Chasingthe FLP Impossibility Resultin a LAN
o]

r
How Robust Can a Fault Tolerant Sewver Be?

PéeterUrban’
peter.urban@epfl.ch

Xavier Défagd
defago@jaist.ac.jp

André Schipef
andre.schiper@epfl.ch

tEcolePolytechniqueFécerale de LausanngEPFL),
1015LausanneSwitzerland

JapanAdvancednstituteof Scienceand Technolagy (JAIST),
1-1 Asahidai,Tatsunokuhi, Ishikawa923-1292 Japan

Abstract

Fault tolerance can be achievedin distributed systems
by replication. Howerer, Fischer, Lynch and Patersonhave
provenan impossibilityresultaboutconsensus the asyn-
chronoussystenmodel,andsimilarimpossibilityresultsex-
ist for atomicbroadcastand group membeship. We inves-
tigate, with the aid of an experimentconductedn a LAN,
whethertheseimpossibilityresultssetlimits to the robust-
nessof a replicatedserverexposedo extremelyhigh loads.

Theexperimentconsistof client processeshat sendre-
guestgo areplicatedserver(threereplicas)usinganatomic
broadcastprimitive. It hasparametesthatallow usto con-
trol the load on the hostsand the network,as well as the
timeoutvalueusedby our heartbeafailure detectiormed-
anism. Our main observationis that the atomicbroadcast
algorithm never stopsdeliveringmessges,not evenunder
arbitrarily highload andverysmalltimeoutvalues(1 ms).
So,bytrying to illustratethe practicalimpactof impossibil-
ity results,we discovered that we had implementedh very
robustreplicatedservice

1. Intr oduction

Fault tolerancein distributed systemds often achieved
by replicatingcomponentor services. Although replica-
tion is anintuitive andreadily understoodconcept,ts im-
plementations difficult. The statesof all replicashave to
bekeptconsistentwhich canbeensuredy a specificrepli-
cation protocol[1, 2]. A replicationprotocolis typically
implementedusing group communicationprimitives, e.g.
atomicbroadcas}3].

However, Fischer Lynch and Patersonhave proven an
impossibility resultfor consensug the asynchronousys-

*Researclsupportedy agrantfrom the CSEM SwissCenterfor Elec-
tronicsandMicrotechnologylInc., Neuclatel.

tem model[4] (FLP impossibility result). The impossibil-
ity resultalso appliesto atomic broadcas{5]. A similar
impossibility result hasbeenestablishedor group mem-
bership[6], anotherproblemrelatedto replication. These
impossibility resultsseta limit on the level of robustness
thata replicatedservicecanachiese. However, thesetheo-
retical resultsarelargely ignoredin practice: practitioners
disregardthemasresultsirrelevantto realsystemsTherea-
sonis thatreal systemsexhibit somelevel of synchrory and
consequentlytheimplicationsof theimpossibility resultto
realsystemsaredifficult to see.

On the other hand, no paperin the literaturerefersto
practicalexperiencesn which theimplementatiorof repli-
cationis exposedto extremelyhigh loads. How robustcan
asystembe undertheseconditions?Do high loadsactually
preventthe systemfrom makingprogresqasstatedby the
FLP impossibilityresult),andsolimit therobustnes®f the
system7How robustcana faulttolerantsenerbe?

To answerthesequestionswe designedan experiment
for aLocal AreaNetwork (LAN). It consistsof client pro-
cesseghat sendrequeststo a replicatedsener using an
atomicbroadcasprimitive. Theexperimenthasaparameter
which specifieghe load on the system(the rate of requests
comingfrom theclients). The otherparameters the time-
out usedby our heartbeafailure detectors.The frequengy
of heartbeatss kept proportionalto the timeoutvalue: the
smallerthetimeoutis, the fasterthe failure detection. Our
intuition wasthat,aswe decreas¢hetimeout(andincrease
thefrequeng of heartbeatstheatomicbroadcasalgorithm
would stopmakingprogressat somepointin its execution.
Interestingly our experimentshaved that this was not the
case: up to very smalltimeoutvalues(i.e., 1 ms) and for
arbitrarily high load conditions,the atomicbroadcastlgo-
rithm never stopsdelivering messagesThus, by challeng-
ing our implementatiorwith high loadsand small failure
detectiortimeoutvalueswe discoveredthatwe hadimple-

