Precise Graphical Representation of Rolesin Requirements
Engineering

Pavel Balabko, Alain Wegmann
Laboratory of Systemic Modeling, Ecole Polytechnique Fédérale de Lausanne, EPFL-IC-LAMS, Lausanne,
Switzerland

Email: pavel.balabko@epfl.ch, alain.wegmann@epfl.ch

Abstract: Modeling complex systems can not be done without considering a system from multiple views.
Using multiple views improves model understandability. However the analysis of models that integrate
multiple views is difficult. In many cases a model can be evaluated only after itsimplementation. In our work
we describe a visual modeling framework that allows for the evaluation of multiview models. We give an
overview of our framework using a small case study of a Simple Music Management System. For each view
in our framework we specify a separate role of the system. The whole system is specified as a composition of
smaller roles. Each role, as well as the whole model of a system, can be evaluated by means of the analysis of
possible instance diagrams (examples) that can be generated automatically. Instance diagrams are generated
based on the formalization of visual models using the Alloy modeling language.

1 Introduction

Modeling of complex systems from multiple views is unavoidable. Multiple views help in solving
the scalability problem described in [Chang99] and improve model understandability: each view can
be analyzed independently of other views. However, the reasoning about the whole model as a
composition of multiple views is difficult. It is difficult because the same entity in the Universe of
Discourse (UoD or redity) can be modeled as severa independent model elements. The role of
modeler in this case is to make one model from the set of models corresponding to different views. A
modeler has to find identical model elements (elements that model the same entity in the UoD) in
models to be composed and make sure that a resulting model makes sense (it reflects “reality” or the
UoD in some meaningful way). Here we will not talk about how a modeler should search for the
identity of model elements. This is a separate research topic that is based on the Tarski declarative
semantics. the semantics that defines equivalence of an agreed conceptuaization of the UoD to a
concrete concept in the model (see [Naumenko02] for details). We concentrate on the second part of
the problem: assuming that we agree what the identity of model elements means, we investigate how
to ensure that a composed model gives us some adequate reflection of reality.

The design of software systems should be based on adequate models (models that help to solve
someone problems). Only adequate models can ensure that a system evolves in correspondence with
the system’s users needs. Therefore early system requirement specification is an important step in the
evolution of software systems. In our work we concentrate on the very early model validation of
system requirements that results in an adequate model. The understanding of model adequacy requires
the interaction between system developers and customers (or other system stakeholders). They are not
experts in system modeling and may have problems in understanding semantics of specification
diagrams (like UML class or statechart diagrams). These diagrams are convenient for professionals
and represent the generalizations of many examples (or scenarios) from the problem domain. On the
contrary, for customers it is more convenient to talk in terms of particular examples (or instances) of
models. In our work we describe a visual modeling framework that alows for the compoasition of
models from different views and the analysis of composed models based on automatically generated
model instances.

Our framework supports modeling with multiple views. For each view we specify a separate role
for a system. The whole system is specified as a composition of smaller roles. Each role as well asthe
whole model of a system can be evaluated by means of the analysis of the possible instance diagrams
(examples) that can be generated automatically. Instance diagrams are generated using the Alloy

Constraint Analyzer* [Jackson02]. It is based on the Alloy modeling language. It is a simple structural
modeling language based on first-order logic. Alloy models are analyzed using the Alloy Constraint
Anayzer. The analyzer attempts to find a solution based on a given specification. If a solution is
found, it displaysit as a graph of nodes and edges (similar to an instance diagram).

We describe our framework using a small case study of the Simple Music Management System (a
simplified version of www.mp3.com). We took mp3.com as a base of a Simple Music Management
System because its model is a complex one and can not be modeled from a single point of view. We
consider two major views for this system: User View and Artist View. Here we give a brief
description of these two views:

M P3.com users can:

Find free artist albums and artist singles in places like MP3.com]
artist pages (pages containing artist albums, singles etc), and add™ > | |+ e o ey
them to My Music (personal user music collection at

"Southerner Takes A Swing"

Wiaer Al Wy AT |

ABms | Singles [Channehs |Plndisls

—~

http://my.mp3.com).
ruvr HOME rm.m
Wainto o | My blsrsic

Quite a layered piece. Wot
rhythms.. Take a ride on tl

oy
e 1]

