

Discovering the network topology of a MANET

Stefan Thurnherr, 6th semester SSC

stefan.thurnherr@epfl.ch

Project Advisor

David Cavin

EPFL-LSR-IC

david.cavin@epfl.ch

June 2003

Abstract

Today Mobile Adhoc Networks are of more and more growing interest, on the
one hand because they work without any infrastructure or control, on the other
hand because the devices we use get smaller and smaller and thus the need to
communicate to other devices can easily occur anywhere, at any time. But the
need & desire to communicate immediately and always rises the question
whether the interlocutor is reachable by any means, i.e. a Mobile Adhoc Network.

The LSR laboratory of EPF Lausanne (CH) developed a Java based framework for
Mobile Adhoc Networks called FRANC which can be run on nearly any device
from desktop computers to PDA's (apart some restrictions, depending on the JVM
that is being used). This framework is based on a layer architecture and thus
completely configurable with different functionalities.
This report is about an application layer written for this framework. Its aim is to
discover the network topology of a Mobile Adhoc Network consisting of clients
running the FRANC layer stack. The discovered topology may then be
represented by a graph, thus making it possible to quickly get an overview of the
reachable nodes - and to answer the question whether the desired interlocutor is
reachable or not.

Version 1.1

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

2 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

Table of Content

1 Introduction .. 4

1.1. About Mobile Adhoc Networks.. 4
1.2. About the MANET Framework .. 4
1.3. About this project ... 6

2 Gathering the topology information ... 7
2.1. Overview.. 7
2.2. The Viscovery Layer .. 7

2.2.1. How it integrates into the MANET Layer Stack 7
2.2.2. The configuration parameters .. 8
2.2.3. The message type TokenMessage .. 8

2.3. How to determine the next destination neighbor.................................... 9
2.3.1 LRV – Least Recently Visited ... 9
2.3.2 LFV – Least Frequently Visited .. 10

2.4. All about the TokenMessage .. 10
2.4.1. Inside the TokenMessage .. 10
2.4.2. A TokenMessage example using LFV... 11
2.4.3. De-/Serialization of a TokenMessage .. 12

2.5. What Viscovery does to a Token .. 13
2.5.1. A perceived TokenMessage is not destined to this node 13
2.5.2 A perceived TokenMessage is destined to this node 14

3 Visualizing the topology information .. 15
3.1. Overview.. 15
3.2. The GUI ... 16
3.3. Evaluating different graph libraries ... 18

3.3.1. JGraph ... 18
3.3.2. GVF ... 18
3.3.3. And the winner is….TouchGraph .. 19

4 Futurework.. 21
5 Personal Conclusion ... 22
6 References .. 23

3 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

1 Introduction

1.1. About Mobile Adhoc Networks
Today Mobile Adhoc Networks are of greater and greater interest not only in the
field of research, but also in terms of economy: They do not need any fixed
infrastructure (i.e. no base antennas), they have the potential to be self-
organizing and to increase their capacity with the number of users, and the
denser such a net is, the lesser power we potentially need to transmit and/or
receive, which is an interesting aspect in terms of battery life and device size.

1.2. About the MANET Framework
The MANET framework is (as of 2003) a project administered by David Cavin and
Yoav Sasson under the direction of Professor Schiper of the distributed systems
laboratory (LSR) at the Swiss Federal Institute of Technology in Lausanne (EPFL,
http://www.epfl.ch).
The MANET framework has been entirely built through semester projects so far:
the initial framework was programmed by Javier Bonny & Urs Hunkeler [1]. It
consists of a layer architecture which is represented in its basic configuration in
Figure 1.

An instance of this framework is configured by an XML file specifying which
layers one wants to include in the layer stack. Each layer can be configured
individually through some parameters; please refer to the corresponding
documentation for details on the parameters of each layer (see References).

Some layers were outsourced to a whole semester project, namely:

• the AODV routing layer, done by Betrand Grandgeorge [2]
• the reliableLayer, done by A.Leiggener [3]: this layer is placed directly

above the VirtualNetworks layer and requires an ACK to be sent by all
neighbors of a one-hop broadcast.

