel way of processing continuous mathematical morphology

is to use PDEs through continuous flows which has a sub-pixel accuracy and are well posed. For

example, the PDE-based dilatation/erosion tool, which structuring element is a disk, is achieved

with the flow:

∂I

∂t
= ±|∇I|, (2.95)

which is implemented with the level set method of Osher-Sethian based on hyperbolic upwind tech-

niques, Equation (2.22).

In the following, we present the fundamental work of Alvarez-Guichard-Lions-Morel [4] who de-

fined and classified the PDEs used in image processing according to mathematical properties and

invariances [4, 158]: causality/semi-group property, regularity, linearity, locality, Euclidean invari-

ance, affine invariance and morphological invariance. They deduced that the flow which satisfies the

properties of causality, regularity, Euclidean invariance and morphological invariance is as follows:

∂I

∂t
= F

[

t,∇ ·
( ∇I
|∇I|

)]

|∇I|, (2.96)

which provides the dilatation/erosion flow when F = ±1 and the famous mean curvature flow when

F = ∇ ·
(

∇I
|∇I|

)

:

∂I

∂t
= ∇ ·

( ∇I
|∇I|

)

|∇I|, (2.97)

which is equivalent to evolve all isophotes (the level sets) of I according to the Euclidean shortening

flow ∂tC = κN . They also derived the unique flow, called affine morphological scale space and which

has more invariances than other scale spaces, which satisfies the properties of causality, regularity,

affine invariance and morphological invariance:

∂I

∂t
=

[

t∇ ·
( ∇I
|∇I|

)]1/3

|∇I|, (2.98)

which means that each level set of the image I evolves according to ∂tC = [tκ]
1/3 N which is the

affine invariant heat flow or affine shortening flow, defined by Sapiro-Tannenbaum in [159, 160],

which propagates isophotes in the inner direction to smooth them.

The previous flows and their level set version are related to the active contour model presented

in Section 2.2. Indeed, the mean curvature flow of isophotes ∂tC = κN is the minimizing gradient

flow of the Euclidean arc-length of the curve C: L(C) =
∫
|Cp|dp =

∫
ds. This flow decreases

as fast as possible the length of C. The link with the active contour model is done when the edge

detecting function f(|∇I|) weights the Euclidean arc-length of the curve C:
∫
f(|∇I(C(p))|)|Cp|dp =

∫
f(|∇I(C(s))|)ds which produces the flow ∂tC = fκN− < ∇f,N > N which level set version is

∂I

∂t
= ∇ ·

(

f(|∇I|) ∇I
|∇I|

)

|∇I|, (2.99)
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which is close to the Perona-Malik flow (2.90) and becomes the level set-based mean curvature flow

(2.97) when f is equal to 1.

We now arrive to the well-known variational and PDE-based denoising model in image processing,

the Rudin-Osher-Fatemi’s model proposed in [155]. This denoising technique removes the noise while

preserving the edges in images and without arbitrarily choosing some parameters as in (2.92). The

convex Rudin-Osher-Fatemi (ROF) energy is as follows:

FROF (I, λ) =

∫

Ω

|∇I| + λ

∫

Ω

(I − I0)
2
dx, (2.100)

where Ω ⊂ RN is an open set, I0 is a given (possibly noisy) image, λ is an arbitrary positive

parameter related to the scale of observation of the solution and
∫

Ω
|∇I| := TV (I) is the total

variation (TV) norm. The PDE minimizing Energy (2.100) is the following one:

∂I

∂t
= ∇ ·

( ∇I
|∇I|

)

+ 2λ (I − I0) , (2.101)

where ∇ ·
(

∇I
|∇I|

)

= κ is the curvature of the level sets of I. The first term of the flow is the mean

curvature flow weighted by the inverse of the norm of the gradient of I. Indeed, if I evolves according

to ∂tI = ∇ ·
(

∇I
|∇I|

)

, its isophotes evolve according to the curve flow ∂tC = κ
|∇I|N . Therefore,

homogeneous regions, for which |∇I| → 0, are smoothed according to the mean curvature flow

weighted by 1/|∇I| and the localization of edges is preserved since there is no flow when |∇I| → ∞.

Then, the second term of the flow (2.101) is a data fidelity term which λ can be computed with the

Lagrange multiplier technique to remove the estimated noise. Finally, the ROF model can also be

multi-dimensional using the generalized TV-norm proposed by Blomgran in [21]:

TVN,M (I) :=

√
√
√
√

M∑

i=1

[TV (Ii)]2, I : RN → RM . (2.102)

Figure 2.35 presents the scale space produced by a color image using the multi-dimensional TV-

norm.

Figure 2.35: Scale space produced by the multi-dimensional TV-norm (2.102).

At the stage, two observations can be made. Firstly, there is again a relation between the differ-

ent PDEs used in image denoising/restoration. For example, the TV-flow (2.101) can be obtained

by choosing g = 1
|∇I| in the Perona-Malik flow (2.90). Secondly, like in the ROF model, a data

fidelity term, such as λ(I − I0), can also be added to the Flows (2.83), (2.90), (2.94) and (2.99).
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In the previous cases, we have considered smoothing-enhancing flows. We now present a pure edge

enhancement flow called the shock filter model proposed by Osher-Rudin in [131]. This model is based

on a nonlinear hyperbolic PDE which tries to propagate the color information from homogeneous

regions toward the edges of these regions. One of the shock model proposed for 2-D images is

∂I

∂t
= −|∇I|F (L(I)), (2.103)

where F is a Lipschitz function satisfying F (0) = 0, sign(s)F (s) > 0(s 6= 0), for example

F (s) = sign(s), and L is a nonlinear elliptic operator such that zero crossings define the edges

on images such that L(I) = ∇I
|∇I| .HI .

∇I
|∇I| = 1

|∇I|2 (I2
xIxx+2IxyIxIy + I2

yIyy) where HI is the Hessian

of I, in other words L(I) is the second derivative of I in the direction of ∇I
|∇I| . We illustrate the

shock flow (2.103) on Figure 2.36 to deblur an image.

(a) Original image (b) Blurred image (c) Restored image

Figure 2.36: Blurred image restored with the shock flow (2.103).

In [166, 167], Sochen-Kimmel-Malladi proposed a new framework to consider low level processing

in vision. This novel point of view is based on the field of high energy physics where researchers look

for determining a mathematical framework, called string theory [86], to unify the four basic forces

of nature and reconcile gravity and quantum mechanics. In their work, Sochen-Kimmel-Malladi

used the approach of string theory in image processing to define images as surfaces embedded in

higher dimensional space. This new point of view has deep consequences in the processing of images

since their approach does not consider anymore images as collections of level sets which evolve with

the same dynamics. However, the authors showed the links between their approach and several

existing scale space/smoothing models, which proves the generalization of their model to many low

level vision models. They also defined a new denoising/regularization flow, called the Beltrami

flow, which can be applied indifferently on multi-valued signals such as gray-level, color and texture

images [108].

In their approach, differential geometry is an essential tool to define their energy functional.

In their work, (gray-level, color, texture, etc) images are considered as 2-D Riemannian surfaces

embedded in higher dimensional Riemannian manifolds. For example, let u1, u2 be the local coor-

dinates on the image surface, see Figure 2.37, and Xi(u1, u2), i = 1, . . . , nM be the coordinates of

the embedding space. Hence, we have defined a mapping X between a surface, namely Σ, and the

embedding manifold, called M . Figure 2.37 illustrates X : Σ →M = R3, a gray-level image viewed

as a surface embedded in R3.

Riemannian differential geometry defines the concept of intrinsic metric on manifolds, i.e. the

concept of distance. Distances on manifolds are measured using the first fundamental form of
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Figure 2.37: Surfaces Σ embedded in higher dimensional spaces M . Images can be considered as

2-D Riemannian/non-flat surfaces embedded in higher dimensional manifolds. Note that the figure

is reproduced from [167].

differential geometry [110]. For example, the squared distance between two close points on the

surface 2.37 is given by the metric:

ds2 = gµνdσ
µdσν , (2.104)

where [gµν ] is the first fundamental form, also called the metric tensor, which is a positive definite

symmetric bilinear form. In Equation (2.104), the Einstein summation convention is used since

identical indices that appear one up and one down are summed over.

Let (Σ, gµν) be the image manifold characterized by the Riemannian metric [gµν ] and (M,hij) the

embedding manifold geometrically represented by the metric tensor [hij ]. Then, Polyakov in [143]

defines for the map X : Σ →M the following weight functional:

P (X,Σ,M) =

∫

dnΣσ g1/2gµν∂µX
i∂νX

jhij(X), (2.105)

where nΣ is the dimension of Σ, nM the dimension of M , [gµν ] is the inverse metric of [gµν ], g is

the determinant of [gµν ], µ, ν = 1, ..., nΣ, i, j = 1, ..., nM and ∂µX
i = ∂Xi/∂σµ.

If the Euler-Lagrange equation of the Polyakov functional (2.105) is computed w.r.t. an embedding

coordinate Xi and multiplied by a strictly positive function and a positive definite matrix to be

re-parametrization invariant, we get the following flow:

∂Xi

∂t
= − 1

2g1/2
hil

∂P

∂Xi
= g−1/2∂µ(g

1/2gµν∂νX
i) + Γljk∂µX

j∂νX
kgµν for 1 ≤ i ≤ nM , (2.106)

where Γljk is the Levi-Civita connection coefficient. Given the Polyakov functional (2.105) and its

minimizing flow (2.106), Sochen-Kimmel-Malladi proved in [166, 167] that different choices of the

metric tensor [gµν ] in Equation (2.106) give the most well-known scale spaces: the linear scale space,

the scale space of Perona-Malik, the mean curvature scale space and the total variation scale space.

When the embedding space M is Euclidean, the flow (2.106) is reduced to:

∂Xi

∂t
= g−1/2∂µ(g

1/2gµν∂νX
i) = ∆gX

i, (2.107)

where ∆g is the Beltrami operator [110] which is a generalization of the Laplacian operator to non-

flat manifolds. They used this flow to denoise multi-dimensional signal such as texture images in a

natural way without coupling artificially the different channels [108]. Let X : (x, y) → (x, y, I(x, y))

then ∂tI = ∆gI = κNI where κ is the mean curvature of the surface Σ and NI is the unit normal

in the I-direction, see Figure 2.37. The Beltrami flow (2.107) works as follows: each point on the
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nΣ-dimensional surface moves with a velocity that depends on the mean curvature and the angle

between the I-component and the normal component to the surface. More precisely, I does not

change along edges since the I-component is orthogonal to the normal surface component and I

changes a lot for the rest of the image. Indeed, the rest of the image tends toward a minimal surface

at the most rapid rate. This is explained with the concept of harmonic maps in differential geometry

[110].

Harmonic maps are the generalization of geodesics and minimal surfaces to higher dimensional

manifolds. They are given by the Euler functional/Nambu action that describes the (hyper-)area of

a (hyper-)surface:

S =

∫

dnΣσ g1/2, (2.108)

where g1/2, the square root of the determinant of the image metric corresponds to the infinitesimal

invariant-volume. The Euler functional (2.108) can be obtained from the Polyakov functional and

the pullback procedure that consists in constructing the metric [gµν ] on Σ from the metric on M

and the map X such that:

gµν = ∂µX
i∂νX

jhij(X). (2.109)

The metric (2.109) is called the induced metric. Given the metric (2.109), we introduce it into the

Polyakov action (2.105) to get the Euler functional (2.108). Furthermore, the flow minimizing the

Euler functional is the generalized mean curvature flow [167]:

∂Xi

∂t
= g−1/2∂µ(g

1/2gµν∂νX
i) + Γljk∂µX

j∂νX
kgµν = Hi, (2.110)

where H is the generalized mean curvature vector. The Beltrami flow is illustrated on Figure 2.38

for color and texture images.

(a) Color image +

Gaussian noise

(b) Restored image (c) Texture image (d) Restored image

Figure 2.38: Denoising/Restoration of a gray-level and texture images with the Beltrami flow

defined in [108, 166, 167] by Equation (2.107). Note that all figures are reproduced from [108, 167].

Let us finish our state-of-the-art chapter with the beautiful model of image inpainting proposed

by Bertalmı́o-Sapiro-Caselles-Ballester in [17] and extended to texture images by Bertalmı́o-Vese-

Sapiro-Osher in [18]. Inpainting is an old technique that aims at modifying a given image in an

undetectable form. The previous authors proposed to carry out image inpainting with a PDE-based

approach that fills-in regions to be inpainted in such as way that isophote lines, i.e. the curves with

the same image intensity, arriving at the regions’ boundaries are completed inside [17]. We illustrate

this method on Figure 2.39.
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(a) Original Image (b) Corrupted Image (c) Inpainting at tk (d) Inpainting at tl>k

(e) Original Image (f) Corrupted Image (g) Inpainting at tk (h) Inpainting at tl>k

Figure 2.39: Image inpainting: Figures (a) and (e) present two color images that are corrupted by

noise, Figures (b) and (f), and recovered on Figures (d) and (h) with the image inpainting model

defined in [17].

2.6 Conclusion

This chapter introduced the state-of-the-art in the domain of image segmentation using variational

models and partial differential equations. We analyzed and critized the most well-known models in

order to present our contributions which will improve some existing solutions. In particular, Sections

2.1 and 2.2 emphasized the main drawback of the active contour/snake model. Many local minima

exist in the energy functional of the active contour model, which makes the initial contour critical

to get a satisfactory segmentation result. In the next chapter, we propose a new approach to handle

this issue by determining a global minimum of the snake model.
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This chapter proposes to improve the image segmentation model of

snakes defined by Kass-Witkin-Terzopoulos in [103], also called geodesic

active contours by Caselles-Kimmel-Sapiro [35] and geometric active

contours by Kichenassamy-Kumar-Olver-Tannenbaum-Yezzi [105]. As

we explained in Section 2.1, the active contour/snake model is one of

the most used segmentation models in image processing, such as in med-

ical imaging, for its theoretical and practical advantages. However, this

segmentation model suffers from the existence of local minima which

makes the initial guess critical for getting satisfactory results. We pro-

pose to solve this problem by finding global minimizers of the active

contours model. We will see that our approach links different well-known methods to overcome the

issue of local minima. We will relate the Rudin-Osher-Fatemi’s image denoising model [155], based

on the total variation norm of the given image, with the Chan-Vese’s segmentation models of active

contours [42, 179] based on the Mumford-Shah’s functional [125].

3.1 Introduction

The segmentation problem is fundamental in the computer vision and image processing fields since

it is a core component towards e.g. automated vision systems and medical applications. Its aim

is to find a partition of an image into a finite number of semantically important regions. As we

saw in Sections 2.1, 2.2, 2.4.1 and 2.4.2, various variational and partial differential equations-based

methods have been proposed to extract objects of interest in images such as the well-known ac-

tive contours/snakes model defined by Kass-Witkin-Terzopoulos (KWT) in [103]. This method has

been widely used in different image processing applications such as in medical imaging to extract

51
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anatomical structures [101, 102, 115, 188].

Following the first model of active contours of KWT, Caselles-Kimmel-Sapiro (CKS) in [35] and

Kichenassamy-Kumar-Olver-Tannenbaum-Yezzi (KKOTY) in [105] proposed the geometric (which

means invariant w.r.t. the curve parametrization) minimization problem:

min
C⊂Ω

FGAC(C) =

∫ L(C)

0

f(|∇I0(C(s))|) ds, (3.1)

where ds is the Euclidean element of length, L(C) is the length of the planar closed curve C, Ω is

the image domain, I0 ∈ L1(Ω) is a given image and f is an edge detecting function that vanishes at

object boundaries such as the one defined in Equation (2.3):

f(I0) =
1

1 + γ|∇(I0 ∗Gσ)|2
, (3.2)

where Gσ is the Gaussian function with standard deviation σ, I0 ∗Gσ is a smoothed version of the

original image I0 and γ is an arbitrary positive constant.

As said in Section 2.2, the calculus of variations provides the Euler-Lagrange equation of Func-

tional FGAC and the gradient descent method gives the flow that minimizes FGAC :

∂tC = (κf − 〈∇f,N〉)N , (3.3)

where κ is the curvature and N the normal to the curve. Osher-Sethian introduced in [129] the

implicit and intrinsic level set representation of contours to efficiently solve the contour propagation

problem and to deal with topological changes. Equation (3.3) can be written in the level set form

as follows:

∂tφ =

(

κf + 〈∇f, ∇φ
|∇φ| 〉

)

|∇φ|, (3.4)

where φ is the level set function embedding the active contour C.

The main drawback of this variational segmentation model, as many other variational models in

image processing, is the existence of local minima in the energy FGAC . Local minima are undesirable

in optimization problems since they provide unsatisfactory results. For example, the initial active

contour (embedded in a level set function) on Figure 3.1(a) can not fully segment both objects,

Figure 3.1(b), because it gets stuck in a local minimum.

The approach proposed by Chan-Esedoḡlu-Nikolova (CEN) in [41] can help us to overcome the

limitation of the standard active contours. In their paper, image segmentation and image denoising

are closely related. We remind that image denoising aims at removing noise in images while keeping

main features such as edges and textures. Two important variational models of image denoising

are the Rudin-Osher-Fatemi (ROF) model [155] and the Mumford-Shah model [125] (even if the

Mumford-Shah model is primarily a segmentation model). In [127, 180], Vese-Osher showed that

the level set method links the ROF and the Mumford-Shah models.
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(a) Initial Active Contour. (b) Final Active Contour.

Figure 3.1: Standard active contour fails to segment both objects.

The authors in [41] proposed a method to find global minimizers of two well-known denoising

and segmentation models. The first model is a binary image denoising model which removes the

geometric noise in a given shape. And the second example is the powerful model of active contours

without edges of Chan-Vese [42]. In this chapter, we propose three algorithms based on the work

of CEN in [41] to find global minimizers of the standard active contour/snake model. Our first

approach is based on the ROF model where the total variation (TV) norm of the unknown image

is replaced by the weighted TV-norm and the L2-norm for the fidelity term is changed into the

L1-norm [48]. We will show that the global minimizers of this new energy are the global minimizers

of the active contour model subject to an intensity homogeneity constraint. Then, we will reconcile

the standard active contours and the Chan-Vese’s active contours defined from the Mumford-Shah

functional in a global minimization framework.

3.2 Global Minimization of the Active Contours Model

based on the ROF Model

3.2.1 Theoretical Approach

The Rudin-Osher-Fatemi model defined in [155] is one of the most famous and powerful variational

and PDE-based image denoising models. This denoising technique removes the noise while preserving

edges in images. The minimization problem of the convex ROF energy is as follows:

min
u

FROF (u, λ) =

∫

Ω

|∇u| + λ

∫

Ω

(u− I0)
2
dx, (3.5)

where Ω ⊂ RN is an open set, I0 is a given (possibly noisy) image and λ is an arbitrary positive

parameter related to the scale of observation of the solution.

Based on [40, 41], we propose to minimize the following convex energy defined for any given

observed image I0 ∈ L1(Ω) and any positive parameter λ:

F1(u, λ) =

∫

Ω

f |∇u| + λ

∫

Ω

|u− I0|dx. (3.6)
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The difference between Energy (3.6) and the ROF model (3.5) is the introduction of the weighted

TV-norm of u with the weighting function f and the L1-norm as a fidelity measure. The L1-norm,

replacing the square L2-norm of the original ROF model, has a big impact in the minimization

process since it will allow us to find global minimizers of the snake model.

In [40], Chan-Esedoḡlu studied the differences between the standard ROF model and the ROF

model that uses the L1-norm as a fidelity measure. They showed that L1-norm better preserves the

contrast than L2-norm and the order in which the features disappear is completely determined in

terms of the geometry (such as area and length) of features and not in terms of the contrast. Figure

3.2 presents the difference between the ROF model with L1-norm as a fidelity measure and our

model, defined by energy F1, that uses the weighted TV-norm. The parameter λ for both models is

the largest value such that the four small circles in the original image (Figure 3.2(a)) are removed.

The difference between both models is clear, the result generated by the weighted TV-norm and the

L1 fidelity term better preserves the geometry of the original features such as the corners and the

largest circle.

The weighted total variation norm of the function u with the weight function f is defined as the

following way:

Definition 1: Let Ω ⊂ RN be an open set and u ∈ L1(Ω) and let f be a positive valued continuous

and bounded function in Ω. Define the weighted total variation norm of u with the weight function

f by

TVf (u) :=

∫

Ω

f |∇u| = sup
φ∈Φf

{∫

Ω

u(x)divφ(x) dx

}

, (3.7)

where

Φf := {φ ∈ C1(Ω,R) | |φ(x)| ≤ f, for all x ∈ Ω}. (3.8)

The coarea formula for the TVf -norm reads as follows (Strang [170]):

∫

Ω

f |∇u| =

∫ ∞

−∞

(
∫

γµ

fds

)

dµ, (3.9)

=

∫ ∞

−∞
Perf (Eµ := {x : u(x) > µ}) dµ, (3.10)

where γµ is the boundary of the set Eµ on which u(x) > µ. Hence, the term Perf (Eµ) =
∫

γµ
fds is

the perimeter of the set Eµ weighted by the function f .

The relation between the minimization of Energy (3.6) and the active contour/snake model [35,

105] is as follows: If 1ΩC
is the characteristic function of a set ΩC which boundary is denoted C,

then

F1(u = 1ΩC
, λ) =

∫

Ω

f |∇1ΩC
| + λ

∫

Ω

|1ΩC
− I0|dx, (3.11)

=

∫

C

fds+ λ

∫

Ω

|1ΩC
− I0|dx. (3.12)
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(a) Original image. (b) Initial ∂{x : u(x) > 0.5}.

(c) Final u (TV-L1). (d) Final ∂{x : u(x) > 0.5}

(TV-L1).

(e) Final u (weighted TV-L1). (f) Final ∂{x : u(x) > 0.5}

(weighted TV-L1).

Figure 3.2: Comparison between the ROF model with L1-norm as a fidelity measure and our

model defined by the weighted TV-norm and the L1-norm. ∂{x : u(x) > 0.5} means the boundary

of the set of points {x : u(x) > 0.5} given u ∈ [0, 1]. The difference between both models is clear.

The result generated by our model better preserves the geometry of the original features such as the

corners and the largest circle.
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Hence, minimizing Energy (3.12) is equivalent to

minimize

∫

C

fds = FGAC(C) (the active contour energy (3.1)) ,

while

approximating I0 (in the L1 sense) by a binary function of a set/region ΩC . (3.13)

We now state Theorem 1:

Theorem 1: Suppose that f(x) ∈ [0, 1] and I0(x) is the characteristic function of a bounded domain

in ΩI0 ⊂ Ω, if uλ(x) is any minimizer of F1(., λ), then for almost every µ ∈ [0, 1] we have that the

characteristic function

1ΩC(µ)={x:uλ(x)>µ} (x), (3.14)

where C is the boundary of the set ΩC , is a global minimizer of F1(., λ).

Proof. The proof of Theorem 1 is based on [40, 41, 169, 170] substituting the TV-norm by the

weighted TV-norm. It basically consists of expressing Energy (3.6) in terms of the level sets of u

and I0:

F1(u, λ) =

∫ 1

0

Perf ({x : u(x) > µ})+

λ |{x : u(x) > µ} 4 {x : I0(x) > µ}| dµ,
(3.15)

then minimizing energy (3.15) point-wise in µ by solving a geometry problem.

Suppose that f(x) ∈ [0, 1] and the original image I0 is equal to 1ΩI0
, i.e. I0 is the characteristic

function of a set ΩI0 . It can be easily seen that any minimizer u?(x) of F1 will satisfy u?(x) ∈ [0, 1]

for almost every (a.e.) x ∈ Ω. Hence, the coarea formula (3.10) becomes:

TVf (u) =

∫ 1

0

Perf ({x : u(x) > µ}) dµ, (3.16)

and Energy F1(u, λ) can be written in terms of level sets as in [40, 41]:

F1(u, λ) =

∫ 1

0

{

Perf ({x : u(x) > µ})+

λ|{x : u(x) > µ} 4 {x : f(x) > µ}
︸ ︷︷ ︸

ΩI0

|
}

dµ,

where S14S2 denotes the symmetric difference between the two sets S1 and S2 and |.| is the N -

dimensional Lebesgue measure. This suggests we consider for a.e. µ ∈ [0, 1] the minimization

problem:

min
ΩC(µ)⊂Ω

Perg(ΩC(µ)) + λ |ΩC(µ) 4 ΩI0 | , (3.17)
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which implies the following geometry problem for each level set of u(x):

min
ΩC⊂Ω

Perg(ΩC) + λ |ΩC 4 ΩI0 | . (3.18)

Standard analysis tools and the weak lower semi-continuity property of the weighted BV -norm show

the existence of minimizers for the previous minimization problem.

Let Ω?C ⊂ Ω be one of the minimizers of (3.18). Let uλ(x) be any minimizer of F1(., λ). Set

ΩC(µ) := {x : uλ(x) > µ}. (3.19)

Then,

Perf (ΩC(µ)) + λ |ΩC(µ) 4 ΩI0 |
≥ Perf (Ω

?
C) + λ |Ω?C 4 ΩI0 | for a.e. µ ∈ [0, 1].

(3.20)

This implies that

F1(uλ(x), λ) ≥ F1(1Ω?
C
(x), λ), (3.21)

which means that 1Ω?
C
(x) is also a minimizer of F1(., λ).

Furthermore, since uλ is a minimizer, the inequality of (3.21) is in fact an equality for a.e. µ ∈ [0, 1].

Thus, ΩC(µ) is a minimizer of the geometry problem (3.18) and 1ΩC(µ)(x) is a minimizer of E1(., λ)

for a.e. µ.

Since Energy functional F1 is not strictly convex, it does not possess local minima that are not

global minima. Therefore, we can look for any minimizer of Energy F1, it will be a global minimizer.

The gradient descent method is thus guaranteed to find a global minimizer of the segmentation

model. The minimization flow of Functional F1 is as follows:

ut = ∇ ·
(

f
∇u
|∇u|

)

+ λ
u− I0
|u− I0|

, (3.22)

= f ∇ ·
( ∇u
|∇u|

)

+ 〈∇f, ∇u
|∇u| 〉 + λ

u− I0
|u− I0|

, (3.23)

where the first term of the right-hand side is the curvature of the level sets of u multiplies by the

weighting function f , the second term is a shock term which enhances the edges and the third term

of the right-hand side is a data fidelity term w.r.t. the observed image I0.

3.2.2 Results

In the standard model of active contours [35, 105], the solution was given by the steady-state so-

lution of Flow (3.4). The evolution of the snake was represented by the evolution of the zero level

set of function φ. In our new approach, the active contour/snake is computed in a different way.
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We do not use a level set function but a function u which is solution of Flow (3.23). Hence, the

new way of determining the active contour looks like more a denoising process than a segmentation

process. One of the advantages of this new approach is to avoid to re-initialize regularly the level

set function as a signed distance function.

