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Impact of Interferences on Connectivity in Ad Hoc
Networks

Olivier Dousse, François Baccelli and Patrick Thiran

Abstract— We study the impact of interferences on the connec-
tivity of large-scale ad-hoc networks, using percolation theory. We
assume that a bi-directional connection can be set up between
two nodes if the signal to noise ratio at the receiver is larger
than some threshold. The noise is the sum of the contribution of
interferences from all other nodes, weighted by a coefficient γ,
and of a background noise.

We find that there is a critical value of γ above which the
network is made of disconnected clusters of nodes. We also prove
that if γ is non zero but small enough, there exist node spatial
densities for which the network contains a large (theoretically
infinite) cluster of nodes, enabling distant nodes to communicate
in multiple hops. Since small values of γ cannot be achieved
without efficient CDMA codes, we investigate the use of a very
simple TDMA scheme, where nodes can emit only every n-th
time slot. We show that it achieves connectivity similar to the
previous system with a parameter γ/n.

Index Terms— Ad-hoc networks, connectivity, percolation, in-
terferences, CDMA, TDMA.

I. INTRODUCTION

Random graphs associated with the Poisson Boolean model
and percolation properties of these graphs have been consid-
ered in [1] for analyzing the connectivity of ad hoc networks.
Within this context, the Poisson Boolean model assumes that
the stations are located according to a planar Poisson point
process, and that each station has an independent random
power, identically distributed for all stations.

A more physical model based on the signal to interference
ratio was used within the context of ad hoc networks in [2]. In
this last paper, which departs from a deterministic and finite
population setting, all stations are assumed to have the same
power, and some attenuation function is given. Station A can
receive a signal from station B if the ratio of the power it
receives from B to the total power received from all other
stations is above a threshold.

The same physical model was analyzed in [3] in the infinite
plane case under Poisson assumptions within the context of
CDMA networks. The corresponding coverage process has
connection with Poisson shot noise processes.

The aim of the present paper is to bring all these approaches
together and to study the connectivity of infinite ad hoc
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networks under the physical model alluded to above. The
parametric setting will be that of an homogeneous Poisson
point process. Our main goal within this context is to learn
whether the percolation phenomenon that was established in
[1] for the case without interference still holds within this more
realistic context.

By analogy with CDMA networks, we will introduce some
orthogonality factor γ, which can vary from 0 to 1, and which
stems from the imperfect orthogonality of the codes used in
CDMA. The case with γ = 0 (perfect orthogonality) boils
down to the case considered in [1].

As we will see, there are essential differences between the
case γ = 0 and γ > 0. In some natural cases, for the same
patterns, the first case could have an infinite component of
the connectivity graph, whereas the second one could have no
infinite component, or even no connectivity at all.

The main result of the paper is that under attenuation
functions with finite support, percolation holds under condi-
tions similar to those of the Boolean model of [1] provided
the orthogonality factor γ is small enough. In this sense,
connectivity of ad hoc networks scales well with the size of
the network even in the case of models that take interferences
into account. The question whether this also holds true for
attenuations of the type considered in practice (e.g. power
functions with parameter between 3 and 6), over an infinite
support, is still an open problem at this time.

The type of random graphs that are introduced in the paper
are of independent interest. In particular, this class of random
graphs which are built on the points of a Poisson point process,
may simultaneously have infinite components, bounded range
(each edge is of bounded length), and bounded degree (each
vertex is of bounded degree).

As is it an essential feature, connectivity has received quite
a lot of attention in the previous decade already, in the context
of packet radio networks, and has gained renewed interest
recently in the context of ad-hoc and sensor networks. Most
results apply to the full connectivity of a network made of a
finite number of nodes. A recursive formula giving the average
number of hops between two connected nodes is found in [4],
whereas the probability that a given number of nodes on a
finite interval are all connected is computed in [5]. In the 2-
dim. setting, relations between k-connectivity (the property
that the graph has a minimal cutset equal to k ≥ 1) and
the node degree are studied in [6], whereas this problem is
addressed when the transmission powers of the nodes are
different in [7]. When the number of nodes N tend to ∞, and
when the distance r below which nodes can connect decreases
at a rate slower than

√

log N/N , Gupta and Kumar have
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proven that all nodes are almost surely connected [8]. In this
paper, we assume that the number N of nodes is not fixed nor
on a finite area, but that they are given as points of a Poisson
process over the plane R

2. We do not make assumptions on
its intensity, so that our results also apply to low density areas.
Since the number of nodes is not bounded, some of them will
be disconnected. The problem is then related to percolation
theory, which is to find the probability that a node belongs
an infinite cluster of nodes. Since the pioneering work of
Gilbert [9], which started the field of continuum percolation,
the exact value of this probability is still an open problem.
Some bounds on the critical intensity λ∗ below which it is
zero have been obtained analytically in [9], [10], [11] for the
Boolean Poisson Model, and numerically by many others [12].
Percolation of a clustered wireless network, in which the users
(clients), who are distributed according to a Poisson process,
are all covered by base stations that can connect to each other
by a wireless link, is studied in [13]. This model reduces to
the Poisson Boolean Model if one base station is placed at
each client. To our knowledge, the percolation problem has
not been addressed so far when interferences from other nodes
are taken in account, which is the goal of this paper.

The paper is structured as follows. Section II describes
the physical model considered for transmission between two
nodes, from which the Poisson Signal To Interference Ratio
Graph (STIRG) G(γ, λ) is derived. We obtain a bound on
the node degree, which shows that is γ is too large, the
network is surely disconnected. We also show that for some
attenuation functions, no connection is possible for any γ > 0.
It is important to know if a small but nonzero value of γ
still enables long range connectivity. In Section III, we prove
that it is fortunately the case. We begin this section by some
qualitative observations on simulations, and then formally
prove our main result. We also drive several bounds on the
critical threshold, and describe its asymptotic behavior for
large node densities.