4 / 23

http://www.epfl.ch/

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

Fig.1: The MANET Framework in its basic configuration

Apart these layers the MANET Framework offers modules, called 'Services' in the
above graphics. Currently two such modules exist and were designed during a
semester project by Reto Krummenacher [4]: The Neighboring module
continuously sends out HELO messages in order to discover the current
neighborhood (all neighbor nodes reachable within the sending radius of a node)
This information is vital for some layers as they need to know which nodes are
reachable at a certain moment (routing, viscovery, chat). The Statistics module
keeps track of the amount of data sent and received and is able to present the
such collected data to any interested layer. Christophe Crausaz made extensive
performance analysis in his semester project [5] using this Statistics module.

The third core part of the MANET Framework is the Message Pool. It is
implemented as a thread of its own and used by all layers and modules
whenever they need a new instance of an object registered within the framework
via the XML configuration file: Instead of letting the Java Garbage Collector
gather any such object that is not used anymore, the layers and modules put
them into the Message Pool by calling its freeMessage(msg) method (see [1],
Part II, 2.1. MessagePool). The Message Pool basically reinitializes them and
makes them available to whichever layer asks for a new instance of a certain
object. If a layer asks for an instance of an object that is not available yet, the
Message Pool obtains one by calling the corresponding Constructor method. In
this way the framework is able to recycle all used FRANC object instances.

5 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

1.3. About this project
The aim of this project was to build an application layer for the MANET
Framework that is somehow able to gather information about the current
network topology and to store the such retrieved information in order to be able
to display some sort of visualization of the discovered network topology.
To gather such information this application
layer (which I called Viscovery) creates and
sends around a special message which we
called Token, since it is thought to be
unique within one connected network.

Visual Discovery ☺

This Token stores information about each visited node so it can visualize the
"current" network topology. Of course we can never get a graphical
representation that reflects the current topology accurately since the Token holds
the information that was valid for each node at the time of the last visit. But the
target networks are not (yet) supposed to suffer neither from high mobility nor
from partitions; such problems will be adressed to futurework.

The rest of this report consists basically of two parts, as the Viscovery application
can be split up into the information-gathering algorithm on the one hand and the
visual representation of the discovered topology on the other hand. After these
two core parts, I will lose some words about futurework, then concluding this
report by with some personal impressions & aspects and finally specify the
references.

6 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

2 Gathering the topology information

2.1. Overview
In this chapter I will explain how the Viscovery layer integrates into the layer
stack of the MANET Framework, what decisions have been made concerning the
format of the message used by the Viscovery layer (the so-called Token), and
finally what changes a node running the Viscovery layer makes to the content of
a Token.

I will not cover any interaction that a user can undertake if the GUI is available;
everything related to the graphical part of the Viscovery application is treated in
Section 3, as the GUI can be turned off via the corresponding parameter in the
XML configuration file without cutting off the basic, non-graphical functionalities
described in this section.

2.2. The Viscovery Layer

2.2.1. How it integrates into the MANET Layer Stack
The Viscovery application consists of one single layer that is added onto the top
of the MANET layer stack, just before the Absorbing Layer (see Figure 2).

The AsyncMulticast is the physical layer of the MANET Framework in order to be
able to communicate with other nodes.
The Dispatcher is needed because we need a reference on the Neighboring
Module, which can only be obtained by accessing the corresponding method of
the Dispatcher.
The VirtualNetworks is needed because wireless transmission is equivalent to
Multicast transmission, i.e. a package that we want to transmit is being sent out
into the air and can be perceived by all neighbor nodes. The MANET Framework
does not rely on any routing or filtering done outside the layer stack, so every
perceived package will get into the layer stack. But if we want to simulate a
multihop network within a space-limited location (typically smaller than the
sending range of the nodes), we need a layer that filters the packages that
normally would not be perceived by certain nodes; this is exactly what the
VirtualNetworks Layer does.
The Viscovery Layer is then set above this existing stack, and finally we set up
the Absorbing Layer which simply consumes all messages that reach the top of
the stack, in order to prevent a buffer overflow due to unknown message types.