The discretization of the evolution equation (3.23) is done with the numerical scheme:

ut+∆t − ut

∆t
= f

(√

(D0
x(I0 ∗Gσ))2 + (D0

y(I0 ∗Gσ))2
)

·





D−
x




D+
x u

t

√

(D+
x ut)2 + (D+

y ut)2 + ε1





+D−
y




D+
y u

t

√

(D+
x ut)2 + (D+

y ut)2 + ε1











+ max(D0
xf, 0)

D−
x u

t

√

(D0
xu

t)2 + (D0
yu
t)2 + ε2

+ min(D0
xf, 0)

D+
x u

t

√

(D0
xu

t)2 + (D0
yu
t)2 + ε2

+ max(D0
yf, 0)

D−
y u

t

√

(D0
xu

t)2 + (D0
yu
t)2 + ε2

+ min(D0
yf, 0)

D+
y u

t

√

(D0
xu

t)2 + (D0
yu
t)2 + ε2

+ λ
ut − I0

√

(ut − I0)2 + ε3
, (3.24)

where ut is the function at time t, ∆t is the temporal step, D0 is the central spatial derivative, D+ is

the forward spatial derivative, D− is the backward spatial derivative and ε1, ε2, ε3 are small positive

constants. In all our experiments, we choose ∆t = 0.00005, ε1 = 10−12, ε2 = 10−4 and ε3 = 10−4.

Let us now come back to the first image presented on Figure 3.1. However, we choose a new

initial contour more challenging since it is the characteristic function of a small disk outside both

objects (Figure 3.3(c)). Both objects are now successfully segmented on Figure 3.3(e).

The second example is the cameraman picture, Figure 3.4(a). This example illustrates the limi-

tation of Theorem 1, which makes the hypothesis that the given image I0 is a binary function. Unlike

Figure 3.3(a) which is a noisy binary function, Figure 3.4(a) is very different from a characteristic

function. This explains the important differences between the level contours µ = 0.4, 0.5 and 0.6

(which are not global minimizers in this case) observed on Figure 3.5.

The next section will extend the global minimization of the active contour model to non-binary

images I0 with the Mumford-Shah model following [41].
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(a) Original image.

(b) Initial u. (c) Initial ∂ΩC(µ = 0.5).

(d) Final u. (e) Final ∂ΩC(µ = 0.5).

Figure 3.3: Our segmentation/denoising model has successfully extracted both objects on Figure

(e) in the noisy image, Figure (a), whereas the initial guess, Figure (c), was a small circle outside

both objects. This improves the standard active contour result obtained on Figure 3.1 where a good

initial guess is needed to get the same result.
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(a) Original image.

(b) Initial u. (c) Initial ∂ΩC(µ = 0.5).

(d) Final u. (e) Final ∂ΩC(µ = 0.5).

Figure 3.4: Figure 3.4(e) presents the result obtained by the minimization the energy F1. This ex-

ample illustrates the limitation of the Theorem 1 which makes the hypothesis that the observed image

I0 is a binary function. Since this condition is not respected here, we get different isophotes/isolevel

contours (which are not global minimizers) as we can observe on Figure 3.5.
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(a) Final ∂ΩC(µ = 0.5).

(b) Final ∂ΩC(µ = 0.4). (c) Final ∂ΩC(µ = 0.6).

Figure 3.5: Since the cameraman picture is not a binary function, different isophotes/isolevel

contours (which are not global minimizers) are obtained for µ = 0.4, 0.5 and 0.6.

3.3 Global Minimization of the Active Contour Model based

on the Mumford-Shah Model

3.3.1 The Piecewise-Constant Case

In this section we consider the global minimization of the active contour/snake model using the well-

known Mumford-Shah’s functional [125]. As we introduced in Section 2.4.1, Chan-Vese proposed in

[42] the model of active contours without edges based on the detection of homogeneous regions. The

name of their model underlines well the difference from the standard active contour model based

on the detection of object edges. We propose to reconcile these two “complementary” (or “opposite”

according to the point of view) segmentation models in a global minimization framework.

The variational segmentation model of the active contours without edges, i.e. the two-phase

piecewise constant Mumford-Shah segmentation model, is as follows:

min
ΩC ,c1,c2

FACWE(ΩC , c1, c2) = Per(ΩC)+

λ

(∫

ΩC

(c1 − I0(x))
2
dx+

∫

Ω\ΩC

(c2 − I0(x))
2
dx

)

,
(3.25)
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where I0 ∈ L1(Ω) is any given image, ΩC ⊂ Ω, c1, c2 ∈ R and Per(ΩC) is the perimeter of the

set/region ΩC , if C is the boundary of ΩC then Per(ΩC) =
∫

C
ds. The variational model (3.25)

determines the best approximation, in the L2 sense of the image I0 as a set of regions with only two

different values, c1 and c2. If ΩC is fixed, the values of c1 and c2 which minimize Energy FACWE are

the mean values inside and outside ΩC . Finally the term Per(ΩC) imposes a smoothness constraint

on the geometry of the set ΩC which separates piecewise constant regions.

The minimization problem (3.25) is non-convex since minimization is carried over functions that

take only the values c1 and c2, which is a non-convex collection. Hence, the optimization problem can

have local minima, which implies solutions with wrong scales of details. Despite of the non-convex

nature of (3.25), a natural way to determine a solution (ΩC , c1, c2) is a two-step algorithm where

c1 and c2 are firstly computed, then region ΩC is updated to decrease Energy FACWE . Chan-Vese

proposed in [42] a solution to determine an evolution equation for the region ΩC based on a level

set based approach. They represent the regions ΩC and Ω \ ΩC with the Heaviside function of a

level set function (which models a characteristic function). Hence Energy FACWE can be written

according to a level set function φ:

FACWE(φ, c1, c2) =

∫

Ω

|∇Hε(φ(x))|dx+

λ

∫

Ω

(

Hε(φ) (c1 − I0(x))
2

+ Hε(−φ) (c2 − I0(x))
2
)

dx,

(3.26)

where Hε is a regularization of the Heaviside function. The flow minimizing Energy (3.26) is then

as follows:

φt = H ′
ε(φ)

{

∇.
( ∇φ
|∇φ|

)

− λ
(

(c1 − I0(x))
2 − (c2 − I0(x))

2
)

︸ ︷︷ ︸

r1(x)

}

, (3.27)

Chan-Vese chose in [42] a non-compactly supported smooth strictly monotone approximation of the

Heaviside function. As a result, the steady state solution of the gradient flow (3.27) is the same as:

φt = ∇.
( ∇φ
|∇φ|

)

− λr1(x), (3.28)

and this equation is the gradient descent flow of the energy:

∫

Ω

|∇φ| + λ

∫

Ω

r1(x)φdx. (3.29)

As explained in [41], this energy is homogeneous of degree 1 in φ. This means that this evolution

equation does not have a stationary solution if we do not restrict the minimization to φ such as

0 ≤ φ(x) ≤ 1.

Thus, we propose to minimize the following constrained minimization problem for any given

observed image I0 ∈ L1(Ω) and any positive parameter λ:

min
0≤u≤1

F2(u, λ) =

∫

Ω

f |∇u| + λ

∫

Ω

r1(x)udx. (3.30)
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The relation between the standard active contour model [35, 105] and the model of active contours

without edges [42] is as follows: If 1ΩC
is the characteristic function of a set ΩC which boundary is

denoted C, then

F2(u = 1ΩC
, λ) =

∫

Ω

f |∇1ΩC
| + λ

∫

Ω

r1(x)1ΩC
dx, (3.31)

=

∫

C

fds+ λ

∫

Ω

((c1 − I0(x))
2 − (c2 − I0(x))

2
)1ΩC

dx. (3.32)

Hence, minimizing Energy (3.32) is equivalent to

minimize

∫

C

fds = FGAC(C) (the active contour energy (3.1)) ,

while

approximating I0 (in the L2 sense) by

two regions ΩC and Ω \ ΩC with two values c1 and c2.

We state the Theorem 2:

Theorem 2: Suppose that I0(x), f(x) ∈ [0, 1], for any given c1, c2 ∈ R, if uλ(x) is any minimizer

of F2(., λ), then for almost every µ ∈ [0, 1] we have that the characteristic function

1ΩC(µ)={x:uλ(x)>µ} (x), (3.33)

where C is the boundary of the set ΩC , is a global minimizer of F2(., λ).

Proof. The proof of Theorem 2 is based on [41] with the weighted TV-norm replacing the TV-norm.

Like Theorem 1, it basically consists of expressing Energy (3.30) in terms of the level sets of u and

I0:

F2(u, λ) =

∫ 1

0

{

Perf ({x : u(x) > µ})+

λ
(∫

{x:u(x)>µ}
(c1 − I0(x))

2
dx +

∫

Ω\{x:u(x)>µ}
(c2 − I0(x))

2
dx
)
}

dµ− β,

(3.34)

where β =
∫

Ω
(c2 − I0(x))

2
dx is independent of u. If we define the set Σ(µ) := {x : u(x) > µ} then

Equation (3.34) can be re-written as follows:
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F2(u, λ) =

∫ 1

0

{

Perf (Σ(µ)) +

λ
(∫

Σ(µ)

(c1 − I0(x))
2
dx +

∫

Ω\Σ(µ)

(c2 − I0(x))
2
dx
)
}

dµ− β, (3.35)

=

∫ 1

0

F fACWE(Σ(µ), c1, c2) dµ− β (3.36)

where

F fACWE(ΩC , c1, c2) := Perf (ΩC) + λ

(
∫

ΩC

(c1 − I0(x))
2
dx +

∫

Ω\ΩC

(c2 − I0(x))
2
dx

)

. (3.37)

It follows that if u(x) is a minimizer of the convex problem, then for a.e. µ ∈ [0, 1] the set Σ(µ) has

to be a minimizer of the Functional F fACWE(·, c1, c2).

Finally, the constrained problem (3.30) becomes an unconstrained minimization problem according

to the following theorem [41]:

Theorem 3: Let r(x) ∈ L∞(Ω). Then the following convex constrained minimization problem

min
0≤u≤1

∫

Ω

f |∇u| + λ

∫

Ω

r(x)udx (3.38)

has the same set of minimizers as the following convex and unconstrained minimization problem:

min
u

∫

Ω

f |∇u| + λ

∫

Ω

αν(u) + λr(x)udx (3.39)

where ν(ξ) := max{0, 2|ξ − 1
2 | − 1} provided that α > λ

2 ‖ r(x) ‖L∞(Ω).

Proof. The proof is in [41] with the weighted TV-norm replacing the TV-norm. We include it for

completeness. The term αν(u) that appears in the second, unconstrained minimization problem

(3.39) in the claim is an exact penalty term [92], see Figure 3.6 for a plot of its graph. Indeed, the

two energies (3.38) and (3.39) agree for {u ∈ L∞(Ω)|0 ≤ u(x) ≤ 1 ∀x}. So we only need to show

that any minimizer of the unconstrained problem automatically satisfies the constraint 0 ≤ u ≤ 1.

This is immediate: if α > λ
2 ‖ r(x) ‖L∞(Ω), then

|λr(x)|max{|u(x)|, |u(x) − 1|} < αν(u(x)) whenever u(x) ∈ [0, 1]c, (3.40)

which means that the transformation u → min{max{0, u}, 1} always decreases the energy of the

unconstrained problem (strictly if u(x) ∈ [0, 1]c on a set of positive measure). That leads to the

desired conclusion.

Energy functional F2 is not strictly convex, it does not possess local minima that are not global

minima. Thus, we can find any minimizer of Energy F2 because it will be a global minimizer.
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Figure 3.6: The function ν(.) is used for exact penalization as a method to impose the constraint

0 ≤ u ≤ 1 in the minimization (3.38). Note that the figure is reproduced from [41].

Thus, we use the Euler-Lagrange technique and the gradient descent to determine the following

minimization flow:

ut = ∇.
(

f
∇u
|∇u|

)

− λr(x) − αν′(u), (3.41)

= f ∇.
( ∇u
|∇u|

)

+ 〈∇f, ∇u
|∇u| 〉 − λr(x) − αν′(u), (3.42)

where

r(x) = (c1 − I0(x))
2 − (c2 − I0(x))

2
. (3.43)

3.3.2 Results

The discretization of the evolution equation (3.42) is done according to the numerical scheme:
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ut+∆t − ut

∆t
= f
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(D0
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)

·
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+ max(D0
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√
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xu
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yu
t)2 + ε2

+ min(D0
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x u

t

√

(D0
xu

t)2 + (D0
yu
t)2 + ε2

+ max(D0
yf, 0)

D−
y u

t

√

(D0
xu

t)2 + (D0
yu
t)2 + ε2

+ min(D0
yf, 0)

D+
y u

t

√

(D0
xu

t)2 + (D0
yu
t)2 + ε2

− λr(x) − αν′ε3(u), (3.44)

where ∆t = 0.00005, ε1 = 10−12, ε2 = 10−4 and ε3 = 10−2 for all experiments and ν ′ε3 is a

regularized version of ν ′ with νε3(ξ) such that:

νε3(ξ) =







−ξ if ξ < −ε3/
√

2,

(1 +
√

2)ξ −
√

tan2(3π/8)ξ2 − (ξ − ε3)2 if −ε3/
√

2 ≤ ξ < ε3,

0 if ε3 ≤ ξ < 1 − ε3,

(1 +
√

2)ξ −
√

tan2(3π/8)ξ2 − (ξ − 1 + ε3)2 if 1 − ε3 ≤ ξ < 1 + ε3/
√

2,

ξ − 1 if 1 + ε3/
√

2 ≤ ξ.

(3.45)

The minimization flow (3.44) is applied to the cameraman picture presented on Figure 3.7(a).

The two constants c1 and c2 are updated every 50 iterations. The final solution (Figure 3.7(e)) is

close to a binary function which gives us, according to Theorem 2, similar global minimizers as we

can see on Figure 3.8.

3.3.3 The Piecewise-Smooth Case

We extend the result of Section 3.3.1 to the two-phase piecewise smooth Mumford-Shah segmentation

model. In this situation, the variational problem to solve is given in [179] by:

min
ΩC ,s1,s2

FV C(ΩC , s1, s2) = Per(ΩC)+

λ

(∫

ΩC

(s1(x) − I0(x))
2

+ µ|∇s1(x)|2dx+

∫

Ω\ΩC

(s2(x) − I0(x))
2

+ µ|∇s2(x)|2dx
)

,
(3.46)
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(a) Original image.

(b) Initial u. (c) Initial ∂ΩC(µ = 0.5).

(d) Final u. (e) Final ∂ΩC(µ = 0.5).

Figure 3.7: Figure 3.7(e) presents the contour obtained by the global minimization of the active

contour energy subject to an intensity homogeneity constraint based on the Mumford-Shah energy

(the 2-phase piecewise constant case defined in [42]). Our global minimization approach allows us

to reconcile the standard active contours model with the model of Active Contours Without Edges.
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(a) Final ∂ΩC(µ = 0.5).

(b) Final ∂ΩC(µ = 0.4). (c) Final ∂ΩC(µ = 0.6).

Figure 3.8: Unlike Figure 3.5 where isolevel contours are different from each other since the given

image is not binary, the isolevel lines of Figure 3.7(d) are similar and correspond to global minimizers.

where I0 ∈ L1(Ω) is any given image, ΩC ⊂ Ω, s1, s2 are two C1 functions defined on ΩC and on

Ω \ ΩC respectively and Per(ΩC) is the perimeter of the set/region ΩC . The variational problem

(3.46) determines the best approximation, in the L2 sense, of the image I0 as a set of smooth regions

represented by the function s(x) such that

s(x) =

{

s1(x) if x ∈ ΩC ,

s2(x) if x ∈ Ω \ ΩC ,
(3.47)

and C = ∂ΩC = ∂(Ω \ ΩC) is the boundary between smooth regions.

As (3.25), the minimization problem (3.46) is also non-convex, which implies the existence of

local minima and possible unsatisfactory segmentation results.

As in Section 3.3.1, both regions ΩC and Ω \ ΩC are represented by the Heaviside function of a

level set function φ. This leads to the following energy:
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FV C2
(φ, s1, s2) =

∫

Ω

|∇Hε(φ(x))|dx+

λ

(∫

Ω

Hε(φ)((s1 − I0)
2

+µ|∇s1|2)dx +

∫

Ω

Hε(−φ)((s2 − I0)
2

+ µ|∇s2|2)dx
)

.

(3.48)

EV C2
is minimized with respect to functions s1 and s2 using the calculus of variations, φ being

fixed, which gives us the evolution equations of si and their Neumann boundary conditions:

{

s1 − I0 = µ∆s1 in ΩC ,
∂s1
∂N = 0 on ∂ΩC ∪ ∂Ω,

{

s2 − I0 = µ∆s2 in Ω \ ΩC ,
∂s2
∂N = 0 on ∂(Ω \ ΩC) ∪ ∂Ω.

(3.49)

And the flow minimizing Energy (3.48) is as follows:

φt = H ′
ε(φ)

{

∇.
( ∇φ
|∇φ|

)

−

λ
(

(s1 − I0)
2 − (s2 − I0)

2
+ µ|∇s1|2 − µ|∇s2|2

)

︸ ︷︷ ︸

r2(x)

}

(3.50)

If a non-compactly supported smooth approximation of the Heaviside function is chosen, the

steady state solution of the gradient flow (3.50) is the same as:

φt = ∇.
( ∇φ
|∇φ|

)

− λr2(x) (3.51)

and this equation is the gradient descent flow of the energy:

∫

Ω

|∇φ| + λ

∫

Ω

r2(x)φdx. (3.52)

As a result, the following constrained minimization problem is proposed for any given image

I0 ∈ L1(Ω) and any positive parameter λ:

min
0≤u≤1

F3(u, λ) =

∫

Ω

f |∇u| + λ

∫

Ω

r2(x)udx. (3.53)

We point out that in formulation (3.48) of the piecewise smooth functional the two functions s1
and s2 need to be defined only on their respective domains (namely ΩC and Ω \ΩC) because of the

Heaviside function. However, in the relaxed formulation given in (3.53), these functions need to be

defined in the entire domain Ω (by a suitable extension).

The relation between the standard active contour model [35, 105] and the model of active contours

based on the 2-phase Mumford-Shah functional [179] is as follows:
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F3(u = 1ΩC
, λ) =

∫

Ω

g|∇1ΩC
| + λ

∫

Ω

r2(x)1ΩC
dx, (3.54)

=

∫

C

gds+ λ

∫

Ω

(

(s1 − f)
2 − (s2 − f)

2
+ µ|∇s1|2 − µ|∇s2|2

)

1ΩC
dx. (3.55)

Hence, minimizing Energy (3.53) is equivalent to

minimize

∫

C

fds = FGAC(C) (The active contour energy (3.1)) ,

while

approximating I0 (in the L2 sense) by two piecewise smooth regions ΩC and Ω \ ΩC .

We state Theorem 4:

Theorem 4: Suppose that I0(x), f(x) ∈ [0, 1], for any given s1 ∈ C1(Ω), s2 ∈ C1(Ω), if uλ(x) is

any minimizer of F3(., λ), then for almost every µ ∈ [0, 1] we have that the characteristic function

1ΩC(µ)={x:uλ(x)>µ} (x), (3.56)

where C is the boundary of the set ΩC , is a global minimizer of F3(., λ).

Proof. The proof of Theorem 4 is similar to the proof of Theorem 2.

And finally, the constrained problem (3.53) becomes an unconstrained minimization problem

according to the Theorem 3, Section 3.3.1. A minimizer of the convex energy F3 can be found using

the following minimization flow:

ut = ∇.
(

f
∇u
|∇u|

)

− λr2(x) − αν′(u), (3.57)

with α > λ
2 ‖ r2(x) ‖L∞(Ω).

3.3.4 Results

The minimization flow (3.57) is applied on the cameraman picture, Figure 3.9(a). The two functions

s1 and s2 are initially chosen to I0 and updated every 10 iterations according to Equation (3.49).

The final solution (Figure 3.9(e)) is close to a binary function which gives us, according to Theorem

4, similar global minimizers.

We also propose to segment Figure 3.10(a) and simultaneously denoise it (Figure 3.10(b)). Fi-

nally we apply our segmentation/denoising model to the galaxy picture on Figure 3.11(a).
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(a) Original image. (b) Piecewise-smooth approxi-

mation.

(c) Initial u. (d) Initial ∂ΩC(µ = 0.5).

(e) Final u. (f) Final ∂ΩC(µ = 0.5).

Figure 3.9: Figure 3.9(f) presents the contour obtained by the global minimization of the active

contour energy subject to an intensity homogeneity constraint based on the Mumford-Shah energy

(the 2-phase piecewise smooth case defined in [179]). Our global minimization approach allows us

to reconcile the standard active contours model with the model of active contours based on the

Mumford-Shah approach. Finally, Figure 3.9(b) shows the best piecewise smooth approximation of

the original image (Figure 3.9(a))
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(a) Original image. (b) Piecewise-smooth approxi-

mation.

(c) Initial u. (d) Initial ∂ΩC(µ = 0.5).

(e) Final u. (f) Final ∂ΩC(µ = 0.5).

Figure 3.10: Figure 3.10(f) presents the contour obtained by the global minimization of the active

contour energy subject to an intensity homogeneity constraint. Figure 3.10(b) shows the denoised

image obtained with the minimization problem (3.53).
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(a) Original image. (b) Piecewise-smooth approximation.

(c) Initial u. (d) Initial ∂ΩC(µ = 0.5).

(e) Final u. (f) Final ∂ΩC(µ = 0.5).

Figure 3.11: Figure 3.11(f) presents the contour obtained by the global minimization of the ac-

tive contour energy subject to an intensity homogeneity constraint. Figure 3.11(b) shows the best

piecewise smooth approximation of the original image (Figure 3.11(a)).



74 Chapter 3. Global Minimizers of The Active Contour/Snake Model

3.4 Conclusion

Based on [25], this chapter proposed three algorithms to find global minimizers of the active con-

tour/snake variational model following the approach of Chan, Esedoḡlu and Nikolova [40, 41]. The

first algorithm, defined from the ROF model [155], determines global minimizers of the snake model

for any observed image close to a binary function. The two other algorithms, based on the Chan-

Vese’s version [42, 179] of the Mumford-Shah’s model, find global minimizers (when parameters c1, c2
or functions s1, s2 are fixed) for any type of images, binary or non-binary.

It will not be surprising to see new applications of the approach introduced in [40, 41] to other

image processing models to get global minima. The key idea is to express the energy functionals in

terms of level sets as observed by Strang [169, 170].

In this work, we determined not one but several global minimizers of the active contour model,

which looks to be a drawback. However, all global solutions are reasonable solutions and most of

them are close to each other.

From a numerical point of view, the three algorithms are slow even if the standard re-initialization

process of the level set function is not used in this approach. The non-linear nature of our PDEs

requires to use a very small temporal step to guarantee a consistent evolution process. However,

fast numerical schemes can be used to speed up the algorithms such as the second-order cone pro-

gramming algorithm [3].

Let us mention the paper [50] of Cohen and Kimmel which also addresses the problem of deter-

mining a global minimum for the active contour model’s energy. However, their approach is different

from ours since it is focused on finding a minimal path between two given end points of an open

curve. They have extended their method to closed curves but a topology-based saddle search routine

is needed.

We also cite the paper [11] of Appleton and Talbot who proposed to determine a global minimum

for the geodesic active contour model under the restriction that the contour contains a specified in-

ternal point. Authors introduced theorems and efficient graph-based algorithms to find a global

minimum. However, unlike to our approach, their method needs a specified internal point, which

means that no disconnected object can be extracted. For example, the two objects presented on

Figure 3.3 can not be segmented with only one internal point. Their model needs to detect two

internal points, which is not our case. Furthermore, the extension of their model to higher-dimension

images is not straightforward whereas the extension is natural in our approach.

This chapter presented new image segmentation models based on the detection of object edges

and homogeneous regions. The combination of boundary-based and region-based information to

detect semantic objects in images is important to get good results. However, the proposed segmen-

tation models use only the mean of intensities, i.e. the first statistical moments, which is limited

with more complex semantic structures such as texture objects. Thus, we will introduce in the next

chapter a new image segmentation model which will use probability density functions in the context

of information theory and variational approaches.
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This chapter introduces a new image segmentation model, called ana-

conda∗, that uses at the same time determinist and statistic concepts.

We think that the active contours model, which is basically a deter-

minist model developed from mechanics, can benefit from the powerful

framework of information theory, which uses probabilities and statis-

tics to efficiently carry out the image segmentation task. Thus, the

goal of this chapter is to define an error probability of classification in

the statistic context of information theory and to minimize it with the

determinist shape gradient method. Then, a PDE, derived from the

error probability functional, will partition any given image into sever-

al regions which probability densities are the most disjoint as possible.

Thus, we will see that our image segmentation model is able to find regions in images differing

just by statistic moments higher than mean and variance. Moreover, we will prove that our model

improves some existing models using mutual information as segmentation criterion because mutual

information is basically a lower bound of error probability. In our approach, we will directly work

with the error probability of classification.

4.1 Introduction

In 1948, Shannon wrote two papers [165] concerning a mathematical theory of communication which

has become the theory of communication called information theory. Information theory is the do-

main of mathematics which quantifies the concept of information and defines a rigorous way to

∗Funny name from fun conversations, thanks Oli and Rosa!
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determine how much information can be sent through a communication channel given a specific

transmission rate. The core of Shannon’s theory is the entropy measure that rigorously determines

the information contained in a ”message” which can be an image. The number of applications of

information theory is huge in the world of communication technology. They range from coding the-

ory, cryptography, economy, estimation theory to data compression, signal processing and recently

to quantum mechanics. In what follows, we will be obviously interested to apply information theory

to signal/image processing. More precisely, we will use powerful information theoretic concepts such

as stochastic processes, Markov chains, probability density estimation and error probability to carry

out the image classification problem.

We remind that the image classification task aims at splitting a data set into an arbitrary num-

ber of classes while conserving as much of the data structure as possible (see Figure 4.1). This

condition is closely related to information theory, and more precisely to data compression, where

the compression algorithm should also conserve as much information of the initial data as possible

while reaching a specific compression ratio [31, 32]. In the case of image classification, the analogue

of the compression ratio is the chosen number of classes.

(a) Original Image (b) Classified Image

Figure 4.1: Figure (b) presents the classification of Figure (a) with 5 classes. Note that the figures

are reproduced from [31].

In [31, 32, 33], Butz-Thiran proposed a general mathematical framework, based on information

theory, to tackle a large class of signal processing problems including non-supervised image classifi-

cation, multi-modal medical image registration and audio-video joint processing. Their information

theoretical framework is based on stochastic processes for information transmission and the error

probabilities associated to these transmissions. The stochastic process models the signal processing

task and the error probability of the stochastic process drives the algorithm toward the solution of

the given image processing problem. We will describe their framework in the next section and we

will use it to determine an information theoretic model of image classification in Section 4.3. The

proposed classification model is basically a statistical model which admits several likely/possible so-

lutions. We propose to pick one solution with a determinist method based on a variational approach

and a partial differential equation (Section 4.4). This will allow us to combine probabilistic and de-

terministic approaches in a single framework and to exploit the advantages of each approach, since

statistical models usually offer a large number of possible solutions whereas deterministic methods

choose the best one with respect to (w.r.t.) geometric constraints.
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4.2 A General Framework for Information Theoretic Signal

Processing

Butz-Thiran proposed in [31, 33] a general framework for information theoretic signal and image

processing. Their approach uses several information theoretic concepts to build different image pro-

cessing algorithms. As commonly done in information theory, they use a stochastic process to model

the consecutive steps of any given signal processing algorithm. A stochastic process is an indexed

sequence of random variables (RV) {Xi}i∈[1,..,N ] with in general arbitrary mutual dependencies [54]:

X1 → X2 → ...→ XN , (4.1)

The stochastic process (4.1) is entirely determined by the N sets of possible outcomes {ΩXi
}i∈[1,..,N ]

of the random variables {Xi} and by the joint probability distribution P (X1, X2, .., XN ). The RV

{Xi} represent the consecutive steps of the signal processing task. Let us take the example proposed

in [31] to give a stochastic process associated to an image processing algorithm. The image processing

algorithm consists of quantizing the edges of a given image, see Figure 4.2. This task can be modeled

with the following stochastic process:

I → E → Q, (4.2)

where I is the intensity RV, E is the edgeness RV and Q is the quantization RV. Computing the

joint probability distribution P (I, E,Q) implies to transform deterministic signals/images into their

corresponding probabilistic representations, i.e. probability and joint probability densities, which can

be estimated with the theory of probability density estimation [140, 148]. Figure 4.2 illustrates the

signal/image space, the probability space and the probability density estimation which transforms

spatial information into probabilistic information. The probabilistic “transformation” allows us to

work in a probabilistic framework in order to use information theoretic concepts such as entropy,

mutual information, maximum posterior estimation, etc.

