
Chasingthe FLP Impossibility Result in a LAN
or

How Robust Can a Fault Tolerant Server Be?∗

PéterUrbán†

peter.urban@epfl.ch
Xavier Défago‡

defago@jaist.ac.jp
AndréSchiper†

andre.schiper@epfl.ch
†ÉcolePolytechniqueFéd́erale deLausanne(EPFL),

1015Lausanne, Switzerland
‡JapanAdvancedInstituteof ScienceandTechnology (JAIST),

1-1Asahidai,Tatsunokuchi, Ishikawa923-1292,Japan

Abstract

Fault tolerancecan be achieved in distributed systems
by replication.However, Fischer, Lynch andPatersonhave
provenan impossibilityresultaboutconsensusin theasyn-
chronoussystemmodel,andsimilar impossibilityresultsex-
ist for atomicbroadcastandgroupmembership. We inves-
tigate, with the aid of an experimentconductedin a LAN,
whethertheseimpossibilityresultsset limits to the robust-
nessof a replicatedserverexposedto extremelyhigh loads.

Theexperimentconsistsof clientprocessesthat sendre-
queststo a replicatedserver(threereplicas)usinganatomic
broadcastprimitive. It hasparametersthatallow usto con-
trol the load on the hostsand the network,as well as the
timeoutvalueusedbyour heartbeatfailuredetectionmech-
anism. Our mainobservationis that the atomicbroadcast
algorithmnever stopsdeliveringmessages,not evenunder
arbitrarily high load andverysmall timeoutvalues(1 ms).
So,bytrying to illustratethepractical impactof impossibil-
ity results,we discovered that we had implementeda very
robustreplicatedservice.

1. Intr oduction

Fault tolerancein distributedsystemsis often achieved
by replicatingcomponentsor services. Although replica-
tion is an intuitive andreadily understoodconcept,its im-
plementationis difficult. The statesof all replicashave to
bekeptconsistent,whichcanbeensuredby aspecificrepli-
cation protocol [1, 2]. A replicationprotocol is typically
implementedusing group communicationprimitives, e.g.
atomicbroadcast[3].

However, Fischer, Lynch andPatersonhave proven an
impossibility resultfor consensusin theasynchronoussys-

∗Researchsupportedby agrantfrom theCSEMSwissCenterfor Elec-
tronicsandMicrotechnology, Inc., Neucĥatel.

tem model[4] (FLP impossibility result). The impossibil-
ity result also appliesto atomic broadcast[5]. A similar
impossibility result hasbeenestablishedfor group mem-
bership[6], anotherproblemrelatedto replication. These
impossibility resultsset a limit on the level of robustness
thata replicatedservicecanachieve. However, thesetheo-
retical resultsarelargely ignoredin practice:practitioners
disregardthemasresultsirrelevantto realsystems.Therea-
sonis thatrealsystemsexhibit somelevel of synchrony and
consequently, theimplicationsof theimpossibilityresultto
realsystemsaredifficult to see.

On the other hand,no paperin the literaturerefersto
practicalexperiencesin which theimplementationof repli-
cationis exposedto extremelyhigh loads.How robustcan
a systembeundertheseconditions?Do high loadsactually
prevent thesystemfrom makingprogress(asstatedby the
FLP impossibilityresult),andsolimit therobustnessof the
system?How robustcana fault tolerantserverbe?