(©2001IEEE. Appearedn Proc. of the20t" IEEE Symposiunon ReliableDistributed System§SRDS) pagesl 90-193.

menteda replicatedservicewhich is extremelyrobustin a
LAN.

The paperis structuredasfollows. Section2 introduces
the algorithmsusedin the experiment,and Section3 de-
scribesthe environment. Section4 explainshow we tested
the robustnessf the replicatedsener. Section5 presents
resultsof the experiment,andwe concludewith a discus-
sionof theseresultsin Section6.

2. The experiment

Activereplication. Ourexperimentconsistof areplicated
sener and several clients. Eachclient repeatedlysendsa

requesto the replicatedsener andwaits for a reply. The

sener is replicatedby meansof active replication (also

called state madine approach) [1]. In active replication,
clients use atomic broadcasto sendtheir requestso the

replicas. Atomic broadcasensureghatall sener replicas
receve the client requestsn the sameorder Uponrecep-
tion of arequesteachsenerreplicaperformsthe samede-

terministic processingin our case,writing a numberto a

file) andsendsbacka reply to the client. The client waits

for thefirst reply, andignoresall furtherrepliesto thesame
request.

Atomic Broadcast. We usethe Chandra-duey atomic
broadcasalgorithm[5]. Thealgorithmsolvesatomicbroad-
castby executinga sequencef consensusyhereeachcon-
sensuglecideson a setof message$o be delivered. The
atomicbroadcasandthe consensuslgorithmsare proven
correctin the asynchronousystemmodelwith the failure
detector®>S andamajority of correctprocessefb].

Consensus. Forconsensusye usethealgorithmproposed
by Mostéfaoui and Raynal[7] which improvesthe early
consensusigorithm [8]. It is basedon the rotating coor
dinator paradigm. Processeproceedn consecutie asyn-
chronousrounds(not all processesre necessarilyin the
sameroundatagiventime). In eachrounda predetermined
processactsasthe coordinator The coordinatorproposes
avaluefor the decision. A roundsucceed# a decisionis
takenin thatround;if someprocessecidesanddoesnot
crash)it forcesthe otherprocesseso decide,andthusthe
algorithmis guaranteedb terminateshortly. A roundmight
fail whenits coordinatorcrashespr whenits coordinator
while correct,is suspectedy otherprocessesConsensus
might terminatein a singleround, i.e., the first round can
alreadysucceed. Someruns might require more rounds,
though;in general,the more often the coordinatoris sus-
pected,the more roundsthe algorithmwill take to termi-
nate.

Failur edetection. Theconsensualgorithmisimplemented
on top of a failure detectionmechanisnwith two parame-

tersT;, andT. Eachprocesssendsheartbeamessageto
all other processesvith a periodT},. Process suspects
process; wheneverit hasnotrecevedary messagérom ¢
(heartbeadr applicatiormessagefpr aperiodlongerthanT'.

3. Environmentand implementation issues

The experimentwasrun on a clusterof 15 PCsrunning
Red Hat Linux 7.0 (kernel2.2.16). The hostshave Pen-
tium Ill 766 MHz processorand128MB of RAM, andare
interconnectedy a 100 Base-TXEthernet. Threesener
replicaswere used(suchthat the algorithmstolerateone
proces<rash). Eachsener replicaranon a differenthost,
while theremainingl2 hostswereusedfor theclients(more
thanoneclientperhost). Thealgorithmswereimplemented
in Java(Sun'sJDK 1.3.0)ontop of the Neko framewnork [9].