After the transformation of signal/image processing tasks into a probability framework by prob-

ability density estimation, we now introduce the general information theoretic approach defined by

Butz-Thiran in [31, 33] to define and solve any given signal/image processing problem. Firstly,

the specific stochastic process which will form the information theoretic basis for any given image

processing algorithm, including classification, is as follows:

X → Y1 → Y2 → ...→ YN → Xest → E, (4.3)

where the RV X represent with the unknown variables of the signal/image processing problem such

as the class labels in classification, Xest is considered to be an estimate of the initial/input RV X,

and both X and Xest are defined on the set of possible outcomes ΩX . The N RVs {Yi}i∈[1,..,N ]

represent the consecutive observations of X, they are defined on the sets of possible outcomes {ΩYi
}

and finally E is an error measure to the stochastic process X → Y1 → Y2 → ... → YN → Xest. E

measures the accuracy of the estimation of X by Xest, and it is defined on ΩE = {0, 1}, which is 1

whenever the estimate Xest of X is considered an error and 0 otherwise.

The expectation of the RV E, namely µE = 〈E〉, is a probabilistic measure of how well the output

of the stochastic process, modeled by Xest, estimates the initial input, X. This expectation is an
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Figure 4.2: From image space to probability space: probability and joint probability density

estimation are the basic tools used to transform signal processing algorithms from signal/image

space to probability space. Thereafter information theoretic concepts can be applied to the resulting

stochastic process. Note that the figure is reproduced from [31].

important quantity in information theory and is called the error probability, Pe, of the stochastic

process. It is defined (in a discrete setting) by:

Pe = µE =
∑

x∈ΩX

∑

y1∈ΩY1

...
∑

yN∈ΩYN

∑

xest∈ΩX

P (xest, yN , .., y1, x)·

P (E = 1|xest, yN , yN−1, .., y1, x).

(4.4)

All the transitions of the stochastic process (4.3) have, in general, arbitrary dependencies with

all the other states in the process. In practice, this is too general, which makes it useful to consider

the stochastic process (4.3) as a Markov chain. A stochastic process is a kth order Markov chain,

or equivalently satisfies the kth order Markov condition, if the stochastic process is determined

by transition probabilities that depend on the k previous states instead of the joint probability

distribution, which means that

p(xj |{xi}i∈[1,..,N ]) = p(xj |xj−1, xj−2, ..., xj−k). (4.5)

Butz-Thiran in [31, 33] proposed to consider that all the transitions of (4.3) fulfill the 1st order

Markov condition, i.e. P (yj |yj−1, yj−2, . . . , y1, x) = P (yj |yj−1), except for the last transition to the

error probability E. The final transition depends on the initial input to the stochastic process, X,
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and on its final output Xest, i.e. P (E = 1|xest, yN , .., y1, x) = P (E = 1|xest, x). Thus, the error

probability (4.4) can be re-written as follows:

Pe = µE =
∑

x∈ΩX

∑

y1∈ΩY1

...
∑

yN∈ΩYN

∑

xest∈ΩX

P (x) · P (y1|x) · ...

· P (yN |yN−1) · P (xest|yN ) · P (E = 1|xest, x).
(4.6)

All the probability transitions of the stochastic process/Markov chain (4.3), except for the last

one, model specific signal/image processing tasks such as transformations, segmentations, feature

extractions, etc. Butz-Thiran call this the signal processing block of the process (Figure 4.3). Then,

the expectation of the final random variable E, the error probability Pe, models an objective function

that should be minimized w.r.t. the preceding processing block. This builds a general framework

(Figure 4.3) for information theoretic signal processing which can incorporate a wide range of distinct

algorithms, including image registration, segmentation, feature selection and image classification.

Figure 4.3: General framework for information theoretic signal processing: The signal processing

tasks and the corresponding error probability estimation form a general approach to information

theoretic signal processing. The error probability is the optimization objective to be minimized w.r.t.

the signal processing tasks, such as classification or registration. Note that the figure is reproduced

from [31].

In the next section, we will define an image classification algorithm built from this informa-

tion theoretic framework. In other words, we will derive an expression for the error probability Pe
specifically for the image classification task. We will later show that several existing information

theoretic classification algorithms based on the active contours model are included in the proposed

classification model.

4.3 Image Classification based on Information Theory

This section presents the non-parametric and non-supervised image classification model proposed in

[31, 32]. It is derived from the previous information theoretic framework which defines an error prob-

ability of classification as an objective functional to be minimized. The proposed model introduces a

new framework for hidden Markov models [31, 32, 190] which usually carries out image classification

with a finite mixture model of Gaussian densities, one Gaussian per class. In [31, 32], authors made
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no parametric assumption (such as Gaussian assumption) for the transition probabilities from the

hidden states to the observable states. We will also make no parametric assumption in order to

classify/segment images having semantic regions with no Gaussian probability density. Finally, this

section will introduce the model of Markov random fields [190] which is basically used to model

the statistical dependencies between neighboring samples in a given data set such as dependencies

between pixels in a given image. Markov random field models will be used to regularize the image

of class labels.

4.3.1 Non-Parametric Information Theoretic Image Classification

Let us consider a 2-D image, I0 ∈ L1(Ω), defined on a bounded open set Ω ⊂ R2. The classification

task aims at determining nc classes which correspond to nc regions in the 2-D image. Let us call

Ω1, . . . ,Ωnc
these nc regions which must satisfy the equations

nc⋃

i=1

Ωi = Ω and Ωi
⋂

i6=j
Ωj = ∅, (4.7)

as shown on Figure 4.4.

Ω1

Ωnc

Ωi

Figure 4.4: Partition of the image domain Ω into nc regions.

Let us denote Uc a continuous random field, defined on the image domain Ω, which corresponds

to the field of the class labels. The random field Uc at point x ∈ Ω defines a discrete random variable,

C = Uc(x), which models a class label. The set of possible outcomes of the random variable C is

Sc = {1, . . . , nc}.

Let us now denote UY a continuous random field, defined on Ω, which models the image features

such as the gray level value I0, the color intensity, the diffusion tensor in magnetic resonance images

and so on. The random field UY at point x ∈ Ω defines a continuous random variable, Y = UY (x),

which can be multi-dimensional. If we call nY the dimension of Y , the set of possible outcomes

of Y is denoted SY = RnY . Finally, we introduce the class label γ which is associated to the

feature subspace SγY = {y ∈ SY |@x ∈ Ω with UY (x) = y}. Thus, the set of class labels becomes

Sc ∪ γ = {1, . . . , nc, γ}.
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According to the information theoretic approach developed in Section 4.2, we consider the fol-

lowing stochastic process to carry out the classification task:

C → Y → Cest → E, (4.8)

where Cest is a discrete RV, different from the RV C of class labels, also over Sc, which models an

estimation of the initial/input RV C from the image features Y . E is an error ER being 1 when-

ever the estimated class label Cest is considered a wrong estimate of the initial class label C and 0

otherwise.

As we said in Section 4.2, all the transitions of the stochastic process (4.8) except for the last

one are 1st order Markov transitions. The final transition depends only on the initial input to the

process C and on its final output Cest. Therefore the whole stochastic process is defined by the

following probability densities:

P (C = c),

P (Y = y|C = c),

P (Cest = cest|Y = y, C = c) = P (Cest = cest|Y = y),

P (E = 1|C = c, Y = y, Cest = cest) = P (E = 1|C = c, Cest = cest). (4.9)

The expectation of the error random variable E is a probabilistic measure which indicates how well

the output of the stochastic process defined in (4.8), modeled by Cest, estimates the input C. Let us

denote the error probabilistic measure by Pe(Uc = uc) where uc is a possible outcome of the random

field of the class labels. If we define the class regions as Ωk = {x ∈ Ω|uc(x) = k} then

uc(Ω1, . . . ,Ωnc
) =

nc∑

k=1

k · χΩk
, (4.10)

where χΩk
is the characteristic function of the set Ωk which value is 1 whenever x ∈ Ωk and

0 otherwise. Thus, the expectation of E, µE = 〈E〉, defines the following error probability of

classification:

µE =Pe(uc(Ω1, . . . ,Ωnc
)) =

∑

cest∈Sc∪γ

∫

SY

∑

c∈Sc∪γ
P (E = 1|c, cest) · P (cest|y) · P (y|c) · P (c) dy.

(4.11)

Since no particular assumption is made about the transition probabilities in Equation (4.9),

they are estimated non-parametrically for any given configuration of the class regions {Ω1, . . . ,Ωnc
}.

Using Gaussian kernel density estimation [140, 148], also called Parzen window density estimation,

we obtain the following transition probability densities:

P (y|c) =
1

|Ωc|

∫

Ωc

Gσ(y − y(x)) dx (4.12)

and

P (cest|y) =

{

η ·
∫

Ωcest

Gσ(y−y(x))
Hcest (y(x)) dx if cest 6= γ,

∫

Sγ
Y
Gσ(y − y2)dy2 if cest = γ,

(4.13)
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where Gb(x− a) denotes a Gaussian kernel with expectation a and standard variation b, |Ωk| is the

area of the class region Ωk, Hcest(y(x)) =
∫

Ωcest
δ(y(x)− y(x̂))dx̂ is the histogram function where δ

is the Dirac function and η is a normalization constant. Equation (4.13) justifies the introduction

of the class label γ, which simply ensures that the tails of the Gaussian kernels are included in the

probability estimations, i.e. that
∑

c∈Sc∪γ P (c|y) = 1, ∀y ∈ SY . In addition to this, the probability

P (c) is chosen to be:

P (c) =
|Ωc|
nc

. (4.14)

Using the transitions of Equations (4.12) and (4.13), the error probability Pe(uc(Ω1, . . . ,Ωnc
))

can be re-written for any configuration of the class regions {Ω1, . . . ,Ωnc
} as follows (see [31] for the

whole development):

Pe(uc) =
∑

c∈Sc

∑

cest∈Sc

P (E = 1|c, cest) · P (c, cest) + P (γ), (4.15)

where

P (c, cest) =
η

nc

∫

Ωc

∫

Ωcest

G√
2σ(y1(x) − y2(x̂))

Hcest(y2(x̂))
dxdx̂ (4.16)

is the probability that a point x ∈ Ω with input class label c is transmitted to an output class label

cest and where

P (γ) =
1

nc

∫

SY

∫

Sγ
Y

G√
2σ(y1 − y2) dy1dy2 (4.17)

is the probability that any point x gets transmitted into SγY . It is important to note that P (γ) is

independent of the specific class regions {Ω1, . . . ,Ωnc
} and stays constant during the classification

algorithm. Therefore, we omit this term in our classification algorithm.

The probabilities defined in Equation (4.16) can be compactly written in a matrix of size nc×nc,
noted Γ:

Γc,cest = P (c, cest), ∀(c, cest) ∈ Sc × Sc, (4.18)

where Γ is called the transmission matrix or confusion matrix of information theoretic classification

since it represents a theoretical, non-parametrically determined probabilistic transmission matrix.

Its trace, Tr(Γ), gives the probability that the output cest from the stochastic process of Equation

(4.8) equals its input c. The sum of the off-diagonal elements plus P (γ) gives the probability that

the output region is a different class label than the input.

In [31, 33], authors showed that the probability of the final transition in (4.8), P (E = 1|c, cest)
can be identified as a discrete distortion measure. Distortion is an important quantity in information

theory. It accounts for the fact that not all errors in information transmission are of equal impor-

tance. For example in image compression, a large error in the pixel values is much more significant

than a small one. In our case, we can associate similar properties to the factor P (E = 1|c, cest).
In analogy to the transmission probability of Equation (4.16), we can re-write P (E = 1|c, cest) as a
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matrix of size nc × nc, noted Λ:

Λc,cest = P (E = 1|c, cest), ∀(c, cest) ∈ Sc × Sc. (4.19)

Because of the close analogy to information theoretic distortion, we call Λ the distortion matrix

of information theoretic classification. In the most general form, Λ has only to fulfill the condition

that 0 ≤ Λi,j ≤ 1,∀(i, j) ∈ S2
c . In practice though, a suitable choice allows for the penalization of

more important classification errors and for the favoring of less significant ones. For example, it

might be worse to misclassify elements of relatively small classes, while the misclassification of one

single element of a large class is less significant.

Furthermore we normally consider that we do not commit an error when the output cest equals

the input to the stochastic process c. Therefore the diagonal elements of Λ are generally null:

Λi,i = 0,∀i ∈ [1, .., nc].

An interesting property about the distortion matrix is the possibility to incorporate some prior

information about the expected class sizes in the classification task. Indeed, it is possible to bias the

algorithm slightly towards the expected class sizes for poorly separated clusters by choosing a well

adapted distortion matrix. A general form of such a biased distortion can be as follows:

Λc,cest = (1 − δc,cest)
∑

k∈Sc

(
αk
|Ωk|

)l

, l ∈ R+
? . (4.20)

The unique minimum of the distortion (4.20) lies at (|Ω1| = α1, |Ω2| = α2, .., |Ωnc
| = αnc

). Therefore

an appropriate choice of {αk} incorporates some prior information, while the power l indicates the

confidence about this prior information. In Figure 4.5, we show the behavior of the distortion (4.20)

with respect to the choice of {αk} and the parameter l for the case of nc = 2 classes. If we use

αi = 1, ∀i ∈ [1, . . . , nc] in the distortion (4.20), we see that the minimum lies where the class sizes

for all classes are equal. If the class sizes are very different, the algorithm can converge toward a

bad optimum.

Finally, the matrix definitions of the transmission probabilities Γ and of the distortion matrix Λ

result in a compact notation for the error probability Pe(uc):

Pe(uc(Ω1, . . . ,Ωnc
)) =

nc∑

i,j=1

Λij · Γij , (4.21)

and the classification objective of finding the most representative configuration of the class regions

{Ω1, . . . ,Ωnc
} w.r.t. the error probability Pe(uc) can be written compactly by

Ω?1, . . . ,Ω
?
nc

= min
(Ω1,...,Ωnc )∈SΩ

Pe(Ω1, . . . ,Ωnc
), (4.22)

where SΩ is the set of all possible configurations of the class regions {Ω1, . . . ,Ωnc
}. Thus, solving

the minimization problem (4.22) will carry out the classification of any given image into nc classes.

However the previous classification model does not use any prior spatial information regarding the

configuration of the class regions. This could give unsatisfactory classification results because some

outliers could appear in class regions. We avoid this problem by introducing a Markov random field

in the classification model to regularize the image of class labels.
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(a) α1 = α2 (b) α1 6= α2

Figure 4.5: Figure (a) presents the distortion measure (4.20) without prior information, i.e. αi = 1,

∀i ∈ [1, nc = 2]. The plots show clearly a consistent minimum for l = 0.5, 1, 2. Figure (b) presents the

distortion measure (4.20) with prior information. The minimum of the distortion measure changes

according to the values of αi, ∀i ∈ [1, nc = 2], l being fixed. Thus, parameters αi can incorporate

some prior information about the expected class sizes of Ωi, ∀i ∈ [1, nc = 2]. Note that the figure is

reproduced from [31].

4.3.2 Image Classification With Markov Random Fields

Markov random fields (MRF) are a well-known model used in signal/image processing algorithms to

regularize the solution by introducing statistical dependencies between neighboring data in a given

set. Following the model proposed by Butz-Thiran in [31, 32, 33], MRF are used to regularize the

image of classification given by the minimization of the error probability defined in Equation (4.21).

Markov Random Fields

Let us consider a given image uc defined on the domain Ω. This image can be modeled by a

continuous random field Uc which u is a possible outcome of Uc. We denote P (UC = uc) the prior

probability density function for the image uc. A random field is a Markov random field if it satisfies

the two following conditions:

P (uc(x)) > 0, ∀x ∈ Ω, (4.23)

P (uc(x) | uc(x′ 6= x)) = P (uc(x) | uc(x′ ∈ Nx)), ∀x ∈ Ω, (4.24)

where Nx is a neighborhood of the point x. The first condition (4.23) is technical and it implies that

all possible outcomes are possible. The second condition (4.24) is very important since it means

that the neighborhood of x is sufficient to entirely define the probability of the site x. This is the

reason for which MRF are famous in image processing since this technique fits well to model images

which intensity at a given point mainly depends on the intensities in its neighborhood and not in the

whole image.

The direct application of MRF to image processing is impossible since the transition probability

(4.24) is very high dimensional. Fortunately, the Hammersly-Clifford’s theorem [19, 81] proposes a
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concrete way to use MRF. This theorem proves that a random field Uc is a MRF w.r.t. a system of

neighborhoods N if and only if P (uc) has a Gibbs distribution w.r.t. N , that is

PMRF (uc) =
1

Z
exp

(

− 1

T
E(uc)

)

, (4.25)

where E, called the energy/Gibbs function, is equal to

E(uc) =
∑

cl∈Cl

Vcl
(uc). (4.26)

Z is the normalization constant of the PDF which is called the partition function, T is a constant

which controls the strength of the spatial dependencies (known as the temperature in the terminol-

ogy of physical systems), Cl denotes the set of cliques, which are pixels connected according to the

definition of the neighborhood N and Vcl
is a local potential function defined on cliques. In the case

of image restoration, the absolute difference between intensities of two neighbor pixels is often used

to regularize the image. In this situation, the cliques are defined as adjacent pairs of horizontal and

vertical pixels.

A Specific Gibbs Function: The Total Variation Functional

The following idea is based on the paper written by Hamza-Krim in [88]. Let us consider an image

uc defined on the domain Ω. The Gibbs function with distribution defined in Equation (4.25), has

to be chosen to regularize the image while preserving important features such as the boundaries of

objects. Since the original work proposed by Perona-Malik in [141], several variational models have

been defined to carry out the regularization while keeping important features. The main drawback

of these variational integrals is the arbitrary determination of model parameters. Fortunately, the

total variation (TV) functional is a model with powerful properties of regularization which does not

need any choice of special parameters. The TV model was introduced in image processing by Rudin-

Osher-Fatemi in [155] for image restoration. We remind that the total variation of a image/function

uc is defined by:

E(uc) = TV (uc) =

∫

Ω

|∇u|dx. (4.27)

Information Theoretic Classification Combined with MRF

We defined in Section 4.3.1 an error probability of classification for any outcome of the class field

uc or equivalently the class regions {Ω1, . . . ,Ωnc
}. However, the class label at a given position x

strongly depends on the classes in the neighborhood of x. Thus, it is natural to introduce a MRF to

model the spatial correlations between class labels. The random field Uc is from now on considered

as a MRF, which means that the probability of a class label at a position x conditionally depends

on the classes in the neighborhood of x. Besides, the distribution of a particular outcome uc is

provided by a Gibbs distribution.
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Now let us introduce the MRF model in the non-parametric information theoretic image clas-

sification model developed in Section 4.3.1. The spatial dependency of classes is introduced in the

classification process via the following classification error probability

PC(uc(Ω1, . . . ,Ωnc
)) = Pe(uc) · PMRF (uc), (4.28)

where Pe(uc) is given by Equation (4.21) and PMRF (uc) is the Gibbs distribution defined in Equa-

tion (4.25).

The final classification objective consist of finding the most representative configuration of the

class regions {Ω1, . . . ,Ωnc
} which minimizes the error probability of classification PC :

Ω?1, . . . ,Ω
?
nc

= min
(Ω1,...,Ωnc )∈SΩ

PC(Ω1, . . . ,Ωnc
). (4.29)

The next step is to minimize the error probability (4.28) w.r.t. the class regions. We propose to

carry out the minimization in a deterministic approach based on the shape gradient method.

4.4 Statistical Image Classification Combined with A Deter-

minist Approach

Section 4.3 defined a statistical image classification model based on information theory, probability

density estimation and an error probability of classification w.r.t. the nc class regions {Ω1, . . . ,Ωnc
}.

The next step is to determine the nc class regions which minimize the error probability defined in

Equation (4.28). Since the approach is basically probabilist many solutions are possible. We pro-

pose to pick a solution with a determinist variational approach. Variational approaches are the

common framework between the image segmentation models proposed in this thesis. They are well-

posed mathematical models which impose geometric constraints on the solution, such as smoothness.

Moreover, when differentiability conditions are fulfilled, the minimum of the variational model is

given by a partial differential equation that can be solved by efficient numerical schemes. In what

follows, we will present the determinist tool of shape gradient introduced by Delfour-Zolesio in [69]

which will be useful to determine evolution equations for the class regions to be classified by mini-

mization of the error probability of classification (4.28).

4.4.1 Shape Gradient Method

As we said in Section 2.4.1, Jehan-Besson-Barlaud-Aubert in [99] and Aubert-Barlaud-Faugeras-

Jehan-Besson in [13] proposed a general framework based on the shape gradient method, developed

by Delfour-Zolesio in [69], to derivate a functional including region and boundary features. The

shape gradient method consists of derivating a functional which depends on domains/regions that

can continuously move. Let us introduce the basis of this theory in the following way. Let us denote

J(Ωi) a given functional which depends on a region Ωi. We want to minimize J by deforming Ωi.

We thus need to derivate J w.r.t. Ωi. This is done by introducing an artificial time t such that:

J(Ωi(t)) =

∫

Ωi(t)

fR(x,Ωi(t))dx, (4.30)
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where the function fR is a general function which depends on the evolving region Ωi(t). The

derivative of J w.r.t. t is the Eulerian derivative of J(Ωi(t)) in the direction of V ([69, 99]) given

by:

dJ

dt
=

∫

Ωi(t)

∂fR
∂t

dx −
∫

∂Ωi(t)

fR (V · N∂Ωi
)ds, (4.31)

where V is the velocity field applied on the boundary ∂Ωi(t) of the evolving region Ωi(t) and N∂Ωi

is the unit inward normal to ∂Ωi(t) as shown on Figure 4.6.

∂Ωi(τ)

N∂Ωi

Ωi(τ)

Figure 4.6: The evolving region Ωi, its boundary ∂Ωi and the inward normal N∂Ωi
to ∂Ωi.

4.4.2 Shape Gradient of Classification Error Probability

The image classification task aims at finding the image of classes uc or, equivalently, the nc class

regions Ωk = {x ∈ Ω|uc(x) = k} which minimize the classification functional:

PC := PC(uc(Ω1, . . . ,Ωnc
)),

given in Equation (4.28). The final classification result does not change when we introduce a

continuous strictly monotonous function ϕ(.) such that:

J(uc(Ω1, . . . ,Ωnc
)) = ϕ ( PC(uc) ) , (4.32)

Let us now introduce an artificial time t in the classification functional J :

J(t) = ϕ ( PC(t) ) = ϕ (Pe(t) · PMRF(t)) (4.33)

with

{

Pe(t) =
∑nc

i,j=1 Λij({Ωk}, t) · Γij(Ωi,Ωj , t),
PMRF(t) = 1

Z exp
(
− 1
T E(uc, t)

)
,

(4.34)

and
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Λij({Ωk}, t) = (1 − δij)
∑nc

k

(
αk

|Ωk(t)|

)l

,

|Ωk(t)| =
∫

Ωk(t)
dx,

(4.35)







Γij(Ωi,Ωj , t) = η
nc

∫

Ωi(t)

∫

Ωj(t)

G√
2σ(y(x)−y(x̂))

HΩj(t)(y(x̂)) dxdx̂,

HΩj(t)(y(x̂)) =
∫

Ωj(t)
δ(y(x̂) − y(ˆ̂x))dˆ̂x,

(4.36)

{

PMRF(uc, t) = 1
Z exp

(
− 1
T E(uc, t)

)
,

E(uc, t) = TV (uc, t).
(4.37)

The chain rule is used to derivate Functional J :

∂J

∂t
=

∂ϕ

∂PC
· ∂PC
∂t

(4.38)

=
∂ϕ

∂PC
·
(
∂Pe
∂t

PMRF + Pe
∂PMRF

∂t

)

, (4.39)

with

{
∂Pe

∂t =
∑nc

i,j=1

(
∂Λij

∂t Γij +
∂Γij

∂t Λij

)

,
∂PMRF

∂t = −βPMRF
∂E
∂t ,

(4.40)

with β = 1
T . Thus

∂J

∂t
=

∂ϕ

∂PC
PC ·





nc∑

i,j=1

1

Pe

(
∂Λij
∂t

Γij +
∂Γij
∂t

Λij

)

− β
∂E

∂t



 . (4.41)

Then terms
∂Λij

∂t and
∂Γij

∂t are computed with the shape gradient method presented in Section 4.4.1:

{
∂Λij

∂t ({Ωk}, t) = (1 − δij)
∑nc

k

∫

∂Ωk
AΛ
k (V · N∂Ωk

)ds,

AΛ
k (Ωk, t) =

lαl
k

|Ωk(t)|l+1 ,
(4.42)







∂Γij

∂t (Ωi,Ωj , t) =
∫

∂Ωj
AΓ
ij(V · N∂Ωj

)ds−
∫

∂Ωi
BΓ
j (V · N∂Ωi

)ds,

AΓ
ij(s,Ωi,Ωj , t) = η

nc

1−HΩj(t)(y(s))

HΩj(t)(y(s))2

∫

Ωi(t)
G√

2σ(y(x) − y(s))dx,

BΓ
j (s,Ωj , t) = η

nc

∫

Ωj(t)

G√
2σ(y(x̂)−y(s))
HΩj(t)(y(x̂)) dx̂.

(4.43)

The derivation of the Gibbs energy E w.r.t. t is not made with the shape gradient method but

with the classic Euler-Lagrange technique as e.g. in the paper of Caselles-Kimmel-Sapiro [35]. This

means that Functional E can be written as follows:
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E(uc) =

∫

Ω

|∇uc|dx, (4.44)

with uc =
∑nc

i=1 χΩi
such that

E(uc(Ω1, . . . ,Ωnc
)) =

nc∑

i=1

∫

Ωi

|∇χΩi
|dx, (4.45)

using the Lemma of Samson-Blanc-Féraud-Aubert-Zerubia in [156], we obtain

E(Ω1, . . . ,Ωnc
) =

nc∑

i=1

∫

∂Ωi

ds =

nc∑

i=1

L∂Ωi
, (4.46)

and with time t, E can be re-written in the following way:

E(Ω1, . . . ,Ωnc
, t) =

nc∑

i=1

∫

∂Ωi(t)

ds. (4.47)

Finally, the Euler-Lagrange equations method is used and gives us:

∂E

∂t
=

nc∑

i=1

∫

∂Ωi

κi (V · N∂Ωi
)ds, (4.48)

where κi is the Euclidean curvature of the curve ∂Ωi.