Since percolation may hold for very small values of γ > 0,
narrow band communications may not be possible if we let
all nodes emit simultaneously. A remedy is to use TDMA,
so that each node is allowed to emit every n-th time slot.
We show in Section IV that a very simple TDMA scheme
achieves connectivity similar to the previous one, with γ/n.
We prove formally that if the node density is sufficiently high,
and whatever the value of γ is, one can find n such that
percolation occurs. Finally, we draw some conclusions and
future perspective in Section V.

II. MODEL

We consider a multiple-hop ad-hoc network where nodes are
distributed according to a Poisson point process of constant
spatial intensity λ. Depending on its location, number of
neighbors, and battery level, each node i will adjust its
emitting power Pi within a given range [0, P ], where P is
the maximal power of a node, which is finite. The power
of the signal emitted by Node i and received by Node j is
PiL(xi − xj), where xi and xj are the positions of Node i
and j in the plane, respectively, and L(·) is the attenuation
function in the wireless medium.

We assume that Node i can transmit data to Node j if the
signal received by j is strong enough, compared to the thermal
noise. Formally, this condition is written as

PiL(xi − xj)

N0 + γ
∑

k 6=i,j PkL(xk − xj)
≥ β, (1)

where N0 is the power of the thermal background noise and
β is the signal to noise ratio required for successful decoding.
The coefficient γ is the inverse of the processing gain of
the system, it weights the effect of interferences, depending
on the orthogonality between codes used during simultaneous
transmissions. It is equal to 1 in a narrow band system, and is
smaller than 1 in a broadband system that uses CDMA. The
physical model of Gupta and Kumar [2] assumes γ = 1; other
models [14] allow γ to be smaller than 1.

Similarly, Node j can transmit data to Node i if and only
if

PjL(xj − xi)

N0 + γ
∑

k 6=i,j PkL(xk − xi)
≥ β. (2)

From conditions (1) and (2), we can build an oriented
graph that summarizes the available links between nodes. In
order to define connected components (or clusters), we have
to introduce a symmetric relation. In this paper, we choose to
neglect unidirectional links, which are difficult to exploit in
wireless networks [15]. In other words, we declare that Node
i and Node j are directly connected if and only if both (1)
and (2) are satisfied. This new relation leads to the definition
of a non-oriented random graph associated with the Poisson
point process. This Poisson Signal To Interference Ratio Graph
(STIRG) is the main object of study in the present paper.

As our model has much more parameters than degrees
of freedom, we will focus on the node density λ and the
orthogonality factor γ. The other parameter are supposed
constant in the sequel. We will thus denote by G(γ, λ) the
connectivity graph.

A. A Bound on the Degree of the Nodes

In the following theorem, we will prove that if γ > 0, the
number of neighbors of each node is bounded from above
(note that this is not the case in the Boolean Model with γ =
0).

Theorem 1: Each node can have at most 1 + 1/γβ neigh-
bors.

Proof: Pick any node (called hereafter Node 0), and let
N be the number of its neighbors (i.e. the number of nodes to
which Node 0 is connected). If N ≤ 1, the claim is trivially
proven. Suppose next that N > 1, and denote by 1 the node
whose signal power received by Node 0 is the smallest but is
non zero, namely is such that

P1L(x1 − x0) ≤ PiL(xi − x0), i = 2 . . . N. (3)

Since it is connected to Node 0, (1) imposes that

P1L(x1 − x0)

N0 + γ
∑∞

i=2 PiL(xi − x0)
≥ β. (4)
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Taking (3) into account, (4) implies that

P1L(x1 − x0) ≥ βN0 + βγ

∞
∑

i=2

PiL(xi − x0)

≥ βN0 + βγ(N − 1)P1L(x1 − x0)

+βγ

∞
∑

i=N+1

PiL(xi − x0)

≥ βγ(N − 1)P1L(x1 − x0),

from which we deduce that

N ≤ 1 +
1

βγ
.

In CDMA cellular networks, this kind of bound is known
under the name of pole capacity (see e.g. [16], [3]).

As a consequence of Theorem 1, we see that if γ > 1/β,
each node has at most one neighbor. This is a very general and
restrictive condition, that imposes the network to use efficient
spread-spectrum encoding in order to keep γ small, or to
introduce a scheduling between nodes to avoid having them
emitting all the same time – we will investigate such a scheme
in Section IV.

B. Shot-Noise

The sum in the denominator of (1) is a random variable that
depends on the position of almost all nodes in the network.
We can write it as N0 + γI(xj) − γPiL(xi − xj) where

I(x) =
∑

i,xi 6=x

PiL(xi − x) (5)

is the interference contribution. This kind of variable is called
a Poisson shot-noise. As it is an infinite sum, it may diverge
to infinity, making connections impossible.

If we assume that the sequence {Pi} is uniformly bounded
from below by a strictly positive constant, and that L(·) has the
form L(x) = l(||x||) where l(t) is a non increasing function
of t, the necessary and sufficient condition for the sum

∑

i

PiL(xi − x)

to be a.s. finite is given in [17]:
∫ ∞

y

l(t)tdt < ∞, for a sufficiently large y. (6)

This condition remains valid if inf i{Pi} = 0 but the sequence
{1{Pi<ε}} is i.i.d and independent from the point process, for
some ε > 0 (like in Section IV).

We notice that for l(t) = 1/t2, the integral in (6) is divergent
and thus no connection is possible in this case whenever γ > 0.

By letting y = 0 in (6), we obtain the condition for
integrability, which is stronger. This last property holds for
all stationary point processes with finite intensity see e.g. [18],
and in particular in the homogeneous Poisson case.