TABCDEFCHIFELMEOFQASTUYWEY D
B M G
b MM Laos
¥ W GHzen Mk

-«
ﬁ "';f'm":“ P v vome Tmv.mvez R
b | AN T Welcome | My Music
B AcreacH View All My: Artists | Albums | Singles | Cha
e + Selected:

: Play

Iy —— I - All Artists in t
B A TS e ke (147 Adists)
B Aroeeien Binded *ABECDEFGHIJKLMHOPC

>/ | 10Minutes Down

v

Play music from My Music.

| 20 Minute L oop

Manage personal user music collection (My Music):

0 Manage user play lists. A user play list can include single tracks
(a user track that is not part of any other user album) or album
tracks from the personal user music collection (My Music).

0 Delete user playlists, singles and albums from My Music.

MP3.com artists can:
With a Standard Content Agreement:
o Create one or more Artist Pages where an artist can post his
materias
0 Artist materials can include: artist singles and artist albums with
album tracks.

The structure of this paper is the following. In section 2 we give the minimum set of concepts
necessary for the understanding of our paper. In section 3 we show how a model of a Simple
Management Music System can be built in our framework: in section 3.1 we begin with the
specification of base roles, in section 3.2 we specify a composition of base roles and in section 3.3 we
show how a composed model can be evaluated through the analysis of automatically generated
instance diagrams. Section 4 is a conclusion.

2 Definition of Main Concepts

In this section we present concepts that we use in our work. In order to give rigorous definitions for
these concepts, we have to choose a consistent semantic framework. We use the 1SO/ITU standard

! See http://sdg.|cs.mit.edu/alloy/

“Reference Model for Open Distributed Processing” — part 2 [I1SO96] as a basis of our modeling
framework.

Based on RM-ODP, modeling consists of identifying entities in the universe of discourse and
representing them in a model. The universe of discourse (UoD) corresponds to what is perceived as
being reality by a developer or a customer; an entity is “any concrete or abstract thing of interest”
[1SO96] in the UoD. Identified entities are modeled as model elementsin a model. Model elements are
different modeling concepts (object, action, behavior etc). We give definitions of some modeling
concepts necessary for the understanding of our paper (other definitions see in the RM-ODP). We
begin with the definition of an object. If in the UoD we have entities that can be modeled with state
and behavior, we model these entities as objects:

Object: “ An aobject is characterized by its behavior and dually by its state” [1S096].

The duality of state and behavior means that the state of an object determines the subsequent behavior
of this object. To specify state and behavior of an object we will use Object Behavior and Object State
Structure:

Object Behavior Structure: A collection of actions and a set of (sequential) relations between
actions.

All possible state of a system we model as a state structure:
Object State Structure: A collection of attributes, attribute values and relations between attributes.

Attributes can change their values; relations between attributes can be created or deleted.

Based on the definition of behavior we define arole:
Role: “ An abstraction of the behavior of an object” intended for achieving a certain common goal
in collaboration with other roles.

Like a behavior of an object is defined dually with a state of an object, arole is also defined with its
state. To specify possible states of arole we use Role State Structure:

“Role State Structure is a subset of the compl ete state of a system that is used for reasoning about
agivenrole’.

In this work we consider modeling and analysis of arole state structure. Graphically we represent a
role state structure in the following way: each role we represent as a box with two panes (see figure 1).
The upper pane indicates the name of a role. The lower pane contains a role state structure. To
represent it we use graphical notation inspired by a UML class diagram.

Manage One User Music

|_1‘ User Music

1 1 1
albums| «

User
. tracks | 4 Album
playlists |1..n L User 1
- ..n *

Play List tracksLLrack

name tracks|1..n
.|nfo User User Album
pictures Single Track

Figure 1. Graphical notation that shows arole state structure for the “Manage One User Music” role.

The main difference with a UML class diagram is that we make explicit belonging of attributes to
roles. We do it by means of the notation inspired by the Catalysis method [D'Souza98]. We connect
attributes, that are not parts of any other attribute, to the border of a lower pane box. In figure 1, for
example, we explicitly connect the “User Music” attribute to the “Manage One User Music” role. This
alows us to specify that thisrole always has one “User Music” attribute.