7 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

Absorbing Layer

Viscovery Layer

VirtualNetworks Layer Neighboring
Module

Dispatcher Layer

AsyncMulticast Layer

Fig.2: Minimal MANET configuration to successfully run the Viscovery Layer

2.2.2. The configuration parameters
The parameters for the Viscovery Layer that can be specified in the XML
configuration files are the following:

Parameter name Possible value(s) Effect

TTL Any positive integer The maximal number of hops that this message should survive; Because
each TokenMessage gets newly initialized at the time of deserialization,
this number has no influence or effect, but could potentially be used in a
future version that relies on multihop.

MsgType Token The message type associated to this layer. This parameter has to be set
to Token, or the Viscovery Layer will not work correctly.

FrameVisible true / false This parameter decides whether the GUI is visible and active or not. If it
is set to false, then no interaction is possible, i.e. you cannot create or
hold a Token, you cannot change the baseDelay, and you cannot see
the graph of the discovered network topology. But nevertheless the
basic functionality (i.e. to receive, handle correctly and send a Token) of
the Viscovery Layer is not affected.

baseDelay Any positive integer
(recommended
between 1000 and
10000 [msecs])

The delay that should be applied when the treatment of a Token is
finished, but before the Token is sent downward the FRANC Layer stack.
The number is interpreted as milliseconds, and is especially useful while
debugging or following a Token's trace.

2.2.3. The message type TokenMessage
The Viscovery layer has its own type of messages, the TokenMessage. This class
inherits from the superclass Message as for all message types within the MANET

8 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

Framework. This causes a message of type TokenMessage to be propagated up
the stack until it reaches the Viscovery Layer (given of course that the message
is destined to this node). The Viscovery Layer recognizes the message to be a
TokenMessage and therefore does not hand it further up the stack; instead the
handleMessage() method (see [1], Part II, 2.2.4. handleMessage()) of the
Viscovery Layer picks it out and the treating of the Token is started by calling the
Viscovery's treatMessage() method (see 2.5. What Viscovery does to a Token).

2.3. How to determine the next destination neighbor
Before sending a TokenMessage towards its next destination, we first need to
determine this next destination. To achieve this we decided to implement two
different algorithms (LRV and LFV - see the corresponding subsections for
details) which are both local algorithms, i.e. the next destination is always one of
the direct neighbors of the node that is currently being visited. The neighborhood
information is obtained by the Viscovery Layer from the Neighboring Module [4].

The decision which algorithm will be used must be made at creation time of a
Token, since this influences the meaning of the counter variables associated to
each node. A Token can only be created by a node running the GUI-enabled
version of the Viscovery Layer, i.e. the parameter frameVisible in the XML
configuration file needs to be set to true).

2.3.1 LRV – Least Recently Visited

The Token (configured to
use LRV and represented
by the semi-transparent
ellipse) currently visits
node X and has visited
16 nodes so far. In order
to determine the next
neighbor, LRV runs
through the Token's
tokenTrace and searches
for the smallest value
(i.e. the node that has
not been visited for the
longest time). In this
case this would be node
C. Then the Token's age
is increased by 1 and the
counter associated to
node X is set to the
current age of the
Token. Finally the Token
is sent to node C.

A D

X

Age 16
X 3
A 13
B 16
C 7
D 8

…..
B

C

Fig.3: An example how the next destination node is chosen according to LRV.

9 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

This algorithm selects the next destination out of the possible nodes (i.e. nodes
that are within the sending range of the currently visited node) that have not
been visited for a longer time than any other possible node. A small example is
depicted in Figure 3.

2.3.2 LFV – Least Frequently Visited
This algorithm selects the next destination out of the possible nodes (i.e. nodes
that are within the sending range of the currently visited node) that have been
visited fewer times than any other possible node. In Figure 4 I show an example
to clarify this algorithm.

The Token (configured to
use LFV and represented
by the semi-transparent
ellipse) currently visits
node X and has visited
16 nodes so far. In order
to determine the next
neighbor, LFV runs
through the Token's
tokenTrace and again
searches for the smallest
value (i.e. the node that
has been visited the
fewest times). In this
case this would be node
B. Then the counter
associated to node X as
well as the age of the
Token are increased by 1
and finally the Token is
sent to node B.