C. Attenuation

For the attenuation, the most common function is

l(t) =
1

tα
, (7)

with α ranging from 3 to 6. It makes sense to assume
attenuation to be a bounded function in the vicinity of the
antenna. The following two functions:

• l(t) = A[max(t, r0)]
−α,

• l(t) = (1 + At)−α,

with A > 0, are bounded modifications of the latter considered
in [3].

III. PERCOLATION

As our model is ergodic (it is a deterministic construction
on a Poisson point process), the probability that there exists
a cluster of infinite size1 is either 0 or 1, depending on the
parameters λ and γ. In the first case, as there are a.s. only
finite clusters, the network is said sub-critical, whereas in the
second case, it is said super-critical.

In the sub-critical phase, long range connections in multiple
hops are not possible, contrary to the super-critical phase. It
is thus a crucial property to establish in a network.

We begin this central section by the much simpler Boolean
model, which is a particular case for our model when γ = 0.
We then make some preliminary observations on simulations
to show the difference between the graphs obtained when the
interferences are neglected (which amounts to set γ = 0) or
not (when γ > 0). In a third step, we prove that percolation
occurs (i.e. an infinite cluster exists) for small, but nonzero
values of γ. We finally give some asymptotic results for large
node densities.

A. Existence of a percolation threshold for γ = 0

Let us first note that if we let γ = 0, the model described in
Section II becomes equivalent to a generalized Boolean model,
where two nodes are connected if and only if they are in a ball
of radius r (which can be a deterministic or random value),
independently from all the other nodes. Assuming all nodes
emit at the maximum power P , this radius r is then constant
and found from (1) to be equal to

r = sup

{

ρ such that l(ρ) ≥ βN0

P

}

.

For example, for the attenuation function (7), this radius reads
r = (P/(βN0))

1/α. This is the model we have studied in
[1], and for which many results from continuous percolation
theory apply [10]. The most important one is mentioned above,
namely that there is a critical density λ∗, above which the
graph contains an infinite connected component.

1We conjecture moreover that whenever it exists, the infinite cluster is also
unique. The proof of this conjecture is out of the scope of this paper.
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Fig. 1. An example of graph G(0, λ) with no interference (Boolean
Model). As the node density is super-critical (λ > λ∗), most of the nodes
belong to the same connected component. [This simulation was run in a square
of 65,536 × 65,536 pixels with parameters λ = 9.311̇0−4, β = 1, γ = 0,
N0 = 1, Pi = 100, 000 ∀i.]

B. Some observations on the graph with γ > 0

If γ > 0, it is clear that for the same realization of the
spatial point process giving the position of the nodes, the graph
obtained with γ > 0 misses some edges in the graph obtained
with γ′ = 0. In other words, G(γ, λ) ⊆ G(0, λ). As a result,
it is not sure that percolation still occurs for nonzero values
of γ. At least, for λ < λ∗, we are sure that G(γ, λ) is always
sub-critical. However, for λ > λ∗, we know that:

1) For γ = 0, the network is super-critical
2) For γ > 1/β, the network is sub-critical

Therefore, there exists a critical value 0 ≤ γ∗(λ) ≤ 1/β at
which one observes a phase transition. The next subsection
will prove that γ∗(λ) is strictly positive for sufficiently large
values of λ.

We have computed by simulation the value of the perco-
lation threshold γ∗(λ), with L(x) = max(1, ||x||)−3. The
simulation results are shown in Figures 1, 2, 3 and 4. In
the simulations, all nodes emit with the same power P .
We observe in Figure 1 and 2 that G(0.02, λ) ⊆ G(0, λ).
We observe in Figure 3 that γ∗(λ) exhibit a maximum at
a certain density λ̃. Below λ̃, increasing the node density
helps for connectivity, whereas after the maximum, the impact
of interferences becomes preponderant, and γ∗(λ) becomes
decreasing. Figure 4 illustrates the percolation phenomenon
with γ slightly smaller than γ∗(λ).

C. Percolation for nonzero values of γ

We have shown above that if γ exceeds some finite, positive
critical value, percolation does not occur. We want now to
show that percolation can occur for nonzero values of γ.
We make the simplifying assumption that every node emits
at maximal power P : Pi = P ∀i. This corresponds to the
worst power assignment for the interfering communications.
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Fig. 2. An example of graph G(γ, λ) with interferences (γ = 0.02). This
simulation was run with the same parameters as in Figure 1, except γ that
is now nonzero. Due to the interferences, the graph is split into many small
components.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
rit

ic
al

 v
al

ue

Node density

Percolation domain

super-critical

sub-critical

PSfrag replacements

γ
∗

Fig. 3. Critical value of γ as a function of the node density λ. The
curve shows the critical value of γ below which the network percolates. [The
parameters of this simulation are β = 1, N0 = 104 and Pi = 105 ∀i.]

We need additional assumptions on the attenuation function
L(·). In this subsection, we restrict ourselves to non increasing,
isotropic attenuation functions that have the following addi-
tional properties:

L(x) = 0 ∀x ∈ R
2 s.t. ||x|| > d (8)

βN0

P
< L(x) < M ∀x ∈ R

2 s.t. ||x|| ≤ δ (9)

for some 0 < δ < d and M > βN0/P .
We will then prove the following main theorem.
Theorem 2: If the isotropic attenuation function L(·) veri-

fies assumptions (8) and (9), then there exist λ′ < ∞ and a
function γ′(λ) such that

• γ′(λ) > 0 for all λ > λ′

• if λ > λ′ and γ < γ′(λ), there exists a.s. an infinite
connected component in the graph G(λ, γ).
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Fig. 4. A barely supercritical graph with interferences. This simulation
was run with the same parameters as in Figure 2, except that the node density
is higher (λ = 2.791̇0−3). The graph percolates despite the interferences
because here γ < γ∗(λ). One can observe that fewer edges are needed to
achieve percolation than in Figure 1.

