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Aliasing in digital cameras

Aliasing arises in all acqui-
sition systems when the
sampling frequency of the
sensor is less than twice th

R |G
maximum frequency of the G B
R |G

signal to be acquired. We
usually consider the spatial
frequencies of the visual
world to be unlimited, and
rely on the optics of the
camera to impose a cut-off.
Thus, aliasing in any cam-| (G B G
era can be avoided by find-
ing the appropriate match
between the optics’ modu-
lation transfer function
(MTF) and the sampling fay.
frequency of the sensor. In
most digital cameras, however, the focal plane ir- Thus, Greivenkantpand Weldy proposed an
radiance is additionally sampled by a Color Filter optical system called a birefringent lens that has
Array (CFA) placed in front of the sensor, com- varying spatial MTFs depending on wavelength.
posed of a mosaic of color filters. Consequently, With such a lens it is possible to design a camera
each photo site on the sensor has only a single chrawhere the MTF of the optics matches the sampling
matic sensitivity. Using a CFA, a method first pro- frequency of each filter in the CFA. Thus, a color
posed by Bayetr allows using one single sensor image could be reconstructed without artifacts. In
(CCD or CMOS) to sample color scenes. Missing practice, however, this method has not yet been ap-
colors are subsequently reconstructed, using a soplied because the resulting images are too blurry.
called demosaicing algorithm, to provide a regular They have a spatial resolution far lower than the
three-color-per-pixel image. resolving power of modern CCD or CMOS sen-
In a CFA image acquisition system, a match sors. Most studies have therefore concentrated on
between the optics’ MTF and the sensor’s sam-how to reconstruct aliased images resulting from
pling frequency is more difficult to establish be- CFA camera systems where the optics is designed
cause the sampling frequencies generally vary forto pass high spatial frequencies.
each color (i.e. filter type). In the Bayer CFA, for  If the captured scene has high spatial frequen-
example, there are twice as many green as red andes, the demosaiced image can contain visible ar-
blue filters (Figure 1a), resulting in different sam- tifacts. Depending on the scene content and the spe-
pling frequencies for green and red/blue. Addi- cific demosaicing algorithm used for reconstruction,
tionally, the horizontal and vertical sampling fre- they are more or less visible. In general, aliased sig-
quency for the green pixels is different from the
diagonal frequency.
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Figure 1. (Left) An example of a color filter array, the Bayer Color Filter Array
(Right) The Fourier representation of an image acquired with the Bayer Color Filter

Continues on page 8.
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Smart camera and active vision:
the active-detector formalism

Active vision techniques attempt
to simulate the human visual sys-

tem. In human vision, head mo- 55:%\[10
tion, eye jerks and motions, and —x A
adaptation to lighting variations, 1@
are important to the perception ooy [z T Y
process. Active vision, therefore, SDRAM |
simulates this power of adapta- (’:;[jo e FPGA >
tion. Despite major Shortcom- compute: €™ Terr o7 or
ings that limit the performance dedicated ink :
of vision systems—sensitivity to USRI A
noise, low accuracy, lack of re- © opsp G-
activity—the aim of active vi-
sion is to develop strategies for
adaptively setting camera pa- :
rameters (position, velocity, ...) e Vo
to allow better perception. \\’ :
Pahlavan proposed that these pa- Pan and Tilt Control
rameters be split into four cat- _, e
egories: optical parameters, for
mapping the 3D world onto the
2D image surface; sensory pa-
rameters, for mapping from the
2D image to the sampled elec-
trical signal; mechanical param-
eters, for the positioning and mo-
tion of the camera); and algorith-
mic integration to allow control
of these parameters.

In the active approach to per-
ception we assume that the out-
side world serves as its own
model. Thus, perception in-
volves exploring the environ-
ment allowing many traditional
vision problems to be solved
with low complexity algorithms.
Based on this concept, the meth-
odology used in this work in-
volves integrating imager con-
trol in the perception loop and,
more precisely, in early vision

- Sensor
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3D Accelerometers
linear and angular

memory

Conversion control

WOI control

: module @ @

Optical parameters control

Figure 1. Global architecture of the sensor. The blocks drawn with dashed lines
represent optional modules that are not currently implemented.
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Figure 2. Prototype of the sensor.

high-level system load; and/or re-
duce communication flow between
the sensor and the host system.

Active detection
Here, we include sensing parameters
in the perception loop by introduc-
ing the notion of active detectors that
control all levels of perception flow.
These consist of hardware ele-
ments—such as a use of a sub-re-
gion of the imager or hardware
implementation using a dedicated
architecture—and software ele-
ments such as control algorithms.
An active detector can be viewed
as a set of ‘visual macro functions’
where a visual task in decomposed
into several subtasks. This is simi-
lar to Ullman’s work on the notion
of a collection of ‘visual routines’
representing different kinds of ba-
sic image-processing sub functions.
These can be used in goal-directed
programs to perform elaborate tasks.
By contrast, the active detector con-
sists of both hardware and software.
Thus, in this approach, the sensor
has a key role in the perception pro-
cess, its task more important than
just performing image pre-process-
ing. As a result, the hardware archi-
tecture and implementation are vi-
tal.