A D

X

Age 16
X 2
A 3
B 1
C 2
D 2

…..
B

C

Fig.4: An example of how the next destination node is chosen according to LFV.

2.4. All about the TokenMessage
As mentioned earlier in this document, its own message type is associated to the
Viscovery Layer, called TokenMessage (inside the MANET Framework this
message corresponds to the message type #33). In this subsection I talk about
the structure of a TokenMessage, about its De-/Serialization and finally I will
present an example featuring the path of a TokenMessage visiting 5 nodes.

2.4.1. Inside the TokenMessage
Beneath the header, which is commun to all messages inheriting from the
superclass Message (see [1], Part II, 2.2. Message), the TokenMessage contains
the following data:

10 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

String tokenAlgo Stores the Token's algorithm, i.e. LRV for Least Recently Visited or LFV for Least

Frequently Visited - see 2.3. How to determine the next destination neighbor

List tokenTrace The history and core part of a TokenMessage : For each node that was visited by this
Token at least once, the Viscovery Layer of the visited node adds a row to the
tokenTrace containing the nodeID of this very node, its counter value (whose meaning
depends on the configured tokenAlgo) as well as all the nodeID's of the direct
neighbors of that node at the time of visit. The counter and the neigbhor's nodeIDs of a
visited node are then kept up to date by verifying them at each visit. For the exact
sequence, see 2.5. What Viscovery does to a Token .

Int currentNodeIndex This field contains the tokenTrace index of the row that is associated to the currently
visited node; it is therefore set to a valid value only once a TokenMessage arrives at its
destination node, and is not serialized when transmitting a TokenMessage.

long nbVisits Represents the global counter or age for this TokenMessage. This number is equal to
the number of nodes that this Token has visited so far. It is incremented just before a
Token leaves a node towards its next destination node; during a visit, the current visit
is not counted in yet.

2.4.2. A TokenMessage example using LFV
In the following I'll give an example of a topology and the corresponding
tokenTrace (configured to LFV) after a certain sequence of visits. For reasons of
simplicity we assume that the nodes of the considered network do not move out
of their mutual sending range and therefore the topology graph stays static. So
let us start from the configuration as depicted in Figure 5.

Red 1055147300196

Blue 1054074929061

Green 1054075129573

Magenta 1054075207498

Orange 1054075299986

1054075299986

1054075207498

1054075129573

1054074929061

1055147300196

Fig.5: The network configuration of the discussed example of Token passing using LFV.

Now assume that a Token is generated at the red node and goes along the path
shown in Figure 6, which is a perfectly correct path according to LFV:

11 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

1055147300196 1054075129573 1054075299986

 1054074929061 1054075207498 1054075207498

Fig.6: An imaginative, but correct path of the Token, according to LFV.

Once the Token arrives at the magenta node for the second time, we get the
tokenTrace as sketched out in Figure 7. Some minor differences may occur
regarding the order of the neighbors for each node because this is somewhat
arbitrary (it actually depends on the neighbortable supplied as a static array by
the neighboring module [4]). But the same goes for the choosing of the next
destination at the blue node when the green and the magenta node have the
same count values, i.e. they were not visited yet by this Token.

tokenTrace

nodeID counter Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

1055147300196 1 1054074929061

1054074929061 1 1055147300196 1054075129573 1054075207498

1054075129573 1 1054074929061 1054075207498

1054075207498 2 1054075129573 1054074929061 1054075299986

1054075299986 1 1054075207498

Fig.7: The Token data, after the traversal of a path as depicted in Figure 6.

The next destination node would again be determined according to LFV. It would
be either the green or the blue node.

2.4.3. De-/Serialization of a TokenMessage
The De-/Serialization is done in the following order, starting from the top:

String tokenAlgo (for explanations on this TokenMessage field, see 2.4.1)

long nbVisits Represents the global counter or age for this Token. This number is equal to the
number of nodes that this Token has visited so far. It is only incremented just before
the Token leaves a node; during a visit, the current visit is not counted in yet.