3 Model of the Simple Music Management System and its Analysis

This section is the main part of our paper where we describe our modeling framework based on the
example of a model of a Simple Music Management System. In section 3.1 we begin modeling of a
Simple Music Management System with two base roles: “Manage One User Music” and “Manage One
Artist Music” (roles in the lower part of the role hierarchy in figure 2). The first role is a role of the
system from the point of view of one user that manages his music (My Music). The second roleis a
role of the system from the point of view of one artist that manages his music to be provided for users.

SimpleMusic
ManagementSystem
1] 1]
ManageMultiple ManageMultiple
Users Music Artist's Music
ManageOne ManageOne
User Music Artist Music

Figure 2 Hierarchy of rolesfor amodel of a Simple Music Management System.

In section 3.1 we give models of two higher level roles in the role hierarchy: “Manage Multiple
User Music” and “Manage Multiple Artist Music”. Both these roles are correspondingly composed
from multiple lower-level roles. “Manage One User Music” and “Manage One Artist Music”. The first
one specifies the system from the point of view where there are multiple users managing their music;
the second role specifies the system from the point of view where there are multiple artists, managing
their music. In section 3.2 we explain how a composition of the “Manage Multiple User Music” and
“Manage Multiple Artist Music” roles can be specified. In section 3.3 we explain how a composed
model can be evaluated based on the analysis of automatically generated instance diagrams.

3.1 Specification of Base Roles

We begin with the modeling of the state structure of the “Manage One User Music” role. For thisrole
we give an Alloy code and explain how it corresponds to a model of thisrole (seetable 1).

1. module Main/UserMusic/OneUserMusic //module declaration

ManageOne User Music 2. sig UserTrack {}
3. sig UserMusic { tracks: set UserTrack,
|_{ User Music playlists: set PlayList,
albums: set UserAlbum}
Y Y .—\ 4. sig UserAlbum {tracks: set UserAlbumTrack}
albums | * 5. part sig UserSingle, UserAlbumTrack extends UserTrack {}
User 6. sig PlayList {tracks: set UserTrack}
playlists | 1..* tracks * | Album
Blay List 1.n % TUserk 1 /——— Multiplicity FaCts ----------mmrezemmmmeen
ayLis tracks—ac 7. fact{ //PlayList (.) -> (*) UserTrack
name tracks| 1..* 8 all ut:UserTrack | some pl:PlayList | ut in pl.tracks }
info
pictures SLiJrfelre UseTrrglcbkum 9. fact{ // UserMusic (1) -> (1..n) PlayList
g 10. (all um:UserMusic | some pl:PlayList | pl in um.playlists) &&

11. (all pl:PlayList | one um:UserMusic | pl in um.playlists) }

12. fact{ // UserMusic (1) -> (*) UserTrack
13. all ut:UserTrack | one um:UserMusic | ut in um.tracks }

14. fact{ // UserMusic (1) -> (*) UserAlbum
15. all ua:UserAlbum | one um:UserMusic | ua in um.albums }

16. fact {// UserAlbum (1) -> (1..*) UserAlbumTrack

17. (all ua:UserAlbumi|some uat:UserAlbumTrack|uat in ua.tracks) &&
18. (all uat:UserAlbumTrack | one ua:UserAlbum | uat in ua.tracks) }
e — End of Multiplicity Facts -----------=---=z--m-----

Table 1 State structure model for the “Manage One User Music” role and the Alloy code.

Let'slook at the Alloy code in table 1. All rectangles (attributes) in the diagram from this table have
corresponding type declarations in the code (lines 2-6). A user track can be either a user single (atrack
that is not a part of any user's abum) or a user album track. In code this is expressed as the
partitioning of all user tracksinto two sets (line 5).

A type declaration may introduce relations. For example the “User Music” type (line 3) introduces
three relations (tracks, playlists and albums). The keyword set indicates multiplicity: it tells that a
relation points to a set of elements. For example, for each element of the “User Music” type thereisa
set of elements of the “User Track” type. To make multiplicity more strict (like “1..*” instead of “*"),
multiplicity facts are used (lines 7 - 18). For example, the fact in line 16 contains two constraints (line
17 and 18). The constraint from line 17 tells that for all elements of the “User Album” type there are
some (at least one) elements of the “UserAlbumTrack” typein the “tracks’ relation.

Aswe mentioned in the introduction, the simplest way to make an agreement with no professionals
(like customers) that a model adequately represents the UoD is to consider model instances. Model
instances can be generated using the Alloy Constraint Analyzer. It checks the consistency of aformal
Alloy model; randomly generates a solution (an instance of a model) and visualizes it. In order to
generate a solution, a scope of a mode should be defined. A scope defines how many instances of
each type a solution may include.