Smart architecture based on

FPGA and CMOS imaging

Our work is based on the use of a
CMOS imager that allows full ran-
dom-access readout and a massive
FPGA architecture. There are sev-
eral options for the choice of an im-

processes. This integration allows us to designtion of processing resources on it: the notion @ger and a processing unit. It is important to

a reactive-vision sensor. The goal is to adaptof local study becomes predominant.

consider an active detector as a visual control

sensor attitude to environment evolution and ~ Another important feature is the control of 00p: the measure is the image and the system
the task currently being performed. Such smartsensing parameters. As explained above, acio controlis the sensor. For a given visual prob-
cameras allow basic processing and the selective vision devices generally focus on optical |em. the active detector must optimize and serve
tion of relevant features close to the imager. parameters (such as zoom, focus, and aperturefhe sensor in order to achieve the task. For this
This faculty reduces the significant problem of mechanical parameters (such as pan and tiltfeason, the architecture of this active vision sen-
sensor communication flow. Further, as its and sometimes algorithmic integration (for ex- SOF can be viewed as a set of parallel control
name suggests, an active vision system activelyample, early biologically-inspired vision sys- 100ps where the bottleneck is the imager. In-
extracts the information it needs to perform a tems). Thus, the visual sensor requires its owndeed, actual CMOS imagers have a sequential
task. By this definition, it is evident that one of level of autonomy in order to: perform pre-pro- Pehavior and their acquisition rates are slowed
its main goals is the selection of windows of cessing, like the adjustment of sensing paramn comparison with actual dedicated architec-

interest (WOI) in the image and the concentra- eters or automatic WOI tracking; reduce the tures performances. o
The global architecture shown in Figure 1

Continues on page 9.
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Reflectance-sensitive retina

Itis well established that intelligent
systems start with good sensors
Attempts to overcome sensor defi-
ciencies at the algorithmic level
alone inevitably lead to inferior and % -

unreliable overall-system perfor- -

mance: inadequate or missing in-
formation from the sensor cannot
be made up in the algorithm. For
example, in image sensors there i.#
nothing we can do to recover the

brightness of the image at a par-j i " e
ticular location once that pixel satu-

rates. Sensors that implement som ] ] @
processing at the sensory level— , 2 & =
computational sensors—may pro-s s o i e 1L

vide us with a level of adaptation Figure 1. The reflectance-sensitive retina removes illumination-induced
that allows us to extract environ- variations (simulation results). The input images on the left are taken under
mental information that would not varying illumination directions, resulting in substantial appearance changes.
~ Our reflectance-recovery method largely removes these, resulting in virtually
Most present and future vision yniform appearance across different illumination conditions as shown on the

be obtainable otherwise.

applications—including automo- rjght.

tive, biometric, security, and mo-

bile computing—involve uncon-

strained environments with unknown and g, , L,
widely-varying illumination conditions. Even [_]
when an image sensor is not saturated, the vi-
sion system has to account for object appear- =10
ance caused by variations in illumination. To
illustrate this, the left panel of Figure 1 shows
a set of face images captured under varying
illumination directions by a CCD camera. Even
to a human observer, these faces do not readily
appear to belong to the same person. We have
recently introduced a reflectance perception 5 1
model that can be implemented at the sensor')([) = Z(Ii - L,-) + lR—‘VL,-
level and which largely removes the illumina- el h,

tion variations as shown in the right panel T!I ure 2. The resistive grid that minimizes energy J(I),
Figure 1. These images appear to be virtua

identical. Using several standard face-recoga capyally important discontinuities are preserved

nition algorithms, we have shown that recoge 4 ;se the horizontal resistors are controlled with the
nition rates are significantly improved WheRp, . weber-Fechner conirast.

operating on the images whose variations due
to the illumination are reduced by our metfiod.

In the most simplistic model, image intensity”"[[— < ) M
I(x,y) is a product of object reflectan&dx,y) .. v, '
and the illumination fieldL(x,y), that is . /A
1(X,Y)=R(X,y)L(X,y) An illumination patteri.is o ot Pyt AN
modulated by the scene reflectaiR@nd to- % % & w@  w e @ e
gether they form the radiance map thatis col-,
lected into a camera imageR describes the |
scene. In essenck,is what we care about in ||| |
computer vision. When the illumination field || AT R
is uniform,| is representative & ButL israrely _ ' R
uniform. For example, the object may occlude ™ * & = & e e we
light sources and create shadows. Figure 3. Horizontal intensity line profiles through the

Obviously, estimating(x,y)andR(x,y)from  middle of subject’'s eyes in top middle picture of
I(x,y) is an ill-posed problem. In many related Figure 1. The thin black line in the top graph is the
illumination compensation methods, including original image’l(x,y), the thick gray line is the
Retinex!* a smooth version of the imagés  computed L(x,y), and the bottom graph is R(x,y) =
used as an estimate of the illumination field  I(x.y)/L(x.y).

Z,R

h
C

refore finding the smooth version of the input image I.

If this smooth version does not
properly account for discontinuities,
objectionable ‘halo’ artifacts are
created irR along the sharp edges
in the image.

In our methodl.. is estimated with
the resistive network shown in Fig-
ure 2. Here, we use a one-dimen-
sional example to keep the notation
simple. The image pixel values are
supplied as voltage sources and the
solution forL is read from the nodal
voltages. To preserve discontinuities,
the horizontal resistors are modulated
proportionally to the Weber-Fechner
contrast between the two points in-
terconnected by the horizontal resis-
tor. Therefore, the discontinuities
with large Weber-Fechner contrast
will have a large resistance connect-
ing the two points: smoothing less
and allowing voltage at those two
points to be kept further apart from
each other. Formally, in the steady-
state, the network minimizes the energy it dissi-
pates as expressed by equatifi) shown in
Figure 2. The first term is the energy dissipated
on the vertical resistofRy, the second term is
the energy dissipated on the horizontal resistors
Rh

OnceL(x,y)is computed, thix,y)is divided
to produceR(x,y) Figure 3 illustrates this pro-
cess. It can be observed that the reflectance
variations in shadows are amplified and ‘pulled
up’ to the level of reflectance variations in the
brightly-illuminated areas. All the details in the
shadow region, which are not ‘visible’ in the
original, are now clearly recognizable. We are
currently designing an image sensor that imple-
ments this form of adaptation on the sensor chip
before the signal is degraded by the readout
and quantization process.

Vladimir Brajovic

The Robotics Institute

Carnegie Mellon University, USA
E-mail: brajovic@cs.cmu.edu
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Color processing for digital cameras

Digital capture is becoming mainstrea
in photography, and a number of ne
color processing capabilities are being
introduced. However, producing a pleas
ing image file of a natural scene is still
a complex job. It is useful for the ad-
vanced photographer or photographi
engineer to understand the overall digi
tal camera color processing architectur
in order to place new developments i
context, evaluate and select processi
components, and to make workflo
choice decisions.