Equation (4.48) justifies the choice of the Gibbs function as the TV function. Indeed, the gradient

flow which minimizes E as fast as possible is given by:

∂(∂Ωi)

∂t
= κiN∂Ωi

, for 1 ≤ i ≤ nc, (4.49)

which is exactly the mean curvature motion that regularizes the curves ∂Ωi in a natural and efficient

way. Two important points arise here. The first one concerns the Markov random fields and the

mean curvature motion. The surprising thing is that these two models are equivalent when the Gibbs

function is equal to the TV function! In other words, the statistical regularization model of Markov

random fields is equivalent to the determinist regularization model of mean curvature flow. The

second point is that the curvature motion was not artificially added in the classification algorithm

as it is done in most active contours-based works such as [91, 106]. The curvature term appears

naturally in our evolution equation thanks to the statistical approach of the image classification

task.

This section gave us the derivative of the error probability of classification w.r.t. nc class regions

{Ω1, . . . ,Ωnc
}. Since the general expression of the derivation is long, we did not write explicitly

the complete expression of the form ∂J
∂t =

∑

i

∫

Ωi
FΩi

(V · N∂Ωi
)ds that naturally gives the velocity

vector field V = −FΩi
N∂Ωi

which makes the boundary ∂Ωi evolving as fast as possible toward a
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minimum of the functional J . The next section will focuse on the image classification using nc = 2

class regions. In this case, we will give the entire expression of the derivative of J and the velocity

vector field V.

4.4.3 Image Classification With Two classes

We consider the case of nc = 2 classes. They are represented by a level set function φ such that

Ω1 = {x ∈ Ω|φ(x) > 0} and Ω2 = {x ∈ Ω|φ(x) < 0}. Then, the unit normal of boundaries of

Ω1 and Ω2 are represented by N = N∂Ω1
= −N∂Ω2

. We also define the curvature κ = κ1 = −κ2

and the contour C = ∂Ω1 = ∂Ω2. We choose the function ϕ(ζ) = log(ζ) and the parameters α1,

α2 and l equal to 1. The image feature y is the gray level value, i.e. y := I0. Finally, we denote

Λ = Λ12 = Λ21 and we remind that Λ11 = Λ22 = 0.

In this case, the derivative of J in Equation (4.41) is equal to:

∂J

∂t
(Ω1,Ω2, t) =

1

Pe
·
[
∂Λ

∂t
(Γ12 + Γ21) + Γ ·

(
∂Γ12

∂t
+
∂Γ21

∂t

)]

− β
∂E

∂t
. (4.50)

Using the formula developed in the previous section, we obtain

∂J

∂t
=

∫

C

{
1

Pe
·
[
(AΛ

1 +AΛ
2 ) · (Γ12 + Γ21) + Λ ·

(
AΓ

21 −AΓ
12 +BΓ

1 −BΓ
2

)]
− 2βκ

}

(V · N )ds, (4.51)

with

{

AΛ
1 = 1

|Ω1|2 ,

AΛ
2 = 1

|Ω2|2 ,
(4.52)







Γ12 = η
2

∫

Ω1

∫

Ω2

G√
2σ(I0(x)−I0(x̂)

HΩ2
(I0(x̂)) dxdx̂,

Γ21 = η
2

∫

Ω2

∫

Ω1

G√
2σ(I0(x)−I0(x̂))

HΩ1
(I0(x̂)) dx dx̂,

(4.53)







AΓ
12 = 1

2

1−HΩ2
(I0(s))

HΩ2
(I0(s))2

∫

Ω1
G√

2σ(I0(x) − I0(s))dx,

AΓ
21 = 1

2

1−HΩ1
(I0(s))

HΩ1
(I0(s))2

∫

Ω2
G√

2σ(I0(x) − I0(s))dx,
(4.54)







BΓ
1 = 1

2

∫

Ω1

G√
2σ(I0(x̂)−I0(s))
HΩ1

(I0(x̂)) dx̂,

BΓ
2 = 1

2

∫

Ω2

G√
2σ(I0(x̂)−I0(s))
HΩ2

(I0(x̂)) dx̂,
(4.55)

and

∂E

∂t
=

∫

C

2κ (V · N )ds. (4.56)
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The derivative of J provides us the evolution equation of the active contour/snake C that we call

anaconda (A New Active Contour Oriented Non Determinist Approach). According to the Cauchy-

Schwartz inequality, the expression of the velocity vector field V that makes the curve C evolve as

fast as possible toward a minimum of J is given by taking V as follows:

V =

(
1

Pe
·
[
(AΛ

1 +AΛ
2 ) · (Γ12 + Γ21) + Λ ·

(
AΓ

21 −AΓ
12 +BΓ

1 −BΓ
2

)]
− 2βκ

)

︸ ︷︷ ︸

FCL

N , (4.57)

which gives us the evolution equation for the active contour/anaconda C minimizing the error

probability of classification:

∂C

∂t
= V = FCLN . (4.58)

4.5 Results

We apply the evolution equation defined in Equation (4.58) to classify/segment different images.

First of all, we test our classification algorithm with synthetic images, then with natural images.

Figure 4.7(a) is composed of four objects and the background having two different intensity

means. We firstly apply the model of active contours without edges developed by Chan-Vese in [42]

on Figures 4.7(b-e), then we apply our model on Figures 4.7(f-i). Both models successfully segment

the four objects lying on Figure 4.7(a). Secondly, we apply the active contours without edges model

on Figure 4.8(a) where the four objects and the background have the same intensity mean but two

different intensity variances. The model of Chan-Vese is not able to segment the given image as

shown on Figures 4.8(b-e) since this model is based on determining two sets of regions with two

different mean values, which is not the case here. However, the model defined by Jehan-Besson-

Barlaud-Aubert (JBA) in [99], based on a variance criterion, can correctly classify the figure, see

Figures 4.8(f-i), as well as our model presented on Figure 4.8(j-m). Finally, the last synthetic image

on Figure 4.9(a) is composed of the four objects and the background with the same mean value

and the same variance. However, the two regions are different because they do not have the same

statistic moments higher than the 2nd order. In this case, the model of JBA is not able to segment

both regions as we can see on Figures 4.9(b-e) since both regions have the same variance value.

However, our method manages to segment the four regions and the background, Figures 4.9(f-i),

because our model is based on probability densities which are different for both regions as shown on

Figures 4.9(j-m).

We also apply our classification/segmentation model to natural images. Figure 4.10(a) presents

the zebra picture reproduced from Paragios-Deriche’s paper [133] and Figure 4.10(e) shows the clas-

sification result given by our model. Contrary to Paragios-Deriche’s approach, which needs three

texture patterns taken from the zebra and the background, our classification algorithm is unsuper-

vised since we do not need any image patches to carry out the classification task. We also try our

model on the cameraman picture on Figure 4.11(a) and we get the final result on Figure 4.11(e).

Finally, the segmentation model is applied on a x-ray picture, Figure 4.12(a), which gives the result
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presented on Figure 4.12(e).

4.6 Relations With Other Statistical And Information The-

oretic Models using Active Contours

In this section, we compare our classification/segmentation model with other active contour mod-

els. We how that our model, based on information theory, improves and includes several existing

segmentation models.

4.6.1 Active Contours based on the Mumford-Shah Model

As explained in Section 2.4.1, Chan-Vese developed two models of active contours [42, 179] based on

the Mumford-Shah’s functional [125]. We used in Section 4.5 the model of active contours without

edges [42] and we showed that this model efficiently segments two (no-connected) regions having

two different intensity means, Figure 4.7(e), but fails to segment two regions with the same inten-

sity mean but two different variances, Figure 4.8(e). However, our segmentation model is able to

segment regions with the same intensity mean and the same variance value because our model is

based on the shape of the density probabilities, i.e. statistical moments of higher order. Indeed, the

active contour defined in Equation (4.58) evolves to find two regions having two probability densities

as disjoint as possible as we can see on Figures 4.7(m), 4.8(q), 4.9(m), 4.10(i), 4.11(i) and 4.12(i).

Each density probability is supposed to represent a semantic region/object in the given image as we

observe on Figure 4.10(a).

4.6.2 Parametric And Non-Parametric Geodesic Active Regions

We now propose to show the connexion between our classification approach and the segmentation

model of geodesic active regions, initially proposed by Paragios-Deriche in [132, 133, 134], then ex-

tended by Rousson-Deriche in [149, 151]. See Section 2.4.1 for more details.

Let us come back to the stochastic process/Markov chain defined in Equation (4.8) and let us

consider the first part of the chain only (without Cest) and the error random variable of classification:

C → Y → E, (4.59)

In this case, the previous stochastic process is defined by the following probability densities:

P (C = c),

P (Y = y|C = c),

P (E = 1|C = c, Y = y). (4.60)

And the probabilistic measure of classification is:

µE = Pe =
∑

c∈Sc

∫

SY

P (E = 1|y, c) · P (y|c) · P (c) dy. (4.61)
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We do not change the classification result by introducing a continuous monotone function ϕ such

that:

Pe =
∑

c∈Sc

∫

SY

ϕ (P (E = 1|y, c) · P (y|c) · P (c)) dy. (4.62)

Besides, if no prior information concerning the probability density functions P (E = 1|y, c) and P (c)

are available, we consider them as constant. Thus, we have:

Pe =
∑

c∈Sc

∫

SY

ϕ (P (y|c)) dy. (4.63)

It is interesting to note that the previous functional Pe is precisely the region-based functional

used in the model of geodesic active regions defined in Equation (2.30) which region part is:

NR∑

i=1

∫

Ωi

gR,i(I0(x))dx. (4.64)

Equations (4.63) and (4.64) are equivalent if we replace the class index c by i, the number of

classes NR by nc, the image feature y by I0 and the function ϕ (P (y|c)), which depends on the class

c, by the function gR,i, which also depends on i.

The last question concerns the conditional probability function P (y|c) used in the geodesic active

regions approaches. In the initial approach [132, 133], authors used a parametric approach. They

supposed that any given image is composed of homogeneous regions which are represented by a

Gaussian probability distribution. Hence, Functional (4.63) is equal to the original functional of the

geodesic active regions if the conditional probability P (y|c) is equal to the Gaussian distribution

of each homogeneous region. We notice that the mixture of Gaussians in [132, 133] is computed

in a stage separated from the evolution process, which is not our case. Thus, Rousson-Deriche in

[151] integrated the computation of the Gaussian densities in the evolution process. Finally, they

approximated in [149] the probability density function P (y|c) with the non-parametric probability

density estimation model of Parzen [140, 148] as we did in our approach.

The previous comments showed that the model of geodesic active regions are included in our

image classification approach. More precisely, the model of Paragios-Deriche-Rousson corresponds

to the first part of our stochastic process defined in Equations (4.59), and equal to (4.8), that carries

out the classification task with the maximum posterior probability (MAP) approach. However, the

MAP approach is less performant than the information theoretic approach presented in Section 4.2

since the MAP model does not validate its classification result. It is possible to validate the per-

formance of the estimation with the second part of our stochastic process (4.8), Y → Cest, which

corresponds to a validation part. In fact, the stochastic process (4.8) can be interpreted with the

general cross-validation approach which is composed of two steps [146]: one step to estimate assump-

tions of the given model about a set of data, such as classification, and a second step to validate the

estimation of the classification. Cross-validation approaches have been applied to image restoration

and to compute the optimal amount of smoothing in the ridge detection method [146]. Thus, in

our case of classification, the first part of the Markov chain (4.8), C → Y , estimates the candidate

assumption, i.e. the candidate among the nc classes by maximizing the transmission probability
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which corresponds to the MAP approach, P (c)P (y|c), and the second part of the Markov chain,

Y → Cest validates the classification estimation made in the first part.

4.6.3 Non-Parametric Active Contours based on Shape Gradient Method

As presented in Section 2.4.1, Aubert-Barlaud-Faugeras-Jéhan-Besson (ABFJB) introduced in

[13, 99] a new general framework to define active contours models based on boundary and region

functionals thanks to the shape gradient method developed by Delfourd-Zolesion in [69]. In [99],

they defined an active contour model which evolves according to the intensity variance to segment

two (no-connected) regions having different variances. We used this segmentation model on Figures

4.8(f-i) to classify two regions having the same intensity mean but different variances. We also

observed the limit of this model on Figures 4.9(b-e) where regions have the same intensity mean

and variance.

Based on the framework of ABFJB, Herbulot-Jehan-Besson-Barlaud-Aubert (HJBA) presented

in [90, 91] a segmentation model that used information theoretic concepts such as entropy and

joint entropy. Their model also estimates probability densities non-parametrically with the non-

parametric probability density estimation model of Parzen [140, 148]. Their approach is also included

in ours because it also corresponds to the first part of the stochastic process (4.8) as in the previous

section. The classification functional associates with (4.8) is given by Equation (4.63) where the

function ϕ, in the case of HJBA, is equal to:

ϕ = −q(I0(x),Ωi) ln q(I0(x),Ωi), (4.65)

given in Equation (2.47).

Thus, conceptually speaking, the model of HJBA is also included in our classification ap-

proach. As in the case of Paragios-Deriche-Rousson, it does not validate its estimation of clas-

sification/segmentation because it does not use the cross-validation approach defined in the second

part of the stochastic model (4.8).

4.6.4 Mutual Information

We finish the comparison of our model with other active contour models using statistical and infor-

mation theoretic concepts with the mutual information tool. The mutual information (MI) concept

is of huge interest in the image processing community since it has been widely and successfully used

for e.g. multi-modal medical image registration, classification and feature extraction. MI is relat-

ed to the classification task by Fano’s inequality [77]. Indeed, let us consider again the stochastic

process:

C → Y → Cest → E.

If we apply Fano’s inequality on the previous stochastic process, it gives us a lower bound of the

error probability of classification:
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µE = Pe ≥
He(C|Y ) − 1

log nc
=

He(C) − I(C, Y ) − 1

log nc
∝ −MI(C, Y ), (4.66)

where C is the class label, Y the image feature, He the entropy function and MI the mutual infor-

mation function.

In [106, 107], Kim-Fisher-Yezzi-Cetin-Willsky proposed to use the mutual information between

the class labels and the features to carry out the classification/segmentation process. They also used

a non-parametric estimation of the probability density functions.

The mutual information concept has been used in many image processing problems because it is

not always possible to directly compute the probability of classification Pe. In this case, the solu-

tion is to minimize the lower bound of the error probability by maximizing the mutual information

MI(C, Y ) between the class labels C and the image features Y . However, it is obviously better to

minimize directly the error probability rather than its lower bound to ensure a good classification

result, which is possible with the framework introduced in Section 4.3.1.

4.7 Conclusion

This chapter presents a new image classification/segmentation model based on information theory

and PDE-based approach. The proposed model benefits from statistic and deterministic approaches,

which are used in a complementary way. Indeed, information theory, combined with a stochastic

process and error probability, allowed us to define a functional of classification with respect to nc
class regions. As usual in statistical approaches, many solutions are likely and different methods

exist to find one, such as the genetic algorithm [68] which is a probabilistic optimization method.

We decided to determine the minimum of the classification functional in a deterministic way with a

variational approach based on the shape gradient method. This allowed us to use efficient numeri-

cal schemes to deform the unknown class regions, based on the level set method, to determine the

solution of the classification problem.

We also observed in our classification task that the statistical regularization model of Markov

random fields is equivalent to the determinist regularization model of mean curvature flow when the

Gibbs function is equal to the TV functional.

Experimental results, on synthetic and natural images, showed the promising performances of

our segmentation model. Moreover, it is possible to improve this classification model by increas-

ing the dimension of the image feature vector Y . In all our experiments, we only consider the

grey-level value I0 of the given image but we could also include the gradient and more interesting

segment texture regions with the image decomposition based on the Gabor functions. This will be

an interesting direction of research. Furthermore, we considered only nc = 2 class regions in our

experiments, which means that the proposed active contour model can segment only two semantic

regions in a given image. Thus, it will also be interesting in the future to develop the model to

segment more objects by considering the case nc > 2.

We also compared our model to existing models that use active contours and statistical and

information theoretic approaches. We analyzed several models and we proved that they are con-
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ceptually included in our approach. The main difference between our approach and theirs relies on

the cross-validation approach which consists of estimating a hypothesis, which is the classification

in our case, and validating it afterward.

Finally, we also observed that our classification model can be interpreted and well-understood

thanks to the information theory, which is also a way to validate the proposed segmentation model.

Thus, this chapter presented a new image segmentation model based on region-based information

to detect semantic objects lying in images. However, this segmentation model is not able to extract

important objects in the presence of occlusions or when some shape information are missing. Thus,

we propose in the next chapter a new image segmentation model that uses a prior shape to handle

occlusions and missing information.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 4.7: Figure (a) presents four objects and a background having two different intensity

means. Figures (b-e) show the evolution of the active contours without edges model [42]. Figures

(f-i) represent the evolution of our active contour/anaconda model and Figures (j-m) correspond to

the probability densities inside and outside of the contour C during the evolution process.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o) (p) (q)

Figure 4.8: Figure (a) presents four objects and a background having the same intensity mean

but different intensity variances. Figures (b-e) show the evolution of the active contours without

edges model [42] which fails to segment the four objects because they have the same mean value

as the background. Figures (f-i) represent the evolution of the active contour defined in [99] based

on a variance criterion. Figures (j-m) show our active contour/anaconda model and Figures (n-q)

correspond to the probability densities inside and outside of the contour C during the evolution

process.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 4.9: Figure (a) presents four objects and a background having the same intensity mean,

the same variance but different statistic moments higher than the 2nd order. This figure is based on

Kim’s picture in [106]. Figures (b-e) show the evolution of the active contours defined in [99], based

on a variance criterion, which fails to segment the four objects because they have the same variance

value as the background. Figures (f-i) represent the evolution of our active contour/anaconda model

and Figures (j-m) correspond to the probability densities inside and outside of the contour C during

the evolution process. Our model manages to segment the four regions because our model is based

on probability densities which are different for both regions as shown on Figure 4.9(m).
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.10: Figure (a) presents the zebra picture reproduced from Paragios-Deriche’s paper [133].

Figures (b-e) show the evolution of our active contour/anaconda model and Figures (f-i) correspond

to the probability densities inside and outside of the contour C during the evolution process.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.11: Figure (a) presents the cameraman picture. Figures (b-e) show the evolution of our

active contour/anaconda model and Figures (f-i) correspond to the probability densities inside and

outside of the contour C during the evolution process.
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.12: Figure (a) presents an x-ray picture. Figures (b-e) show the evolution of our active

contour/anaconda model and Figures (f-i) correspond to the probability densities inside and outside

of the contour C during the evolution process.
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In this chapter, we propose a variational model to segment an ob-

ject belonging to a given shape space using the active contour method

[35, 103, 105], a geometric shape prior [113] and the Mumford-Shah

functional [179]. The core of our model is an energy functional com-

posed by three complementary terms. The first one is based on a shape

model which constrains the active contour to get a shape of interest.

The second term detects object boundaries from image gradients. Final-

ly, the third term globally drives the shape prior and the active contour

towards a homogeneous intensity region. The segmentation of the ob-

ject of interest is given by the minimum of our energy functional. This

minimum is computed with the calculus of variations and the gradi-

ent descent method that provide a system of evolution equations solved

with the well-known level set method. We also prove the existence of

this minimum in the space of functions with bounded variation. Appli-

cations of the proposed model are presented on synthetic and medical

images.

5.1 Introduction and Motivations

This work aims at proposing a method to segment structures of interest with a given global shape.

The segmentation problem remains fundamental in the computer vision and image processing fields

since it is a core component toward automated vision systems and useful in medical applications.

Various methods have been proposed to extract objects of interest in images such as [51, 58, 59,

62, 66, 103]. However these methods employ parametric shape representations which are not as con-

103
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veniently used as convenient as intrinsic representations such as the level set function [127, 129, 164].

Other models such as geodesic/geometric active contours [35, 105] use this intrinsic modeling of con-

tours to for example detect fine real-world shapes such as medical structures [101, 115, 188]. As we

observed in Chapter 2, level set-based methods are of growing interest since they are independent

of the contour parametrization, and thus enable dealing with topological changes. They also benefit

from efficient numerical schemes and are naturally extensible to higher dimensions. As we men-

tioned in Section 2.4, despite of these great advantages, the first-generation active contours, based

on image gradients, are highly sensitive to the presence of noise and poor image contrast, which

can lead to bad segmentation results. To overcome this drawback, some authors have incorporated

robust region-based evolution criteria into the active contour energy functionals that are built from

intensity statistics and homogeneity requirements [13, 42, 99, 106, 132, 151, 179], see Section 2.4.1

for more details. Yet the segmentation of structures of interest with these second-generation active

contours is not able to deal with occlusion problems or presence of strongly cluttered background.

The integration of prior shape knowledge about the objects in the segmentation task is therefore a

natural way to solve occlusion problems [45, 60, 65, 66, 113, 138, 175] and can be considered as a

third generation of active contours, see Section 2.4.2 for more details. In this chapter, we propose a

model that exploits the advantages of three generations of active contours.

A geometric shape prior can be defined by different models such as Fourier descriptors, medial

axis or atlas-based parametric models. Recently, the level set representation of shapes has been

employed as a shape model [43, 113, 138]. This shape description presents strong advantages since

being parametrization free, it can represent shapes of any dimension such as curves, surfaces and

hyper-surfaces and basic geometric properties such as the curvature and the normal to contours are

easily deduced. Finally, this shape representation is also naturally consistent with the level set frame-

work of active contours. In [113], Leventon-Grimson-Faugeras have used a level set representation

to model the shape prior. They have defined a shape model of the object of interest by computing

a principal components analysis (PCA) of training shapes embedded in level set functions. They

have then integrated this shape model in an evolution equation to globally drive the active contour

towards the prior shape. However, their evolution equation is not expressed by a partial differential

equation and there is no variational formulation associated with this evolution equation. In a gen-

eral way, a variational formulation is useful both to understand and justify the proposed method.

Moreover, evolution equations naturally appear from the variational model through the minimiza-

tion of the proposed energy functional thanks to the calculus of variations. Finally, a variational

formulation of a problem helps to prove the mathematical existence of solutions. Thus we propose a

variational approach following the energy functional model of Chen et al. in [45] where we integrate

the shape prior of Leventon-Grimson-Faugeras [113]. We then add a region-based energy term based

on the Mumford-Shah functional [125, 179] to improve the robustness of our segmentation model

w.r.t. noise, poor image contrast and initial position of the contour as showed in Section 2.4.1. We

will also prove the existence of a solution for our variational segmentation problem.

The organization of this chapter is as follows. In the next section, we briefly review the statistical

shape prior proposed by Leventon-Grimson-Faugeras in [113] based on the principal components

analysis. Then, we will define our variational model to address the object segmentation problem

with a prior shape knowledge and we will derive the system of evolution equations minimizing the

proposed energy. We will prove the existence of a minimizer for our variational segmentation model.

Then, we will present some results of the proposed method on 2-D synthetic and medical images.

Finally, we will discuss our segmentation model and compare it with other ones.
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5.2 The Statistical Shape Model of Leventon

5.2.1 Definition of the Principal Components Analysis

The statistical shape model of Leventon-Grimson-Faugeras defined in [113] is based on the PCA

that aims at capturing the main variations of a training set while removing redundant information.

In [51], Cootes and Taylor used this technique on parametric contours to segment different kinds of

objects. The new idea introduced by Leventon-Grimson-Faugeras was to apply the PCA not on the

parametric geometric contours but on the signed distance functions (SDFs) of these contours which

are implicit and parameter free representations. They justified this choice in two ways: Firstly,

SDFs provide a stronger tolerance than the parametric curves to slight misalignments during the

alignment process of the training data since the values of neighboring pixels are highly correlated in

a SDF. Secondly, this intrinsic contour representation also improves the shape registration process

in terms of robustness, accuracy and speed. Indeed, the problem of the point-wise correspondence of

contours (landmarks correspondence) is replaced by a problem of intensity correspondence on grid

points which is easier to solve.

From a geometric point of view, the PCA determines the best orthonormal basis {e1...em} of

Rm to represent a set of n m-dimensional points {ϕ1...ϕn} in the sense of the least squares fitting.

Vectors {ei} are given by the eigenvectors of the covariance matrix Σ = 1
nMM> where M is a

matrix which column vectors are the n aligned training SDFs {ϕj}. Vectors {ei} correspond to

the principal variation directions of the set of n points. They are called the principal components.

Moreover, the first p principal axes define a reduced p-dimensional vector space in Rm equivalent

to a hyper-plane minimizing the sum of squared distances between this hyper-plane and the set of n

points. It is important to note that the accuracy of the fitting of this p-D hyper-plane in relation to

the set of points can be measured in percentage by the formula β =
∑p
k=1 λk/

∑n
k=1 λk where λk are

the eigenvalues of Σ. Thus, it is possible to arbitrarily fix the fitting percentage β and represent the

data in a sub-vector space of dimension p. In practice, only the first principal modes are necessary

to model the biggest variations present in our training set. These p principal components are sorted

in a matrix Wp. Then, the PCA can produce a new data set based on the training set {ϕj}:

ϕ̂ = ϕ+ Wpxpca, (5.1)

where ϕ = 1
n

∑n
j=1 ϕj is the mean value and xpca is called the vector of eigencoefficients, the shape

vector or the eigenmodes of variation. Finally, if we suppose that the probability density function

of the training set is a Gaussian function, which is often supposed when the PCA is used, then the

probability to get ϕ̂(xpca) is

P (ϕ̂(xpca)) =
1

(2π)p/2|Λp|1/2
exp(−1

2
x>
pcaΛ

−1
p xpca), (5.2)

where Λp is a diagonal matrix containing the first p eigenvalues.

5.2.2 Applications of the PCA

In this work, we will consider two training sets of 2-D shapes of interest: an ellipse and a left brain

ventricle. For the ellipse, we generate a training set of 30 ellipses by changing the size of a principal

axis with a Gaussian probability function and apply the PCA on the SDFs of 30 training ellipses.

We obtain one principal component that fits at 98% the set of ellipses. Figure 5.1 shows the aligned
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training ellipses and the shape function corresponding to the mean and the eigenmode of variation

of the training set.

(a)

(b) xpca = −2λ1 (c) Mean (d) xpca = 2λ1

Figure 5.1: Figure (a) presents the 30 aligned training ellipses with the mean ellipse in dotted line.

Figure (c) shows the mean value ϕ. Figures (b) and (d) present ϕ ± 2λ1e1, the unique eigenmode

of variation of SDF ellipses which λ1 is the eigenvalue. The zero level sets of the shape function ϕ̂

is plotted in solid dark line.

For the left brain ventricle, we use 2-D medical images. We extract 45 2-D images of left

ventricles from several coronal slices of T1-Weighted Magnetic Resonance images (MRI) of healthy

volunteers (Figure 5.2) to build our shape model. Then, we rigidly register/align the training curves

representing the object of interest by minimizing the shape similarity measure introduced by Chen

et al. in [45]:

a(C1, C
new
j ) = area of (A1 ∪Anewj −A1 ∩Anewj ) for 2 ≤ j ≤ n, (5.3)

where A1 and Anewj denote respectively the interior regions of the curves C1 and Cnewj where Cnewj is

the resulting curve from the rigid registration such that Cnewj = sjRθj
Cj + Tj and n is the number

of training curves. C1 and Cj are aligned when the measure a is minimized for the appropriate

values s?j , θ
?
j and T ?j . Figure 5.3 shows the aligned training ventricles.

After the registration/alignment process, we apply the PCA and we obtain three principal com-

ponents that fit at 88.2% the set of 45 SDFs of ventricles. Figure 5.3 shows the shape function

corresponding to the mean and the three main eigenmodes of variation of the training set.



5.3. Variational Model for Object Segmentation 107

Figure 5.2: Three T1-Weighted Magnetic Resonance images of brain.