This theorem implies therefore that communication between
distant nodes is still possible despite interferences. The proof
of this central theorem is quite lengthy, and is therefore divided
in several intermediate results. The first step is to map the
process defined on the continuous plane R

2 onto a discrete grid
(lattice) L, whose edges are declared open if certain properties
of the Poisson process in their neighborhood are met. The
second and more lengthy step is to prove bond percolation, that
is, the existence of an infinite path made of open edges, on the
dual lattice L′. The third step is then straightforward, as the
reverse mapping allows us then to conclude that the network
indeed percolates and has an infinite cluster on the continuous
plane R

2. The reason for carrying most of the proof on the
discrete lattice L′ is that we can then make use of the larger
collection of results found in the literature [19] on discrete
bond percolation than on continuous percolation.

Step 1: mapping of the graph on a lattice
We begin by constructing a square lattice, denoted by L over

the plane, with edge length d. Let L′ be the dual lattice of L,
obtained by putting a vertex in the center of every square of
L, and an edge across every edge of L. As L is square lattice,
L′ is simply the same lattice shifted by d/2 horizontally and
vertically, as depicted in Figure 5. Note that there exists a one-
to-one relation between the edges of L′ and the edges of L.
Furthermore, we set the origin O of the plane at a vertex of
L′, without any loss of generality.

Let us now consider the original Poisson point process
over the plane. Each square of Lattice L contains in average
λd2 points. We will study bond percolation on Lattice L′. To
do this, we will declare some edges open and others closed
depending on the realization of the underlying Poisson point
process.

In Lattice L, we divide again each square into K2 sub-

PSfrag replacements
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Fig. 5. Lattice L (plain) and its dual L′ (dashed)

squares of size d
K × d

K , where K ∈ N
∗ is given by

K = d
√

5d/δe. (10)

This value has been chosen so that ||x|| ≤
√

5d/K implies
that ||x|| ≤ δ. Next, we introduce a second integer parameter
N defined by

N = inf
x s.t. ||x||≤

√
5d/K

⌊

1

γM

(

L(x)

β
− N0

P

)⌋

. (11)

Because of (9) and (10), one can check that N ∈ N.
Combining (9) with (10) and (11), we obtain the following
inequality

||x|| ≤
√

5d

K
⇒ L(x)P

N0 + γNMP
≥ β, (12)

which is more restrictive than the left inequality in (9).
We can now formally define our discrete percolation model

from the original, continuous one by introducing a bunch of
definitions. We designate by the term “point” the location of
a node in the original network, to avoid any confusion with a
vertex in the grid L.

Definition 1: A square X of L is said to be populated if
all its subsquares contain at least one point.

Definition 2: An edge a of L is said to be open if the
following conditions are fulfilled:

• both squares adjacent to a are populated, and
• the total number of points located in the two squares

adjacent to a and all their direct neighbors (that is, all
the squares having at least one vertex in common with
these two squares, as depicted in Figure 6) is less than
or equal to N + 1;

Definition 3: An edge a
′ of L′ is said to be open if and

only if the corresponding edge of L is open.
Definition 4: A path (in L or L′) is said to be open (resp.

closed) if all edges forming this path are open (resp. closed).
The above definitions have been chosen such that an open

edge guarantees connectivity in the continuous model (see
Lemma 4 hereafter). In fact, the first condition ensures a
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Fig. 6. Conditions for a to be open: both squares in the middle (bold line)
must be populated, and the total number of points in the 12 squares must be
at most N

homogeneous population in the squares, whereas the second
condition puts a limit to the interference contribution. It is
very important to notice that the main difference between this
model and the usual discrete percolation models is that here
the state of the edges (open or closed) are not independent
from each other.

Step 2: percolation on lattice L′

We want to know whether percolation occurs in our newly
defined discrete model, namely if one can find an infinite open
path in L′. Let q be the probability that an arbitrary edge is
closed. Actually, q is pretty difficult to compute, but we show
in Lemma 2 that q can be made arbitrarily small by choosing
suitable values of λ and γ. As a first step, we introduce the
following simple but useful lemma:

Lemma 1: Let X be a Poisson random variable of param-
eter µ, and 0 < ε < 1 a positive constant. Then

lim
µ→∞

P[X ≤ (1 − ε)µ] = 0

and

lim
µ→∞

P[X < (1 + ε)µ] = 1

Proof: Using Chebyshev inequality:

P[|X − µ| ≥ εµ] ≤ V ar(X)

ε2µ2
=

1

ε2µ

Thus

lim
µ→∞

P[|X − µ| ≥ εµ] = 0,

which implies the above results.
We can now prove that q can be made as small as necessary.
Lemma 2: For any q′ > 0, there exists λ′ < ∞ and γ′(λ) >

0 such that

λ > λ′ and γ < γ′(λ) ⇒ q < q′.

Proof: Let us find a lower bound to the probability p =
1 − q that an arbitrary edge of L′ is open:

p = P(an edge of L′is open)

= P({2K2subsquares of surface (d/K)2 have

at least 1 point each} and {a surface of 12d2,

including these subsq, has no more than N pts})
≥ P({2K2 subsquares have between 1 and

bN/12K2c pts each}and {a surface of 10d2,

excluding these subsq, has no more than

b5N/6c points})
= P

2K2

(a subsq of surface (d/K)2 has between

1 and bN/12K2c pts)P(a surface of 10d2 has

no more than b5N/6c pts)

= P
2K2

(1 ≤ X ≤ N/12K2)P(Y ≤ 5N/6),

where X and Y are two independent Poisson random variables
of parameter λ(d/K)2 and 10λd2 respectively. We take now

γ′(λ) =
1

12Mλd2(1 + ε)

(

Pl(
√

5d/K)

β
− N0

)

, (13)

for some ε > 0. If γ = γ′(λ), according to Equation (11), we
have

N = b12λd2(1 + ε)c.
and thus

p = P
2K2

(1 ≤ X ≤ λd2(1 + ε)/K2)P(Y ≤ 10λd2(1 + ε)).