The steps in digital camera color pro
cessing are provided beldwNote that
in some cases the order of steps may K
changed, but the following order is rea-|{|||
sonable. Also, it is assumed that propri |||
etary algorithms are used to determine |||
the adopted whiteand the color-render-
ing transform®
* Analog gains (to control sensitivity

and white balance, if used)

« Analog dark-current subtraction (if
used)

* A/D conversion

« Encoding nonlinearity (to take
advantage of noise characteristics to

are that many of the decisions affect-
ing the appearance of the final picture
have not yet been made. Control of the
appearance is relinquished to the down-
stream processing. If a raw file is ex-
changed, the white-balance and color-
rendering choices made after exchange
can produce a variety of results, some
of which may be quite different from
the photographer’s intent. Scene-re-
ferred image data has undergone white
balancing (so the overall color cast of
the image is communicated), but the
color rendering step offers many oppor-
tunities for controlling the final image
appearance. Output-referred exchange
enables the photographer to communi-
cate the desired final appearance in the
image file, thereby ensuring more con-
sistent output.

Current open-image exchange sup-
ports output-referred color encodings
like sRGB. Generally it is recom-
mended that output-referred images be
exchanged for interoperability, al-
though a raw or scene-referred image
may be attached to allow other process-
ing choices to be made in the future, or

reduce encoding bit-depth require-  Figure 1. Top left: raw image data with analog dark-current
ments for raw data storage, if used) ¢ piaction and gamma = 2.2 encoding nonlinearity, but no analog
This is the first raw-image data-storage gains Top right: “camera RGB" image data, after flare subtraction,
opportunity white balancing and demosaicing (displayed using gamma = 2.2).
* Linearize (undo any sensor and Bottom left: scene-referred image data, after matrixing to SCRGB
encoding nonlinearities; optionally /5 space (displayed using gamma = 2.2). Bottom right: SRGB
clip to desired sensor range) image data, after color rendering and encoding transforms.

by other parties after exchange.

Proprietary component choices

These include the methods for: deter-
mining the adopted white, flare subtrac-
tion, demosaicing (if needed), determin-
ing the matrix from camera color to

« Digital dark-current subtraction (if
no analog dark-current subtraction)

< Optical flare subtraction (if per-
formed)

This is the last raw image data storage oppor- RGB}

tunity (before significant lossy processing)

« Digital gains (to control sensitivity and
white balance, if used)

* White clipping (clip all channels to same
white level; needed to prevent cross-
contamination of channels in matrixing)

« Demosaic (if needed)

» Matrix (to convert camera color channels
to scene color channels)

scene colot? and determining the

color-rendering transform. A camera’s

color reproduction quality will depend
on each of these components. Generally, it is
good to consider them independently, though
one component may partially compensate for
Workflow choices deficiencies in another. For example, if flare
The primary workflow choice is the image subtraction is omitted, a saturation boost in the
state for storage or exchange. The standarccamera-color-to-scene-color matrix or the
options are ‘raw’, ‘scene-referred’ and ‘out- color-rendering step may help, but the quality
put-referred® The advantage of storing the obtained will generally not be as good. Also, if
image earlier in the processing chain is thatthe job of one step is deferred to another, im-
decisions about subsequent processing stepage-data exchange in open systems is degraded:
can be changed without loss, and more ad-there may be no standard way to communicate

encodings include sRGBsYCC]; ROMM

This is the scene-referred image data storagevanced algorithms can be used in the future.that some operation was deferred.
opportunity (standard scene referred color The most lossy steps are white-clipping an

encodings include scRG&a&nd RIMM/ERIMM

RGB}

« Apply color rendering transform (to take
scene colors and map them to pleasing
picture colors)

* Apply transform to standard output-
referred encoding.

d
color rendering. However, the white-clipping Optional proprietary step:
step is not needed if the camera to scene mascene relighting
trix does not need to be applied (i.e. the cam-Some scenes have variable lighting, or very
era color channels can be encoded as scenkigh dynamic ranges due to light sources or
color channels without matrixing), and care- cavities in the scene. Proprietary scene re-light-
fully-designed color rendering transforms can ing algorithms attempt to digitally even out the
minimize color rendering loss. scene illuminatioA! This can make scenes look

This is the output-referred image-data storage  The disadvantages of exchanging image datamore like they do to a human observer, because

opportunity (standard output-referred color using the raw or scene-referred image states

Continues on page 8.
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Real-time image processing
In a small, systolic, FPGA architecture

The need for high-performance com-
puter architectures and systems i
becoming critical in order to solve

— 4

real image-processing applications
The implementation of such systems
has become feasible with micropro-
cessor technology development:
however, conventional processors
cannot always provide the computa-
tional power to fulfill real-time re-

quirements due to their sequentia

nature, the large amount of data, an
the heterogeneity of computations

involved. Moreover, new trends in

embedded system design restrict fur-
ther the use of complex processors;
large processing power, reduced’
physical size, and low power con-
sumption are hard constraints to
meet! On the other hand, the inher-
ent data- and instruction-level par-
allelism of most image-processing
algorithms can be exploited to speed
things up. This can be done through

the development of special-purpose
architectures on a chip based on par-
allel computatior?.

Within this context, our research
addresses the design and develop-
ment of an FPGA hardware architec-
ture for real-time window-based im-
age processing. The wide interest in
window-based or data-intensive pro-
cessing is due to the fact that more
complex algorithms can use low-
level results as primitives to pursue
higher-level goals. The addressed
window-based image algorithms in-
clude generic image convolution, 2D
filtering and feature extrac-
tion, gray-level image mor-
phology, and template
matching.

Our architecture consists
of a configurable, 2D, sys-
tolic array of processing el-
ements that provide through-
puts of over tens of giga op-
erations per second (GOPs).
It employs a novel address-
ing scheme that significantly
reduces the memory-access
overhead and makes explicit
the data parallelism at a low
temporal storage Co3%tA
specialized processing ele-

ment, called a configurable Figure 3. Input image (left) and the output images for LoG filtering (middle) and gray-level
window processor (CWP), erosion (right).