As our replicatedsener was supposedo work under
extremely high loads,we hadto be very carefulaboutthe
choiceof protocolsandthe flow control strateyy to avoid
distributeddeadlocksaandbuffering problems.Theseissues
aredescribedn detail in the extendedversionof this pa-
per[10].

4. How robust is our system?

The correctnes®f a distributed algorithm hastwo as-
pects: safety (“nothing bad ever happens”) and liveness
(“good things eventually happen”). We call an algorithm
robustif it is both safeandlive, evenwhenexposedto ex-
tremelyhighloads.Theatomicbroadcasalgorithmthatwe
chose[5] is safeunderary conditions. Therefore robust-
nessis relatedto livenessn our experiment:is our atomic
broadcasalwaysableto deliver messagesPhegoalof our
experimentis to find ananswetto this question.Theexperi-
menthasparametersvhich influencetheload conditionsof
the system For varioussettingsof theseparametersye ran
the experimentand checled whetherthe atomic broadcast
algorithmwaslive. This sectiondiscusseshe parameters
of the experiment,aswell asthe methodusedfor verifying
liveness.

Parameters of the experiment. We classifythe parame-
tersof our experimentinto two cateyories: (1) application
parametes, over which the implementorof the sener has
no control,and(2) systenparametes, over which theim-
plementorof the senerhasfull control.

An applicationparameteinfluenceghe load on the net-
work and the hosts. Our applicationparameteris r [re-
guests/s] the rate of requestscoming from the clients; a
large r generates high load on the network and on the

INote thatwe do not emulateprocesscrashesn our experiment. This
would primarily give informationon the fault tolerancecharacteristicef
the atomic broadcasglgorithm, which arewell understood5]. The ro-
bustnes®of thealgorithmis amajorissueevenif no crashoccurs.

replicatedsener. In orderto demonstrat¢hatour systemis
robust,we haveto show thatour replicatedsenerworksfor
ary settingof r.

Oursystemparameteris 7', thetimeoutvaluefor thefail-
ure detector The time T}, betweentwo consecutre heart-
beatmessagess setto T'/2. Low timeoutvaluesyield fre-
guentfalsesuspicionsandhightimeoutvaluesincreasehe
reactiontime of thealgorithmto processrashes.

The robustnes®f our sener caneasilybe increasedy
settingT” very high, sayto oneminute. However, thiswould
imply thatthereplicatedsenermayblockfor aminutewhen
a processrashes We considerthat sucha behavior is un-
acceptabldor a sener replicatedfor high availability. For
this reasonwe exploredhow thereplicatedsener behaes
for smallvaluesof T'.

Testing if the atomic broadcastalgorithm can deliver
messages. Givena settingof the parametershow canwe
detect(1) if the atomicbroadcasalgorithm continuesde-
liveringmessagefreveror (2) if it will neverdelivermes-
sagesary more? The bestthatwe cando is to detectcon-
ditionsthatallow usto concludewith someconfidencehat
the behavior of the algorithm has stabilized. We usethe
following conditionsto terminatea run of the experiment:

1. Theclientshave collecteda certainnumberof replies
(V) from thereplicatedsener.

2. Oneinstanceof the consensuslgorithmhasnot ter-
minatedafterexecutingR rounds.

In every run of our experiment,oneof theseconditions
is necessarilfulfilled. The valuesN and R werechosen
sufficiently high to allow the systemto stabilize (see[10]
for detalils).

5. Resultsof our experiment

In spiteof our expectationsye obseredthattheatomic
broadcastalgorithm works even underthe most extreme
conditions:arequestatethatsaturateshe network (10 000
requests/sanda very smalltimeout,approachinghereso-
lution of the clock used(1 ms).

