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Abstract 

In this paper, we analyze whether Principal 
Component Analysis (PCA) is an appropriate tool for 
estimating spatial information in spatio-chromatic 
mosaiced images. Ruderman et al. [1] have shown that 
the spatio-chromatic principal components of cone 
images contain first spatial information, followed by blue 
minus yellow and red minus green. However, their 
analysis is based on fully defined spatio-chromatic 
images. In case of a reduced spatio-chromatic set with a 
single chromatic value per pixel, such as present in the 
retina or in CFA images, we found that PCA is not an 
appropriate tool for estimating spatial information. By 
extension, we discuss that the relation between natural 
image statistics and the visual system does not remain 
valid if we take into account the spatio-chromatic 
sampling by cone photoreceptors. 

Introduction 

The statistical analysis of natural scenes, as viewed 
by human observers, has given new insight in the 
processing and functionality of the human visual system. 
Pioneer work has shown the relation between redundancy 
reduction in natural scenes and the visual system’s 
receptive fields [2, 3]. Using gray-scale natural scene 
imagery, Olshausen & Field [4] show that representing 
images with sparse (less redundant) code leads to spatial 
basis functions that are oriented, localized and band-pass, 
and resemble the receptive field structures of the primary 
cortex cells. Bell & Sejnowski [5] found that sparseness 
could be appropriately formalized using Independent 
Component Analysis (ICA), and show that independent 
components of natural scenes act as edge filters. 

For the case of color, Buchsbaum & Gottschalk [6] 
use Principal Component Analysis (PCA) of L, M and S 
cone signals to derive post-receptoral mechanisms: 
luminance and opponent chromatic channels (blue minus 
yellow, and red minus green). Using a simple model of a 
natural scene (flat spectrum), they proved the emergence 
of post-receptoral mechanisms from cone signals and 
propose that this de-correlated coding reduces the 
information transmitted to the optical nerve. Later, Attick 
& Redlich [7] formalized the relation between natural 

color scenes and retinal functions. They show that a 
retinal filter is consistent with a whitening process of the 
natural scene structure when noise is taken into account. 

Finally, the use of hyperspectral images has allowed 
to precisely analyze the spatio-chromatic structure of 
natural scenes and confirmed previous studies [8]. 
Ruderman et al. [1] show that the principal components 
of natural color images, as sampled by cones, are 
consistent with post-receptoral receptive fields and 
provide reduced signals. Using ICA, Tailor et al. [9] and 
Lee et al. [10] show also that natural color image 
statistics could account for simple and complex color 
opponent receptive fields in the primary cortex. 

From these studies, it seems that post-receptoral 
mechanisms of the human visual system correspond to a 
statistical analysis of natural scenes and provide a 
redundancy reduction. But all these studies do not take 
into account that cone receptor sampling already results 
in a reduced spatio-chromatic set. Doi et al. [11] have 
proposed a study where the cone mosaic is taken into 
account. They used a local arrangement of cones (127) 
from which they sampled LMS responses to construct 
vectors and perform ICA analysis. Although this method 
gives interesting results, it is still not realistic for 
simulating cone sampling since only a small part of the 
entire mosaic is used. Their study actually corresponds to 
analyzing the signal of a part of the retina moving along 
natural scenes. In this paper, we propose two novel 
methods for analyzing an entire mosaiced image. 

In the visual system, the three types of cones L, M 
and S form a mosaic such that only a single chromatic 
sensitivity is sampled at each spatial location. Thus, the 
spatio-chromatic signals are already reduced by a factor 
of three compared to fully defined spatio-chromatic 
signals of a natural scene (or color image). 

In this paper, we study whether statistical analysis of 
natural color images sampled with a spatio-chromatic 
mosaic still has a correspondence with the processing of 
the visual system. In this preliminary study, we 
investigate only a simple case. We restrict our analysis to 
Principal Component Analysis (PCA), a second order 
statistical analysis that performs a simple de-correlation 
of a signal. We use RGB color images instead of LMS 
images constructed from hyperspectral data, and we use a 
regular arrangement of RGB samples instead of a random 



 

 

arrangement, such as given by the cone distribution in the 
retina. Actually, this experimental set-up coincides with 
many digital camera output, since most use a single CCD 
and a Color Filter Array (CFA) to provide color 
responses. Such systems sample a single chromatic 
sensitivity per pixel and need to interpolate the missing 
information to render color images. Thus, we can 
investigate if a spatio-chromatic analysis is able to help 
the reconstruction of a full spatio-chromatic image. 
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Figure 1: From an image, we construct a matrix that contains 
on each row the spatio-chromatic neighborhood of a pixel. 