5.3 Variational Model for Object Segmentation

5.3.1 The Proposed Energy Functional

We propose the following energy functional to address the problem of object segmentation using a

geometric shape prior with local and global image information:

F = βsFshape(C,xpca,xST ) + βbFboundary(C) + βrFregion(xpca,xST , uin, uout), (5.4)

where

Fshape =

∫ 1

0

ϕ̂2(xpca, hxST
(C(p)))|Cp|dp, (5.5)

Fboundary =

∫ 1

0

f(|∇I(C(p))|)|Cp|dp, (5.6)

Fregion =

∫

Ωin(xpca,xST )

(|I0 − uin|2 + µ|∇uin|2)dx +

∫

Ωout(xpca,xST )

(|I0 − uout|2 + µ|∇uout|2)dx, (5.7)

where dx = dxdy, Ω is the image domain, C ⊂ Ω is a planar closed curve representing the active

contour, ϕ̂ ∈ L1(Ω) is the shape function of the object of interest given by the principal components

analysis (PCA) (see Equation (5.1)). Vector xpca ∈ Rp is the vector of PCA eigencoefficients, hxST

is an element of a group of spatial transformations (ST) parametrized by xST ∈ RnST (the vector of

parameters) where nST is the number of transformation parameters, f is an edge detecting function

such as Equation (2.3), Ωin and Ωout are the inside and outside regions of the zero level set of ϕ̂,

uin and uout are smooth approximations of the original image I0 in Ωin and Ωout and βb, βs, βr
are arbitrary positive constants that balance the contributions of the boundary, shape and region

terms.

The proposed functional F is an extension of the work of Chen et al. [45] where we have in-

tegrated the shape model of Leventon-Grimson-Faugeras [113] and the Mumford-Shah functional

[125, 179]. The integration of the different cited models into one single model allows us to overcome

the drawbacks and limitations of each model. We will develop this fact in Section 5.6. Let us now

analyze the shape (5.5) and region (5.7) terms in the two following sections.

5.3.2 Shape Term Fshape

Fshape is a functional introduced by Bresson-Vandergheynst-Thiran in [29] which depends on the

active contour C, the vector xpca of PCA eigencoefficients and the vector xST of geometric trans-
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(a)

(b) xpca = (−2λ1, 0, 0) (c) Mean (d) xpca = (2λ1, 0, 0)

(e) xpca = (0,−2λ2, 0) (f) Mean (g) xpca = (0, 2λ2, 0)

(h) xpca = (0, 0,−2λ3) (i) Mean (j) xpca = (0, 0, 2λ3)

Figure 5.3: Figure (a) presents the 45 aligned training ventricles with the mean left ventricle in

dotted line. The middle column is the mean value and the right and left columns present two

eigenmodes of variation of the ventricle. The zero level sets of the shape function ϕ̂ is plotted in

solid dark line.

formations. This functional evaluates the shape difference between the contour C and the zero level

set, Ĉ, of the shape function, ϕ̂, provided by the PCA. It is an extension of the shape-based term

of Chen et al. [45] coupled with the shape model of Leventon-Grimson-Faugeras [113]. To give an

interpretation of Fshape, let us take a rigid transformation with the scale parameter equal to one,
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the angle and the vector of translations equal to zero, Thus, the function ϕ̂2 at point C(q) is:

ϕ̂2(xpca, hxST
(C(p))) = ϕ̂2(xpca, C(p)) ' |Ĉxpca

(pmin) − C(p)|2, (5.8)

where |.| stands for the Euclidean norm. The equality is not strict since the shape function ϕ̂ is not

a SDF as Leventon noticed in [111, 113]. However, the PCA applied on aligned SDFs of a training

set produces shape functions very close to SDFs. The case of a strict equality in Equation (5.8), i.e.

the case of ϕ̂ is a true SDF, will be discussed in Section 5.6. Figure 5.4 illustrates the function ϕ̂ and

Ĉxpca
(pmin). In practice, the point Ĉxpca

(pmin) and the value pmin are not computed. Ĉxpca
(pmin)

corresponds to the closest point of C(p) on the zero level set of ϕ̂ and we use Ĉxpca
(pmin) to illus-

trate the shape function at point C(p). Indeed, the shape function ϕ̂2(xpca, hxST
(C(p))) is equal

to the distance |Ĉxpca
(pmin) − C(p)|2, i.e. the value of the signed distance function ϕ̂ at the point

C(p). Finally, Fshape is obtained by integrating ϕ̂2 along the active contour, which defines the shape

similarity measure equivalent to the sum of square differences (SSD).

Ĉxpca

C(q)

Ĉxpca (pmin)

C

|ϕ̂(xpca, C(q))|

Figure 5.4: Illustration of the function ϕ̂(xpca, C(p)): the square shape function is approximatively

equal to the square Euclidean distance between the point C(p) and the closest point Ĉxpca
(pmin) on

the zero level set Ĉxpca
of ϕ̂(xpca).

The minimization of Fshape allows us to increase the similarity between the active contour and

the shape model. The functional is minimized using the calculus of variations and the gradient

descent method which provide three flows acting on the curve C, the vector of eigencoefficients xpca
and the vector of geometric transformations xST . We analyze each of the three flows by fixing the

two others. The flow minimizing Fshape w.r.t. the curve C is the classical geodesic flow [35, 105]:

{

∂tC(t, p) = (ϕ̂2κ− 〈∇ϕ̂2,N〉)N in ]0,∞[×[0, 1],

C(0, p) = C0(p) in [0, 1].
(5.9)

The first term of the right-hand side of the flow (5.9), ϕ̂2κN , is a mean curvature flow weighted

by the square shape function ϕ̂. The second term, 〈∇ϕ̂2,N〉N , is a flow which pushes the contour

C toward the zero level set of ϕ̂, i.e. the contour Ĉ, thanks to the vector field ∇ϕ̂2 which is close to

the gradient of a square distance function. The PDE defined in Equation (5.9) changes the active
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contour shape into any shape provided by the PCA model. This shape morphing has two main

advantages. First, it is independent of the contour parametrization because of the intrinsic level

set representation. This means that the landmarks correspondence problem is replaced by a grid

point-wise intensity correspondence which is easier to solve. It is more accurate than parametrized

shape morphing since the degree of deformation of level set functions is higher. Figure 5.5 presents

the morphing between two curves.

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Minimization of Fshape with the flow given in Equation (5.9), xST and xpca being fixed.

Active contour is in solid line and the shape prior in dotted line. Figures (a)-(c) show the matching

of a cat (initial active contour) into a cow (shape prior). Figures (d)-(f) present the matching of a

circle into a hand.

The flow minimizing Fshape w.r.t. the vector of eigencoefficients xpca is:

{

dtxpca(t) = −2
∫ 1

0
ϕ̂∇xpca

ϕ̂ |Cp|dp in ]0,∞[×Ωpca,

xpca(t = 0) = xpca0
in Ωpca.

(5.10)

with ∇xpca
ϕ̂ =






e1
pca

...

eppca




 ,

where eipca is the ith principal component/eigenvector of the PCA presented in Section 5.2 and

Ωpca is the space of PCA variables defined by Ωpca = [−3λ1, 3λ1]× ...× [−3λp, 3λp] which λi is the

eigenvalue of the ith principal component. We choose a range of 3 standard deviations, λi, because

we suppose that the probability density of training sets is Gaussian. The evolution Equation (5.10)

changes the shape function ϕ̂ to match its zero level set with the active contour. Figure 5.6 presents

this shape matching.
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Figure 5.6: Minimization of Fshape with the flow given in Equation (5.10), ϕ and xST being fixed.

The prior shape is in solid line and the active contour in dotted line. The first row presents the

shape evolution of the PCA model of 30 ellipses (see Section 5.2.2). The zero level set of the shape

function ϕ̂ evolves to match with the active contour representing an ellipse taken in the training set.

The second row shows the shape evolution of the PCA model of 45 left brain ventricles (see also

Section 5.2.2). The shape model changes to match with the active contour representing a left brain

ventricle taken in the training set.

The flow minimizing Fshape w.r.t. the vector of geometric transformations xST is:

{

dtxST (t) = −2
∫ 1

0
ϕ̂〈∇ϕ̂,∇xST

hxST
(C)〉|Cp|dp in ]0,∞[×ΩST ,

xST (t = 0) = xST 0
in ΩST .

(5.11)

In our work, we consider the 2-D rigid (denoted by hxr
ST

) and affine (denoted by hxa
ST

) transforma-

tions:

hxr
ST

: x → h(s,θ,T (x) = sRθx + T, (5.12)

hxa
ST

: x → h(sx,sy,θ,sh,T )(x) = RscRθRshx + T, (5.13)

where

Rsc =

(

sx 0

0 sy

)

, Rθ =

(

cos θ sin θ

− sin θ cos θ

)

,

Rsh =

(

1 sh
0 1

)

and T =

(

Tx
Ty

)

. (5.14)

The vector of rigid transformations xrST is composed of a scale (sc) parameter s, an angle of rotation

θ and a vector of translations T and the vector of affine transformations xaST is composed of two scale

parameters sx in x-direction and sy in y-direction, an angle of rotation θ, a shearing (sh) parameter

sh and a vector of translations T . We will analyze the choice of the affine transformations in Section

5.6. Finally, the domain of the rigid/affine transformations is called ΩST .

As a consequence, the gradient term ∇xST
hxST

in Equation (5.11) depending on geometric trans-

formations is:
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∇xr
ST
hxr

ST
(x) =







∂h
x

r
ST

∂s (x) = Rθx
∂h

x
r
ST

∂θ (x) = s∂θRθx
∂h

x
r
ST

∂T (x) = 1






, (5.15)

for 2-D rigid transformations and

∇xa
ST
hxa

ST
(x) =












∂h
x

a
ST

∂sx
(x) = (∂sx

Rsc)RθRshx
∂h

x
a
ST

∂sy
(x) = (∂sy

Rsc)RθRshx
∂h

x
a
ST

∂θ (x) = Rsc(∂θRθ)Rshx
∂h

x
a
ST

∂sh
(x) = RscRθ(∂sh

Rsh)x
∂h
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, (5.16)

for 2-D affine transformations. The evolution equation (5.11) realizes the rigid and affine registration

between the zero level set of the shape model ϕ̂ and the active contour. Figures 5.7 and 5.8 present

affine registrations.

Figure 5.7: Minimization of Fshape with the flow given in Equation (5.11), ϕ and xpca being fixed.

Images represents the affine registration process of a prior shape in solid line into an active contour

in dotted line.

Note that the function ϕ̂ is evaluated at (xpca, hxST
(C(q)) in Equations (5.9-5.11).

Let us now express the previous equations in a variational level set formulation as presented in

[45, 191]. The level set approach of [191], rather than [35, 105], will be used in Section 5.4 to prove

the existence of solution minimizing our energy functional in the space of functions with bounded

variation. The level set formulation of the shape functional from Equation (5.5) is:

Fshape =

∫

Ω

ϕ̂2(xpca, hxST
(x))|∇φ|δ(φ)dx, (5.17)

where φ is a level set function embedding the active contour C, δ(.) is the Dirac function and

δ(φ) is the contour measure on {φ = 0}. The level set formulation of Fshape (5.17) is equivalent

to the geometric formulation (5.5) because of the Coarea formula [73] which proves that Lf (φ) =
∫

Ω
f(x)δ(φ)|∇φ|dx =

∫ L

0
f(C(s))ds =

∫ 1

0
f(C(p))|Cp|dp where L is the length of C = {φ = 0}.

Samson-Blanc Féraud-Aubert-Zerubia presented the proof in [156]. The level set formulation of
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(d) (e) (f)

Figure 5.8: Minimization of Fshape with the flow given in Equation (5.11), ϕ and xpca being fixed.

Each column (c,d,e) presents the affine registration of a prior shape in solid line into an active

contour in dotted line. The first row shows the initial position of the shapes and the second row the

registered shapes. This registration process works with shapes having different local structures and

missing information.

Equations (5.9-5.11) are:







∂tφ(t,x) =
(

ϕ̂2κ− 〈∇ϕ̂2, ∇φ
|∇φ| 〉

)

δ(φ) in ]0,∞[×Ω,

φ(0,x) = φ0(x) in Ω,
δ(φ)
|∇φ|∂N∂Ω

φ = 0 on ∂Ω,

(5.18)

{

dtxpca(t) = −2
∫

Ω
ϕ̂∇xpca

ϕ̂|∇φ|δ(φ)dx in ]0,∞[×Ωpca,

xpca(t = 0) = xpca0
in Ωpca,

(5.19)

{

dtxST (t) = −2
∫

Ω
ϕ̂〈∇ϕ̂,∇xST

hxST
〉|∇φ|δ(φ)dx in ]0,∞[×ΩST ,

xST (t = 0) = xST 0 in ΩST .
(5.20)

In our segmentation model, the flows given by the Equations (5.18-5.20) are simultaneously used to

constraint the active contour to get a shape of interest whatever the position of the active contour

in the image.

We thus defined in this section a PDE-based process to force the active contour to get a partic-

ular shape. In the next section, we will introduce image information in our segmentation method

to capture the object of interest in the given image.

5.3.3 Region Term Fregion

In this section, we define a functional to drive the shape model towards an homogeneous intensity

region with the shape of interest. If our objects of interest are supposed to have a smooth intensity
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surface then the Mumford-Shah (MS) model is the most adapted model to segment these objects.

At this stage, we have the choice to apply the MS model either on the active contour or the

shape prior. Since the general MS model extracts homogeneous regions [179] and our objective is to

capture a homogeneous object with a given shape then the best solution is to apply the MS model

on the shape prior. The MS model applied on the given shape prior will globally drive it toward a

homogeneous intensity region with the shape of interest. An illustration of this choice will appear

in Section ??. We modify the MS functional [125] defined by Vese-Chan [179] in Section 2.4.1 to

segment a smooth region which shape is described by the PCA model:

Fregion(xpca,xST , uin, uout) =

∫

Ĉ(xpca,xST )

ds+

∫

Ωin(xpca,xST )
(|I0 − uin|2 + µ|∇uin|2)dx +

∫

Ωout(xpca,xST )
(|I0 − uout|2 + µ|∇uout|2)dx, (5.21)

where the curve Ĉ is the zero level set of the shape function ϕ̂ given by the PCA process. The

function ϕ̂ defines an image partitioned into two regions Ωin and Ωout, representing respectively the

object and the background, which common boundary is Ĉ:







Ωin(xpca,xST ) = {x ∈ Ω | ϕ̂(x,xpca,xST ) > 0},
Ωout(xpca,xST ) = {x ∈ Ω | ϕ̂(x,xpca,xST ) < 0},
Ĉ(xpca,xST ) = {x ∈ Ω | ϕ̂(x,xpca,xST ) = 0}.

(5.22)

The minimization of Fregion determines the shape parameters xpca and the parameters xST of

spatial transformations which captures a region having the shape of interest (with xpca) whatever

its position in images (with xST ). In our work, we do not considered the smoothing term,
∫

Ĉ
ds,

since shapes generated by the PCA are smooth enough. The functional Fregion can be written with

the shape function ϕ̂:

Fregion(xpca,xST , uin, uout) =

∫

Ω

ΘinH(ϕ̂(xpca,xST )dx +

∫

Ω

ΘoutH(−ϕ̂(xpca,xST )dx, (5.23)

where H(.) is the Heaviside function, Θr = |I0 − ur|2 + µ|∇ur|2 and r = in or out. The modified

MS functional (5.23) is minimized using the gradient descent method on xpca and xST and solving

the Euler-Lagrange equations for uin and uout:







dtxpca(t) =
∫

Ω
(Θin − Θout)

∂ϕ̂
∂xpca

δ(ϕ̂)dx in ]0,∞[×Ωpca,

=
∫

Ω
(Θin − Θout)∇xpca

ϕ̂ δ(ϕ̂)dx,

xpca(t = 0) = xpca0
in Ωpca,

(5.24)







dtxST (t) =
∫

Ω
(Θin − Θout)

∂ϕ̂
∂xST

δ(ϕ̂)dx in ]0,∞[×ΩST ,

=
∫

Ω
(Θin − Θout) 〈∇ϕ̂,∇xST

hxST
〉 δ(ϕ̂)dx,

xST (t = 0) = xT0
in ΩST ,

(5.25)
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∂tuin(t,x) = uin − I0 − µ∆uin in ]0,∞[×{ϕ̂ > 0},
uin(0,x) = I0 in {ϕ̂ > 0},

∂tuout(t,x) = uout − I0 − µ∆uout in ]0,∞[×{ϕ̂ < 0},
uout(0,x) = I0 in {ϕ̂ < 0}.

(5.26)

Figure 5.9 shows that the minimization of Fregion segments objects of interest when a part of

information is missing and in presence of noise and occlusion. This model can also be used to seg-

ment the left brain ventricle on Figure 5.10.

(i)

Figure 5.9: Minimization of Fregion with the flows given by Equations (5.24-5.26). The first row

presents the evolution of the segmentation process of an ellipse partially cut. The second row shows

the segmentation of a noisy ellipse. And the third row is the segmentation of an occluded ellipse.

However, this segmentation method can not handle local structure variations (see Figure 5.9(i))

when e.g. an ellipse presents irregular boundaries. The model has not captured the local edge vari-

ations since it only deals with global shape variations provided by the PCA model. If we want to be

able to capture the local variations around the global shape we found, we need to add a local criteria

to our energy functional. We will consider for this purpose the classic geodesic active contour given

by Fboundary.

Finally, we noticed that another segmentation method based on the Mumford-Shah functional

and the PCA model of Leventon-Grimson-Faugeras was proposed by Tsai et al. [174, 175] but for a
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Figure 5.10: Segmentation of the left ventricle with the flows given by Equations (5.24-5.26).

reduced model of the MS model. They used the piecewise constant approximation of the MS func-

tional proposed by Chan-Vese in [42] to define a functional equal to Equation (5.21) when µ = 0.

Our model consider the general model of the MS model, i.e. the piecewise smooth approximation,

as introduced by Vese-Chan in [179] in the context of active contours. We think that the piecewise

smooth case of the MS model allows us to decrease the intensity bias present in the piecewise con-

stant case. This bias, which can significantly affect the computation of the parameters xpca and

xST , is due to the the inhomogeneity of the outside region, i.e. the background, with respect to

the inside region, the object of interest. The reason is that the general MS model considers the

grey value information by averaging locally the intensities in a neighborhood (which size depends on

µ, Equation (5.26)) surrounding the contour by means of diffusion whereas the reduced MS model

considers the grey value information by averaging globally the intensities over the background region

and the object region. Cremers-Tischhäuser-Weickert-Schnörr in [62, 66] also compared the two

cases of the MS functional and they noticed that the segmentation results are less accurate with the

reduced model of MS because of the same reasons.

5.3.4 Combining Shape-Based, Boundary-Based and Region-Based Func-

tionals

In Section 5.3.2, we studied a shape-based functional Fshape that evaluates the similarity between

the active contour shape and the object shape prior to be segmented. In Section 5.3.3, we analyzed

a region-based functional Fregion which allows us to drive globally the shape prior toward a homoge-

neous intensity region. We now combine these two functionals with the boundary-based functional

Fboundary which captures the object edges to obtain a functional F (see Equation (5.4)) to segment

objects with a shape model and with global and local image information.

The energy minimization of F is performed using the calculus of variations and the gradient

descent method. We obtain a system of coupled evolution equations which steady-state solution

gives the minimum of F , which means the solution of the segmentation problem. The existence

of a minimum of F is proved in Section 5.4. Functional F is expressed in the Eulerian/level set

framework as follows:

F =

∫

Ω

f(x,xpca,xST )|∇φ|δ(φ)dx + βr

∫

Ω

(ΘinH(ϕ̂(xpca,xT )) + ΘoutH(−ϕ̂)) dx (5.27)

where

f(x,xpca,xST ) = βsϕ̂
2(xpca, hxST

(x)) + βbg(|∇I(x)|). (5.28)

Thus, evolution equations minimizing F are:
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∂tφ(t, x) =
(

fκ− 〈∇f, ∇φ
|∇φ| 〉

)

δ(φ) in ]0,∞[×Ω,

φ(0, x) = φ0(x) in Ω,
δ(φ)
|∇φ|∂Nφ = 0 on ∂Ω,

(5.29)

{

dtxpca(t) = −
∫

Ω
∇xpca

ϕ̂ (2βsϕ̂|∇φ|δ(φ) + βr(Θin − Θout)δ(ϕ̂))dx in ]0,∞[×Ωpca,

xpca(t = 0) = xpca0
in Ωpca,

(5.30)







dtxST (t) = −
∫

Ω
〈∇ϕ̂,∇xST

hxST
〉+

(2βsϕ̂|∇φ|δ(φ) + βr(Θin − Θout)δ(ϕ̂))dx in ]0,∞[×ΩST ,

xST (t = 0) = xT0
in ΩST ,

(5.31)







∂tuin(t,x) = uin − I0 − µ∆uin in ]0,∞[×{ϕ̂ > 0},
uin(0,x) = I0 in {ϕ̂ > 0},

∂tuout(t,x) = uout − I0 − µ∆uout in ]0,∞[×{ϕ̂ < 0},
uout(0,x) = I0 in {ϕ̂ < 0}.

(5.32)

5.4 Existence of a Solution For the Minimization Problem

This section deals with the mathematical study of

min
φ,xpca,xT ,uin,uout

{ F =
∫

Ω

(
βsϕ̂

2(x,xpca,xT ) + βbg(x)
)
|∇H(φ)|dx + βrFregion(xpca,xT , uin, uout) }.

(5.33)

We follow the proofs of Chen et al. in [45] and Vese-Chan [178] to prove the existence of a minimizer

for our proposed minimization problem using the direct method of the calculus of variations and

compactness theorems on the space of functions with bounded variation.

The minimization problem is considered among characteristic functions χE of sets E = {x ∈
Ω|φ(x) ≥ 0} with bounded variation. The vector of PCA eigencoefficients xpca = (xpca1

, ...,xpcap
)

is defined on Ωpca = [−3λ1, 3λ1] × ... × [−3λp, 3λp] and the vector of geometric transformations

xT = (sx, sy, θ, sh, Tx, Ty) is defined on ΩT . If Ω ⊂ R2 is the domain of the original image I0,

say Ω =]0, 255[2, then ΩST =]0, 255]2 × [−π, π[×[−127, 127] × [−255, 255]2. Functions uin and uout
from Section 5.3.3 are supposed in C1(Ω) since they are smoothed versions of the original image I0
(u = I0 + µ∆u is the first order discretization of the linear heat diffusion equation ∂tu = ∆u with

u(t = 0) = I0).

We remind some definitions and theorems introduced in Evans-Gariepy [73], Giusti [85], Chen

et al. in [45], Vese-Chan [178] and Ambrosio [6].
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Definition 1: Let Ω ⊂ RN be an open set and let f ∈ L1(Ω). The total variation norm of f is

defined by

TV (f) =

∫

Ω

|∇f | = sup
ψ∈Φ

{∫

Ω

f(x)div ψ(x)

}

, (5.34)

where Φ =
{
ψ ∈ C1

0 (Ω,RN )| |ψ(x)| ≤ 1, on Ω
}
. (5.35)

Definition 2: A function f ∈ L1(Ω) is said to have bounded variation in Ω if its distributional

derivate satisfies TV (f) <∞. We define BV (Ω) as the space of all functions in L1(Ω) with bounded

variation. The space BV (Ω) is a Banach space, endowed with the norm:

‖f‖BV (Ω) = ‖f‖L1(Ω) + TV (f). (5.36)

Theorem 1 A measurable subset E of RN has finite perimeter in Ω if and only if the characteristic

function χE ∈ BV (Ω). We have PerΩ(E) = TV (χE) =
∫

Ω
|∇χE | <∞.

Definition 3: Let Ω ⊂ RN be an open set and let f ∈ L1(Ω) and α(x) be positive valued continuous

and bounded functions on Ω. The weighted total variation norm of f is defined by

TVα(f) =

∫

Ω

α(x)|∇f | = sup
ψ∈Φα

{∫

Ω

f(x)div ψ(x)

}

, (5.37)

where

Φα =
{
ψ ∈ C1

0 (Ω,RN )| |ψ(x)| ≤ α(x), on Ω
}
. (5.38)

If a function f has a finite weighted total variation norm in Ω then it also belongs to BV (Ω).

Definition 4: A function f ∈ BV (Ω) is a special function of bounded variation if its distributional

derivative is given by

|Df | = TV (f) +

∫

Ω∩Sf

JfdHN−1, (5.39)

where Jf is the jump part defined on the set of points Sf and HN−1 is the (N -1)-dimensional

Hausdorff measure. The space of special functions of bounded variation SBV (Ω) is a Banach space,

endowed with the norm:

‖f‖SBV (Ω) = ‖f‖L1(Ω) + |Df |. (5.40)

Theorem 2 Let Ω ⊂ RN be an open set with a Lipschity boundary. If {fn}n≥1 is a bounded

sequence in BV (Ω), then there exist a subsequence {fnj} of {fn} and a function f ∈ BV (Ω), such

that fnj → f strongly in Lp(Ω) for any 1 ≤ p < N/(N − 1) and

TV (f) ≤ lim inf
nj→∞

TV (fnj). (5.41)

The following theorem is a generalization of the main theorem of Chen et al. in [45].
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Theorem 3 Let Ω ⊂ RN be an open set with a Lipschity boundary. If {fn}n≥1 is a bounded se-

quence in BV (Ω) and if {αn}n≥1 is a sequence of positive valued continuous functions that uniformly

converges to α on Ω, then there exists subsequences {fnj} of {fn} and a function f ∈ BV (Ω) such

that fnj → f strongly in Lp(Ω) for any 1 ≤ p < N/(N − 1) and

TVα(f) ≤ lim inf
nj→∞

TVαnj
(fnj). (5.42)

Theorem 4 Let Ω be a bounded and open subset of R2 and I be a given image with I ∈ L∞(Ω).

The minimization problem (5.33) re-written in the following form

min
χE ,xpca,xT ,uin,uout

{ F =
∫

Ω

(
βsϕ̂

2(x,xpca,xT ) + βbg(x)
)
|∇χE |dx + βrFregion(xpca,xT , uin, uout) }.

(5.43)

has a solution χE ∈ BV (Ω), xpca ∈ Ωpca, xT ∈ ΩST and uin, uout ∈ C1(Ω).

Proof: We use the direct method of the calculus of variations:

(A) Let {χEn,xpcan
,xTn

, uinn , uoutn}n≥1 be a minimizing sequence of (5.43), i.e.

lim
n→∞

F (χEn,xpcan
,xTn

, uinn
, uoutn) = inf

χE ,xpca,xT ,uin,uout

F (χE ,xpca,xT , uin, uout). (5.44)

(B) Since χEn is a sequence of characteristic functions of En, then χEn(x) ∈ {0, 1} - a.e. in Ω.

A constant M > 0 exists such that ‖∇χEn‖L1(Ω) ≤ M , ∀n ≥ 1. Therefore, χEn is a uniformly

bounded sequence on BV (Ω).

Since {xpcan
} and {xTn

} are bounded sequences on compact spaces Ωpca and ΩST , subsequences

that converge to limits xpca and xT exist.

The integrand f(x,xpca,xT ) = βsϕ̂
2 + βbg is positive and bounded because both functions ϕ̂2 and

g are bounded on Ω. Since the PCA is applied on continuous functions (SDFs) then the functions

ϕ̂ and f are also continuous and fn(x) = f(x,xpcan
,xTn

) converges uniformly to f on Ω.

Following Theorem 3, a subsequence of χEn that converges to a function χE strongly in L1(Ω)

exists.