Examples from figure 3 and 4 were built with the Alloy Constraint Analyzer.

lUserhdusic_0
mycs Wylists
lserAlbum_1 PlayList_0 tracks PlayList_1 tracks
Wﬁ \tracks Aks Nacks
UserTrack_D LIserTrack_1
LserAlbumTrack) [Usersingle)

Figure 3 Example with ascope 2 but 1 UserMusic

Usertusic_0 lIserhiusic_1

Naylists playlists WUms

tracks |PlayList_1| |PlayList D tracks [Useralbum_1

tracks tracks ﬁcks
L
UserTrack 1] UserTrack D

(Usersingle) UseralburnTrack)

Figure4 Example with a scope 2

The scope of the example in figure 3 was defined in the following way: 2 All, 1 UserMusic. This
means that this example, generated by the Alloy Constraint Analyzer, could have maximum two
elements of each type (except the UserMusic type) and one element of the UserMusic type. Having
only one element of the UserMusic type corresponds to the fact that the “Manage One User Music”
role includes one UserMusic attribute (see diagram in Table 1). The Alloy Constraint Analyzer allows
for the generation of severa different examples for the same model and the same scope. All these
examples can be used to reach an agreement with a customer if the state structure model of the
“Manage One User Music” corresponds to the common understanding of the UoD.

The next step will be to make a state structure model for the “Manage Multiple User Music” role
(see figure in table 2). Comparing with the diagram from table 1, we changed the multiplicity of the
association that connects the “Manage Multiple User Music” role with the UserMusic attribute (see
figure in table 2). This alows for specifying that this role has multiple “User Music” attributes. All
other elements of the diagrams from tables 1 and 2 are the same (for the moment we ignore invl and
inv2 in the diagram from Table 2). This alows us to reuse the Alloy code from table 1 and test it for a
new scope. With a new scope we have to require that a solution includes several (at least two)
instances of the UserMusic type. Therefore we choose a new scope equal to two. This means a
solution may include maximum two instances of each type.

A solution, found by the Alloy Constraint Analyzer for the Alloy code from table 2 with the scope
egual to two, is shown in figure 4. We can see that this solution does not adequately show the reality:
“A user play list may include single tracks or album tracks from this user music” (see the description
of a Simple Music Management System in introduction). However, the solution, found by the Alloy
Constraint Analyzer, shows that a user play list may include tracks of another user. Therefore we have
to put additional constraints to make a state structure model for the “Manage Multiple User Music”
correct. These additional constraints we put in a separate Alloy module: MultipleUserMusic (see
Table 2).

module Main/UserMusic/MultipleUserMusic //module declaration
open Main/UserMusic/OneUserMusic
ManageMultipleUserMusic
1 Multiplicity Invariants ---------=-=mmecmmmuun
d UserMusic | fact inv1 {
1 1 1 all um:UserMusic | all ut:UserTrack | (ut in um.playlists.tracks)
T Y 2TB0mS => (ut in um.tracks) }
*
. @ tracks [« User fact inv2 { .
playlists | 1..* Album all um:UserMusic | all uat:UserAlbumTrack |
. 1 o | User 1 (uat in um.tracks) => (uat in um.albums.tracks)
Play List Track }
tracks
name ,% N .
: tracks |1.* M —mmmmmmmme e End of Multiplicity Invariants ------------------
iinfo User UserAlbum
pictures Single Track

Table 2 Specification of state for the “Manage Multiple User Music” role and the corresponding
Alloy code.

Additional constraints come directly from the diagram in table 2: for all cycles in this diagram we
add invariants in the Alloy code. For example, invl requires for all users, that tracks from all user
playlists (for a given user) are tracks of the same user. The MultipleUserMusic Alloy module can be
analyzed by means of generating different examples. We do not give them here since they are similar
with examples from figures 3 and 4.

Based on the description of our small case study, we can build a state structure model of the
“Manage Multiple Artist Music” role (seefigure 5).

ManageMultipleArtistMusic

*

ArtistMusic
’ tracks| *
albums| * Artist
Album Track
name ,#'
iinfo 1. 1..*[Album Artist
pictures tracks Track Single

Figure 5 The state structure model for the “Manage Multiple Artist Music” role.