To answerthesequestions,we designedan experiment
for a Local AreaNetwork (LAN). It consistsof client pro-
cessesthat sendrequeststo a replicatedserver using an
atomicbroadcastprimitive.Theexperimenthasaparameter
which specifiestheloadon thesystem(therateof requests
comingfrom theclients). Theotherparameteris the time-
out usedby our heartbeatfailuredetectors.The frequency
of heartbeatsis keptproportionalto the timeoutvalue: the
smallerthetimeoutis, thefasterthefailuredetection. Our
intuition wasthat,aswedecreasethetimeout(andincrease
thefrequency of heartbeats),theatomicbroadcastalgorithm
would stopmakingprogressat somepoint in its execution.
Interestingly, our experimentshowed that this wasnot the
case:up to very small timeoutvalues(i.e., 1 ms) and for
arbitrarily high loadconditions,theatomicbroadcastalgo-
rithm never stopsdeliveringmessages.Thus,by challeng-
ing our implementationwith high loadsand small failure
detectiontimeoutvalues,we discoveredthatwehadimple-

c©2001IEEE.Appearedin Proc. of the20th IEEESymposiumonReliableDistributedSystems(SRDS), pages190-193.

menteda replicatedservicewhich is extremelyrobust in a
LAN.

Thepaperis structuredasfollows. Section2 introduces
the algorithmsusedin the experiment,and Section3 de-
scribestheenvironment.Section4 explainshow we tested
the robustnessof the replicatedserver. Section5 presents
resultsof the experiment,andwe concludewith a discus-
sionof theseresultsin Section6.

2. The experiment

Activereplication. Ourexperimentconsistsof areplicated
server andseveral clients. Eachclient repeatedlysendsa
requestto the replicatedserver andwaits for a reply. The
server is replicatedby meansof active replication (also
calledstatemachine approach) [1]. In active replication,
clients useatomic broadcastto sendtheir requeststo the
replicas. Atomic broadcastensuresthat all server replicas
receive the client requestsin the sameorder. Upon recep-
tion of a request,eachserver replicaperformsthesamede-
terministicprocessing(in our case,writing a numberto a
file) andsendsbacka reply to the client. The client waits
for thefirst reply, andignoresall furtherrepliesto thesame
request.

Atomic Broadcast. We usethe Chandra-Toueg atomic
broadcastalgorithm[5]. Thealgorithmsolvesatomicbroad-
castby executingasequenceof consensus,whereeachcon-
sensusdecideson a setof messagesto be delivered. The
atomicbroadcastandthe consensusalgorithmsareproven
correctin the asynchronoussystemmodelwith the failure
detector3S andamajority of correctprocesses[5].

Consensus. Forconsensus,weusethealgorithmproposed
by Most́efaoui and Raynal [7] which improves the early
consensusalgorithm[8]. It is basedon the rotatingcoor-
dinatorparadigm.Processesproceedin consecutive asyn-
chronousrounds(not all processesare necessarilyin the
sameroundatagiventime). In eachroundapredetermined
processactsasthe coordinator. The coordinatorproposes
a valuefor thedecision.A roundsucceedsif a decisionis
taken in that round; if someprocessdecides(anddoesnot
crash)it forcesthe otherprocessesto decide,andthusthe
algorithmis guaranteedto terminateshortly. A roundmight
fail whenits coordinatorcrashes,or whenits coordinator,
while correct,is suspectedby otherprocesses.Consensus
might terminatein a single round, i.e., the first roundcan
alreadysucceed. Someruns might requiremore rounds,
though; in general,the moreoften the coordinatoris sus-
pected,the more roundsthe algorithm will take to termi-
nate.

Failur edetection. Theconsensusalgorithmis implemented
on top of a failure detectionmechanismwith two parame-

tersTh andT . Eachprocesssendsheartbeatmessagesto
all other processeswith a period Th. Processp suspects
processq whenever it hasnot receivedany messagefrom q
(heartbeatorapplicationmessage)for aperiodlongerthanT .

3. Envir onment and implementation issues

Theexperimentwasrun on a clusterof 15 PCsrunning
Red Hat Linux 7.0 (kernel 2.2.16). The hostshave Pen-
tium III 766MHz processorsand128MB of RAM, andare
interconnectedby a 100 Base-TXEthernet. Threeserver
replicaswere used(suchthat the algorithmstolerateone
processcrash).Eachserver replicaranon a differenthost,
while theremaining12hostswereusedfor theclients(more
thanoneclientperhost).Thealgorithmswereimplemented
in Java(Sun’sJDK 1.3.0)ontopof theNeko framework [9].