Moreover , Theorem 3 also states that
∫

Ω

f |∇χE | ≤ lim inf
nj→∞

∫

Ω

fnj |∇χEnj
|, (5.45)

(C) In the region-based functional defined in Equation (5.23):

Fregion(xpca,xST , uin, uout) =

∫

Ω

(ΘinH(ϕ̂(xpca,xT )) + ΘoutH(−ϕ̂))dΩ, (5.46)

the function H(ϕ̂(xpca,xT )) is a characteristic function χG of sets G = {x ∈ Ω|ϕ̂(x) ≥ 0}. So we

have

Fregion(xpca,xST , uin, uout) =

∫

Ω

(ΘinχG(xpca,xT )) + Θout(1 − χG))dΩ (5.47)

and we can define the function u = uinχG + uout(1 − χG). The minimizing sequence of Equation

(5.43) implies

lim
n→∞

Fregion(xpcan
,xTn

, uinn
, uoutn) = inf

xpca,xT ,uin,uout

Fregion(xpca,xT , uin, uout). (5.48)
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Since the function χG depends continuously on variables xpca and xT , we have χG(xpcan
,xTn

) = χGn
and un = uinnχGn +uoutn(1−χGn). According to Ambrosio’s lemma [6], we can deduce that there

is a u ∈ SBV (Ω), such that a subsequence unj
converges to u a.e. in BV − w∗ and

Fregion(xpca,xST , uin, uout) = Fregion(u) ≤ lim inf
nj→∞

Fregion(unj
), (5.49)

which means that u is a minimizer of Fregion. Then, by combining Equations (5.45) and (5.49), χE ,

xpca, xT , uin and uout are minimizers of (5.43).

5.5 Experimental Results

5.5.1 Implementation issues

Concerning the PCA, the first stage consists in aligning rigidly the training curves representing the

object of interest. As we said in Section 5.2.2, this is realized using the shape similarity measure

introduced by Chen et al. [45]:

a(C1, C
new
j ) = area of (A1 ∪Anewj −A1 ∩Anewj ) for 2 ≤ j ≤ n, (5.50)

where A1 and Anewj denote respectively the interior regions of the curves C1 and Cnewj where Cnewj

is the resulting curve from the rigid registration such that Cnewj = sjRθj
Cj+Tj and n is the number

of training curves. C1 and Cj are aligned when the measure a is minimized for the appropriate val-

ues s?j , θ
?
j and T ?j . These values are obtained by a global optimization algorithm called the genetic

algorithm [68]. The second stage of the PCA consists in doing the singular values decomposition on

the SDFs of the aligned training curves using the code provided by Numerical Recipes [1] on the

matrix Σdual = 1
nM

>M (see section 5.2.1 for notations) to extract the n eigenvalues λi,dualpca and the

corresponding eigenvectors ei,dualpca . Note that the PCA is performed on Σdual rather than Σ to give

faster and more accurate results. The eigenvectors eipca and the eigenvalues λipca are then given by

eipca = Mei,dualpca and λipca = λi,dualpca .

Evolution equations (5.29) to (5.32) are numerically solved by iterating the following stages until

convergence is reached:

1. Computation of the shape function ϕ̂(xpca,xST ) using Equation (5.1) and performing the rigid

and affine transformations (scaling, rotation, translations and shearing) with the B-splines

interpolation method [177].

2. Calculation of the gradient ∇ϕ̂ using a central difference scheme. The term ∇xpca
ϕ̂ is given by

the eigenvectors of the PCA model and ∇xST
hxST

is computed according to Equations (5.15)

and (5.16).

3. Discretization of terms |∇φ| and 〈∇f, ∇φ
|∇φ| 〉 with e.g. the Osher-Sethian numerical scheme

[129], see Section 2.3.2. Computation of the curvature with central difference schemes. The

Dirac function δ and the Heaviside function H are computed by slightly regularized versions

following [45, 191].

4. Computation of Functions uin and uout in {ϕ̂ > 0} and {ϕ̂ < 0} with the method proposed in

[179].

5. Updating xpca, xST and φ using forward difference schemes of (5.30), (5.31) and (5.29).
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6. Re-distancing the level set function at every iteration with the Fast Marching Method of

Adalsteinsson-Sethian [2, 117, 163].

5.5.2 Synthetic Image

In this first experiment, we consider an ellipse partially occluded with a noisy boundary and an

ellipse which part of the shape is missing. We applied the PCA on the training set of 30 ellipses

as proposed in Section 5.2.2. The alignment process, which performs the registration of shapes by

genetic programming, needed around 1 minute per 128×128 ellipse. Even if the alignment step is

not fast because the genetic optimization is a global optimization procedure, it is done once for all

experiments. The rest of the PCA is fast. The decomposition into principal components, which is

also done only once for all experiments, took a few seconds. And the most important procedures

(since they are used at each iteration) are very fast: the computation of a new shape according to

Equation (5.1) (with an arbitrary vector xpca) took around 10−3 second and the spatial transfor-

mations done with the B-splines programming also needed around 10−3 second. In all the following

experiments, from Figure 5.11 to Figure 5.16, the segmentation including shape and pose parameters

took around 5 minutes.

We firstly used our segmentation model to segment an ellipse with irregular boundaries which is

partially occluded by a vertical bar. Figure 5.11 presents a geodesic active contour without a shape

prior and Figures 5.12 and 5.13 with a shape prior by taking βs = 1/3, βb = 1, βr = 10, µ = 50

and ∆t = 0.1. The way of choosing the weighting parameters is as follows. βb is always equal to 1.

µ determines the size of the neighborhood where the grey value information is averaged by means

of diffusion (5.32). Then, βr is chosen such that the shape prior is attracted toward the region

to be segmented. Finally, βs is selected in order to allow the active contour to move around the

shape prior in order to capture local boundaries. The active contours on Figures 5.12 and 5.13 have

captured high image gradients, i.e. the boundary variations (see Figure 5.12(d)), and also handled

the problem of occlusion thanks to the information contained in the prior shape model.

Figure 5.11: Evolution of the geodesic active contour without shape prior information.

In the second example, our extraction model is applied to extract an ellipse which is partially

cut. Figure 5.14 presents a geodesic active contour without a shape prior and Figures 5.15 with a

shape prior by taking βs = 1/3, βb = 1, βr = 10, µ = 50 and ∆t = 0.1. The active contour on

Figure 5.15 has captured high image gradients and also the missing part thanks to the information

contained in the prior shape model. Figure 5.16 illustrates what happens when only the mean shape

ϕ in the PCA model (Equation (5.1)) is used. In this experiment, the eigenmodes of variation are

essential to get a satisfactory result.
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(a) (b) (c)

(d)

Figure 5.12: The first row presents the evolution of the active contour (in solid line) with a shape

prior (in dotted line). In the second row, we zoom on the left point of the ellipse to show that our

model is able to capture local deformations around the shape prior.

Figure 5.13: Our active contour model (in solid line) with a shape prior (in dotted line) is robust

w.r.t. an initial active contour and an initial shape prior outside or inside the ellipse.
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Figure 5.14: Evolution of the geodesic active contour without shape prior information.

Figure 5.15: Evolution of the active contour (in solid line) with the shape prior (in dotted line).

Figure 5.16: Result obtained using only the mean shape ϕ in the PCA model (Equation (5.1))

without the eigenmodes of variation.

Thus, our shape-based active contour model can segment objects with missing information, oc-

clusion and local shape variations.

5.5.3 Medical Image

In this second experiment, we considered the left brain ventricle and its training set of 45 shapes.

The alignment process, done by genetic programming, took around 1 minute per 128×128 ventricle.

The decomposition into principal components needed a few seconds and, as in the case of ellipses

described in the previous section, the computation of a new shape according to Equation (5.1) took

around 10−3 second and the spatial transformations done with the B-splines programming around

10−3 second. In the experiments, from Figure 5.17 to Figure 5.21, the segmentation including shape

and pose parameters took around 5 minutes.

We use our segmentation model to capture the left brain ventricle. Figure 5.17 presents the

evolving geodesic active contour without a shape prior and Figure 5.18 with a shape prior by choos-

ing βs = 2, βb = 1, βr = 100, µ = 50 and ∆t = 0.1.



124 Chapter 5. Variational Object Segmentation With Geometric Shape Prior

We observe on Figure 5.18 that the active contour has well captured the left ventricle whereas the

initial contour was around the two ventricles. This segmentation result could not be obtained with-

out a shape prior with the same initial contour as shown on Figure 5.17. The segmentation model

has also provided the shape of the model which best fits the ventricle lying in the image.

Figure 5.17: Evolution of the geodesic active contour without shape prior information.

Figure 5.18: Evolution of the active contour (in solid line) with a shape prior (in dotted line).

Figure 5.19: Evolution of the region-based active contour of Vese and Chan [179] in the presence

of an occlusion.

Figure 5.18 illustrates the Section 5.3.3 remark: in this case, the MS model applied on the active

contour will separate both ventricles (that form a homogeneous intensity region) from the rest of

the white matter. The shape force will be then opposed to the region force since the shape force

will pull the active contour inside the right ventricle towards the left ventricle whereas the MS force

will constrain the active contour to stay on the border of ventricles. Our model avoids this situation

since region-based forces are only applied on the contour of the shape prior and not on the active

contour itself.

For Figures 5.19, 5.20 and 5.21, we followed the experiments done by Cremers-Tischhäuser-

Weickert-Schnörr in [62, 66]. Indeed, we added an occlusion bar on Figures 5.19 and 5.20 and an
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Figure 5.20: Evolution of the active contour (in solid line) with a shape prior (in dotted line) in

the presence of an occlusion.

Figure 5.21: Evolution of the active contour (in solid line) with a shape prior (in dotted line) in

the presence of an important quantity of noise.

important amount of noise on Figure 5.21. Figure 5.19 shows the evolution of the region-based

active contour of Vese-Chan [179] which fails to segment the left ventricle. Hence, a shape-based

term is essential to successfully segment the ventricle as shown on Figures 5.20 and 5.21.

5.6 Discussion

The active contour obtained from the minimization of the energy functional defined in Equation (5.4)

is able to capture high image gradients and a homogeneous intensity region which shape matches the

object of interest. We have seen on Figures 5.15 and 5.12 that the shape information allows us to

solve the problems of missing information/occlusion while being sensitive to local shape variations.

Indeed, small deformations are allowed around the zero level set of the shape function on a distance

that depends on the relative weight βs/βb. These complex deformations are easier to handle in the

level set framework, thanks to its intrinsic representation, than parametric ones [59, 66].

As we mentioned previously, the proposed segmentation model can be seen either as an extension

of the model of Chen et al. [45] where we have introduced the shape model of Leventon-Grimson-

Faugeras [113] and the Mumford-Shah model [179] or as an energy formulation of the model of

Leventon with the MS energy functional. Using the variational formulation of Chen et al. enables

us to prove in the previous section the existence of a solution minimizing our energy functional in

the space of functions with bounded variation. Finally the region term based on the Mumford-Shah

functional increases the speed of convergence toward the solution and also improves the robustness

of the model w.r.t. the initial condition, noise and complex background.

The PCA shape model we use in our segmentation method presents a good compromise when

compared to other models. First, the computation of the p principal components which are orthonor-
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mal basis functions is straightforward and fast, using the singular values decomposition method.

These functions are then used to produce new shapes of the object of interest according to a sim-

ple linear equation. The number p of principal components, i.e. the number of the shape model

parameters, is often small as we have noticed for the ellipse (see Figure 5.1) that needs only one

principal component or for the left brain ventricle (see Figure 5.3) with three principal components.

Thus, global shape variations are modeled by a small number of variables which greatly reduces

the complexity of the problem, when compared e.g. to Paragios-Rousson-Ramesh model [135, 138].

Indeed, their shape model generates more complex shapes than the PCA but the p shape parameters

of the PCA model is replaced in their work by a local deformation field to be evaluated on a δ-band

around the zero level set of the shape function.

Note that the shapes produced by the PCA are obviously implicit and intrinsic, i.e. independent

of the parametrization, which facilitates the morphing and the registration processes. However,

shape functions provided by the PCA are not exactly SDFs as proved by Leventon in [111]. Never-

theless, shape functions of the PCA are very close to SDFs, which allow us to use them in practice.

The same remark holds for spatial transformation applied on the shape function. The shape func-

tion after an affine transformation is (in general) not a distance function. So, the family of shapes

obtained by affine transformations is no longer an equivalent class w.r.t. Equation (5.1) and the

shape term defined in Equation (5.5). The previous observations lead to the following condition

to successfully use the morphing and the registration processes defined in Equation (5.5): a point

belonging to the shape function constructed by the PCA or computed by a spatial transformation

must see its height continuously decreasing when moving towards the zero level set even if its gra-

dient is not exactly in the normal direction of the zero level set. Fortunately, we experimentally

noticed that all shape functions generated by the PCA and changed by an affine transformation

satisfy this condition. The shape functions given by the PCA are thus not accurate SDFs but there

are two ways to obtain exact SDFs (and have a strict equality in Equation (5.1)). Either the shape

function is projected in the SDFs space by re-distancing ϕ̂ as a SDF or the framework of Charpiat-

Faugeras-Keriven [43] can be used to define a mean and principal modes of variation for distance

functions.

In our segmentation model, we have to compute the transformation and shape parameters. How-

ever, Cremers-Tischhäuser-Weickert-Schnörr-Kohlberger in [59, 66] have defined two shape energies

independent of the rigid transformations and the shape parameters. This means that their segmen-

tation model did not have to compute the vector of the rigid transformations xST and the vector

of shape parameters xpca with Equations (5.30) and (5.31) since the correct pose parameters are

automatically estimated and the shape parameters can be extracted by projection on the respective

eigenmodes. Thus, is it really useful to estimate the registration parameters xST and the shape

parameters xpca? It depends on two questions: does the current application need to compute trans-

formation and shape parameters and are affine or non-rigid transformations necessary? If the answer

is positive for one of these questions, the estimation of these parameters will be imperative. Let

us cite [20, 45] as examples, the transformation parameters are used to align time series images in

order to minimize the effect of motion on the fMRI signal.

Recently and posterior to our publications [29] and [26], Rousson-Paragios-Deriche [154] present-

ed a model to extract structures of interest similar to ours. Indeed, they also proposed to integrate

the implicit shape prior of Leventon-Grimson-Faugeras [113] in a variational level set framework to

derive two minimizing flows on the level set function representing the active contour and on the
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spatial transformations. Finally, the shape vector is computed by solving a linear equation system.

We notice that the shape-based functional of Rousson-Paragios-Deriche is similar to ours because it

corresponds to the sum of square differences (SSD) between the active contour and the zero level set

of the implicit shape prior. Indeed, their shape-based functional minimizes the difference between

the level set function embedding the active contour and the level set-based shape prior weighted by

the Dirac function applied to the level set function of the active contour. The difference between

both works is the region-based functional. Rousson-Paragios-Deriche proposed to add the model of

geodesic active regions to the shape-based functional. However, as explained in Section 5.3.3, since

our objective is to capture an object belonging to a given shape space then we think that the best

solution is to apply directly the region-based force on the contour of the shape prior as we did.

Concerning the computation of the shape vector xpca, i.e. the mode weights of the PCA. The compu-

tation of the mode weights is probably more efficient with Rousson-Paragios-Deriche [154] than ours

since their technique provides the optimal mode weights at each iteration which minimizes the shape

difference between the active contour and the shape prior. Our model does not directly provide the

optimal mode weights at each iteration since it is a gradient descent flow, i.e. a local minimization

technique. However, at the end of the segmentation/registration process, our technique will provide

the optimal mode weights which minimizes the difference between the active contour shape and

the shape prior. Moreover, the way of computing the xpca in the approach of [154] is given by

an independent stage (solving a linear system) of the minimization energy functional w.r.t. xpca
which means that no mathematical theories can be applied to prove the existence of a solution by

opposition to our approach (see Section 5.4).

Finally, by using a variational framework and the PDEs attached to it, we can consider other

models such as [13, 42, 99, 106, 132, 151, 179] to segment objects by linearly combining energy

functionals or the PDEs directly.

5.7 Conclusion

In this chapter, we proposed a new variational method to solve the fundamental problem of object

segmentation using local and global image information with a geometric shape prior given by the

model of PCA. To reach this objective, we have defined in Section 5.3.2 a shape-based functional to

force the active contour to get a shape of interest whatever the position of the active contour in the

image. Then in Section 5.3.3, we proposed a Mumford and Shah-based functional to drive globally

the shape model toward a homogeneous intensity region with the shape of interest. Experimental

results showed that our active contour is able to solve the problems of missing information and

occlusion while being sensitive to local shape variations.

The shape model we used is the PCA model. As explained in Section 5.6, this model presents a

good compromise between low complexity and acceptable shape priors. However, this model works

well only if the probability density of the training set of the object of interest is Gaussian. If the

true underlying probability density of the training set is not Gaussian (in presence of tumors in

T1-WMR images for example) then more elaborated techniques such as non-parametric models are

necessary.

We note that the proposed model can capture only one object, which is a limitation since we

loose the powerful property of the level set approach that can segment several objects simultaneous-
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ly. A first solution to handle multiple objects would consist in associating structures by coupling the

evolution equations. Another solution would be to use the recent work of Cremers-Sochen-Schnörr

[64, 65] who proposed in the context of variational level set methods a labeling function to indicate

where to apply the shape prior in a given image.

This chapter introduced an image segmentation model to extract semantic objects which shape is

known. In other words, we defined a new shape recognition algorithm. However, in some situations,

some shape priors are very complex, such as the brain cortical surface, which makes difficult the

shape recongition task. In this context, a multiscale representation of the shape prior could help

to detect complex objects in a robust way. This multiscale shape recognition should have to be

coupled with a multiscale image segmentation. Thus, we propose in the next chapter a multiscale

segmentation model.
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In this chapter, we propose to define a multiscale image segmentation

model to extract structures at different scales of observation/resolution

simultaneously. The intrinsic multiscale nature of images is well-known

since the original works of Iijima [183], Witkin [185] and Koenderink

[109] who proposed a space to represent images at multiple scales of ob-

servation, called scale space. The segmentation model we will define is

based on the active contour model, introduced in Sections 2.1 and 2.2.

More precisely, we will introduce the concept of scale in the snake/active

contour framework in order to define an evolution equation for the ac-

tive contours in scale spaces which are basically non-Euclidean spaces.

This non-Euclidean geometry and the special relation between space and

scale/time is handled with the framework proposed by the Polyakov action [143] that was firstly de-

fined in high energy physics for the string theory, which basically tries to unify the four fundamental

forces of nature. Then, Sochen-Kimmel-Malladi [167] introduced this physics-based framework in

image processing to efficiently denoise multi-dimensional images such as color and texture images.

The mathematical framework used in the Polyakov action is the differential geometry that is efficient

to intrinsically describe the scale spaces such as the linear/Gaussian scale space, the Perona-Malik

scale space and the mean curvature scale space. Finally, potential applications of this technique is in

shape analysis. For example, our multiscale segmentation technique can be coupled with the shape

recognition and the shape registration algorithms to improve their robustness and their performance.

6.1 Multiscale Nature of Images

A very important concept in the physics world is the scale. When we look at real-world images, we

realize that they are naturally composed of objects which are meaningful only at a given scale of

129
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observation. As example [114], let us consider the forest picture 6.1.

Figure 6.1: Illustration of multiscale images. At fine scales (little white circle), leaves are signif-

icant, at intermediate scales, trees are relevant (large white circle) and finally at large scales, the

whole forest is significant.

At very fine scales of observation (centimeter), the leaves are the significant objects, at inter-

mediate scales of observation (meter), the trees are the meaningful objects and at the large scales

of observation (kilometer), this is the whole forest which is significant. In other words, the way

we perceive the world depends on the scale of observation we use, inspired by the scale principle of

Morse [123]. This observation has a deep impact in physics because different theories have been de-

veloped to observe the very small and the very large scales of the physics world leading to quantum

mechanics and relativity theory. Even the human visual system has integrated the concept of scale

in its way to capture the real-world images since psychophysical and electro-physiological studies

[95, 96, 189] have shown that the retina receives the image signal with a wide range of sampling

apertures/scales [171].

Since natural images are composed of structures at different scales of observation, it is then

natural to define a multiscale representation of an image in order to observe it at these different

scales. Another motivation to develop such a representation is to design methods for automatically

analyzing information and deriving specific applications in computer vision. How can we design a

multiscale image representation or how can we decompose an image at different scales of observa-

tion/resolution? The answer of these questions are scale spaces. The main principle of scale spaces

is to decrease the amount of information in images by simplifying/smoothing objects lying in them,

starting from fine scales and ending to coarse scales. Mathematically speaking, scale spaces are

hierarchical decompositions/representations at a continuum of scales, embedding the original image

I0 : RN → R into a family I : RN × [0,∞[ → R of gradually more simplified versions.

The mathematical methods that generate scale spaces are generally based on partial differen-

tial equations coming from diffusion processes in physics and special mathematical properties and

invariances. For instance, the first scale space that has been discovered by Iijima, Witkin, Koen-

derink [109, 183, 185] is the linear/Gaussian scale space produced by the linear diffusion equation:

∂tI = ∆I, I(t = 0) = I0, which satisfies the conditions of linearity, causality, semi-group property,

maximum principle, non-creation of local extrema at larger scales (this holds only for 1-dimensional

signals), translation, rotation and scale invariances. Many other scale spaces can be defined from

(non-linear) PDEs, satisfying different properties, such as the scale spaces produced by the Perona-

Malik model [141], the mean curvature flow [4, 129, 159], the total variation functional [155] and

others presented in Section 2.5.
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Finally, let us mention that the theory of scale spaces is a young theory that is constantly under

development but with strong mathematical bases. First applications of this theory have been to

develop primitive differential operators which can change their scales of resolution to fit different

unknown scales of real-world objects lying in images and thus extract specific local information

from images such as edges, ridges and corners [78, 114, 172]. In the following work, we propose a

multiscale image segmentation model to extract multiscale structures in scale spaces.

6.2 Why defining a Multiscale Image Segmentation Model?

In the previous section, we underlined the multiscale nature of real-world images that contain ob-

jects/structures meaningful at given scales of observation. These multiscale structures are linked

through the scale because fine structures are included into coarser structures in a semantic way

such as leaves are a part of trees, which are also a part of a forest, Figure 6.1. Hence, we propose

to capture these structures at different scales of observation simultaneously to combine information

from fine scales to coarse ones. This will be the objective of this chapter.

This chapter aims at defining a multiscale image segmentation model based on the active con-

tour model and scale spaces. In other words, we want to introduce the concept of scale in the active

contour formalism [35, 103, 105] to define an object multiscale segmentation model to capture fine

characteristics at low scales and extract global shape at large scales. Two main questions arise when

we want to design this model. Why do we propose such an image segmentation model? And how

to mathematically define it?

As we said in Section 6.1, defining a multiscale image segmentation model makes sense because

images are multiscale by nature. Moreover, any application such as image segmentation needs to

use an appropriate scale to perform well. However, it is impossible to know a priori which is the

proper scale to get satisfactory results. The appropriate scale can depend on many parameters such

as the given image, the specific application, etc. For example, let us come back to the well-known

segmentation model of active contours, introduced in Section 2.1, and let us consider the standard

deviation σ of the Gaussian function Gσ in the edge detecting function f(I0) = 1
1+γ|∇(I0∗Gσ)|2 as

the scale parameter of the model. Indeed, let us observe Figure 6.2. If the scale parameter σ is too

small, the active contour gets stuck in noise (Figure 6.2(b)) and if the scale is too large, the snake

is not able to capture corners (Figure 6.2(d)). However, an appropriate scale can give satisfactory

result as shown on Figure 6.2(c). The problem is that the proper scale is not a priori known before

the segmentation process. Hence, different results with different values of σ have to be tested to

determine the correct scale. One solution to handle this issue is to work at different scales, which is

possible with a multiscale image segmentation, and pick up a posteriori the scale (or several scales)

that looks like the most interesting for the given application.

Another reason to develop a multiscale image segmentation model is to improve two classical

applications in image analysis: the shape recognition task and the shape registration process. Indeed,

the recognition of an object at different scales of observation would be able to improve the identifi-

cation task. More precisely, combining a multiscale shape prior such as the multiscale medial axis

called cores and developed by Pizer-Eberly-Morse-Fritsch [142], with our mutiscale segmentation

model could provide an efficient multiscale recognition method. Moreover, a multiscale image seg-

mentation model provides a multiscale shape representation that can be useful to register complex
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(b) σ1: small scale (c) σ2 > σ1: correct

scale

(d) σ3 > σ2: large

scale

Figure 6.2: Illustration of the scale concept in the active contour model. If the scale parameter

is too small, the contour gets stuck in noise, Figure 6.2(b) and if the scale is too large, the snake

looses the corners , Figure 6.2(d). However, there exits a correct scale for this problem that gives us

a satisfactory result, Figure 6.2(c).

geometric shapes such as the brain cortical surface. Special metrics defined in multiscale spaces can

be used to efficiently compare shapes at different scales of resolution.

Many multiscale image segmentation models have already been proposed such as the one of

Schnabel-Arridge in [161] who proposed a method to extract scale by scale the shape of objects.

Then, they used the extracted multiscale shapes to localize and characterize shape changes at dif-

ferent levels of scale. They applied their model to segment 3-D brain magnetic resonance images

in order to quantify the structural deformations for patients having epilepsy. However, the main

issue concerning this approach is the relation between space and scale/time that is not taken into

account in [161]. We propose to solve this issue by using special metric tensors to characterize the

interdependence between space and scale.

As we previously wrote, the segmentation method that we will use in our work is the active

contour model. If we want to define a multiscale image segmentation model based on the active

contour framework, then we need to define an evolution equation for active contours evolving in

scale spaces. The question is how to introduce the active contours into scale spaces. An answer is

given by the fascinating work of Sochen-Kimmel-Malladi [167] concerning the string theory and the

Polyakov action.

6.3 Weighted Polyakov Action

As we explained and developed in Section 2.5, Sochen-Kimmel-Malladi proposed in [166, 167] a new

framework to deal with low level processing in vision. Their new point of view considers images as

surfaces embedded in higher dimensional space such as on Figure 6.3.
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(a) 2-D image (b) Same image in 3-D

Figure 6.3: Figure (a) presents a classic 2-D grey-scale image and Figure (b) represents the same

image as a surface embedded in a 3-D space.

They derived the Beltrami flow to efficiently denoise multi-dimensional images such as color and

texture images [108]. The Polyakov action is basically a functional that measures the weight of a

mapping X between an embedded manifold (the image manifold) Σ and the embedding manifold

M (see Figure 6.4).

Figure 6.4: The manifold Σ embedded in M , reproduced from [167].

It is defined as follows:
{

P (X,Σ,M) =
∫
dnΣς g1/2gµν∂µX

i∂νX
jhij

X : (Σ, [gµν ]) → (M, [hij ])
(6.1)

where [gµν ] is the metric tensor/first fundamental form [110] of the manifold Σ, dnΣς is the inte-

gration element with respect to (w.r.t.) the local coordinates on Σ, [hij ] is the metric tensor of

the embedding space M , nΣ is the dimension of Σ, nM the dimension of M , [gµν ] is the inverse

metric of [gµν ], g is the determinant of [gµν ], µ, ν = 1, ..., nΣ, i, j = 1, ..., nM and ∂µX
i = ∂Xi/∂ςµ.

Moreover, when identical indices appear one up and one down, they are summed over according to

the Einstein summation convention.