Chrgut Memory

1]

Figure 1. Block diagram of the 2D systolic array of configurable window
rocessors (CWPs) for window-based image processing. D is a delay line
or shift register and LDC is a local data collector.

Architecture performance for an array of equal dimension to window mask
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Figure 2. Performance of the proposed architecture for a
512x512 gray level image with different window sizes.

was designed to cover a broad range
of window-based image algorithms.
The functionality of the CWPs can be
modified through configuration reg-
isters according to a given application.

Figure 1 shows a block diagram
of the 2D systolic organization of the
CWPs? The systolic array exploits
the 2D parallelism through the con-
current computation of window op-
erations through rows and columns
in the input image. For each column
of the array there is a local data col-
lector that collects the results of
CWPs located in that column. The
global data collector module collects
the results produced in the array and
sends them to the output memory.

As a whole, the architecture op-
eration starts when a pixel from the
input image is broadcast to all the
CWPs in the array. Each concur-
rently keeps track of a particular
window-based operation. At each
clock cycle, a CWP receives a dif-
ferent window co-efficienWW—
stored in an internal register—and an
input image pixeP that is common
to all the CWPs. These values are
used to carry out a computation,
specified by a scalar function, and
to produce a partial result of the win-
dow operation. The partial results are
incrementally sent to the local reduc-
tion function implemented in the
CWP to produce a single result when
all the pixels of the window are pro-
cessed. The CWPs in a column start
working progressively: each a clock
cycle delayed from the pre-
vious one as shown in Fig-
ure 1. The shadowed squares
represent active CWPs in a
given clock cycle.

A fully-parameterizable
description of the modules of
the proposed architecture was
implemented using VHDL.
The digital synthesis was tar-
geted to a XCV2000E-6
VirtexE FPGA device. For an
implemented X7 systolic-ar-
ray prototype, the architecture
provides a throughput of
3.16GOPs at a 60MHz clock
frequency with a power con-

Continues on page 9.
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Cameras with inertial sensors

Inertial sensors attached to a camera can pro
vide valuable data about camera pose and move
ment. In biological vision systems, inertial cues
provided by the vestibular system play an im-
portant role, and are fused with vision at an early
processing stage. Micromachining enables the
development of low-cost single-chip inertial sen-

oving observer ™. be segmented and matched across the stereo
= pair, so that their 3D position is determirted.
‘ The inertial vertical reference can also be

used after applying standard stereo-vision tech-
nigues. Correlation-based depth maps obtained
vertical from stereo can be aligned and registered us-
features ing the vertical-reference and dynamic-motion

sors that can be easily incorporated alongside the cues. In order to detect the ground plane, a his-
camera’s imaging sensor, thus providing an ar- gravity field 4 I togram in height is performed on the vertically-

tificial vestibular system. As in human vision, I pr_ aligned map, selecting the lowest local peak
low-level image processing should take into ac- S0 (see Figure 3). Taking the ground plane as a
count the ego motion of the observer. In this ar- L ground plane reference, the fusion of multiple maps reduces

ticle we present some of the benefits of combin-
ing these two sensing modalities. dynamic inertial cues can be used as a first ap-
Figure 1 shows a stereo-camera pair with an proximation for this transformation, providing
inertial measurement unit (IMU), as- a fast depth-map registration mettidd.
sembled with three capacitive acceleromgmme addition, inertial data can be integrated
eters and three vibrating structure gyros into optical flow techniques. It does this
The 3D-structured world is observed b by compensating camera ego motion, im-
the visual sensor, and its pose and moti proving interest-point selection, match-
are directly measured by the inertial se ing the interest points, and performing
sors. These motion parameters can als subsequent image-motion detection and
be inferred from the image flow and tracking for depth-flow computation. The
known scene features. Combining the twg image focus of expansion (FOE) and cen-
sensing modalities simplifies the 3D re- tre of rotation (COR) are determined by
construction of the observed world. The camera motion and can both be easily
inertial sensors also provide important cues about found using inertial data alone, provided that
the observed scene structure, such as vertical an the system has been calibrated. This informa-
horizontal references. In the system, inertial sen- tion can be useful during vision-based naviga-
sors measure resistance to a change in momer tion tasks.
tum, gyroscopes sense angular motion, and ac Studies show that inertial cues play an im-
celerometers change in linear motion. Inertial portant role in human vision, and that the no-
navigation systems obtain velocity and position tion of the vertical is important at the first stages
by integration, and do not depend on any exter- of image processing. Computer-vision systems
nal references, except gravity. for robotic applications can benefit from low-
The development of Micro-Electro-Me- cost MEMS inertial sensors, using both static

Figure 1. Stereo cameras with an inertial to a 2D translation and rotation problem. The

measurement unit used in experimental work.

a5 -

igure 2. Ground-plane 3D-reconstructed patch.

chanical Systems (MEMS) technology has en- rjg, e 3. Aligned depth map showing histogram and dynamic cues. Further studies in the field,
abled many new applications for inertial sen- for ground-plane detection. as well as bio-inspired robotic applications, will

sors beyond navigation, including aerospace enable a better understanding of the underly-
and naval applications. Capacitive linear ac- ing principles. Possible applications go beyond

celeration sensors rely on proof mass displace-available MEMs inertial sensors have perfor- robotics, and include of artificial vision and
ment and capacitive mismatch sensing. MEMS mances similar to the human vestibular system,vestibular bio implants.
gyroscopes use a vibrating structure to mea-suggesting their suitability for vision tasks.
sure the Coriolis effect induced by rotation, and  The inertial-sensed gravity vector provides Jorge Lobo and Jorge Dias
can be surface micromachined providing lower- a unique reference for image-sensed spatialnstitute of Systems and Robotics
cost sensors with full signal-conditioning elec- directions. If the rotation between the inertial Electrical and Computer Engineering
tronics. Although their performance is not suit- and camera frames of reference is known, theDepartment
able for full inertial navigation, under some orthogonality between the vertical and the di- University of Coimbra, Portugal
working conditions or known system dynam- rection of a level plane image vanishing point E-mail: {jlobo, jorge}@isr.uc.pt
ics they can be quite useful. can be used to estimate camera focal distance.