PCA of color images 

The main result of the work of Ruderman et al. [1] is 
that the spatio-chromatic PCA analysis of L, M and S 
responses to natural color images, computed from 
hyperspectral images, is consistent with post-receptoral 
mechanisms. We can reproduce this result using RGB 
images.  

Given an image , ,i j cI , defined by a three 
dimensional matrix of size 3H W× × , we can construct a 
matrix x  that contains for each row a column vector 
composed of spatial neighbors of size V  of each pixel 
for each color layer (see Figure 1). Thus, the size of x  is 

2( ) (3 )HW V× . This matrix, on which we can apply an 
analysis, can be interpreted as containing on each row a 
representation of the spatio-chromatic random variables 
of a color image. We first compute the covariance of x  
as follows: 

 ( ) ( )( ) /( 1)TCov HW= = − − −C x x x x x  (1) 

The resulting matrix C  of size 2 23 3V V×  is then 
decomposed into eigenvalues S  and corresponding 
eigenvectors U  of decreasing eigenvalue magnitude: 

 1−=C USU  (2) 

The columns of U  are the eigenvectors and 
represent the basis functions of the transformation. We 
can represent these basis functions as spatio-chromatic 
samples and display their spatial and chromatic 
properties as color images (see Figure 2). 

As shown by Ruderman et al. [1], the first principal 
components are mostly achromatic basis functions, 
followed by blue-yellow and finally red-green. Note that 

the second component in Figure 2 is red. This result 
depends on our particular image; if we had chosen a set 
of RGB images instead of one single image, we probably 
would obtain a more accurate result. 

  

 

Figure 2: (a) Image (b) Spatio-chromatic representations of 
eigenvectors of the covariance matrix (with 3V = ). Vectors 
are arranged in rows of decreasing eigenvalue magnitude.   

 The matrix U  represents a rotation matrix that 
transforms the original spatio-chromatic space into a 
space where components are de-correlated. If we call y  
the de-correlated matrix corresponding to x , we have: 
 

( ) ( ) ( ) ( )T T T= ⇒ − − = − − =
C

y xU y y y y U x x x x U S  (3) 

Eq. 3 shows clearly that y  is a de-correlated data 
set. It is possible to partially reconstruct an image using 
only a few basis functions. x  is obtained from x  as 
follow: 

 1−=x xUdU  (4) 

d  is a diagonal matrix that contains zero or one 
depending if the corresponding vector is to be used or 
not. As shown in Figure 3, the first principal components 
of spatio-chromatic samples give a good approximation 
of the image. This is particularly true when the 
neighborhood remains small. Also, the achromatic basis 
functions only increase the resolution of the image 
(compare 3(b) and 3(c)) when the chromatic basis 
functions carry the color components of spatio-chromatic 
samples. 

We can observe that basis functions seem to be 
decomposed into three categories. For the example of a 
3x3 neighborhood, there are 9 achromatic basis 
functions, 9 blue-yellow and 9 red-green. We may ask the 
question if the achromatic basis functions are able to 
reconstruct accurately the luminance information of the 
original image. To test this hypothesis, we can 
reconstruct the image using only achromatic basis 
functions. We then compare this image with the 
luminance image estimated as the mean of R, G and B at 
each pixel. Using basis functions 1, 3, 4, 6-11 (see Figure 
2 (b)), we found a PSNR of 37.8 dB which is satisfying. 
Note, however, that if we use the first 11 principal 



 

 

components, the PSNR equals 64dB, but using the first 9 
components (i.e. leaving the last two achromatic basis 
functions out) results in a PSNR equal to 44 dB. This 
means that the chromatic 2nd and 5th components are 
important for the luminance reconstruction because they 
adjust the luminance level in the red and purple part of 
the image. This adjustment gives a similar estimate of 
luminance as adding the 10th and 11th achromatic 
components. 

 

Figure 3: Partial reconstruction of the image. (a) Using only 
the first principal component (CPSNR=19.7) (b) Using 1st and 
2nd (CPSNR = 21.6) (c) Using four (CPSNR =24.4) (d) Using 

five principal components (CPSNR =27.9). 

PCA of mosaiced color images 

A mosaiced color image can be decomposed in 
luminance and opponent chromatic channels as illustrated 
in Figure 4. This decomposition keeps the full definition 
of spatial information in the luminance channel. Only 
opponent chromatic channels are sub-sampled according 
to the color mosaic of the image [12]. 

As we have shown in the previous section, it is 
possible to accurately estimate luminance from the 
spatio-chromatic samples of a color image using PCA. 
We now investigate if the method also works in case of a 
mosaiced color image. 