In [166, 167], Sochen-Kimmel-Malladi observed that the Polyakov action (6.1) is able to recov-

er/generalize most of the existing scale spaces, from the linear scale space to the curvature scale

space. This justifies the title of their paper since the Polyakov functional provides a single equation

to generalize most of scale spaces fundamental in low level vision. In our work, we continue on in-

vestigating the Polyakov action. We will extract from it the well-known image segmentation model



134 Chapter 6. Multiscale Active Contours

of active contours/snakes evolving in Euclidean spaces. Then, we will extend the original model to

scale spaces by defining an evolution equation for active contours propagating in these spaces.

First of all, a weighting function f is introduced in the functional (6.1) leading to the weighted

Polyakov action:

Pf (X,Σ,M) =

∫

dnΣς f(X, gµν , hij) g
1/2gµν∂µX

i∂νX
jhij , (6.2)

Then, the weighted Polyakov action (6.2) is minimized w.r.t. the l-th embedding coordinate X l

using the Euler-Lagrange equations technique, gµν and hij being fixed. The flow acting on X l is

then as follows:

∂X l

∂t
= f ·

(

g−1/2∂µ(g
1/2gµν∂νX

l) + Γljk∂µX
j∂νX

kgµν
)

+ ∂kfg
µν∂µX

k∂νX
l − nM

2
hlk∂kf g

1/2gµν∂µX
i∂νX

jhij , for 1 ≤ l ≤ nM , (6.3)

where g−1/2∂µ(g
1/2gµν∂νX

l) is the Beltrami operator which generalizes the Laplace operator to

non-flat manifolds and Γljk = 1
2g
li(∂jgik + ∂kgji − ∂igjk) is the Levi-Civita connection coefficients

[110].

The metric tensor [gµν ] of the embedded manifold Σ is chosen to be the induced metric tensor:

[gµν ] = ∂µX
i∂νX

jhij , presented in Section 2.5. This choice of metric tensor means that the map

X are harmonic maps such as geodesics and minimal surfaces and the weighted Polyakov action is

reduced to the weighted Euler functional/Nambu action that describes the (hyper-)area of a (hyper-

)surface Σ:

Sf =

∫

dnΣς f g1/2, (6.4)

where g1/2 is the square root of the determinant of [gµν ] which corresponds to the infinitesimal

invariant-area on Σ. It is consistent to work with harmonic maps when we try to recover the model

of active contours/snakes [35] because this model also works with harmonic maps, more precisely

with geodesics. The induced metric tensor is introduced in the flow (6.3), which yields to:







∂Xl

∂t = fHl + ∂kfg
µν∂µX

k∂νX
l − nM .nΣ

2 ∂kfh
kl,

Hl =
(

g−1/2∂µ(g
1/2gµν∂νX

l) + Γljk∂µX
j∂νX

kgµν
)

gµν=∂µXi∂νXjhij

(6.5)

for 1 ≤ l ≤ nM and H is the mean curvature vector generalized to any embedding manifold M .

Functional (6.4) and its minimization flow (6.5) are the general equations to recover the classical

model of active contours and to derive the new model of multiscale active contours. Let us start

by recovering the model of geodesic/geometric active contours and its level set version presented in

Sections 2.2 and 2.3.2.

Application 1: The geodesic/geometric active contours model [35, 105] evolving in a 2-D Euclidean

space is recovered by choosing the following mapping and metric tensor of the embedding space M :

{

X := C : q → (x(q), y(q))

[hij ] = [δij ]
(6.6)
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Introducing (6.6) in (6.4) and (6.5), we get:

{

Sf = FGAC =
∫

C
fds

∂tC = (fκ− 〈∇f,N〉)N ,

which corresponds to the energy (2.5) and the evolution equation (2.8) of the geodesic/geometric

active contours model studied in Section 2.2.

Application 2: The evolution equation of the level set version of the geodesic/geometric active

contours model can also be revisited by choosing

{

X : (x1, ..., xn) → (x1, ..., xn, φ)

[hij ] = [δij ]
(6.7)

Introducing (6.7) in (6.4) and (6.5), we get:







Sf =
∫
f
√

1 + |∇φ|2 ∏

1≤i≤n
dxi

∂tφ = 1√
1+|∇φ|2

∇.
(

f ∇φ√
1+|∇φ|2

)

= 1√
1+|∇φ|2

(

fKES + 〈∇f, ∇φ√
1+|∇φ|2

〉
)

,
(6.8)

where KES = ∇.
(

∇φ√
1+|∇φ|2

)

corresponds to the mean curvature of the surface Σ embedded in an

Euclidean space (ES). For 2-D surfaces Σ, it is equal to:

KES =
(1 + φ2

x)φyy − 2φxφyφxy + (1 + φ2
y)φxx

(1 + φ2
x + φ2

y)
3/2

, (6.9)

It is important to notice that the mean curvature KES is different to the mean curvature κ =

∇.
(

∇φ
|∇φ|

)

of the level sets of φ in the classical model 2.3.1. We also observe that equations (6.8) are

not exactly the corresponding formula of the level set version of the active contours model which

are as follows:






F =
∫
f |∇φ| ∏

1≤i≤n
dxi

∂tφ = ∇.
(

f ∇φ
|∇φ|

)

= fκ+ 〈∇f, ∇φ
|∇φ| 〉.

(6.10)

However, the behavior of the segmentation model (6.8) is similar to the classical model (6.10) up to

a function, called r(φ), that depends on the height variation on the surface Σ. Let us compute this

function for 2-D surfaces Σ. The flow (6.8) acting on the level set component φ can be re-written

in the following way:

∂tφ = g
−1/2
ES (fKES + 〈∇f,∇φ〉)

︸ ︷︷ ︸

=:FES

, (6.11)

where gES = 1 + |∇φ|2. Equation (6.11), ∂tφ = g
−1/2
ES FES , implies that the surface Σ evolves

according to ∂tX = FESNΣ where NΣ = g
−1/2
ES (−φx,−φy, 1) is the unit normal to Σ. This means

that the level sets of φ move according to the equation:

∂tC = PφXt = g
−1/2
ES |∇φ|
︸ ︷︷ ︸

=:r(φ)

FES N (6.12)

=
(
fKESr(φ) − 〈∇f,N〉r2(φ)

)
N (6.13)
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where Pφ = I − Nφ⊗Nφ

|Nφ|2 ,Nφ = (0, 0, 1) is a projector operator onto the plane normal to the φ-axis,

N = −∇φ/|∇φ| is the unit normal to the level sets and the function r(φ) is equal to g
−1/2
ES |∇φ|. The

equation (6.13) is close to the evolution equation (2.8) of the geodesic/geometric active contours

∂tC = (fκ− 〈∇f,N〉)N up to the surface mean curvature KES and the function r. However, both

evolution equations have the same behavior, i.e. smoothing and attraction toward edges. Function

r can be interpreted as an indicator of the height variation on the surface Σ (see [15]). Indeed, g
−1/2
ES

is the ratio between the area of an infinitesimal surface in the domain (x, y) and the corresponding

area on the surface Σ. For flat surfaces, r is equal to 0 and it is close 1 near edges. Finally, the

function r is constant almost everywhere when φ is a signed distance function.

Equations (6.4) and (6.5) allowed us to recover the model of active contours/snakes in the explicit

and the implicit representations. Both representations, the contour C and the level set function φ,

were embedded/evolved in Euclidean spaces defined by the Euclidean metric tensor [hij ] = [δij ].

However, Equations (6.4) and (6.5) were established for general embedding Riemannian manifolds

M . Hence, it is possible to change the embedding space for the active contours and consider the

scale spaces. The natural next question is which scale spaces can be used in our framework? The

question was answered by Eberly in [70, 71] who defined a family of scale spaces that includes the

linear scale space, the Perona-Malik scale space and the curvature scale space.

6.4 Scale Spaces

In [70, 71], Eberly studied the geometry of a large class of scale spaces and defined for them the

general metric tensor:

[hij ] = diag

(
1

c2
In,

1

c2ρ2

)

, (6.14)

where n is the spatial dimension, In is the n × n identity matrix, c and ρ are two functions that

physically correspond to the conductance and the density functions in the general model of heat

diffusion transfer. These functions can depend on space, scale and image data. As Eberly said in

[70], the natural diffusion equation in any space defined by a metric tensor is obtained as follows:

the left-hand side of the diffusion equation is given by one application of the scale derivative and the

right-hand side by two applications of the spatial derivative. In the case of scale spaces, defined by

the metric tensor (6.14), the scale derivative and the spatial derivative are given by the scale space

(SS) gradient defined by the covariant derivative [110]:

∇SS :=

√

[hij ]
−T∇? =




c∂x1

, . . . , c∂xn
︸ ︷︷ ︸

spatial derivative

, ρc∂σ
︸ ︷︷ ︸

scale derivative




 = (c∇, ρc∂σ) (6.15)

where [hij ] is the inverse tensor of [hij ], T means the transpose operator, [hij ]−T := ([hij ]−1)T and

∇? := (∂x1
, . . . , ∂xn

, ∂σ) = (∇, ∂σ) where ∇ stands for the Euclidean space gradient. Hence, the

natural diffusion equation is defined by

(ρc∂σ) I = (c∇) · (c∇) I, (6.16)

∂σI =
1

ρ
∇ · (c∇I). (6.17)

Equation (6.17) is the general model of heat diffusion transfer that generates different multiscale

image representations, i.e. scale spaces, by applying a PDE which is a non-linear anisotropic diffu-
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sion equation in its general expression.

Different choices of the functions c and ρ give different scale spaces with different diffusion

equations (6.17). It is interesting to notice that most of popular scale spaces can be recovered,

which emphasizes well the close relation between multiscale image analysis/scale space and diffusion

processes that originate from physics. As a first example, let us consider the linear scale space

obtained when c = σ (the scale parameter) and ρ = 1. The diffusion equation is then:

∂σI = σ∆I. (6.18)

In [70], Eberly studied in details the linear scale space produced by the previous PDE and proved

that it is hyperbolic and translation, rotation and scale invariant. Let us apply the scale space

Equation (6.18) to the 2-D fractal image proposed by Von Koch on Figure 6.5. The linear scale

space of the given image, corrupted with additive Gaussian noise, is presented on Figure 6.6.

Figure 6.5: 2-D fractal image proposed by Von Koch.

Then, the linear scale space of the brain magnetic resonance images, Figure 6.7, is also generated

on Figure 6.8.

Another well-known scale space can be derived from the metric tensor (6.14) and the associated

multiscale generation process (6.17), this is the Perona-Malik scale space [141] obtained when c =

exp(−α|∇I|2), α > 0 and ρ = 1:

∂σI = ∇.(c∇I), (6.19)

which applies a non-linear anisotropic diffusion process which inhibits diffusion across edges, see

Section 2.5. The third possible scale space is the space produced by the famous mean curvature

flow which is one of the fundamental equation in image processing [4, 129, 159], Section 2.5. It is

obtained by setting c = ρ = 1
|∇I| , which yields to:

∂σI = ∇.
( ∇I
|∇I|

)

|∇I| = κ|∇I|, (6.20)

where κ is the mean curvature of the level sets of I. Other scale spaces can be derived such as the

scale space produced by the total variation flow [155] with c = 1
|∇I| and ρ = 1:

∂σI = ∇.
( ∇I
|∇I|

)

= κ. (6.21)

Finally, let us finish with the scale space produced by the Beltrami flow of Sochen-Kimmel-Malladi
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(a)

(b) (c) (d) (e)

Figure 6.6: Figure (a) presents the linear scale space of the Von Koch’s picture and Figures (b-e)

show four different scales of observation.

Figure 6.7: 2-D brain magnetic resonance image.

[166, 167] which naturally regularizes multi-dimensional images with c = ρ = 1√
1+|∇I|2

, which gives:

∂σI =
1

√

1 + |∇I|2
∇.
(

∇I
√

1 + |∇I|2

)

= ∆gI, (6.22)

which is equal for 2-D images to

∂σI =
(1 + I2

x)Iyy − 2IxIyIxy + (1 + I2
y )Ixx

(1 + I2
x + I2

y )
2

. (6.23)
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(a)

(b) (c) (d) (e)

Figure 6.8: Figure (a) presents the linear scale space of the 2-D brain image and Figures (b-e)

show four different scales of observation.

6.5 Multiscale Active Contours

In this section, we define the general evolution equation for the active contours in the scale spaces

defined in the previous section. We use the results obtained in Section 6.3 on the weighted Polyakov

action to determine this evolution equation and the associated energy variational model. The har-

monic map X, the metric tensor [hij ] of the embedding scale space and the metric tensor [gµν ] of

the level set surface φ manifold representing the active contour are arbitrary chosen as follows:







X : (x1, ..., xn, σ) → (x1, ..., xn, σ, φ)

[hij ] = diag
(

1
c2 In, 1

c2ρ2 ,
1
c2

)

=: [hSSij ]

[gµν ] = ∂µX
i∂νX

jhij =: [gSSµν ]

(6.24)

where x1, ..., xn are the n spatial components and σ is the scale parameter. Then, the previous

Equations (6.24) are introduced in Functional (6.4) and its minimization flow (6.5):

{

Sf =
∫
dnΣσ f g1/2

∂tX
l = fHl + ∂kfg

µν∂µX
k∂νX

l − nM .nΣ

2 ∂kfh
kl (6.25)

which leads to the energy functional and the evolution equation for the (n+ 2)-th component of X,

i.e. the level set component φ, which embeds the multiscale active contour (MAC):
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EMAC =
∫
f
√

1 + |∇φ|2 + ρ2φ2
σ

∏

1≤i≤n
dxi

c
dσ
cρ

∂tφ = g
−1/2
SS fKSS + 〈∇x,σf,∇x,σφ〉[gµν

SS ]

(6.26)

where f = f(x1, ..., xn, σ), gSS = 1
c2(n+1)ρ2

(1 + |∇φ|2 + ρ2φ2
σ) is the determinant of [gSSµν ],

∏ dxi

c
dσ
cρ

corresponds to the infinitesimal invariant volume in the scale spaces defined by the metric tensor

(6.14), ∇x,σ := (∇, ∂σ), 〈., .〉[gµν
SS ] is the inner product in manifolds (Σ, [gµνSS ]) such that

〈V1, V2〉[gµν
SS ] := V T1 [gµνSS ]V2 = V1µg

µν
SSV2ν , (6.27)

and KSS is the (n+ 2)-th component of the mean curvature vector (6.5) (up to g−1/2) generalized

to scale spaces:

KSS =
(

∂µ(g
1/2gµν∂νX

l) + g1/2Γljk∂µX
j∂νX

kgµν
)

gSS
µν =∂µXi∂νXjhSS

ij

. (6.28)

By analogy with Section 6.3, we look for the evolution equation of the level sets of φ which zero

level set represents the multiscale active contour. The evolution equation of the level set function φ

can be re-written as follows:

∂tφ = g
−1/2
SS fKSS + 〈∇x,σf,∇x,σφ〉[gµν

SS ] (6.29)

= g
−1/2
ES

(√
gES
gSS

fKSS +
√
gES〈∇x,σf,∇x,σφ〉[gµν

SS ]

)

︸ ︷︷ ︸

=:FSS

, (6.30)

where gES = 1 + |∇x,σφ|2. Same remark as in Section 6.3, Equation (6.30) of the level set function

∂tφ = g
−1/2
SS FSS implies that the surface Σ evolves according to ∂tX = FSSNΣ where NΣ is the unit

normal to Σ and the level sets of φ move according to the equation:

∂tC = PφXt =
(
fKSSrSS(φ, c, ρ) − 〈∇�f,N〉r2SS(φ, c, ρ)

)
N , (6.31)

where operator ∇� = 1
c2ρ2 (∇, ρ2∂σ), N = −∇x,σφ/|∇x,σφ| and the function rSS is equal to

|∇x,σφ|/gSS in this case.

In the rest of this section, we develop some equations for n = 2, i.e. 2-D images, that will use to

experiment our multiscale segmentation model. The harmonic map X and the metric tensor [hSSij ]

of embedding scale spaces for n = 2 have the following form:

{
X : (x, y, σ) → (x, y, σ, φ)
[
hSSij

]
= diag

(
1
c2 ,

1
c2 ,

1
c2ρ2 ,

1
c2

) (6.32)
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Then, the metric tensor [gSSµν ], its determinant gSS and its inverse metric [gµνSS ] are as follows:






[
gSSµν

]
= 1

c2






1 + φ2
x φxφy φxφσ

φxφy 1 + φ2
y φyφσ

φxφσ φyφσ
1
ρ2 + φ2

σ






gSS = 1
c6ρ2 (1 + φ2

x + φ2
y + ρ2φ2

σ)

[gµνSS ] = 1
g

1
c4ρ2






1 + φ2
y + ρ2φ2

σ −φxφy −ρ2φxφσ
−φxφy 1 + φ2

x + ρ2φ2
σ −ρ2φyφσ

−ρ2φxφσ −ρ2φyφσ ρ2(1 + φ2
x + φ2

y)






(6.33)

The energy functional of the multiscale active contours for n = 2 is

ESSMAC =

∫

f
√

1 + φ2
x + φ2

y + ρ2φ2
σ

dxdydσ

c3ρ
(6.34)

The general evolution equation of multiscale active contours for n = 2 is very long! Hence, it is

easier to develop the evolution equation of active contours in specific scale spaces. In this work, we

choose to use the most well-known scale space, i.e. the linear scale space. But other scale spaces can

be used in our segmentation framework. In the future, it will be interesting to develop the curvature

scale space which efficiently preserve multiscale edges to carry out the shape recognition task.

6.6 Active Contours in the Linear Scale Space

The first natural application of the previous multiscale segmentation model is in the linear scale

space, obtained when the conductance function is equal to c = σ (the scale parameter) and the

density function equal to ρ = 1. We consider the case n = 2 of 2-D images. In this situation, the

harmonic map X, the metric tensors [hLSSij ], [gLSSµν ] and [gµνLSS ] are as follows:







X : (x, y, σ) → (x, y, σ, φ)

[
hLSSij

]
= 1

σ2 I4

[
gLSSµν

]
= 1

σ2






1 + φ2
x φxφy φxφσ

φxφy 1 + φ2
y φyφσ

φxφσ φyφσ 1 + φ2
σ






gSS = 1
σ6 (1 + φ2

x + φ2
y + φ2

σ)

[gµνLSS ] = 1
g

1
σ4






1 + φ2
y + φ2

σ −φxφy −φxφσ
−φxφy 1 + φ2

x + φ2
σ −φyφσ

−φxφσ −φyφσ 1 + φ2
x + φ2

y




 ,

(6.35)

which implies that the energy of the multiscale active contour in the linear scale space is equal to:

ELSSMAC =

∫

f
√

1 + φ2
x + φ2

y + φ2
σ

dxdydσ

σ3
, (6.36)
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and the flow applied on the level set function φ (embedding the active contour) is:

∂tφ = g
−1/2
LSS fKLSS + g−1

LSS

1

σ2
〈∇x,σf,∇x,σφ〉LSS , (6.37)

where KLSS is the mean curvature in the linear scale space computed using Equation (6.28):

KLSS = g
−1/2
LSS

φµν
σ6

gµνLSS
︸ ︷︷ ︸

(1)

− 3g
1/2
LSS

φµ
σ
gµσ

︸ ︷︷ ︸

(2)

. (6.38)

The first part of the mean curvature (6.38.1) in the linear scale space corresponds to the Euclidean

part because the Euclidean mean curvature is equal to g
−1/2
ES φµνg

µν
ES when σ = 1, and the second

term (6.38.2) corresponds to the Riemannian part. More explicitly, Equation (6.38) is equal to:

KLSS =
1

σ
(1 + φ2

x + φ2
y + φ2

σ)
−3/2 ·

[
φxx(1 + φ2

y + φ2
σ) + φyy(1 + φ2

x + φ2
σ)+

φσσ(1 + φ2
x + φ2

y) − 2φxyφxφy − 2φxσφxφσ − 2φyσφyφσ
]

−3
1

σ2
(1 + φ2

x + φ2
y + φ2

σ)
−3/2 · φσ (6.39)

Finally, 〈·, ·〉LSS in Equation (6.37) is the inner product in the linear scale space defined by

〈V1, V2〉LSS = 1
σ2 〈V1, V2〉 such that:

1

σ2

1

gLSS
〈∇x,σf,∇x,σφ〉LSS =

σ2

1 + φ2
x + φ2

y + φ2
σ

(fxφx + fyφy + fσφσ). (6.40)

6.7 Multiscale Image Features

The previous sections introduced the segmentation model of multiscale active contours which is

able to extract multiscale objects in multiscale images. The extraction process is based on a

PDE (6.26) defining an evolution equation for hyper-surfaces in non-Euclidean manifolds, the

scale spaces, which capture multiscale image features represented by the function f in the flow

∂tφ = g
−1/2
SS fKSS + 〈∇x,σf,∇x,σφ〉[gµν

SS ]. Which are the possible functions f to capture local multi-

scale edges?

6.7.1 Classical Multiscale Edge Detecting Function

By analogy with the classical model of geometric/geodesic active contours [35, 103, 105], the most

common multiscale edge detecting function to capture multiscale structures is based on the norm of

the image gradient:

f =
1

1 + β|∇SSI(x1, . . . , xn, σ)|2 , (6.41)

where β is an arbitrary positive parameter, ∇SS is the scale space gradient defined in Equation

(6.15) such as |∇SSI| = (c2I2
x1

+ . . . + c2I2
xn

+ c2ρ2I2
σ)

1/2 and I is a multiscale image obtained by
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applying a PDE such as (6.18),(6.19),(6.20), (6.21) or (6.22) on a given image I0. The definition of

the edge detecting function (6.41) is easy to establish without technical particularities. However, it

is possible to define an enhanced multiscale edge detecting function with the work of Eberly [71] who

studied many image features in a strong mathematical framework based on differential geometry.

In our approach, we will consider special image features called ridges.

6.7.2 Multiscale Edge Detecting Function Based on Ridges

In [71], Eberly explored various ways to detect local image features, called ridges, in n-dimensional

spaces. Ridges play an important role in the characterization of semantic local features. Generally

speaking, ridges are image features of a function which have local maximum in f along the direction

of the greatest concavity [123]. Thus, at a ridge point the direction of greatest curvature is the

cross-ridge direction and the value of the function is greater than the neighboring points on either

side of it. Figure 6.9 illustrates a line of ridge points.

Figure 6.9: Ridges as maxima in the direction of the greatest curvature, reproduced from [123].

Ridges can be defined by different ways [71]. In our approach, we use the definition developed

in Section 2.3 of [71]. A point in an n-D space is an m-D ridge (m < n) of a function F if:

{

λi < 0

〈ei,∇F〉 = 0
for all i < n−m, (6.42)

where (λ1, . . . , λn) with |λ1| ≤ . . . ≤ |λn| and (e1, . . . , en) are the eigenvalues and the corresponding

eigenvectors of the Hessian of F , which is the n × n matrix of the second derivatives of F . The

Hessian is a fundamental quantity in geometry because it is related with the intrinsic geometry of

the n-graph independently of the surface parametrization. It is important to notice that the Hessian

computed in an Euclidean space is different in a Riemannian space. The scale space Hessian ∇2
SS

is obtained according to the following equation [110, 123]:

∇2
SS :=

√
[

hijSS

]−T dc∇x,σf

dcξSS

√
[

hijSS

]−1

, (6.43)

where ξSS = (x1, . . . , xn, σ) and dc∇x,σf
dcξSS

is the covariant derivative of ∇x,σf , which is a second-order

tensor defined by:

dc∇x,σf

dcξSS
=

[

∇x,σ2f −
n+1∑

k=1

Γk(∇x,σf)k

]

, (6.44)
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where ∇x,σ2 stands for the Euclidean Hessian, (∇x,σf)k is the k-th component of ∇x,σf and Γk is

the k-th Levi-Civita connection coefficient of [hijSS ]. In the practical case of 2-D images, i.e. when

n = 2, and considering the linear scale space with c = σ and ρ = 1, then the Hessian, which takes

into account the particular interdependence between space and scale, is equal to [123]:

∇2
LSS =






σ2 ∂2F
∂x2 − σ ∂F∂σ σ2 ∂2F

∂x∂y σ2 ∂2F
∂x∂σ + σ ∂F∂x

σ2 ∂2F
∂x∂y σ2 ∂2F

∂y2 − σ ∂F∂σ σ2 ∂2F
∂y∂σ + σ ∂F∂y

σ2 ∂2F
∂x∂σ + σ ∂F∂x σ2 ∂2F

∂y∂σ + σ ∂F∂y σ2 ∂2F
∂σ2 + σ ∂F∂σ




 . (6.45)

Equations (6.42) and (6.45) allow us to compute multiscale ridges for a function F to be chosen.

In our approach, we decide to extract ridges from the norm of the scale space gradient of the

multiscale image I:

F = |∇LSSI(x, y, σ)| = σ · (I2
x + I2

y + I2
σ)

1/2, (6.46)

using Equation (6.42). The result of this process is a binary function, namely 1ridges(x, y, σ) which

is equal to 1 for ridge points and 0 otherwise. Then, the function 1ridges is multiplied by the

multiscale norm |∇LSSI| to weight the ridge points. Finally, our edge detecting function is given by

the equation:

f =
1

1 + β (1ridges · |∇LSSI|)
, (6.47)

which means that f is equal to 1 on homogeneous regions as in the classical model of geomet-

ric/geodesic active contour [35, 103, 105].

Let us detect some ridge points in the linear scale space of the 2-D fractal image proposed by

Von Koch on Figure 6.5. First of all, the linear scale space of the given image, corrupted with

additive Gaussian noise, is computed and presented on Figure 6.6. Then, the multiscale image

gradient norm is determined on the first row of Figure 6.10. The multiscale ridges of the scale space

norm are determined according to the eigenvalues and the eigenvectors of the Hessian (6.45) and

multiplied by the norm of the scale space image gradient, see second row of Figure 6.10.

6.8 Multiscale Gradient Vector Flow

Section 6.5 proposed a multiscale segmentation flow (6.26) which is able to capture structures (6.41)

and (6.47) in scale spaces defined in Section 6.7. The segmentation process is completely defined

however it is very slow as the process of geometric/geodesic active contours. This is due to the edge

detecting function f and its gradient ∇x,σf in (6.26) which are only ”active” close to object edges.

Indeed, when the active contour is far from edges, the gradient of f is close to zero and f is nearly

equal to 1, which means that only the curvature acts, which is a slow evolution process. When

the active contour is close to edges, then the gradient of f becomes active and attract the snake

toward the edges. The evolution process could be speed up if the active contour was attracted by the

edges in homogeneous/smooth regions. This issue was solved by Xu-Prince in [186] who proposed

a method called the gradient vector flow (GVF) which can extend the multiscale gradient field of f
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Figure 6.10: The first row represents the norm of the scale space gradient of the multiscale image

computed on Figure 6.6 at four scales of observation and the second row presents the ridges of the

scale space image gradient norm.

into smooth regions and also deal with the problem of concave regions. In the following, we firstly

present the original model of Xu-Prince who is designed to work in Euclidean spaces. Then, we will

extend the model to scale spaces.