It follows from Lemma 1 that

lim
λ→∞

p = 1.

For any q′ > 0, there exists thus λ′ such that if λ > λ′,
p > 1−q′. As p is a decreasing function of γ, the result holds
also when γ < γ′(λ).

We have now to cope with the dependence between edges.
We observe first that our model is k-dependent, with k = 3,
which means that if the graph-theoretic distance between
two edges is greater than 3, they are independent (see [19]
p.17). We can then apply results in [20] and prove that
our model stochastically dominates an independent model.
Super-criticality of the independent model thus implies super-
criticality of our model.

However, to keep this paper self-contained, we propose here
a simple and constructive way to prove the existence of an
infinite open path in our particular case. Moreover, this method
provides us an explicit lower bound on the critical value of
γ, which we will exploit in Section III-D. We start with the
following lemma, which applies to paths in L.

Lemma 3: In L, the probability for a path of length n to be
closed is less than or equal to qn/70, where q is the probability
that an arbitrary edge is closed.

Proof: Let us consider a path of length n in L and denote
by S = {ai}n

i=1 the set of the edges forming this path. Let
S′ ⊆ S be a subset of S. We clearly have that

P(the path is closed) = P(a is closed, ∀a ∈ S)

≤ P(a is closed, ∀a ∈ S′).
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By construction, the event “a is closed” depends on the
realization of the Poisson point process in some region of the
plane, according to Definition 2. Let us call R(a) ⊂ R

2 this
region. It is the rectangle shown in the middle of Figure 7. To
compute the probability of this event, we will choose S ′ so
that R(a)∩R(b) = ∅, ∀a, b ∈ S′ and a 6= b. In this way, the
set of indicator random variables 1{ai is closed}, taking value
1 if with ai is closed and 0 otherwise, with ai ∈ S′, are i.i.d
variables with P (1{ai is closed} = 1) = q. Therefore

P(a is closed, ∀a ∈ S′) = qm, with m = card(S′).

We construct S′ as follows: we take the first edge of the
path a1 ∈ S′. This edge is the center of a certain region
R(a1) of the plane, as defined above and shown in Figure 7.
Then we follow the path until we find an edge ak such that
R(ak)∩R(a1) = ∅, and add it to S′. We iterate this last step
until we reach the end of the path.

PSfrag replacements

a

R(a)

Fig. 7. Edge a and its dependency region R(a). Around a, we drew all
edges that have a non-disjoint dependency region with R(a).

In order to find an upper bound on P(a is closed, ∀a ∈ S ′),
we need a lower bound on m = card(S ′). In other words, we
need to know how many edges are skipped until we find the
next element of S′ in our construction scheme. To answer this
question, we will simply count the number of edges b in L that
satisfy R(b)∩R(a1) 6= ∅. We see on Figure 7 that there are 70
of them. We are therefore sure that a path starting with Edge
a1 cannot go through more than 70 edges without visiting an
edge ak such that R(ak) ∩ R(a1) = ∅. Since the path S has
n edges, m is thus bounded by

m ≥ 1 + b(n − 1)/70c.

We have finally obtained the upper bound we were looking

for, and which reads

P(the path is closed) ≤ P(a is closed, ∀a ∈ S ′)

= qm

≤ q1+b(n−1)/70c

≤ qn/70.

We can now prove the theorem:

Theorem 3: If q <
(

11−2
√

10
27

)70

, the probability that there

exists an infinite open path in L′ starting at the origin is strictly
greater than zero.

Proof: We will prove this theorem by contradiction:
assume that there exists no infinite open path starting at the
origin in L′. Then there exists a closed circuit in L that
surrounds the origin. In the sequel, we will find an upper bound
to the probability that such a circuit exists. The result is then
deduced from the following equation:

P(∃ an infinite open path starting at the origin in L′) =

1 − P(∃ a closed circuit in L that surrounds the origin) (14)

We know from [19] (pp. 15-18) that the number ρ(n) of
circuits of length n in L that surround the origin is bounded
from above by

ρ(n) ≤ 4 · n · 3n−2.

Among these circuits, some are closed; we denote by M(n)
the number of closed circuits of length n in L that surround
the origin. Using Lemma 3, we find a bound to the probability
that this number is non zero:

P(M(n) ≥ 1) ≤ ρ(n)qn/70 ≤ 4 · 3n−2nqn/70

Consequently,

P(M(n) ≥ 1 for some n) =
∞
∑

n=1

P(M(n) ≥ 1)

≤
∞
∑

n=1

4 · 3n−2nqn/70

=
4

3
q̂

∞
∑

n=1

n
(

3q1/70
)n−1

=
4q1/70

3(1 − 3q1/70)2
.

The above expression is strictly smaller than one if

q <

(

11 − 2
√

10

27

)70

in which case we can conclude using (14) that:

P(∃ an infinite open path starting at the origin in L′) > 0

From Theorem 3, we can deduce the following corollary by
ergodicity.

7
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Corollary 1: If q <
(

11−2
√

10
27

)70

, there exists a.s. an

infinite open cluster in L′.