Dueto lack of spacewe canonly presentwo represen-
tative setsof results,for two differentrequestates:100 re-
guests/aand 10 000 requests/s100 requests/ss araterep-
resentingnormal operationwell belov the capacityof the
sener (420 requests/s) At 10 000 requests/sthe network
is saturatedvith requestgasclient hostscansendat most
7000 requests/s).For theseratesanddifferenttimeoutval-
ues,we measuredl) the averageresponsdime and(2) the
averagenumberof roundsperconsensugFig. 1). Thechar
acteristicoof the “responsdime” curve andthe “consensus

1Eachpoint shavs meanvaluesfrom 100 experimentswith the 90%
confidencentenal.

100000

‘% 10b00 re(‘quests/‘s
. 100 requests/s --------
2
< 10000 E
E % ¥
3 f f
2 o * e x
= 1000 E
g .
ESRREEREER 3ooooen B oeene Heeoeeen ERRREEEEE *
100 Il Il Il Il Il Il Il Il Il
1 2 5 10 20 50 100 200 500
timeout T [ms]
(a) Responséime
50 T T T
10000 requests/s
a % 100 requests/s --------
2 20| " R
?
s L % ,
§ 10 ¥ % %
[
s °l= %
E -
5 .l e - i
W s * x
1t I I I i i oo oo il
1 2 5 10 20 50 100 200 500

timeout T [ms]

(b) Numberof roundsto reachconsensus

Figure 1. Performance of the replicated server
(three replicas) for an extreme and a moder -
ate request rate r vs. the failure detection
timeout 7.1

rounds” curve are rathersimilar; this is not surprising,as
the numberof roundsper consensugxecutionlargely de-
terminesthe responsdime. At high timeouts,the quanti-
tiesarepredictableandindependentf thetimeout. At low
timeouts boththeresponsdimesandthe numberof rounds
increaseasthe timeoutdecreasesThis is dueto the more
and more frequentfailure suspicions. Both the response
time and the numberof roundsare highly unpredictable:
this is shavn by the large confidencentervals. We found
that even at low timeouts,mostconsensugxecutionstake
few rounds,but a few instanceof consensusake a lot of
roundsandthusincreasehe averagesignificantly(Fig. 2).

100

10 4 e

13 L] ’MHJ muuuudunl | F

1 10 1000
rounds per consensus execution

occurences

Figure 2. The distrib ution of the number of
rounds per consensus execution, for r =
10000/s, T =1 ms.

6. Discussion

The experimentshaws that our replicatedsener is ex-
tremely robust (Section5). The sener is robust because

theunderlyingatomicbroadcastlgorithmis robust,andin
turn, the atomic broadcastlgorithmis robust becausdhe
underlying consensuslgorithm always terminates. This
canbeexplainedasfollows.

Recallfrom Section2 that processeproceedn rounds
in the consensualgorithm.In eachround,apredetermined
processactsas the coordinator A successfuroundis a
roundin which a decisionis taken. A roundmight fail be-
causeits coordinatormay be suspectedby otherprocesses.
Thereforehemoreoftensuspicionsccur themorerounds
a consensualgorithm takes until it decides. However,
Figure 1(b) shows that even thoughconsensugxecutions
may take a large numberof rounds(30 roundson average
evenfor the smallestvaluesof 7' andthe highestvaluesof
r) andthe numberof roundsis ratherunpredictablegach
consensugxecutionterminatesnevertheless:the longest
we obsened had 729 rounds. By analyzinglogs of mes-
sagegroducedduringthe experimentwe wereableto un-
derstandhe reasondor this. We presenbur argumentsn
threesteps:

1. Theconsensuslgorithmtriesto deciderepeatedlyin
every round. Therefore|f the algorithmdoesnot ter-
minate,the failure of around(i.e., the absencef de-
cisionin thatround)mustoccurwith high probability.
We shallarguethatthis is notthecase.

2. Outof ourthreeprocessegyneis alwayslate: it never
participatesactively in the algorithm. The reasonis
that the algorithm needsthe cooperationof only two
processegthis is why it toleratesone crashfailure).
Thusthe procesghatfinishesoneconsensuexecution
lateis likely to finish all subsequengxecutiondate.