12 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

int nbTraceRows The number of rows (or lines) of the tokenTrace. For each node that was visited by

this Token at least once, the Viscovery Layer adds a row to the tokenTrace
containing the nodeID of the corresponding node, its counter value (with respect to
the tokenAlgo) as well as all the nodeIDs of the direct neighbors of that node at the
time of visit.

int rowCapacity of row #0 The number of columns contained in the tokenTrace's first row (index 0).

long from row[0] to
row[rowCapacity – 1]

The first number is the nodeID of the node which this row refers to; the second
value is the counter associated to this node; the rest of the row consists of the
nodeIDs of the neighbors of this node.

int rowCapacity of row #1 The number of columns contained in the tokenTrace's second row (index 1).

long from row[0] to
row[rowCapacity – 1]

The first number is the nodeID of the node which this row refers to; the second
value is the counter associated to this node; the rest of the row consists of the
nodeIDs of the neighbors of this node.

: : :
: : :

int rowCapacity of the row
#(nbTraceRows-1)

The number of columns contained in the tokenTrace's last row (corresponds to index
(nbTraceRows-1)).

long from row[0] to
row[rowCapacity – 1]

The first number is the nodeID of the node which this row refers to; the second
value is the counter associated to this node; the rest of the row consists of the
nodeIDs of the neighbors of this node.

2.5. What Viscovery does to a Token
We need to distinguish 2 cases, namely whether a perceived TokenMessage is
destined to this node or not.

2.5.1. A perceived TokenMessage is not destined to this node
The Viscovery layer is prepared to treat this case because we cannot rely on the
existence of a routing/filtering algorithm since layers in the MANET Framework
can easily be deactivated through the XML configuration file. As a consequence
the Viscovery Layer potentially receives all TokenMessages sent out by nodes
within this node's sending range. And since we can profit from the more up-to-
date content of these TokenMessages to keep our graph as most up-to-date as
possible, it would be silly to simply discard these messages. So if (and only if)
the GUI is enabled, the Viscovery layer evaluates the content of any
TokenMessage not destined to this node and updates the graph accordingly.
Once this is done the message is dropped immediately (i.e. passed over to the
Message Pool [1]); the content of such a TokenMessage is in no way changed,
neither is the message reintroduced into the layer stack.

13 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

2.5.2 A perceived TokenMessage is destined to this node
If the destination of the message equals the nodeID of this node, a
TokenMessage undergoes the following treatment while staying at the Viscovery
layer of this node :

First of all this method checks whether this node has already an
associated row in the tokenTrace, i.e. has already been visited at least
once by this Token. If no such row exists, a new row is appended to the
tokenTrace with this node's nodeID and zero as the counter's value.

Next, this method investigates the algorithm of the Token (see 2.3. How
to determine the next destination neighbor) and reacts accordingly:

 LFV: The counter associated to this node's nodeID is increased by
1, as it represents the number of times that this node has
been visited.

msg.visitNode(thisNodeID)

 LRV: The counter is set to the value of the global age/counter of
the Token and then increased by 1, as the global counter is
only increased at the time of departure from this node. The
counter value associated to this node's nodeID represents
now the time of the most recent visit (i.e. the current visit).

msg.updateNeighbors(currentNeighborTable) This method is called to update the neighbor entries associated to the
nodeID of the node that is currently being visited. On the one hand, for
every entry (nodeID) in the currentNeighborTable (which is obtained
from the Neighboring Module [4]), Viscovery checks whether that
nodeID is already present in the row of the tokenTrace that is
associated to this node. On the other hand every entry in the
tokenTrace's row of this node is tested for validity, i.e. if the node
corresponding to that nodeID is still a direct neighbor of this node. At
the end the row of the tokenTrace associated to this node contains the
same nodeIDs as the currentNeighborTable.

msg.updateOthersNeighbors() We do not only want to keep up to date the information whether any
node is a neighbor of this node, but also whether this node is a neighbor
to any other node; this is exactly what this method does: It runs
through all rows of the tokenTrace except the row that is associated to
this node, verifies any occurance of this node's nodeID on the one hand,
and adds this node's nodeID wherever necessary on the other hand.