Step 3: reverse mapping and percolation on the plane
Now that there is an infinite open cluster in L′ with positive

probability, we still need to prove that this yields the existence
of an infinite component in the original graph G(γ, λ) for
suitable values of γ and λ, as defined in Lemma 2. Lemmas
4 and 5 establish this link between the discrete and the
continuous models.

Lemma 4: If a square X is populated, and if the total
interference level at any point of the square is less than or
equal to NM , then all points in the square belong to the same
cluster. Furthermore, if two adjacent squares fulfill the same
conditions, all points inside these squares belong to the same
cluster.

Proof: We consider two adjacent subsquares, and an
arbitrary point in each of them (we know that we can find
at least one point in each subsquare, because the square is
populated). Because both adjacent subsquares have a side of
length d/K, the distance between these two points is at most√

5d/K. The signal-to-interference ratio is then:

PiL(xj − xi)

N0 + γ
∑

k 6=i,j PkL(xk − xi)
≥ PL(xj − xi)

N0 + γNMP

≥ β

where the second inequality follows from (12). Thus each
point in a given subsquare is connected to all points in the
adjacent subsquares. As a result, since the square is populated,
all points in the whole square are connected together.

The second part of the lemma is quite obvious. If two
squares are adjacent, we simply consider two adjacent sub-
squares, one in the first square, one in the other one, and
apply the same arguments.

Lemma 5: If there exists an infinite open path in L′, then
there exists an infinite cluster in the continuous model.

Proof: We consider an infinite open path in L′. Remem-
ber that each vertex of L′ is located at the center of a square of
L (see Figure 8). Along an open path of L′, at each vertex, we
find a square that fulfills the conditions given in Definition 2.
Let us consider one of these squares, which we will denote by
X . As the attenuation function L is zero for distances above
d, all interferences in X come from nodes located in X and its
direct neighbors (adjacent squares and diagonal neighbors). As
the edge is open, according to Definition 2, the total number
of points in this neighborhood is less than or equal to N + 1.
The total interference contribution is thus smaller than NMP .
We can then apply Lemma 4 and conclude that all points in
X are connected together.

Moreover, as two consecutive squares along the infinite open
path are adjacent, the sequence of squares form an infinite
cluster of connected points.

Combining Lemmas 5, 2 and Corollary 1, we have estab-
lished Theorem 2.

D. Asymptotic results for large λ

In Section III-C, we proved that if λ > λ′ and γ < γ′(λ),
the network contains an infinite cluster. The function γ ′(λ) is

PSfrag replacements

O

Fig. 8. An open path in L′ (in bold) and its associated sequence of squares
(whose sides are edges of L)

thus a lower bound on the actual threshold γ∗(λ). We observe
furthermore in Equation (13) that γ ′(λ) = c1/λ for some
constant c1.

In this section, we look for an upper bound on γ∗(λ). Again,
we have to assume here that L(x) is decreasing with respect
to ||x|| and satisfies (9).

We construct a new square lattice L′′ over the plane, similar
to the previous ones, but with edge length δ/2 instead of d.
We assume also that the origin of R

2 is located at the center
of a square of L′′.

Lemma 6: If there are more than

N ′ =
(1 + 2βγ)PM

β2γN0
(15)

nodes inside a square of L′′, all nodes in this square are
isolated.

Proof: Pick any node i inside the square, and another
node j (inside or outside the square). As L(·) is bounded from
above by M , we have

PL(xj − xi) ≤ PM.

Because of (9), we also have
∑

k 6=i,j

PL(xk − xi) ≥
∑

k in the sq.,k 6=i,j

PL(xk − xi)

≥
∑

k in the sq.

PL(xk − xi) − 2PM

≥ N ′P
βN0

P
− 2PM

= βN ′N0 − 2PM

Therefore we have:

PL(xj − xi)

N0 + γ
∑

PL(xk − xi)
≤ PM

N0 + γ(βN ′N0 − 2PM)

≤ PM

γ(βN ′N0 − 2PM)

The above expression is clearly smaller than β when N ′ >
(1 + 2βγ)PM/β2γN0, which implies that Node i is isolated.

8
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We can now define a site percolation model by declaring
a square of L′′ open if it contains at most 2N ′ = 2(1 +
2βγ)PM/β2γN0 nodes. It is declared closed otherwise. It is
clear that each square is open or closed independently from
the others. Therefore, the origin is a.s. surrounded by a closed
circuit (i.e. a circuit formed by closed squares) in L′′ if:

P(a square is closed) > psite, (16)

where psite is the critical site percolation threshold, whose
value is around 0.59 (see [19] p.56). The number of nodes
inside a square is a Poisson random variable of parameter
λδ2/4. Lemma 1 implies that if

2N ′ ≤ (1 − ε)λδ2/4, (17)

we have
lim

λ→∞
P(a square is closed) = 1,

which means that above a certain value of λ, Inequality (16)
holds.

Inequality (17) is verified if:

2(1 + 2βγ)PM

β2γN0
≤ (1 − ε)λδ2

4
, (18)

which can be recast as

γ ≥ 8PM

β[(1 − ε)βλδ2N0 − 16PM ]
.

When λ ≥ 16PM/βεδ2N0, a sufficient condition is

γ ≥ 8PM

(1 − 2ε)β2λδ2N0
:=

c2

λ
. (19)

We thus proved that for sufficiently high densities, if γ ≥
c1/λ, the origin is a.s. surrounded by a closed circuit in the
discrete model. We now have to prove that in this case, the
origin belongs to a finite cluster in the continuous model.

Because of Lemma 6, when a site is closed, the square
centered on this site contains only isolated nodes. Therefore,
in the continuous model, when γ ≥ c1/λ, the origin is
surrounded by a chain of closed squares with no link inside.
To make sure that the origin belongs to a finite cluster, we
have to prove that no link can cross this chain.