In humans, the sense of motion is derived When the rotation between the IMU and cam- References o .
both from the vestibular system and retinal vi- era is unknown from construction, calibration 1- J- Lobo and J. Diafision and Inertial Sensor

. . . . Cooperation, Using Gravity as a Vertical
sual flow, which are integrated at very basic can be performed by having both sensors mea- geferencelEEE Trans. on Pattern Analysis and
neural levels. The inertial information enhances suring the vertical directionKnowing the ver- Machine Intelligence 25(12), 2003.
the performance of the vision system in taskstical-reference and stereo-camera parameters?. J. Alves, J. Lobo, and J. DigSamera-Inertial
such as gaze stabilisation, and visual cues aidhe ground plane is fully determined. The  Sensor modelling and alignment for Visual
. - - —_ . . . Navigation,Proc. 11th Int’l Conf. on Advanced

spatial orientation and body equilibrium. There collineation between image ground-plane  ggpotics, pp. 1693-1698, 2003.
is also evidence that low-level human visual points can be used to speed up ground-plane. J. Lobo and J. Diasnertial Sensed Ego-motion for
processing takes inertial cues into account, andsegmentation and 3D reconstruction (see Fig- 3D vision,Proc. 11th Int'l Conf. on Advanced
that vertical and horizontal directions are im- ure 2)! Using the inertial reference, vertical ~ Robotics,pp. 1907-1914, 2003.
portant in scene interpretation. Currently- features starting from the ground plane can also
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Color artifact reduction in digital, still, color cameras

T_he tessellated s_tructure of the colo However, a common algorithm
filter array overlaid on CMOS/CCD | R | G | R G C M [ C M used to reduce color artifacts is a
sensors in commercial digital color median filter. Such artifacts usually
cameras requires the use of a consiqr- have a salt-and-pepper type distri-
erable amount of processing torecon- G | B G | B Y |WIY | W bution over the image, for which
struct a;;ull«zjolorI image. Starting wnkrll the median filter is well suited. The
a tessellated color array pattern—the human eye is known to be highly
Ba()j/er Color ﬁrray is popuI?IrIy used, R G R G C M C M sensitive to sharp edges: we prefer
and some other common filter-array sharp edges in a scene to blurred
tessellations are shown in Figure 1— ones. Most camera manufacturers
we need to reconstruct a three-char- G B G B Y W Y W use an edge-enhancemsigip such
nel image. Clearly, missing data (col{ as unsharp masking to make the
ors not measured at each pixel) needs (a) (b) image more appealing by reducing
to be estimated. This is done via a pro- the low-f tent in th
lled de.mosaicing that intro image & rdequEncy.cor;henh.lnh fi .

cess ca image and enhancing the high fre-
duces a host of color artifacts. G R G R G R B G quency content. Another technique
Broadly, these can be split into two, is called coringused to remove de-

roups: so-called zipper and confett ili i ianifi-
grtifapc):ts% The formeFr)poccur at loca- G B G B G R B G iithnLOc:mﬁgagézattoh?;ggeSIggigiI
tiﬁns in the im%ge wher?i ir;]ter;sity and behaves much like noise. The
changes are abrupt, and the latter term coring originates from the
when highly intense pixels are sur- G R G R G R B G manner in which the technique is
rOllmdfed by dark pixels (uiualrl]y are implemented. Usually a represen-
sult of erroneous sensors). These af- tation of the data to be filtered is
tifacts may be reduced through a se- G B G B G R B G generated at various levels of de-
ries of ‘good’ choices that range from

tail, and noise reduction is achieved
by thresholding (or ‘coring’) the
transform coefficients computed at
the various scales. How much cor-
ing needs to be performed (how
high the threshold needs to be set)
is a heuristic.

the lens system to the choice of a very (c) (d)

dense sensor (lots of photosites): used_ )

in conjunction with processing steps Figure 1. Popularly used color filter

for correction. array tessellations. R, G, B, C, M,
To remove these artifacts, the pro- ¥» W, stand for red, green, blue,

cessing can either be done during orcyan magenta, yellow and white

after the demosaicing step. Before we'eSpectively. (a) A RGB Bayer

consider how these artifacts are re-Aray. (b) A CMYW rectangular

moved/reduced, we need to bear in@/ay. (¢.d) Color arrays used in

mind that the objective of commercial Some Sony cameras. (e) A

electronic photography is not so much relatively new hexagonal sensor

the accurate reproduction of a scene Used in some Fuji cameras.

but a preferred or pleasing reproduc- (e)

tion. In other words, even if there are

errors introduced by the artifact re-

moval stage, so long as the image ‘looks’ good, tive.** These are determined by operations overRreferences

the consumer remains satisfred. local neighborhoods—the goal being to inter- 1. R. Ramanath, W. E. Snyder, G. Bilbro, and W. A.
As alluded to earlier, the reduction of arti- polate along edges rather than across them SanderDemosaicking Methods for Bayer Color

facts could be performed during or after the (which leads to zipper errors). frrays.o,)! Electronic Imaging. 11(3). pp. 306-

demosaicing step. However, it is common to '

Rajeev Ramanath and Wesley

E. Snyder

Department of Electrical and
Computer Engineering

NC State University, USA

E-mail: rajeev.ramanath@ieee.org
and wes@eos.ncsu.edu

Once a full-color image has been generatedz. p. M. Hubel, J. Holm, G. D. Finlayson, and M. S.
perform the artifact reduction at both stages ofafter demosaicing a filter-array image, the ar-  Drew, Matrix calculations for digital photography,
the image processing chain. Most demosaicingtifacts are either highly pronounced or relatively  Proc. IS&TISID 5% Color Imaging Conf., pp.
techniques make use of the fact that the huma§Ubdued depending on the technique used and "z AdamsDesign of practical Color Filter
visual system is preferentially sensitive in the image content. Most color-image-processing  array interpolation algorithms for digital cameras,
horizontal and vertical directions when com- pipelines implement another collection of post- Proc. SPIE 3028 pp. 117-125, 1997. )
pared to other directions (diagonal). When per-processing techniques to make the images ap4: R- Kimmel,Demosaicing: image reconstruction