3. The following scenario explains why unsuccessful
roundsdo not occurwith high probability (Figure3):

g decides if p not suspected here

IA ;I

q [>

ml/ m2
p .

Figure 3. Consensus algorithm: scenario
likely to lead to a decision. The late process
is not shown.

(a) Procesg is the coordinatorof roundr, andpro-
cesy is thecoordinatorof roundr + 1. Thethird
procesds the late one. This scenariolikely re-
peatsin every third round. The messagesf the
late processarelate anddo notinfluencethe sce-

nario (andarethusomittedin Fig. 3).
(b) Proces® sendsn; to ¢, andimmediatelyafter it

sendsm, to ¢q. Processg; waitsfor messagen;.
Thereceptionof m; is mandatoryi.e., ¢ doesnot
stopwaiting for m; uponsuspecting.

(c) Uponthereceptionof m, process; waits (1) for
messagen, from p, or (2) until it suspectp. If
q receivesns, befole suspecting, theng cande-
cide

Application messagesgesetthe timer of the heartbeat
failure detectoy hencethe probability for ¢ to suspect
p beforereceving ms is small. Consequentlyin ev-
ery third round(at least),the decisionis likely to take
place.Thuseventually thereis oneroundin whichthe
coordinatordecides andforcesthe otherprocesseso
decide.

References

[1] F B. Schneider“Implementing fault-tolerantservicesus-
ing the statemachineapproachatutorial,” ACM Computing
Surves vol. 22, pp.299-319Dec.1990.

[2] N. Budhiraja,K. Marzullo, F. B. Schneiderand S. Touey,
“The primary-backupapproachi, in Distributed Systems
(S. Mullender ed.),ACM PressBooks,ch. 8, pp. 199-216,
Addison-Weéslg/, seconded.,1993.

[3] V. HadzilacosandS. Tougy, “Fault-tolerantbroadcastsand
related problems), in Distributed SystemdS. Mullender
ed.),ACM PressBooks,ch.5, pp.97-146 Addison-\\ésley,
seconcked.,1993.

[4] M. J.FischerN. A. Lynch,andM. S.Paterson;Impossibil-
ity of distributedconsensuswith onefaulty process,J. ACM,
vol. 32,pp.374-382 Apr. 1985.

[5] T.D.ChandraandS.Toueg, “Unreliablefailuredetectorgor
reliabledistributedsystems, J. ACM, vol. 43, pp. 225-267,
Mar. 1996.

[6] T. D. Chandra,V. Hadzilacos,S. Tousay, and B. Charron-
Bost, “On theimpossibility of groupmembershig,in Proc.
of the 15th Annual ACM Symp.on Principlesof Distributed
Computing(PODC’96), (New York, USA), pp. 322-330,
ACM, May 1996.

[7] A. Mostefaoui and M. Raynal, “Solving consensusising
Chandra-Toug's unreliable failure detectors: A general
quorum-basedpproachi,in Proc.of the 13thInt'l Sympon
Distributed Computing(DISC), (Bratislasa, Slovak Repub-
lic), pp.49-63,Sept.1999.

[8] A. Schiper “Early consensusin an asynchronoussys-
tem with a weak failure detectof Distributed Computing
vol. 10, pp.149-157 Apr. 1997.

[9] P Urban,X. Défago,andA. Schiper“Neko: A singleervi-
ronmentto simulateand prototypedistributed algorithms,
in Proc. of the 15th Int'l Conf on Information Network-
ing (ICOIN-15), (BeppuCity, Japan),pp. 503-511,2001.
http://lsewww.epfl.ch/Publications/Byld/255.html.

[10] P Urban,X. Défago,andA. Schiper “Chasingthe FLP im-
possibilityresultin aLAN, or how robustcanafaulttolerant
sener be?, Tech.Rep.DSC/2001/037EPFL, Switzerland,
2001. http:/llsewww.epfl.ch/Publications/Byld/254.html.