Let us consider two nodes i and j, such that Node i is
located inside an open square surrounded by the chain, and
Node j is also located inside an open square, but on the other
side of the chain. As these nodes are separated by the chain
of closed squares, the distance between them q := ||xi − xj ||
is larger than δ/2.

We consider two cases. First, we assume that δ/2 < q < δ.
In this case we construct the disk D1 of radius δ centered on
xi and the disk D2 of radius δ centered on xj , as depicted in
Figure 9. As the chain of closed squares separates xi and xj ,
there exists at least one closed square Q that has a non-empty
intersection with the segment [xi, xj ]. Moreover, the shortest
distance between [xi, xj ] and R

2\(D1 ∪ D2) is
√

δ2 − q2

4
≥

√
3

2
δ.

PSfrag replacements
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Fig. 9. The chain of closed squares separating the two nodes.

As the diagonal of Q has length δ/
√

2, Q cannot have a non-
empty intersection with [xi, xj ] and with R

2\(D1∪D2) at the
same time. Therefore Q ⊂ D1 ∪ D2.

Furthermore, we count the number of nodes inside three
different subsets of Q:

N1 = Φλ(Q ∩ (D1\D2))

N2 = Φλ(Q ∩ (D2\D1))

N3 = Φλ(Q ∩ D1 ∩ D2).

As Q is a closed square, we have by assumption N1 + N2 +
N3 ≥ 2N ′. This implies that either

N1 + N3 ≥ N ′

or
N2 + N3 ≥ N ′.

Let us assume without loss of generality that the first inequality
holds. There are thus at least N ′ nodes located inside D1. As
D1 has radius δ and because of (9), the signal received by
Node i from each of these nodes is at least PβN0/P = βN0.
The SINR at Node i received from Node j is thus upper-
bounded by

βji ≤
PM

N0 + γN ′βN0
.

Plugging the value of N ′ into this expression, we verify that

βji ≤ β,

which means that no link between Node i and Node j exists.
The same is true if N2 + N3 ≥ N ′.

Let us now address the case where q > δ (the case q = δ
appears with probability zero). In this case, we draw the same
disks D1 and D2, but with radius q. There exists at least one
square Q of the chain such that Q ⊂ D1 ∪D2. We define N1,
N2 and N3 in the same way as above. Thus, either N1+N3 ≥
N ′ or N2 + N3 ≥ N ′.

Let us assume without loss of generality that N1+N3 ≥ N ′.
This implies that there are at least N ′ nodes inside D1. Node
j is by construction on the border of D1. Therefore, all these
nodes are closer to Node i than Node j. As we assumed that

9
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λ

γ

1/β

super−critical
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λ*

∼1/λ

∼1/λ

Fig. 10. Illustration of the bounds on the super-critical domain

l(x) is decreasing, the SINR at i from Node j is bounded
above by

βji ≤
Pl(q)

N0 + γPN ′l(q)
≤ 1

γN ′ .

From (9) and (15), we verify that

N ′ >
1

βγ
,

and therefore
βji ≤ β,

meaning that the link cannot exist.
Consequently, we have proved that if the origin is sur-

rounded by a chain of closed squares in the discrete model,
then the continuous model is sub-critical. We conclude that
when (19) holds, the network is sub-critical. We have thus
obtained an upper bound on the critical value γ∗(λ) by proving
that if γ ≥ c2/λ, the origin belongs a.s. to a finite cluster. As
both upper and lower bounds on the critical threshold have
this form, we have obtained the asymptotic behavior of the
threshold γ∗(λ) for λ → ∞.

Theorem 4: For λ tending to infinity, the critical value of
γ has the following asymptotic behavior:

γ∗(λ) = Θ(
1

λ
).

Figure 10 illustrates the typical shape of the function γ∗(λ).
Note that if L(·) does not fulfill Condition (9), the asymptotic
behavior may be dramatically different. For example, take
L(x) = 1/||x||α, which is not bounded from above for small
||x||. In this case, increasing λ by a factor a is equivalent to
dividing N0 by a factor aα/2. It follows that in this case γ∗(λ)
is always an increasing function. Figure 11 illustrates the case
where L(x) = ||x||−3.

IV. A TDMA APPROACH

We can conclude, from the previous sections, that unless
γ can be made sufficiently small, long-range communications
are impossible if we allow all nodes to emit simultaneously,
because the graph G(γ, λ) may remain in a sub-critical phase
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Fig. 11. Critical value of γ for an unbounded attenuation function
L(x) = ||x||−3. In this case, the percolation threshold is an increasing
function of the node density. [The parameters of this simulation are β = 1,
N0 = 104 and Pi = 105 ∀i.]

for all λ. Having a small γ requires nodes to use CDMA
for transmission, which can be complex to implement in an
ad-hoc network (node synchronization may be difficult in the
presence of mobility). An alternative is to avoid having all
nodes emitting at the same time, and thus to use a TDMA
scheme. We assume that each time interval is divided into
n time slots. An optimal TDMA scheme poses also a quite
complex challenge to assign the slots to each node, which
is clearly beyond the scope of this paper. In this section,
we keep the strategy sub-optimal but very simple and totally
decentralized: each node picks randomly a number i between
1 and n, and only emits during the i-th time slot. All nodes
are listening at all times. We also assume, for the sake of
simplicity, that all nodes emit with the same power P . We
denote by Gn(λ, γ) the graph obtained by superposing the n
graphs derived for each slot.

In the following theorem, we propose an extension of
Theorem 2 that proves that with fixed γ, one can reach the
supercritical phase by choosing n large enough.