 

Figure 4: (a) Mosaiced color image according to the Bayer 
CFA, decomposed as (b) luminance plus (c) sub-sampled 

opponent chromatic channels.  

The construction of the vectors as shown in Figure 1 
is no longer possible because the dimension of the 
mosaiced image with a single chromatic value per spatial 
location is H W× . In other words, a mosaiced color 
image is already a scalar image. To avoid this problem, 
we thus propose to replace the missing colors by values 0 

in the vector, as illustrated in Figure 5 (a). With this 
method, we keep a trace of the color components of the 
basis functions, since the first third of the vectors 
correspond to red, the second third to green and the last 
third to blue pixels. Figure 6 shows the resulting 
principal components of the mosaiced color image of 
Figure 4 (a). 
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Figure 5: Method for constructing vectors of  neighboring 
pixels in a mosaiced color image. (a) Inserting zeros for 

missing colors (b) Considering a color mosaic as a gray-scale 
image. 

It can be seen that none of the basis functions have 
achromatic properties, meaning that the reconstruction of 
luminance is not possible. Actually, this is not exactly 
true; the 4th component does not contain the CFA 
structure. Using only this basis function, we can 
reconstruct luminance with a PSNR equal to 22.8. The 
resulting image is a low pass-filtered version of the 
luminance. Increasing the size of the neighborhood does 
not improve the result. 

The reason for this failure is that the achromatic 
basis functions are weighted by the mosaic of color 
samples. For example, the 5th and 6th components of 
Figure 6 are edge functions, similar to the 3rd and 4th 
basis functions in Figure 2 (b), but weighted by the color 
mosaic. The 4th is the only basis function that lacks a 
color mosaic pattern. 

 

Figure 6: Result of the PCA of the mosaiced image of Fig. 4 
(a) using the method of inserting zeros at missing color 
positions. The basis functions are arranged in rows of 

decreasing eigenvalue magnitude. 

We have done the same analysis using only a Bayer 
CFA pattern. That is identical to sampling a constant 
white flat field by the CFA. We found that only three 
components have significant eigenvalues, and they 



 

 

correspond exactly to the first three principal components  
of Figure 6. We tested if removing these components 
removes the grid effect due to the CFA, but that is not the 
case. The grid remains for each component except the 4th. 

As shown in Figure 4, luminance has an important 
role for estimating spatial information in a CFA image. 
Considering that the method we have used above does 
not provide a good estimate of luminance, we propose a 
second method for analyzing mosaiced color images. 

As illustrated in Figure 5 (b), we can also consider a 
CFA image as a gray-scale image and construct the 
vector of neighboring pixel as one would do it for a gray-
scale image. Figure 7 (b) shows the result of the PCA in 
that case. In Figure 7 (a), we illustrate the result of a PCA 
analysis on luminance only, estimated as the mean of R, 
G and B at each pixel.  

The PCA of the mosaic adds basis functions that are 
not present in the analysis of the “luminance only” image. 
By suppressing these functions (i.e. 2, 3, and 6), we 
obtain a PSNR equal to 29.2. Using a 5x5 neighborhood 
results in a PSNR equal to 29.6.  

                

Figure 7: (a) PCA on Luminance (b) PCA on a mosaiced color 
image interpreted as a gray-scale image. 

Thus, this method better estimates luminance than 
the previous one, and indicates that PCA could be used to 
estimate spatial information in mosaiced color images. 
We will further investigate if this method can follow the 
particular statistics of an image or image set. 

Conclusion 

Principal Component Analysis allows efficient 
separation of the achromatic channel from the chromatic 
channels in color images because the achromatic 
component follows the second order statistics of a 
particular image. However, when using a mosaiced color 
image, it performs worse than a simple gaussian low-pass 
filter. The mosaic “pollutes” the basis functions and 
prevents good reconstruction. This is certainly due to the 
fact that the color mosaic and the color image are not de-
correlated, and a de-correlation procedure cannot process 
them separately. 

By extension, it seems that the de-correlation stage 
in the visual system, proposed by some authors as being a 
model of retinal processing, changes behavior when 
considering the sampling of a single color per cone 
location. Actually, this retinal sampling is already a 
redundancy reduction of the spatio-chromatic 
information of natural scenes, and might not necessary 
need a further de-correlation process. 

In this study, we have restricted the statistical 
analysis to PCA. As Bell and Sejnowski [5] point out, 
PCA could model retinal processing, but for modeling 

cortical processing, Independent Component Analysis is 
needed. It is possible that the color mosaic and the color 
image are independent rather than just de-correlated. In 
that case, a separation of information should be possible, 
and would confirm that the separation of spatial and 
chromatic information arises at a cortical level. 
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