visFrame.updateGraph() This method is only called if the configuration parameter frameVisible is
set to true. In this case the graph that is currently being displayed
within the GUI is cleared and a new graph is created with the
information of this Token.

getNextDestination() This method obtains the current Neighbor Table from the Neighboring
Module [4] and chooses one of its nodeIDs to be the next destination
node. The selection is done with respect to the algorithm of the Token,
the current counter values of all nodeIDs figuring simultaneously in the
tokenTrace and the currentNeighborTable as well as any current
neighbor not figuring yet in the tokenTrace.

send(nextDestination) Finally the Viscovery Layer sends the treated TokenMessage downward
the FRANC Layer stack back to the network via this method, which itself
calls the method sendMessage(msg) inherited from the superclass
Message…and there the TokenMessage goes!

14 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

3 Visualizing the topology information

3.1. Overview
This chapter deals with the other core part of my semester project, which is the
Graphical User Interface (GUI) and the displaying of the discovered network
topology.

Keep in mind that this GUI is optional; the user can decide whether he wants to
have all the graphical features described in this chapter by simply setting the
corresponding parameter in the configuration file. However the basic
functionality (as described in the preceding chapter) of the Viscovery Layer
depends in no way on the GUI.

Fig.8: Screenshot of the Viscovery GUI with the log window, just after startup

15 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

3.2. The GUI
When starting up the application, the GUI looks as depicted in Figure 8.

We can change the tab located at the top of the GUI to show the current graph
instead of the log window (see Figure 9 for the corresponding screenshot). No
Token has been received or generated yet, so the graph shows only the node on
which this Viscovery Layer is running.

Fig.9: Screenshot of the Viscovery GUI with the graph window, just after startup.

Now let us have a closer look at the buttons and drop-down lists in the bottom:

16 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

This first line of the buttons area allows to set the delay (measured in seconds) that
is applied once the next destination neighbor is evaluated, but before the Token is
actually sent to this next destination neighbor. Set this delay to a higher value if
you want to slow down the Token circulation. Keep in mind that this delay is set
individually for each node (see also 2.2.2. – The configuration parameters).

The next drop-down list must be used in order to be able to generate a new Token;
it sets the algorithm according to which the Token will choose its next neighbors.
The choices are:

• LRV - Least Recently Visited (see subsection 2.3.1. LRV)

• LFV - Least Frequently Visited (see subsection 2.3.2. LFV)

Once you have chosen the Token's algorithm, the button Create new Token will get
enabled and you can generate a new Token by clicking on this button. In the log
window you will then see the header and the data of this newly created Token as
well as the next destination node, indicating that the Token left this node towards
that destination node. You can change to the graph tab to see already a 2-nodes-
graph, i.e. this node and the next destination node of the Token you've just created
and sent (if the Neighboring Module already detected more neighbors, they too will
show up in the graph).

If no neighbor is available, the log file indicates this and the Token is destroyed.

This button is quite self-explaining; Even if the log window has an autoscroll
function, it is sometimes useful to clear the log file and to restart the logging.

The third line of buttons can be used to hold back a Token before its new
destination node is evaluated. This checkbox may be activated at any time and will
prevent the next Token arriving on this node and trying to evaluate the next
destination node from doing so and being sent towards that node.

If the checkbox is active, the two buttons next to it will get enabled:

As long as no Token is actually being hold back, it is possible to disable the holding
back of the next Token by simply clicking either the checkbox again or one of these
two buttons. This will set the hold-back flag to false and these two buttons will be
disabled again.

Once a Token was received (or generated) on this node, it is consequently hold
back, i.e. the header is displayed in the log window and the old graph is updated
with the new data contained within this Token. But the determination of the next
neighbor does not happen until the Token is released by either deactivating the
checkbox or simply clicking the correspondingly labeled button.

The button destroy this token is put at one's disposal if one wants to eliminate a
Token that is currently being hold back by this node. When clicking this button the
Viscovery Layer immediately drops this Token without treating it furtherly.

17 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

These possibilities of interaction are independent of the tab that is currently
selected, i.e. you can change the selected tab at any time without changing the
state of any button, checkbox or drop-down list.

