Performance Analysis of a Consensus Algorithm Combining Stochastic Activity Networks and Measurements

A. Coccoli, P. Urban, A. Bondavalli, and A. Schiper. Performance analysis of a consensus algorithm combining Stochastic Activity Networks and measurements. In Proc. Int'l Conf. on Dependable Systems and Networks (DSN), pages 551-560, Washington, DC, USA, June 2002. Protocols which solve agreement problems are essential building blocks for fault tolerant distributed applications. While many protocols have been published, little has been done to analyze their performance. This paper represents a starting point for such studies, by focusing on the consensus problem, a problem related to most other agreement problems. The paper analyzes the latency of a consensus algorithm designed for the asynchronous model with failure detectors, by combining experiments on a cluster of PCs and simulation using Stochastic Activity Networks. We evaluated the latency in runs (1) with no failures nor failure suspicions, (2) with failures but no wrong suspicions and (3) with no failures but with (wrong) failure suspicions. We validated the adequacy and the usability of the Stochastic Activity Network model by comparing experimental results with those obtained from the model. This has led us to identify limitations of the model and the measurements, and suggests new directions for evaluating the performance of agreement protocols. Keywords: quantitative analysis, distributed consensus, failure detectors, Stochastic Activity Networks, measurements

Publié dans:
Proc. Int'l Conf. on Dependable Systems and Networks (DSN), 551-560

Note: Le statut de ce fichier est: Anyone

 Notice créée le 2005-05-20, modifiée le 2020-01-23

Télécharger le document

Évaluer ce document:

Rate this document:
(Pas encore évalué)