6.8.1 Gradient Vector Flow in Euclidean Spaces

The gradient vector flow model was originally developed to overcome the issues of contour initializa-

tion and poor convergence to boundary concavities in the geometric/geodesic active contours model

[35, 103, 105]. For example, Figure 6.13 presents an object with concave concavities which can not

be fully segmented with classical geometric/geodesic active contours (even with a balloon force [49])

since the snake can not go inside concave parts of the given object. Moreover, the convergence of the

classical active contours model is slow compared with the method proposed by Xu-Prince in [186]

even if the initial contour is satisfactory. Xu-Prince propose to diffuse/extend the image gradients

into smooth regions while preserving edge forces. Their method is defined in a variational framework

since the GVF field minimizes the following energy functional in the n-D Euclidean space:

FGV FES (V) =

∫

µ

(
n∑

i=1

|∇Vi|2
)

︸ ︷︷ ︸

(1)

+ |∇f |2|V −∇f)2
︸ ︷︷ ︸

(2)

dx, (6.48)

where f(x1, . . . , xn) is the initial data n-D function, V(x1, . . . , xn) = (V1, . . . , Vn) is the gradi-

ent vector field minimizing Functional (6.48) and extending the original gradient of f in homo-

geneous/smooth regions, µ is an arbitrary constant which balances the contributions between the

diffusion and regularization term (6.48.1) and the data fidelity term (6.48.2). Indeed, if µ→ 0 then

the solution is V = ∇f and if µ → ∞ then V is solution of the classic isotropic diffusion equation
∫ ∑n

i=1 |∇Vi|2. Moreover, when the norm of gradient |∇f | is small in (6.48), i.e. in smooth regions,

the term (6.48.2) is also small and Energy (6.48) minimizes the diffusion-based term (6.48.1) by

propagating the vector field V. Inversely, when the norm of gradient |∇f | is large, i.e. on edges, the
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second term (6.48.2) dominates and constraints the vector field V to be equal to the original data

∇f .

The minimization of Energy functional (6.48) is done using the calculus of variations and the

gradient descent method which provide n flows, one per component of the GVF field. The Frechet

derivative of FGV FES w.r.t. Vi in the ξ-direction is

〈∂F
GV F
ES

∂Vi
, ξ〉 =

∫

ξ ·



 −µ





n∑

j=1

∂2
xj
Vi



+ |∇f |2(Vi − ∂xi
f)



 dx, for 1 ≤ i ≤ n. (6.49)

Then, the flow minimizing FGV FES w.r.t. Vi is

∂Vi
∂t

= µ





n∑

j=1

∂2
xj
Vi



− |∇f |2(Vi − ∂xi
f), for 1 ≤ i ≤ n. (6.50)

Let us apply the GVF model to the picture 6.11. Figure 6.12 presents the gradient of the

image 6.11 and the extended image gradient computed with Equations (6.50). Finally, Figure 6.13

illustrates the usefulness of the GVF method since the geodesic/geometric active contours model

which uses the classic image gradient can not fully segment the harmonic boundary whereas the

gradient vector flow allows us to completely segmented the boundary.

Figure 6.11: Object which boundary is an harmonic curve.

(a) (b) (c) (d)

Figure 6.12: Figure (a) and (b) present the gradient of the given image. Figure (c) and (d) show

the extended image gradient using the GVF method. Note that Figures (a) and (d) respectively are

zooms of Figures (a) and (c) respectively.
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(a) (b) (c)

Figure 6.13: Figure (a) presents the initial active contour. Figure (b) is the final contour using the

classic image gradient on Figure 6.12(a) and Figure (c) is the final contour using the GVF method

on Figure 6.12(c).

6.8.2 Gradient Vector Flow in Scale Spaces

The previous section introduced the GVF method which basically extends the image gradient in

homogeneous/smooth regions to faster capture image edges and to deal with concave and convex

object boundaries. The previous method was defined in n-D Euclidean spaces but we will generalize

it into scale spaces by taking account the special relation between space and scale using the metric

tensor (6.14). We will use the multiscale gradient vector flow model to extend the multiscale edge

detecting function (6.41) or (6.47) into smooth regions to efficiently capture multiscale objects in

multiscale images.

The Euclidean GVF model is extended to scale spaces by simply ”updating” the Euclidean

quantities to their Riemannian equivalents. Thus, the Euclidean gradient ∇ is replaced by the scale

space gradient ∇SS and the Euclidean infinitesimal invariant volume element dx by the scale space

one dxSS , Energy functional (6.48) then becomes:

FGV FSS (V) =

∫

µ

(
n∑

i=1

|∇SSVi|2
)

+ |∇SSf |2(V −∇SSf)2 dxSS , (6.51)

Considering the scale space gradient ∇SS = (c∇, ρc∂σ) and dxSS =
∏

1≤i≤n
dxi

c
dσ
cρ , the Frechet deriva-

tive of FGV FSS w.r.t. Vi in the ξ-direction is:

〈∂F
GV F
SS

∂Vi
, ξ〉 =

∫

ξ ·


 −µ





n∑

j=1

∂xj
(c2∂xj

Vi) + ∂σ(c
2ρ2∂σVi)



+ |∇SSf |2(Vi − (∇SSf)i)




1

cn+1ρ
dx, (6.52)

for 1 ≤ i ≤ n+ 1. Then, the flow minimizing FGV FSS w.r.t. Vi is

∂Vi
∂t

= µ





n∑

j=1

∂xj

(
∂xj

Vi

cn−1ρ

)

+ ∂σ

(
ρ∂σVi
cn−1

)


− |∇SSf |2
cn+1ρ

(Vi − (∇SSf)i), (6.53)
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for 1 ≤ i ≤ n+ 1. For our application, we consider the linear scale space, i.e. c = σ, ρ = 1 and 2-D

images, i.e. n = 2:

∂Vi
∂t

(x, y, σ) = µ(σ−1∇x,σ2Vi − σ−2∂σVi) − σ−1|∇x,σf |2(Vi − σ∂if), for i = x, y, σ, (6.54)

where ∇x,σ2 = ∇2 + ∂2
σ and ∇x,σ = (∇, ∂σ).

Let us apply the GVF method in the linear scale space of the fractal image of Von Koch shown

on Figure 6.5. The initial vector field is chosen to be the scale space gradient of the edge detecting

function (6.47), i.e. V(t = 0) = ∇LSSf , and the resulting GVF is presented on Figure 6.15.

Figure 6.14: Multiscale GVF of the edge detecting function (6.47) at four different scales of

observation in the linear scale space of the Von Koch’s picture.

The multiscale GVF can also be applied to the classic edge detecting function defined on Equation

(6.41). We apply the GVF in the linear scale space of the brain image, Figure 6.7. The norm of the

multiscale image gradient and the GVF field are shown on Figure 6.15.

Figure 6.15: First row presents the linear scale space norm of the multiscale brain image, Figure

6.8, and the second row is the multiscale GVF of the classic edge detecting function (6.41) at four

different scales of observation.

6.9 Results

In this section, we apply our multiscale image segmentation model (6.26) in the linear scale spaces

of images proposed on Figures 6.5 and 6.7. The segmentation process is given by the flow (6.37)
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and the multiscale GVF defined in Equation (6.54) is used to extend the attraction of multiscale

edges in the scale space.

First of all, we apply the multiscale active contours model to the picture of Von Koch. First top

row of Figure 6.16 presents the evolution of the contour, which is a surface in this case, in the linear

scale space and the last four rows of Figure 6.16 shows the evolution process of the multiscale snake

at four scales of observation, i.e. on four slices of the linear scale space.

We also apply the multiscale active contours model to the brain picture. Note that the brain

cortical surface was initially segmented in the original image and the result was used as initial

contour for all scales, see second row of Figure 6.17. This prior segmentation is necessary to avoid

bad local minima and produce better result. We remind that the active contours method is solved

with an evolution equation which captures the closest local minimum in the energy. The GVF

model can not allow to avoid local minima, it is only useful to increase the speed of convergence

and to capture concave and convex regions. First top row of Figure 6.17 presents the evolution of

the multiscale active contour in the linear scale space and the last four rows of Figure 6.17 shows

the evolution process of the multiscale snake at four scales of observation, i.e. on four slices of the

linear scale space.

6.10 Toward A Mathematical Correctness of the Multiscale

Active Contours Model

The multiscale active contours model defined in Equation (6.26) is basically a variational mod-

el which solution is given by a parabolic partial differential equation. The proposed segmentation

model is the generalization of the geometric/geodesic active contours model [35, 105] which mathe-

matical solutions are viscosity solutions. Hence, it is natural to ask if the solutions of our multiscale

segmentation model are also viscosity solutions?

The theory of viscosity solutions was developed by Crandall-Lions [57] in 1983 for first order

PDE and later for second order PDE explained in a didactic way in the ”user’s guide to viscosity

solutions” of Crandall-Ishii-Lions [56]. Generally speaking, viscosity solutions are solutions of PDEs

that can be not smooth. However, they are consistent with classical smooth solutions since they

coincide with them when classical solutions exist. In computer vision, one of the most well-known

viscosity solution is the distance function [118]:

dK(x) = inf
y∈K

d(x,y), (6.55)

where K is a closed subset of Rn and d is the Euclidean distance. The distance function is solution

of the following hyperbolic problem:

{

|∇φ| = 1 in Rn \K,
φ = 0 on ∂K,

(6.56)

which can be used to re-distance the level set function or to compute geodesics, i.e. paths with

minimal length, when |∇φ| = F which function F characterizes the ”space weighting”.

Unfortunately, the theory of viscosity solutions was designed for solutions defined in Euclidean

spaces. But the solutions of our multiscale model are defined in scale spaces, i.e. in Riemannian
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Figure 6.16: First top row presents the multiscale active contour evolving in the linear scale space

and the last four row show the active contour propagating at four different scales.
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Figure 6.17: First top row presents the multiscale active contour evolving in the linear scale space

and the last four row show the active contour propagating at four different scales.
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manifolds. If we want to use the theory of viscosity solutions to prove that the solutions of our mul-

tiscale problem are viscosity solutions then we have to answer to the fundamental question: is the

theory of viscosity solutions valid in Riemannian manifolds? The answer is beyond the scope of this

section since it is difficult to prove it. However we propose to define what are viscosity solutions on

Riemannian manifolds and to show that our Hamilton-Jacobi equation satisfies the classical proper

condition to prove the existence of viscosity solutions.

The following definitions are based on the works of Crandall-Ishii-Lions [56] for second order

elliptic and hyperbolic equations in Euclidean spaces and Mantegazza-Mennucci [118] who studied

the hyperbolic problem (6.56) in Riemannian manifolds. Let M be a compact, smooth, connected

n-dimensional differentiable Riemannian manifold defined by the metric tensor [gM ]. The following

Hamilton-Jacobi problem is considered in a locally compact set Ω ⊂M :

H(x, φ(x), DMφ(x), D2
Mφ(x)) = 0 in Ω, (6.57)

where H : Ω × R × T ?Ω × S(n) → R where T ? is the cotangent bundle and S(n) is the set of

symmetric n × n matrices, DM is the covariant differentiation operator on (M, gM ) and D2
M is

the second order covariant differentiation operator on (M, gM ). We suppose that H is degenerate

elliptic, which means that

H(x, r, p,X) ≤ H(x, r, p, Y ) whenever X ≤ Y. (6.58)

Following the papers [16, 57], we will give two definitions of viscosity solutions for hyperbolic

PDEs in Riemannian manifolds. The first definition is based on the maximum principle.

Theorem 1: Maximum Principle and Regular Solutions

φ ∈ C2(Ω) is a classic solution of (6.57) in the Riemannian Manifold (M, gM ) if and only if:

∀η ∈ C2(Ω), if x0 ∈ Ω is a local maximum of φ− η, we have:

H(x0, φ(x0), DMη(x0), D
2
Mη(x0)) ≤ 0,

and

∀η ∈ C2(Ω), if x0 ∈ Ω is a local minimum of φ− η, we have:

H(x0, φ(x0), DMη(x0), D
2
Mη(x0)) ≥ 0.

The proof of this theorem is as follows. Suppose that x0 ∈ Ω is a local maximum of φ−η. It implies

that DMφ(x0) = DMη(x0) and D2
Mφ(x0) ≤ D2

Mη(x0) and using the property of degenerate ellip-

ticity of H defined in Equation (6.58), Theorem 1 is proved. Hence, the maximum principle implies

that a solution to an elliptic equation can be defined without using regularity properties because

Theorem 1 does not need the existence of DMφ and D2
Mφ to determine the solution. Following

Theorem 1, we can define a viscosity solution in the Riemannian manifold (M, gM ) as follows:

Definition 1: Viscosity Solutions in Riemannian Manifolds based on the Maximum

Principle

φ ∈ C(Ω) is a viscosity solution of (6.57) in the Riemannian Manifold (M, gM ) if and only if:
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∀η ∈ C2(Ω), if x0 ∈ Ω is a local maximum of φ− η, we have:

H(x0, φ(x0), DMη(x0), D
2
Mη(x0)) ≤ 0,

and

∀η ∈ C2(Ω), if x0 ∈ Ω is a local minimum of φ− η, we have:

H(x0, φ(x0), DMη(x0), D
2
Mη(x0)) ≥ 0.

If φ only satisfies the first (respectively second) inequation, then φ is said to be a viscosity sub-

solution (resp. viscosity supersolution).

An equivalent definition of viscosity solutions can be given based on the notion of superjet and

subjet, which plays an important role in the second order PDEs.

Definition 2: Superjet and Subjet of Second Order Continuous Functions.

Let φ ∈ C(Ω). The second order superjet of φ at x ∈ Ω is the convex subset of T ?Ω× S(n), namely

J2,+
Ω φ(x), which elements (p,X) satisfy:

φ(y) − φ(x) − 〈p,y − x〉 − 1
2 〈X(y − x),y − x〉 ≤ o(|y − x|2),

for y ∈ Ω near x.

The second order subjet of φ at x ∈ Ω is the convex subset of T ?Ω × S(n), namely J2,−
Ω φ(x), which

elements (p,X) satisfy:

φ(y) − φ(x) − 〈p,y − x〉 − 1
2 〈X(y − x),y − x〉 ≥ o(|y − x|2),

for y ∈ Ω near x.

In this definition, we implicitly used the Taylor development on the Riemannian manifold (M, gM ):

φ(x) = φ(y) + 〈DMφ|x=y ,y − x〉 +
1

2
〈D2

Mφ
∣
∣
x=y

(y − x),y − x〉 + o(|y − x|2), (6.59)

for y ∈ Ω near x.

Let us propose a new definition of viscosity solutions in the Riemannian manifold (M, gM ):

Definition 3: Viscosity Solutions in Riemannian Manifolds based on the Superjet and

Subjet.

A viscosity subsolution of (6.57) in the Riemannian Manifold (M, gM ) is a function φ ∈ USC(Ω)

such that:

H(x, φ(x), p,X) ≤ 0, ∀x ∈ Ω,∀(p,X) ∈ J2,+
Ω φ(x).

A viscosity supersolution of (6.57) in the Riemannian Manifold (M, gM ) is a function φ ∈ LSC(Ω)

such that:

H(x, φ(x), p,X) ≥ 0, ∀x ∈ Ω,∀(p,X) ∈ J2,−
Ω φ(x).
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φ is a viscosity solution if it is both a subsolution and a supersolution. USC(Ω) is the set of

upper semi-continuous functions on Ω and LSC(Ω) is the set of lower semi-continuous functions on

Ω.

Finally, we consider the associated parabolic problem to (6.57):

φt +H(t,x, φ(x), DMφ(x), D2
Mφ(x)) = 0 (6.60)

where now φ is a function of (t,x) and DMφ,D2
Mφ mean DMxφ,D2

Mx
φ. Instead of working on Ω, we

introduce ΩT = (0, T ) × Ω and P 2,+
Ω , P 2,−

Ω the parabolic variants of the semijets J2,+
Ω , J2,−

Ω . Then,

P 2,+
Ω φ is defined by (a, p,X) ∈ R × T ?Ω × S(n) lies in P 2,+

Ω φ(s,y) if (s,y) ∈ ΩT and

φ(t,x) ≤ φ(s,y) + a(t− s) + 〈p,x − y〉 +
1

2
〈X(x − y),x − y〉 + o(|t− s| + |x − y|2), (6.61)

for (t,x) ∈ ΩT near (s,y), which implies the new definition:

Definition 4: Viscosity Solutions of Parabolic Equations in Riemannian Manifolds.

A viscosity subsolution of the parabolic equation (6.60) in the Riemannian Manifold (M, gM ) is a

function φ ∈ USC(ΩT ) such that:

a+H(x, φ(x), p,X) ≤ 0, ∀(t,x) ∈ ΩT ,∀(a, p,X) ∈ P 2,+
Ω φ(t,x).

A viscosity supersolution of the parabolic equation (6.60) in the Riemannian Manifold (M, gM )

is a function φ ∈ LSC(ΩT ) such that:

a+H(x, φ(x), p,X) ≥ 0, ∀(t,x) ∈ ΩT ,∀(a, p,X) ∈ P 2,−
Ω φ(t,x).

φ is a viscosity solution if it is both a subsolution and a supersolution. USC(ΩT ) is the set of

upper semi-continuous functions on ΩT and LSC(ΩT ) is the set of lower semi-continuous functions

on ΩT .

As we said at the beginning of this section, we will not attempt to develop the theory of viscosity

solutions in Riemannian manifolds which is obviously a difficult task. However, we think that the

solution of the parabolic PDE (6.26), representing the multiscale active contours model, might be

a viscosity solution defined on scale spaces which are Riemannian manifolds. This idea comes from

the expression of the PDE (6.37) which can be re-written in a new shape useful in the theory of

viscosity solutions. Indeed, the steady state solution φ?1 of Flow (6.37):

(

g
−1/2
LSS fKLSS + g−1

LSS

1

σ2
〈∇x,σf,∇x,σφ〉LSS

)

φ?
1

= 0, (6.62)

has the same steady state solution when we multiply it by gLSS > 0:

(

g
1/2
LSSfKLSS +

1

σ2
〈∇x,σf,∇x,σφ〉LSS

)

φ?
2=φ?

1

= 0. (6.63)

Hence, the equivalent flow of (6.37) is considered:
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φt = g
1/2
LSSfKLSS +

1

σ2
〈∇x,σf,∇x,σφ〉LSS , (6.64)

which can be re-written in the attractive form:

φt = Tr

[(

In+2 −
∇[hLSS ]φ⊗∇[hLSS ]φ

|∇[hLSS ]φ|2
)

∇2
[hLSS ]φ

]

− 〈V,∇[hLSS ]φ〉, (6.65)

for a certain V and







∇[hLSS ]φ =
√

h−TLSS∇φ,
∇2

[hLSS ]φ =
√

h−TLSS

(

∇2φ−∑n+2
k=1 ΓkLSSφk

)√

h−1
LSS ,

(6.66)

and setting p = ∇[hLSS ]φ and X = ∇2
[hLSS ]φ, we find:

φt = Tr

[(

I − p⊗ p

|p|2 X

)]

− 〈V, p〉
︸ ︷︷ ︸

H(t,x,p,X)

, (6.67)

which is the expression of the Hamilton-Jacobi equation H in the geometric/geodesic active contours

model [34, 35, 56]!

In other words, the shape of our PDE is consistent with the classical theory of viscosity solutions

because H is proper. Hence, the future directions of research will be to

• attempt to generalize the theory of viscosity solutions to Riemannian manifolds in order to

prove the mathematical correctness of Equation (6.65).

and if the theory is valid in Riemannian manifolds, then it will be interesting to

• check if Equation (6.65) can be generalized to any scale spaces:

φt = Tr

[(

In+2 −
∇[hSS ]φ⊗∇[hSS ]φ

|∇[hSS ]φ|2
∇2

[hSS ]φ

)]

− 〈V,∇[hSS ]φ〉, (6.68)

with






∇[hSS ]φ =
√

h−TSS∇φ,
∇2

[hSS ]φ =
√

h−TSS

(

∇2φ−∑n+2
k=1 ΓkSSφk

)√

h−1
SS ,

(6.69)

• verify if the generalized mean curvature flow embedding in a space (M, [hij ]) and acting on the

component I of the mapping X : (x1, . . . , xn) → (x1, . . . , xn, I), defined by Sochen-Kimmel-

Malladi [167], can be expressed by (multiply by g > 0):

g ·
(

g−1/2∂µ(g
µν∂νI) + Γl=Ijk ∂µX

j∂νX
kgµν

)

gµν=∂µXi∂νXjhij

= (6.70)

Tr

[(

In+2 −
∇[hij ]I ⊗∇[hij ]I

|∇[hij ]I|2
∇2

[hij ]
I

)]

, (6.71)

which would prove the existence of a viscosity solution for the generalized mean curvature

flow.
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6.11 Conclusion and Future Research

In this chapter, we defined a method to extract multiscale objects lying in images. As we said in

Section 6.1, the multiscale nature of images makes this image segmentation method relevant.

The multiscale paradigm implies that all solutions to a given image analysis problem, correspond-

ing to different scales of observation, are valid! The choice of a ”correct” scale is significant only for

a given application, which ”fixes” the scale, but all solutions are relevant. That is why we considered

all scales in our approach, i.e. all possible solutions, to the segmentation problem.

This also allows us to use the important multiscale information given by the scale spaces. Scale

spaces were defined in Section 6.4 from the general heat diffusion equation, which provided us the

metric tensor of the embedding spaces. Then, we used the framework of Polyakov [143] and Sochen-

Kimmel-Malladi [167] to introduce the concept of scale in the active contour model by defining an

evolution equation for the active contours in scale spaces. We also chose the metric tensor of the

embedded manifold as the induced metric tensor in order to work with harmonic maps as in classical

works. This gives us the model of multiscale active contours, which attempts to generalize the model

of geometric/geodesic active contours to Riemannian manifolds.

Future works will be focused on integrating this multiscale segmentation technique into shape

analysis methods such as the shape recognition task with a multiscale shape prior such as the cores

[142], and the shape registration method to improve their robustness and their performance. We

will also change the linear scale space [27, 28] which does not preserve well the edges. We will

use the curvature scale space that is one of the fundamental equation in image processing. Finally,

Section 6.10 introduced the issue of viscosity solutions in Riemannian manifolds. We observed that

the shape of our Hamilton-Jacobi equation fits well with the Euclidean case. A future direction can

be also centered on extending the theory of viscosity solutions to Riemannian manifolds to prove

the correctness of our segmentation model.
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7.1 Achievements

This thesis presented four segmentation models to tackle the image segmentation problem.

The first model [25] used the weighted total variation functional to relate the geodesic/geometric

active contours model [35, 103, 105] with the ROF image denoising model [155] and the image seg-

mentation models of Chan-Vese [42, 179] based on the Mumford-Shah’s functional [125]. Theoretic

proofs, based on [41], were given to show that the minimizers of the proposed variational models are

global, which is an important result of this dissertation. Indeed, the classical geodesic/geometric

active contours model is based on important mathematical properties such as invariance w.r.t. the

parametrization, well-posed model thanks to the theory of viscosity solutions. However this model

suffers from the existence of local minima, which makes the initial active contour critical to get

satisfactory results. By coupling two “opposite” image segmentation models we succeeded both to

reconcile active contours without and with edges and to determine global minimizers of the initial

snake problem. The global minimizers, given by our approach, are not unique, which seems to be a

157
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drawback, but all global solutions are close to each other. Finally, the active contours model defined

in this approach did not use classical evolution schemes based on the level set method, which allowed

us not to re-initialize the signed distance function embedding the active contour. Instead, we used

a PDE-based scheme based on image denoising algorithms and determined global minimizers by

thresholding.

The second image segmentation model defined in this thesis combined at the same time de-

terminist and statistical concepts. We used the statistic approach of information theory to define

an error probability of classification based on stochastic process and probability densities estima-

tion. This error probability functional was defined by Butz-Thiran’s information theoretic approach

[32, 33]. This approach provided us a variational model of non-parametric and non-supervised im-

age classification that was minimized with the determinist shape gradient method [13, 69, 99]. The

combination of statistical and determinist approaches in a single framework to carry out the image

classification/segmentation task is another important result of this thesis. Moreover, the informa-

tion theoretic approach of the classification also allowed us to interpret and better understand other

existing models that use information theoretic concepts such as mutual information. We showed

that several existing models are conceptually included in our approach. Finally, our model used the

cross-correlation approach which both estimates and validates the estimation of the classification

result, which is not the case with other models.

The third model [26, 29] proposed a variational model which extracts an object of interest which

geometric shape is given by the principal components analysis defined on level set functions by

Leventon [113]. Our segmentation model also used the geodesic/geometric active contours model

[35, 105] to detect object boundaries and the model of Vese-Chan [179] to capture a smooth intensity

region having the shape of interest. The contribution given by this model is the combination of three

families of active contours which capture object boundaries, homogeneous regions and a geometric

shape prior in a single segmentation framework in order to combine all advantages of each family.

We also proved that our variational model is mathematically well-posed since there exists a solution

in the special space with bounded variation (SBV ).

Finally, the fourth and last contribution of this dissertation is the multiscale active contours

model [27, 28]. This model proposed to generalize the active contours model into multi-scale spaces,

the scale spaces, in order to define a multiscale image segmentation technique to simultaneously

extract structures at different scales of observation. The main difficulty of this approach is to intro-

duce the active contours into scale spaces that are Riemannian spaces. The solution was given with

the Polyakov action [143] that was first used in string theory to reconcile quantum mechanics and

gravitation, then in image processing by Sochen-Kimmel-Malladi [167] to naturally denoise multi-

dimensional images. Thus, we used the Polyakov framework to define the energy and the evolution

equation of the multiscale active contours model. We applied our model on the linear/Gaussian

scale space but our framework also works with other well-known scale spaces such as the curvature

scale space. Finally, we tried to open a way toward the mathematical correctness of our evolution

equation. We noticed that the shape of the Hamilton-Jacobi equation is exactly the shape of the

Hamilton-Jacobi in the Euclidean spaces, which means that if the theory of viscosity solutions can

be extended to Riemannian spaces then our model has a viscosity solution.
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7.2 Future Works

Some directions of research can be investigated. The most natural are the following:

• Concerning the first proposed model that determines global minimizers of the active con-

tours/snakes model, the interesting future work will be to apply our framework on the two-

phase model of Vese-Chan defined in [179]. Their multiphase segmentation model can partition

any given image with triple junctions according to the Four-Color theorem [79] using two level

set functions (see Section 2.4.1). We could combine their model with the global minimization

framework introduced in Chapter 3 to define a general image segmentation variational model

having global solutions.

• The model introduced in Chapter 4 can be extended to multi-dimensional images such as color

and texture images. It will also be useful to extend the number of (not necessary connected)

regions having same probability densities to more than two regions. It is possible to realize

this extension by coupling the level set functions such as in [132, 179].

• The third proposed image segmentation model can also be improved by extending the shape

prior model based on the principal components analysis to non-parametric shape density es-

timations such as the model of Cremers-Osher-Soatto [60]. It should also be interesting to

investigate a multi-level set approach to capture more objects having the same shape of inter-

est such as in [64, 65].

• As we said previously, the final segmentation model presented in Chapter 6 should be con-

sidered deeply. A future work will be to change the linear scale space with the curvature

scale space in order to realize a better multiscale segmentation and above all to carry out a

multiscale shape recognition task in good conditions. But one of the most important future

work will be to investigate if the theory of viscosity solutions developed by Crandall-Ishii-Lions

[56] could be extended to Riemannian manifolds. If it is the case then our multiscale active

contours model will be mathematically well-posed as the classical active contours model is.

The previous future directions of research are naturally derived from the four image segmentation

models proposed in this thesis. But as we said at the beginning of this thesis image segmentation

is not an easy task. However, if we could define a model that merges the four previous models into

a single model then we would get close to a general image segmentation model. Indeed, if we could

define a multiscale image segmentation model that incorporates statistical/probabilistic concepts

such as information theory and multiscale shape priors and if the solution was unique, which means

it is provided by a global minimizer, then we would have an efficient model to segment any natural

images close to human visual system. But long is the road...
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