3.3. Evaluating different graph libraries
As I spent quite a lot of time on choosing an appropriate graph library to display
the discovered network topology, I want to loose some words about this topic.

3.3.1. JGraph
The first graph library that I seriously considered as being suitable for the aim of
this project was jgraph [6]. The project was started by Gaudenz Alder, first as a
Semester Work, then continued as a Diploma Thesis at ETHZ (Swiss Federal
Institue of Technology Zurich), before finally being released as an open source
projet during 2002.

The intention of this project is to provide a freely available, standards-compliant
and thoroughly documented open source component to display and edit graphs
(networks) with Java.

[quotation from the jgraph website]

The main advantages compared to other graph libraries (even with the one that I
finally used) are that it is guaranteed to be 100% Java Swing compatible, it is
designed in a clearly and efficiently way (according to its website), and it is very
well documented.

There are nevertheless a few important drawbacks which caused me to abandon
this library; the main disadvantage was that no layout algorithm was included in
the jgraph distribution (as of May 2003), and to develop such an algorithm by
myself would have gone beyond the scope of my semester project.

3.3.2. GVF
A second graph library that showed promise is an open-source project called
GVF: The Graph Visualization Framework [7].

The Graph Visualization Framework is a set of Java 2 packages that can serve as
a foundation for applications that either manipulate graph structures or visualize
them. The libraries implement several basic modules for input, graph
management, property management, layout, and rendering.

[Quotation from the GVF website]

It seems that GVF would perfectly suit our needs. The problem with this library is
that it is very poorly documented and is intended to be rather used as-it-is, i.e.

18 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

with the provided GUI and functions (which enable the user to create and edit
graphs). I adressed my need to use GVF as a graph library in the forum provided
for this sourceforge [8] project, and I always received answers on my questions
within one or two days. But even after 2 weeks of trying to get to run a "hello-
world"-like graph I did not succeed. Finally I had to abandon the idea of using
GVF as the graph library for Viscovery despite the enthusiasm I had (and stll
have; see futurework) about it fitting perfectly my needs.

3.3.3. And the winner is….TouchGraph
The graph library I finally used for the current version (v1.0) of the Viscovery
Layer is the one from the TouchGraph project [9]:

TouchGraph is a set of interfaces for Graph Visualization using spring-layout and
focus+context techniques.

[quotation from the TouchGraph website]

TouchGraph has its name from the layout algorithm it uses to arrange
automatically all nodes in a suitable manner. In fact the nodes execute a force
on each other which pushes them off mutually. In this way we get a neat view of
a graph, at least as long as a physical model of the corresponding graph would
stay in two dimensions: Imagine that we replace each node by, let's say, some
big visible electron and put the whole model in a place with no gravitation. On
the one hand the electrons would repel each other, and on the other hand the
connections between the nodes/electrons would hold the graph together. As a
consequence we would get after a while a stable model, which will be either two-
or three-dimensional, depending on the number and location of the connections
between nodes/electrons; if it is three-dimensional and we project it onto 2
dimensions (which is done by displaying the graph on the screen), the resulting
picture will not always be comprehensive and demonstrative because a lot of
overlapping will occur.

As a consequence the TouchGraph layout algorithm works very well for networks
that are poorly populated and distributed over a rather large geographical area,
i.e. only 2-3 nodes are within the sending range of each node. But the great
advantage of this layout algorithm can easily become a disadvantage when lots
of nodes are within the same sending range because in this case the described
algorithm will produce a lot of overlapping and the expressiveness will decrease
rapidly.

19 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

It is also for the reasons explained above that the node labels consist of only the
last four digits of the corresponding nodeID. The longer the node labels are, the
more probably they overlap and thus causing the graph to become illegible. In
Figure 10 are depicted examples of two network configurations, each with 11
nodes; you'll easily recognize the problem of the TouchGraph algorithm as
discussed above.

Fig.10: Top:

Bottom:

The discovered network topology of nodes that are spread out over an
area clearly larger than the sending range of each node.

The discovered network topology of 11 nodes which are situated very
closely, i.e. every node can reach every other node within one hop.