Theorem 5: For a fixed γ, if the isotropic attenuation func-
tion L(·) verifies assumptions (8) and (9), then there exist
λ′ < ∞ and a function n′(λ, γ) such that

• n′(λ, γ) < ∞ for all λ > λ′

• if λ > λ′ and n ≥ n′(λ, γ), there exists a.s. an infinite
connected component in the graph Gn(λ, γ).

We prove Theorem 5 by following the same steps as
Theorem 2, except a few modifications. We first need to
change a little bit the mapping. The Poisson process is now
decomposed in n sub-processes, formed by the points emitting
in each of the time slots. Because these time slots are picked
independently for each node, each sub-process is Poisson with
intensity λ/n. Definition 2 is then replaced by the following
one:

Definition 5: An edge a of L is said to be open if the
following conditions are fulfilled:

• both squares adjacent to a are populated, and
• the total number of points of each sub-process located

in the two squares adjacent to a and all their direct

10



To appear in IEEE/ACM Transactions on Networking February 2005

neighbors is less than or equal to N + 1;
With this new definition, the probability that an edge is

open needs to be recomputed. Lemma 2 is thus replaced by
the following.

Lemma 7: For any q′ > 0, there exists λ′ < ∞ and n′(λ) <
∞ such that

λ > λ′ and n ≥ n′(λ) ⇒ q < q′.
Proof: We have

q = P({an edge of L′ is closed})
≤ 2K2

P({no point in a subsq. of surf. d2/K2})
+nP({sub-process i exceeds N + 1 pts

in a rectangle of surf. 12d2})
= 2K2e−λd2/K2

+ nP(Z > N + 1). (20)

where Z is a Poisson random variable of parameter 12λd2/n.
The first term can be obviously made arbitrarily small by
choosing λ large enough. Let us call λ′ the smallest value
of λ such that the first term is smaller than q′/2.

For the second term, as N ∈ N, take the case N = 0 as an
upper bound. Note that in this way, we obtain a bound that is
independent from γ.

nP(Z > N + 1) ≤ nP(Z > 1)

= n

(

1 − e−12λd2/n − 12λd2

n
e−12λd2/n

)

≤ n

(

12λd2

n
− 12λd2

n
e−12λd2/n

)

= 12λd2
(

1 − e−12λd2/n
)

The latter expression tends to zero when n increases. There
exists therefore n′(λ) < ∞ such that n ≥ n′(λ) implies
nP(Z > N) < q′/2.

As both terms of (20) can be made smaller than q′/2, we
proved that q < q′.
The remainder of the proof of Theorem 5 is constructed from
the same arguments as in Section III-C.

By applying this TDMA strategy, we actually reduce the
number of interfering nodes by a factor of n. It is therefore
interesting to compare the connectivity of the graph obtained
by superposing the n graphs derived for each slot, to that of
the original graph G(γ, λ) obtained when all nodes emit at
the same time. Let us introduce the following notations for
the interference contribution, which is another shot noise, at
each time slot:

Ik(x) =
∑

i∈Sk,xi 6=x

PL(xi − x)

where Sk, k = 1, . . . , n is the set of the indices of the nodes
that emit during the k-th time slot. It follows immediately that

n
∑

k=1

Ik(x) = I(x).

The expected values of the interference term (1) in the
TDMA scheme is n times lower than in the regular scheme

E[γIk(x)] =
1

n
E [γI(x)]

We computed by simulation the critical threshold γ∗(λ) in
the TDMA scheme. Figure 12 presents the results, compared
to those of the regular scheme. As expected, we observe that
the threshold in the TDMA scheme is about n times higher.
This means that introducing an n-time slots TDMA system is
somehow equivalent to dividing γ by n.
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Fig. 12. Comparison between the critical threshold in the TDMA case
(n = 4 time slots) and in the original model with all nodes allowed to emit
simultaneously. To make comparison easier, the critical value in the second
case has been multiplied by 4. [Simulation parameters are the same as in
Figure 3]

Finally, if the attenuation function has the form L(x) =
||x||−α, which is not bounded, we have observed in [21] that
the TDMA scheme performs not only as well as the CDMA
scheme with γ divided by n, but even much better, especially
for large values of λ.

V. CONCLUSION

We have studied the connectivity of Poisson Signal To
Interference Ratio Graphs (STIRG) G(γ, λ) where γ represents
the imperfect orthogonality of the codes used in CDMA, or is
set to 1 in a narrow band system.

The STIRG is radically different from the graph obtained
in the Boolean Model, where γ = 0: the node degree is now
bounded (Theorem 1), and the existence of an edge between
two nodes depends not only on the location of these two nodes,
but on the location of all others. We have shown that if γ
is too large, all clusters are almost surely finite. Our main
result is that percolation, and thus long range communications,
are however still possible if γ is small enough, but non zero
(Theorem 2). If this had not been the case, it would have
been a serious impediment for multiple hops large scale ad
hoc networks.

We have also proven that when the node density λ tends to
infinity, the critical value γ∗(λ) decreases as 1/λ provided the
attenuation function is bounded from above and from below
in a small neighborhood of the origin. The main result of this
paper is a first picture of the shape of the region in the (λ, γ)
plane where percolation occurs.

As a small value of γ requires very efficient and thus
complex CDMA codes, an alternative is to use a TDMA
system, where each node emits during 1 slot every n time

11
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slots. We showed that such a system led to a connectivity
similar to the original scheme with an orthogonality factor
γ/n. We proved furthermore that if λ is large enough, one
can make the graph reach the super-critical phase by choosing
n sufficiently large.

The main restriction in Theorems 2 and 5 is the requirement
(8) that the attenuation function L(·) has a finite support. This
assumption was used in the proof to find an infinite sequence
of open independent edges in the lattice L′, and to prove bond
percolation on this lattice. Our simulations show however that
this assumption is not necessary.
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