This model and the corresponding Alloy code are built in the same way as for the “Manage Multiple
User Music” role. Therefore we do not show the Alloy code here.

Let's conclude: up to this point we have the role state structure models of the both “Manage
Multiple User Music” and “Manage Multiple Artist Music” roles. In the next section we show how a
composition of these two modelsis done.

3.2 Composed view

As we explain in [Balabko03], the modeling process of a complex system consists in building
models in specific contexts and finding identical elements in these models. In this section we continue
the example of amodel of a Simple Music Management System that gives an intuition of the meaning
of identical elements (more details about identical elements see in [Balabko03]). Let’s imagine an
external observer who perceives the work of two users (see figure 6).

D Exteranal Observer View
ManageOneUser
gMusic " ManageOneUser
Music
1 1
UserMusic UserMusic
1 1
tracks |4) . tracks | 4
User |dent|Ca| ? User
Track Track

Figure 6 Identical model elements.

at:Artist aa:Artist
Track Album

al:Usert
bum

identical identical

(a) (b)
Figure 7. Modeling of identical model elements:. (a) Identical User Tracks; (b) Identical User Albums

We suppose that this external observer can not see all details about user tracks: how they are created,
used and deleted. The only one thing that he can observe is the content of tracks. This defines an
External Observer view. From this point of view, the external observer may say that some user tracks
of some different users are identical, i.e. the music of these tracks is the same. The question is, if we
have to model this identity or not. In our case study, this identity is important because it takes into
consideration the Artist Track concept from the “Manage Multiple Artist Music” role: two tracks can
be considered identical if they correspond to the same artist track.

To model the identity of model elementsin our framework, we define a new attribute (concept) that
is associated with all identical elements. In our case study, this new attribute is the Artist Track
attribute from the “Manage Multiple Artist Music” role (see figure 7.a). Figure 7.a shows that an Artist
Track has multiple identical User Tracks. In the same way as User Tracks can be identical because
they refer to the same artist track, user albums can also be identical because they refer to the same

artist album. Therefore, we model an Artist Album has multiple identical User Albums (see figure
7.b).

Let's conclude. We modeled the state structure of two roles (“Manage Multiple User Music” and
“Manage Multiple Artist Music”). We also modeled how the state structures of these two roles are
composed (using a diagram from figure 7). All these models give us the state structure model of a
Simple Music Management System. At this point we can create an Alloy code (see table 3) that
reflects the composition of the two roles and then we can do the analysis of the complete model.

1. module MusicManagementSystem //module declaration

Simple Music ManagementSystem 2. open MusicManagementSystem/UserMusic/MultipleUserMusic
3. open MusicManagementSystem/UserMusic/OneUserMusic
ManageMultiple ManageOneUser 4. open MusicManagementSystem/ArtistMusic/MultipleArtistMusic
ArtistMusic Music 5. open MusicManagementSystem/ArtistMusic/OneArtistMusic
1 _*@ 1 0..1[User sig UserTrackl extends UserTrack {atrack: ArtistTrack}
aalbum [Album sig UserAlbum1 extends UserAlbum{aalbum: Album}

1
9. fact{ all ut:UserTrack | ut in UserTrackl }
Artist |1 fact {

© N

act { al
x| User 10. fact { all ua:UserAlbum | ua in UserAlbum1 }
Track | atrack Track
J] =mmmmmmmm e Multiplicity Invariants --------==-=mmemmmuuun
11. fact{ // Multipl: Album (1) <- (0..1) UserTrack
tracks|1..* all um:UserMusic | all a:Album | sole uvaium.albums | a =
1 _+«[Album User Album ua.aalbum } I .
tracks |_Track Track M e End of Multiplicity Invariants ----------------
1 Multiplicity Invariants ------------==nzemmeuuun

12. fact invl { all um:UserMusic | all ua:um.albums |
ua.aalbum.tracks = ua.tracks.atrack }
J] =mmmmmmmmm e End of Multiplicity Invariants -----------=-=e-memuuon

13. fact{ /I Definition of UserSingle: a user track
/[that is not a part of any user album
all um:UserMusic | all us:UserSingle |
(us in um.tracks) => (us.atrack not in um.albums.tracks.atrack) }

Table 3 State Structure Composition for the “Manage Multiple User Music” and “Manage Multiple
Artist” roles.