As our replicatedserver was supposedto work under
extremelyhigh loads,we hadto be very carefulaboutthe
choiceof protocolsand the flow control strategy to avoid
distributeddeadlocksandbufferingproblems.Theseissues
aredescribedin detail in the extendedversionof this pa-
per[10].

4. How robust is our system?

The correctnessof a distributed algorithm hastwo as-
pects: safety (“nothing bad ever happens”) and liveness
(“good things eventuallyhappen”). We call an algorithm
robust if it is bothsafeandlive, evenwhenexposedto ex-
tremelyhighloads.Theatomicbroadcastalgorithmthatwe
chose[5] is safeunderany conditions. Therefore,robust-
nessis relatedto livenessin our experiment:is our atomic
broadcastalwaysableto delivermessages?Thegoalof our
experimentis to find ananswerto thisquestion.Theexperi-
menthasparameterswhich influencetheloadconditionsof
thesystem.For varioussettingsof theseparameters,weran
the experimentandchecked whetherthe atomicbroadcast
algorithmwas live. This sectiondiscussesthe parameters
of theexperiment,aswell asthemethodusedfor verifying
liveness.1

Parametersof the experiment. We classifytheparame-
tersof our experimentinto two categories: (1) application
parameters, over which the implementorof the server has
no control,and(2) systemparameters, over which the im-
plementorof theserverhasfull control.

An applicationparameterinfluencestheloadon thenet-
work and the hosts. Our applicationparameteris r [re-
quests/s],the rate of requestscoming from the clients; a
large r generatesa high load on the network and on the

1Notethatwe do not emulateprocesscrashesin our experiment.This
would primarily give informationon the fault tolerancecharacteristicsof
the atomicbroadcastalgorithm,which arewell understood[5]. The ro-
bustnessof thealgorithmis amajorissueevenif nocrashoccurs.

replicatedserver. In orderto demonstratethatoursystemis
robust,wehaveto show thatour replicatedserverworksfor
any settingof r.

OursystemparameterisT , thetimeoutvaluefor thefail-
ure detector. The time Th betweentwo consecutive heart-
beatmessagesis setto T/2. Low timeoutvaluesyield fre-
quentfalsesuspicions,andhigh timeoutvaluesincreasethe
reactiontime of thealgorithmto processcrashes.

The robustnessof our server caneasilybe increasedby
settingT veryhigh,sayto oneminute.However, thiswould
imply thatthereplicatedservermayblockfor aminutewhen
a processcrashes.We considerthatsucha behavior is un-
acceptablefor a server replicatedfor high availability. For
this reason,we exploredhow thereplicatedserver behaves
for smallvaluesof T .

Testing if the atomic broadcastalgorithm can deliver
messages. Givena settingof theparameters,how canwe
detect(1) if the atomicbroadcastalgorithmcontinuesde-
liveringmessagesforeveror (2) if it will neverdelivermes-
sagesany more?Thebestthatwe cando is to detectcon-
ditionsthatallow usto concludewith someconfidencethat
the behavior of the algorithm hasstabilized. We usethe
following conditionsto terminatea runof theexperiment:

1. Theclientshavecollectedacertainnumberof replies
(N) from thereplicatedserver.

2. Oneinstanceof theconsensusalgorithmhasnot ter-
minatedafterexecutingR rounds.

In every run of our experiment,oneof theseconditions
is necessarilyfulfilled. The valuesN andR werechosen
sufficiently high to allow the systemto stabilize(see[10]
for details).

5. Resultsof our experiment

In spiteof ourexpectations,weobservedthattheatomic
broadcastalgorithm works even under the most extreme
conditions:a requestratethatsaturatesthenetwork (10 000
requests/s)anda very small timeout,approachingthereso-
lution of theclockused(1 ms).