. S . lin from colpr ccd samplesEEE Trans. on Image
forming demosaicing, depending upon the pealing. . . Processing 89), pp. 1221-1228, 1999.
strength of the intensity change in a neighbor- Most professional and high-end consumer s g Ramanath and W. E. Snydadaptive
hood (horizontal, vertical, or diagonal) estima- cameras also have a post demosaicing noise- Demosaicking,). of Electronic Imaging 12(4),

tion kernels are uséthat may be fixed or adap- reduction step: usually a proprietary algorithm. ~ Pp- 633-642, 2003.
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Aliasing in digital cameras

Continued from the cover.

nals cannot be recovered easily and only com-two different types of signals. This is certainl
plicated methods using non-linear iterative pro- why many demosaicing methods work quit
cessingor prior knowledgeare able to effec-  well. With our approach, one can optimally re
tively deal with this. construct the image without having recourse

By studying the nature of aliasing in digital any complicated de-aliasing methods. O
cameras, we have found a demosaicing solu-demosaicing-by-frequency-selection algorith
tion that does not require excessive optical blurgives excellent results compared to other pu
or complicated algorithms. As shown in Fig- lished algorithms and uses only a linear approg
ure 1(b) and described formally elsewhé&tiege  without any prior knowledge about the imag

Bayer CFA image has a particular pattern. Lu- itly study demosaicing artifacts that could b
minance (i.e. R + 2G + B) is localized in the removed by tuning spectral sensitivity functiéns

center, and chrominanceomposed of two

opponent chromatic signals (R-G, -R+2G-B),
are localized in the middle and corner of each
side. The Fourier representation of a CFA im-

age thus has the property of automatically sepaindex.php?name=EIl_Newsletter
rating luminance and opponent chromatic chan-

nels and projecting them in specific locations
in the Fourier domain. Consequently, it is pos-
sible to directly estimate the luminance and
chrominance signals with low- and high-pass
filters, respectively, and then to reconstruct a

color image by adding estimated luminance andtAudiovisual Communications Laboratory

estimated and interpolated chrominafiée.

Note, however, that luminance and opponentSciences
chromatic signals share the same two-dimen-

sional Fourier space. Artifacts may result in the

demosaiced image if their representations over-E-mail: sabine.susstrunk@epfl.ch

lap (aliasing).

Using the Fourier representation thus also
helps to illustrate the artifacts that may occur
when applying any demosaicing algorithm:
blurring occurs when luminance is estimated
with a filter that is too narrow-band. False col-

ors are generated when chrominance is esti-

mated with a filter bandwidth that is too broad,
resulting in high frequencies of luminance in-
side the chrominance signal. Grid effects oc-
cur when luminance is estimated with a band-
width that is too broad, resulting in high fre-
quencies of chrominance in the luminance sig-
nal. And, finally, water colors are generated
when chrominance is estimated with a filter
bandwidth that is too narrow. With many
demosaicing algorithms, the two most visible
effects are blurring and false color. For visual
examples of the different artifacts, see Refer-
ence 7.

In general, algorithms that totally remove
aliasing artifacts do not exist. However, in the

case of a CFA image, the artifacts are not due to

‘real’ aliasing because they correspond to inter-
ference between luminance and chrominance

optical blur, and estimation filters.
Further information about this work and

color illustrations are available at:

http://ivrgwww.epfl.ch/

David Alleysson* and Sabine Siisstrunk
*Laboratory of Psychology and
Neurocognition

Université Pierrre-Mendes, France

E-mail: David.Alleysson@upmf-grenoble.fr

School of Communications and Computing

Ecole Polytechnique Fédérale de Lausanne
Switzerland
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Color processing for
digital cameras

/ Continued from page 4.

e .

_ the human visual system also attempts to com-
ko Pensate for scene lighting variability. Scene re-
¢ lighting algorithms should be evaluated based

on how well they simulate real scene re-light-

y human observers. It is important to remem-
er that re-lit scenes will then be color rendered;

sometimes these two proprietary steps are com-
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Smart camera and active vision:
the active-detector formalism

Continued from page 2.

presents the different modules of our device.and motor controller for an optional turret.
The blocks drawn with dashed lines represent  Our initial results show high speed tracking
optional modules that are not currently imple- of a gray-level template (see Figure 2). Accord-
mented. The first prototype (see Figure 2) ising to the size of the window, the acquisition
composed of three parts: the imager, the mainrate varies from 200-5500 frames per second.
board, and the communications board. The first

board includes a CMOS imager, analog/digi- Francois Berry and Pierre Chalimbaud

tal converter and optics. The main board is theLASMEA Laboratory, Université Blaise

core of the system: it consists of a Stratix from Pascal, France

Altera; several private memory blocks; and, on E-mail: {berry, chalimba}@lasmea.univ-

the lower face of the board, an optional DSP bpclermont.fr

module that can be connected for dedicated

processing and an SDRAM module socket thatReferences

allows the memory to be extended to 64 Mb. - lsss"”lrgg’lwsua' RoutinesCognition. 18,p. 97-

The communications board is connected to the, 5 Cpaiimbaud, F. Berry, and P. Martinehe task
main board and manages all communications ‘template tracking’ in a sensor dedicated to active
with the host computer. On this card, we can vision,IEEE Int'l Workshop on Computer

connect a 3D accelerometer, zoom controller, Architectures for Machine Perception,2003.