We have to reflect in the Alloy code new relations between the AtristTracks and UserTrack types
and between the Album and UserAlbumTrack types. To make a new relation between two already
specified attributes in the current version of Alloy, we have to extend existing types: UserTrack and
UserAlbum (lines 7-8 in table 3). To ensure that new attributes (UserTrackl and UserAlbuml) and
their predecessors participate in the same relations we created two facts (line 9-10 in table 3). Line 11
in table 3 specifies the multiplicity invariant. Note that this multiplicity is specified in the context of
one user (asit is shown in a diagram from table 3): we require that for any artist album there is only
one user abum in the context of a given user music. When we create an Alloy code, we have to take
into account possible “conceptual cycles’. Like in previous examples we have to create invariants for
these cycles.

The last constraint” that we add to the Alloy code is related with the definition of a user single track:
auser track that is not part of any other user album (see introduction). The fact from line 13 specifies
this constraint. It tells that for any user single of some given user, the artist track for this user singleis
not an artist track for any album track for the same user.

3.3 Analysisof the Composed M odel

Based on the Alloy code from table 1, several instance diagrams can be generated. One of these
diagramsis shownin figure 8.

% This constraint was discovered in the result of the analysis of instance diagrams generated by the
Alloy Constraint Analyzer.

o . o
tracks

albums albums erira
ArtistMusic_0 e gle
tracks erAlb erAD
tracks Ib
tracks aalbum tracks Ib lb Ib track N
album albums albums/ tracks tracks
ArtistTrack 1
e - LK Album_1
Album_0 || Album_2 (AlbumSingle) —

erAlp erAlp a
atrack atrack trac’MraCkS
Y yr

ArtistTrack_3
(AlbumTrack)

tracks

tracks
atrack

ArtistTrack_2
(AlbumTrack)

Figure 8 Instance diagram for the Simple Music Management System.

We used filters provided by the Alloy Constraint Analyzer tool to hide instances of the User Play List
attribute. This attribute is not involved in the composition of base roles and therefore is not necessary
for the analysis of the composition.

To make the analysis easier we colored the instances of attributes from the “Manage Multiple User
Music” rale in black. All other instances of attributes are from the “Manage Multiple Artist Music”
role. The diagram from figure 8 can be used for the analysis of the model of a Simple Music
Management System. This analysis can be done in collaboration with a customer who asked for the
development of this system. The goal of the analysisisto show possible states of the system (instance
diagrams) and ask if these states can adequately represent the reality. For example, the following
question can be asked: If auser single track (see UserTrack 3 in figure 8) can be related with an artist
abum track (see ArtistTrack_2 in figure 8), i.e. if auser can add to its music collection only one track
from an artist album versus adding the whole album? Similar questions can be asked based on several
instance diagrams like one in figure 8. This kind of model analysis helps for avoiding mistakes that
can be discovered later in the implementation phase.

4 Conclusion

In this work we presented the small case study of a Simple Music Management System. This case
study explains how our approach can be used for the modeling of role state structure, a composition of
role state structures and its analysis. There are several approaches that allow for the composition of
roles.

Many of these approaches are very implementation oriented. Michael VanHilst and David Notkin
describe a method for the implementation of roles in C++ [VanHilst96]. Several works consider role
composition using implementations with role wrappers. Wrappers can intercept incoming or outgoing
messages from different roles and impose rules on message passing between these roles (a
communication protocol). For example, M. Aksit specifies a communication protocol between roles
with Abstract Communication Types [Aksit94], L. Andrade and J. Fiadeiro specify it with
coordination contracts [Andrade01], M. Kandé specifies it as a connector that defines a pattern of
interactions between two or more components [Kande00]. Achermann, F., et al. in [Achermann01]
propose a more general approach for composition that is based on a new composition language,
PICCOLA, that can be used as unique language for components composition. This language can
provide support for key concepts form the various existing composition languages like: scripting
languages (Perl, Python), coordination languages (Linda, Manifold), architecture description
languages (Wright, Rapide), and glue languages (Smalltalk)