Dueto lack of space,we canonly presenttwo represen-
tativesetsof results,for two differentrequestrates:100 re-
quests/sand10 000 requests/s.100 requests/sis a raterep-
resentingnormaloperation,well below thecapacityof the
server (420 requests/s).At 10 000 requests/s,the network
is saturatedwith requests(asclient hostscansendat most
7 000 requests/s).For theseratesanddifferenttimeoutval-
ues,we measured(1) theaverageresponsetime and(2) the
averagenumberof roundsperconsensus(Fig. 1). Thechar-
acteristicsof the“responsetime” curveandthe“consensus

1Eachpoint shows meanvaluesfrom 100 experiments,with the 90%
confidenceinterval.

100

1000

10000

100000

1 2 5 10 20 50 100 200 500

re
sp

on
se

 ti
m

e
[m

s]

timeout T [ms]

10000 requests/s
100 requests/s

(a)Responsetime

1

2

5

10

20

50

1 2 5 10 20 50 100 200 500

ro

un
ds

 p
er

 c
on

se
ns

us

timeout T [ms]

10000 requests/s
100 requests/s

(b) Numberof roundsto reachconsensus

Figure 1. Performance of the replicated server
(three replicas) for an extreme and a moder -
ate request rate r vs. the failure detection
timeout T .1

rounds”curve are rathersimilar; this is not surprising,as
the numberof roundsper consensusexecutionlargely de-
terminesthe responsetime. At high timeouts,the quanti-
tiesarepredictableandindependentof thetimeout.At low
timeouts,boththeresponsetimesandthenumberof rounds
increaseasthe timeoutdecreases.This is dueto the more
and more frequentfailure suspicions. Both the response
time and the numberof roundsare highly unpredictable:
this is shown by the large confidenceintervals. We found
that even at low timeouts,mostconsensusexecutionstake
few rounds,but a few instancesof consensustake a lot of
roundsandthusincreasetheaveragesignificantly(Fig. 2).

1

10

100

1 10 100 1000

oc

cu
re

nc
es

rounds per consensus execution

Figure 2. The distrib ution of the number of
rounds per consensus execution, for r =
10 000/s, T = 1 ms.

6. Discussion

The experimentshows that our replicatedserver is ex-
tremely robust (Section5). The server is robust because

theunderlyingatomicbroadcastalgorithmis robust,andin
turn, the atomicbroadcastalgorithmis robust becausethe
underlyingconsensusalgorithm always terminates. This
canbeexplainedasfollows.

Recall from Section2 that processesproceedin rounds
in theconsensusalgorithm.In eachround,apredetermined
processactsas the coordinator. A successfulround is a
roundin which a decisionis taken. A roundmight fail be-
causeits coordinatormaybesuspectedby otherprocesses.
Thereforethemoreoftensuspicionsoccur, themorerounds
a consensusalgorithm takes until it decides. However,
Figure 1(b) shows that even thoughconsensusexecutions
may take a large numberof rounds(30 roundson average
evenfor thesmallestvaluesof T andthehighestvaluesof
r) andthe numberof roundsis ratherunpredictable,each
consensusexecution terminatesnevertheless:the longest
we observed had729 rounds. By analyzinglogs of mes-
sagesproducedduringtheexperiment,we wereableto un-
derstandthereasonsfor this. We presentour argumentsin
threesteps:

1. Theconsensusalgorithmtries to deciderepeatedly, in
every round. Therefore,if thealgorithmdoesnot ter-
minate,the failureof a round(i.e., theabsenceof de-
cisionin thatround)mustoccurwith high probability.
We shallarguethatthis is not thecase.

2. Out of our threeprocesses,oneis alwayslate: it never
participatesactively in the algorithm. The reasonis
that the algorithmneedsthe cooperationof only two
processes(this is why it toleratesone crashfailure).
Thustheprocessthatfinishesoneconsensusexecution
lateis likely to finishall subsequentexecutionslate.