Real-time image processing in a small
systolic FPGA architecture

Continued from page 5.

sumption estimation of 1.56W. The architecture more complex algorithms such as motion esti-
uses 6118 slices, i.e. around 30% of the FPGAmation and stereo disparity computation,

The architecture was validated on a RC1000-PPamong others. The proposed architecture is well
FPGA AlphaData board. The performance im- suited to be the computational core of a com-

provement on the software implementation run- pletely self-contained vision system due to its

ning on a Pentium IV processor is more than anefficiency and compactness. The architecture
can be coupled with a digital image sensor and

order of magnitude.

The processing times for a window-based memory banks on a chip to build a compact
operation on 512512 gray-level images for smart sensor for mobile applications.
different window sizes are plotted in Figure 2.
The array was configured to use the same num-César Torres-Huitzil and Miguel Arias-
ber of CWPs as the window size. For all the Estrada
cases it was possible to achieve real-time per-Computer Science Department
formance with three to four rows processed in INAOE, México
parallel. The processing time for a generic win- E-mail: {ctorres, ariasm}@inaoep.mx
dow-based operator with &7 window mask
on 51512 gray-level inputimages is 8.35ms, References )
thus the architecture is able to process about- J- Silc. T. Ungerer, and B. Robi&,Survey of New
120 51%512 grav-level images per second R(_esearch Directions in Microprocessors,

: gray . g p : ' Microprocessor and Microsystems 34pp. 175-
Among the window-based image algorithms al- 190, 2000.
ready mapped into and tested are generic con2. N. Ranganathan/LSI & Parallel Computing for
volution gray_|eve| image morphology and Pattern Recognition & Artificial Intelligence,
t lat ' tchi Ei 3 sh test | Series in Machine Perception and Artificial
emplate matching. rFigure S SNOWS a €St IM-  |ngjligence 18, World Scientific Publishing, 1995.
age and two output images for LoG filtering 3. Miguel Arias-Estrada and César Torres-Huitzil,
and gray-level erosion. Real-time Field Programmable Gate Array
H H H Architecture for Computer Visiod, Electronic

Aclcordtl1ng to ;heoretlcal and expefnmentgll Imaging 10 (1) pp. 289-296. January 2001,
re_su ts, the arp itecture pompares avorably, - cesar Torres-Huitzil and Miguel Arias-Estrada,
with other dedicated architectures in terms of  cConfigurable Hardware Architecture for Real-time
performance and hardware resource. Due to its Window-based Image ProcessiRyoc. FPL 2003,
configurable, modular, and scalable design, the Pp- 1008-1011, 2003.
architecture constitutes a platform to explore

e

r%ﬁ rc
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M
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Figure 3. High speed trécking ofa gray-leve/
template (32x32 at ~2000 frames per second).

Tell us about your
news, ideas, and
events!
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an article for the newsletter, have
ideas for future issues, or would
like to publicize an event that is
coming up, we'd like to hear from
you. Contact our technical editor,
Sunny Bains (sunny@spie.org) to
let her know what you have in

mind and she'll work with you to

get something ready for publica-
tion.

Deadline for the next edition,
14.2, is:

19 January 2004 Suggestions for
special issues and guest editors.
26 January 2004:Ideas for ar
ticles you'd like to write (or read).
26 March 2004:Calendar items

for the twelve months starting
June 2004.

SPIE International Technical Group Newslettn



ELECTRONIC IMAGING 14.1 JANUARY 2004

Calendar

2004

IS&T/SPIE 16th International Symposium
Electronic Imaging: Science and
Technology

18-22 January

San Jose, California USA

Program « Advance Registration Ends
17 December 2003

Exhibition
http://electronicimaging.org/program/04/
Photonics West 2004

24-29 January
San Jose, California USA

©

@

Featuring SPIE International Symposia:

SPIE International Symposium
Medical Imaging 2004

14-19 February

San Diego, California USA

@

Program ¢ Advance Registration Ends 5 February 2004

Exhibition
http://spie.org/conferences/programs/04/mi/

SPIE International Symposium
Optical Science and Technology
SPIE’s 49th Annual Meeting
2—6 August

Denver, Colorado USA

Call for Papers ¢ Abstracts Due 5 January 2004
Exhibition
http://spie.org/conferences/calls/04/am/

©

26th International Congress on @
High Speed Photography and Photonics k}
20-24 September

Alexandria, Virginia USA

Call for Papers ¢ Abstracts Due 15 March 2004
http://spie.org/conferences/calls/04/hs/

NIH Workshop on

Diagnostic Optical Imaging and Spectroscopy
20-22 September

Washington, D.C. USA

Organized by NIH, managed by SPIE

SPIE International Symposium
Photonics Asia 2004

8-11 November

Beijing, China

©

« Biomedical Optics

« Integrated Optoelectronic Devices

« Lasers and Applications in Science and
Engineering

« Micromachining and Microfabrication

Program ¢ Advance Registration Ends 7 January 2004

Exhibition

http://spie.org/Conferences/Programs/04/pw/

Call for Papers

SPIE International Symposium '
http://spie.org/conferences/calls/04/pa/

ITCom 2004

Information Technologies and Communications
12-16 September

Anaheim, California USA

Co-located with NFOEC

©

For More Information Contact
SPIE « PO Box 10, Bellingham, WA 98227-0010 « Tel: +1 360 676 3290 « Fax: +1 360 647 1445
E-mail: spie@spie.org « Web: www.spie.org

Space-variant image processing:
taking advantage of data reduction and polar coordinates.