However, none of these approaches can be used by an analyst whose goal is to build system
requirements without looking at the implementation details. All these composition approaches are

quite difficult to use and do not have visual representation that is more convenient for requirements
engineer. In the field of requirements engineering the following approaches based on role modeling
can be used: RIN — Role Interaction Networks [Singh92], RAD — Role Activity Diagram [Ould95] and
OORAM - the Object-Oriented Role Analysis Method [Reenskaug96]. These three approaches are
quite similar. Roles are considered as sets of sequentialy ordered actions and/or interactions. The
main drawback of these approaches is that goas are difficult to model with these PMTs. Another
problem with these PMTs is that states are defined in such a way that it is difficult to split the state
into subsets (for different contexts). These two problems are related to the fact that the PMTs do not
have a state structure (state is considered as an instant between connective actions). We have not seen
many approaches that allow for the composition and analysis of object state structures. One similar
approach is the View based UML (VUML) described in [Nassar03]. This approach provides the
concept of a multiview class that specifies the composition of models from the point of view of
different system users. The dependencies between views are specified using OCL. However the
VUML approach does not provide means for the evaluation of a composition before its
implementation.

The main contribution of our work is the possibility for the formal visual analysis of a composed
model. The analysis of a composed model allows for reaching an agreement with a customer that a
model is adequate before a system get implemented.

5 References

[Achermann01] Achermann, F., et a., Piccola - a Small Composition Language, in Formal Methods for
Distributed Processing - A Survey of Object-Oriented Approaches, H. Bowman and J. Derrick,
Editors. 2001, Cambridge University Press. p. 403--426.

[Aksito4] Aksit, M., et a., Abstracting Object Interactions Using Composition Filters, in Proceedings of
the ECOOP93 Workshop on Object-Based Distributed Programming, R. Guerraoui, O.
Nierstrasz, and M. Riveill, Editors., 1994, Springer-Verlag. p. 152--184.

[Andrade0l] Andrade, L. and J. Fiadeiro. Coordination Technologies for Managing Information System
Evolution, in Proceedings of CAiSE'01, 2001, Interlaken, Switzerland: Springer-Verlag.

[Balabko03] Balabko, P., Wegmann, A., “A Synthesis of Business Role Models’, in Proceedings of ICEIS
2003, ICEIS Press, Anger, France, download from
http://lamswww.epfl.ch/publication/lams_publication_selection.asp

[Chang99] Chang, SK., et a. “The Future of Visual Languages’, in Proceedings of IEEE Symposium on
Visual Languages, 1999, Tokyo, Japan. pp. 58-61

[D'Souza98] D'Souza, D.F. and A.C. Wills, Objects, Components, and Frameworks With Uml: The Catalysis
Approach. Addison-Wesley Object Technology Series. 1998: Addison-Wesley Pub Co.

[1S096] ISO/IEC, (1996). 10746-1, 3, 4 | ITU-T Recommendation X.902, Open Distributed Processing -
Basic Reference Model - Part 2: Foundations.

[Jackson02] Daniel Jackson, “Micromodels of Software: Lightweight Modelling and Analysis with Alloy”,
Software Design Group, MIT Lab for Computer Science, 2002, downloaded from
http://sdg.lcs.mit.edu/all oy/reference-manual . pdf

[KandeOQ] Kandé, M.M. and A. Strohmeier. Towards a UML Profile for Software Architecture. in
UML'2000 - The Unified Modeling Language: Advancing the Standard. 2000. York, UK,: LNCS
L ecture Notesin Computer Science.

[Nassar03] Mahmoud Nassar, at a. “Towards a View Based Unified Modeling Language”, in Proceedings
of ICEIS 2003, ICEIS Press, Anger, France.

[Naumenko02] Triune Continuum Paradigm: a paradigm for General System Modeling and its applications for
UML and RM-ODP, Ph.D thesis number 2581, EPFL June 2002.

[Ould95] Ould M. A., Business Processes: Modeling and analysis for re-engineering and improvement,
John Wiley & Sons, 1995

[Reenskaug96] Reenskaug, T., et a., Working With Objects: The OOram Software Engineering Method. 1996
ed: Manning Publication Co

[Singh92] Singh, B. and G.L. Rein, Role Interaction Nets (RINs): A Process Description Formalism, 1992,
MCC: Austin, TX, USA, Technical Report CT-083-92

10

[VanHilst96] VanHilst, M. and D. Notkin. Using Role Components to Implement Collaboration-Based
Designs. in Proceedings of OOPSLA'96. 1996: ACM Press.

11