20 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

4 Futurework

The main future work will certainly consist in extending this application to be
more interactive. Based on the graph, I could imagine for example a chat
application: Assume user A* sitting behind the computer labeled node A. By
clicking on a node B of the node A's graph, a window pops up which allows the
user A* to type a message that is sent to the user B* sitting behind the
computer constituting node B. On the graph of user B*, the message arriving
from user A* is somehow indicated within the icon representing the node A.

Another application within the graph could be to show statistics about the
throughput or the signal strength toward every other node. When a user A* on
node A pauses his mouse over a certain node C of the displayed graph, a popup
appears indicating how many packets have been sent to this node C and how
good the connection is (in terms of signal strength, of packet loss etc...).

A third promising extension would be to implement a routing algorithm based on
the discovered network topology. So if node A wants to communicate to node D,
the nodes we have to visit to find the shortest way from node A to node D are
looked up in the topology graph existing on node A. Of course this involves a
number of problems (delay, partitions, etc.), but the idea seems promising.

But besides these extensions to the existing Viscovery application, there are a
few aspects that could be improved within the existing application. Namely I am
still convinced that GVF as the graph library would be the better choice; to clear
this, it should first be possible to compare the performance of the TouchGraph
vs. the performance of a GVF implementation, with regard to the needs of the
Viscovery application. To get a detailed insight on the problems encountered
when I tried to implement GVF, I suggest you start with the forum on [7]. The
thread I started within the help forum is called how to create my own graph, the
direct link is http://sourceforge.net/forum/forum.php?thread_id=873265&forum_id=126558 (as of June
2003).

Another aspect that I did not really test is how the application behaves on the
occurance of partitions or multiple Tokens within the same connected network.
As long as the application is only used for small manageble networks, these
aspects are of minor interest. But once we want to simulate real networks, such
cases must be taken into consideration.

21 / 23

http://sourceforge.net/forum/forum.php?thread_id=873265&forum_id=126558

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

5 Personal Conclusion

The field of Mobile Adhoc Network is an emerging field of studies with a bright
future. Thus it was a great possibility for me to gain an insight into this subject,
and I am sure it will not be the last time I worked on this, as I am still, or even
more interested in these networks.

Apart my enthusiasm about the subject, it was a very valuable experience to
have to design an application from the scratch, i.e. starting with some theoretical
lecture about the subject, going over to think about and plan the
implementation, then to implement the designed patterns and algorithms, and
finally creating a GUI to enable users to steer the application.

I had to learn that once the application is finished, there are still tests to do
which can take up a lot of time and thus should not be underestimated. Further I
had to deal with the problem that the graph library that I intended to use in the
beginning turned out to be suboptimal, and needed to be replaced by a better
one (TouchGraph). And on the contrary in the final weeks of the project, I had to
stop being enthusiastic about implementing the GVF library, even if success was
close; the time was just not sufficient to continue with the GVF attempts.

To conclude, I would like to thank my project advisor David Cavin. On the one
hand he gave me plenty of rope and he did never impose his will on me, and on
the other hand he had always time to help out when I had a problem without
losing his patience. It is for sure that this contributed much to the success of this
project.

22 / 23

Stefan Thurnherr, June 2003

MANET Framework - Viscovery

6 References

[1] J.Bonny & U.Hunkeler, "MANET Framework", February 2003

[2] B.Grandgeorge, "AODV routing algorithm for multihop Ad Hoc Networks", February 2003

[3] A.Leiggener, "Reliable Broadcast at 1 Hop in FRANC", June 2003

[4] R.Krummenacher, "Use of Modules for better inter-layer communication", February 2003

[5] C.Crausaz, "Design and implementation of a performance evaluation mechanism for FRANC",

June 2003

[6] The JGraph Project, http://jgraph.sourceforge.net/

[7] GVF – The Graph Visualization Framework, http://gvf.sourceforge.net/

[8] Sourceforge is the world's largest Open Source software development website,

http://www.sourceforge.net/

[9] TouchGraph – http://touchgraph.sourceforge.net/

23 / 23

http://jgraph.sourceforge.net/
http://gvf.sourceforge.net/
http://www.sourceforge.net/
http://touchgraph.sourceforge.net/