Continued from page 12.

acquisition of frames per second is acceleratedplex image-processing algorithms are simpli-
since the images are very small. The frame-fied and acceleratéd? Further, the hardware _ Press. p. 245, 1992.
bber size is also dramatically reduced. Com-reduction achieved in storing and processing” M T'stareli and G- SandinDn the advantages of
g!'a y L ! ! 9 - p 9 polar and log-polar mapping for direct estimation
bined, these two effects make the exploitationimages, combined with the density of program-  of time-to-impact from optical flowEEE Trans.
of differential algorithms especially interesting. mable devices, make possible a full image-pro- on PAMI 15 (4), p. 401, April 1993.
Such image-processing algorithms systemati-cessing system on a single chifhis approach 4 R- S: Wallace, P. W. Ong, B. B. Bederson, and E.
lly apply simple operations to the whole im- is especially well suited to systems with power 5 SChwartzspace-variant image processirigil.
cally apply simple ope : p y Yy np J. of Computer Vision 13 (1), p. 71, 1994.
age, computing spatial and temporal differ- consumption and hardware constraints. Wes. F. Jurie A new log-polar mapping for space
ences. These can be computationally intensivewvould argue it is the natural evolution of the  variantimaging: Application to face detection and
for large images and the simultaneous storagereconfigurable architectures employed for au- tlrg;g'”g'Pa“em Recognition 32(5), p. 865, May
of several frames for computing temporal dif- tonomous robotic navigatiésystems. F. Pardo, B. Dierickx, and D. Scheff@pace-
ferences can be a hardware challenge. Log- This work is supported by the Generalltat

Processing,Ed. Shapiro & Rosenfeld, Academic

. Variant Non-Orthogonal Structure CMOS Image
polar image-data reduction can therefore con-Valenciana under project CTIDIA/2002/142. Sensor DesignEEE J. of Solid-State Circuits 33
tribute to the effective use of differential algo- , (©) p 82 June iggsboming@n the advantages
rithms in real applications. _ ~ Jose A. Boluda’ and Fernando Pardo of combining differential algorithms, pipelined

In addition to the selective reduction of in- Departament d’'Inforntieca architectures and log-polar vision for detection of
formation, another interesting advantage of log- Universitat de Valecia, Spain self-motion from a mobile roboRobotics and
polar representation is related to polar coordi- E-mail: Jose.A.Boluda@uv.es Sutanomaus Systems 374), p. 283, December
nates. In this case, approaching movementhttp://www.uv.es/~jboluda/ 8. J. A. Boluda and F. Pardé, reconfigurable
along the optical axis in the sensor plane has architecture for autonomous visual navigation,
only a radial coordinate. This type of move- References Machine Vision and Applications 13(5-6), p.

1. M. Tistarelli and G. SandinDynamic aspects in 322, 2003.

megt[lls Olftefn prel_Slfﬂt with a camera on LOD Olffa active vision CVGIP: Image Understanding 56 9. J. A. Boluda and F. Pard8ynthesizing on a
mobiie p fat or_m I e.an aUtonO.mous.rO Ot'. (1), p 108, 1992. reconfigurable chip an autonomous robot image
the machine is moving along its optical axis, 2. R. M. Hodgson and J. C. Wilsohog polar processing systenfrield Programmable Logic
the image displacement due to its own move- mapping applied to pattern representation and and Applications, Springer Lecture Notes in
ment has only a radial component. Thus, com- recognition,Computer Vision and Image Computer Science 2778, pp. 458-467, 2003.
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Space-variant image processing: taking advantage of
data reduction and polar coordinates.

The human retina exhibits a non-uniform
photo-receptor distribution: more resolution at
the center of the image and less at the periph
ery. This space-variant vision emerges as a
interesting image acquisition system, since
there is a selective reduction of information.
Moreover, the log-polar mapping—as a par-
ticular case of space-variant vision—shows in-
teresting mathematical properties that can sim
plify several widely-studied image-processing
algorithms! For instance, rotations around the
sensor center are converted to simple transla
tions along the angular coordinate, and
homotheties (linear transformations) with re-
spect to the center in the sensor plane becom
translations along the radial coordinate.

The sensor (with the space-variant density
of pixels) and computational planes are called
the retinal and cortical planes, respectively. Thethis is the periphery of the image. This retinal cells per ring. The fovea is comprised of the
resolution of a log-polar image is usually ex- image occupies less than 8 kB: the equivalentinner 20 rings that follow a linear- (not log-)
pressed in terms of rings and number of cellsCartesian image is around 189 kB (24 times polar transformation to avoid the center singu-
(sectors) per ring. A common problem with this larger). The computational plane of the image larity. This method fixes the image transfor-
transformation is how to solve the central sin- is shown in Figure 1 (right). mation parameters and is not flexible.
gularity: if the log-polar equations are strictly ~ The best way to obtaining log-polar images As an intermediate approach, a circuit that
followed, the center would contain an infinite depends on the available hardware and softperforms a Cartesian to log-polar image trans-
density of pixels that cannot be achieved. Thisware. The simplest approach is to use softwareformation can be implemented on a program-
problem of the fovea (the central area with to transform a typical Cartesian image from a mable device. This solution gives the advan-
maximum resolution) can be addressed in dif- standard camera. This is done using the transtage of speed while retaining flexibility: the
ferent ways: the central blind spot model, formation equations between the retinal planetransformation parameters can be changed on
Jurie’s modef,and other approaches that give and the Cartesian plane. Since the transformathe fly. Moreover, the complexity and density
special transformation equations for this cen-tion parameters can be tuned online, this solu-of current reconfigurable devices represent a
tral area. Figure 1 shows an example of a log-tion is flexible. However, it can be an exces- new trend in computer architecture, since it is
polar transformation. At the left there is a Car- sively-time-consuming effort if the computer possible to include microprocessors, DSP
tesian image of40x440 pixels; at the center must first process these images in order to percores, custom hardware, and small memory
is the same image after a log-polar transforma-form another task. The other option is the blocks in a single chip.
tion with a central blind spot that gives a reso- purely-hardware solution: the log-polar trans-  The log-polar image data reduction has sev-
lution of 56 rings with 128 cells per ring. No- formation made directly from a sensor with this eral positive consequences for the processing
tice there is enough resolution at the center toparticular pixel distribution. An example of a system. The first and most obvious is that the
perceive the cat in detail. The rest of the imagelog-polar sensor is a CMOS visual sensor de-

%igure 1. Left: A 440x440 Cartesian image. Center: A 128x56 log-polar image. Right: The computational
image.

is clearly worse than the Cartesian version, butsigned with a resolution of 76 rings and 128 Continues on page 10.
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