3. The following scenario explains why unsuccessful
roundsdo not occurwith high probability(Figure3):

q

p

m1 m2

q decides if p not suspected here

Figure 3. Consensus algorithm: scenario
likel y to lead to a decision. The late process
is not sho wn.

(a) Processq is thecoordinatorof roundr, andpro-
cessp is thecoordinatorof roundr +1. Thethird
processis the late one. This scenariolikely re-
peatsin every third round. The messagesof the
lateprocessarelateanddo not influencethesce-
nario(andarethusomittedin Fig. 3).

(b) Processp sendsm1 to q, andimmediatelyafter it
sendsm2 to q. Processq waits for messagem1.
Thereceptionof m1 is mandatory, i.e.,q doesnot
stopwaiting for m1 uponsuspectingp.

(c) Uponthereceptionof m1, processq waits(1) for
messagem2 from p, or (2) until it suspectsp. If
q receivesm2 beforesuspectingp, thenq cande-
cide.

Application messagesresetthe timer of the heartbeat
failuredetector, hencetheprobability for q to suspect
p beforereceiving m2 is small. Consequently, in ev-
ery third round(at least),thedecisionis likely to take
place.Thuseventually, thereis oneroundin which the
coordinatordecides,andforcestheotherprocessesto
decide.

References

[1] F. B. Schneider, “Implementing fault-tolerantservicesus-
ing thestatemachineapproach:a tutorial,” ACM Computing
Surveys, vol. 22,pp.299–319,Dec.1990.

[2] N. Budhiraja,K. Marzullo, F. B. Schneider, andS. Toueg,
“The primary-backupapproach,” in Distributed Systems
(S. Mullender, ed.),ACM PressBooks,ch. 8, pp. 199–216,
Addison-Wesley, seconded.,1993.

[3] V. HadzilacosandS. Toueg, “Fault-tolerantbroadcastsand
related problems,” in Distributed Systems(S. Mullender,
ed.),ACM PressBooks,ch.5, pp.97–146,Addison-Wesley,
seconded.,1993.

[4] M. J.Fischer, N. A. Lynch,andM. S.Paterson,“Impossibil-
ity of distributedconsensuswith onefaultyprocess,” J. ACM,
vol. 32,pp.374–382,Apr. 1985.

[5] T. D. ChandraandS.Toueg, “Unreliablefailuredetectorsfor
reliabledistributedsystems,” J. ACM, vol. 43, pp. 225–267,
Mar. 1996.

[6] T. D. Chandra,V. Hadzilacos,S. Toueg, and B. Charron-
Bost, “On the impossibilityof groupmembership,” in Proc.
of the15thAnnualACM Symp.on Principlesof Distributed
Computing(PODC’96), (New York, USA), pp. 322–330,
ACM, May 1996.

[7] A. Most́efaoui and M. Raynal, “Solving consensususing
Chandra-Toueg’s unreliable failure detectors: A general
quorum-basedapproach,” in Proc.of the13thInt’l Symp.on
DistributedComputing(DISC), (Bratislava, Slovak Repub-
lic), pp.49–63,Sept.1999.

[8] A. Schiper, “Early consensusin an asynchronoussys-
tem with a weak failure detector,” Distributed Computing,
vol. 10,pp.149–157,Apr. 1997.

[9] P. Urbán,X. Défago,andA. Schiper, “Neko: A singleenvi-
ronmentto simulateand prototypedistributed algorithms,”
in Proc. of the 15th Int’l Conf. on Information Network-
ing (ICOIN-15), (BeppuCity, Japan),pp. 503–511,2001.
http://lsewww.epfl.ch/Publications/ById/255.html.

[10] P. Urbán,X. Défago,andA. Schiper, “ChasingtheFLP im-
possibilityresultin aLAN, or how robustcanafault tolerant
server be?,” Tech.Rep.DSC/2001/037,EPFL,Switzerland,
2001.http://lsewww.epfl.ch/Publications/ById/254.html.

