L

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Semester Project

MANET Framework

Laboratory: L SR (Professor Schiper)

Advisors: David Cavin
Y oav Sasson

Project Team: Javier Bonny (javier.bonny @epfl.ch)
Urs Hunkeler (urs.hunkeler@epfl.ch)

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEERALL B8 TALISANNLL

MANET Framework

2/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework

Table of contents

Part 1: PrOJECT OVEIVIBW........ceiiieiiieeiee ettt ettt ne e 7
L. INEFOAUCTION. ...ttt ettt e s e b snne e 8
1.1. ADOUL tNE PrOJECE.......eeieietie ettt 8
1.2. ADOUL thiS QOCUMENT. ..ottt 8
1.3. Referencesto Other ProjECES........cuicieeiieeiieciee e 8

2. WHEt ISAMANET ...ttt n e n e nneas 9
3. What about IXTA fOr JZME?.......oo o 11
4. PrOJECE QOBIS......eiiieieitii ettt ettt n e aeas 12
4.0, ASSUMPLIONS.....eeieieietie st siee ettt ettt e et e st e sse e et e sneesnneenbeeeneeas 12
B2, TASKS. .ttt ettt n e 12

5. PErsoNal QOIS........coiuiiiiiiiieiie e 14
5.1. Why personal gOalS?........ccueiiuiiiiiiiiiiiee ettt 14
5.2. Devel OpmMENt @PPIrOBCN.......oc.viiiieiie sttt 14
5.2.1. CycleSand PhasesS........c.eevuieiieeiiieeiiesie et 14
5.2.2. DBIIGN. ettt ettt ne e 14
5.2.3. Test IMpPIeMENLalioN..........coiiiiiieiieesie e 14
5.2.4. Code Implementation...........c.cuueeiieeieniiesie e 14
5.2.5. TESING. .. eeeeeietie ettt et 14
5.2.6. DOCUMENTALION.....cuvieiiieiiie ettt 15

5.3, TEAM WOIK.....oiiiiiiieiee e nneas 15

6. DESION QUIAETINES......coieieiii ettt 16
6.1. Why design gUIdEIINES?........cc.ooiiieie e 16
6.2, PEITOIMEINCE.......cotiiiiieeie ettt neeas 16
6.3, MOQUIBITZBLION. ..ot 16
6.4, EBSY TO USE.....ciiiiiiiie ettt e e s nne s 16

7. CONCIUSION. ...ttt ettt ettt et et e st e et e s ane e seenbeeenne e 17
7.1 WRNEE WOTKS. ...ttt nean 17
7.2. What was different than expected............cccoviiiiiiiiieniiiee e 17
7.3, FINal StAOMENT......coiiieie e 17
Part 2: Detailed project deSCriptioN..........cueiieeiieer e 19
1. MESSAOE PAN.....eeeeeee e 20
1.1. The prinCiple Of FOULING.......cooiieiiieiie e 20
1.2. The principle of layers (class ASynchronousLayer).........cccoceereeeneenneenee. 20
1.3. History of the different layers.........ccoooeeieiiie e 21
1.4, ASYNCMUITICESE. ..ot 22
1.4. 1. WRY MUITICASI?. ..ot 22
1.4.2. HOW OBS IT WOIK 2.ttt 22

1.5, VIrtUaINEIWOIKING.ccuveeiiieiieeie et 23
1.5.1. How does virtual networking Work?............ccccceeveiiiiinniennieneeseens 23
1.5.2. What happens when amessage is Sent?.......ccvvveveeiiiniieenee e 23

1.5.3. What happens when amessage isrecaived?.........ccovvvveneeiieenieennnns 23

1.6, SEALISHICS. ..eeueeeieeitie sttt et st b e nne e 23
1.6.1. How does the Statistics layer WOrk?...........cccooveeviiieniiiiiiieiie s 23

1.7, DISPAICNES ...t 24

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework

1.7.1. What iS@amMOUIE?........ccuiiiiieieeeee et 24
1.7.2. How does the DispatCher WOrK?..........ooocveiiieinien i 24

1.8, FlOOTING. ...ttt 24
1.8.1. How does flooding WOIK?...........cooiiiienieiienie e 24

1.9, CREL. .. ettt n e 25
1.9.1. What does the Chat application dO?...........c.ccevierieeniienieiiee e 25

1.10. ADSOrDINGLAYEN........eeeieeeeiieeiee sttt 25
1.10.1. Why an ADSOrbINGLEYEr?.......cceeiiieieeieeeese e 25
1.10.2. What does the AbsorbingLayer do?...........cocceeveerieenie e 26

. Message handling mechanism (Mhm)............cocoeiiiiiiienee 27
2.1, MESSAGEPOON ..ottt 27
2.1.1. Why @ameSSagE POOI2.......eeiieeiiiesiee ettt e 27
2.1.2. How does the message pool create new messages?........cccvvvveervveenne. 27

2.2 IMIESSAE. ...ttt anes 27
2.2.1. The supertype for al MeSSAgES.........ccovueiiieriierie e 27
2.2.2. HEBAOEN ...t 28
2.2.3. Seriaization / DeserialiZation............cooeerieerieienieeie e 30

. CONFIQUIATON FIlE. ... 31
3.1. Requirements for the configuration file reader...........ccoovveviiiiieiiiennenn 31
32, FOIMIEL. ...t 31
3.3. Interface to access configuration iNfOrMation............cccoceerieereeenieesineeniens 32
3.3 1. 1CONFIQUIATON. ...ttt 32
3132, SECLION. ...ttt et 33

Part 3: Programming QUIAEIINES...........ooiiiiiiiiecieeee e 35
1. Genera programming iNfOrMaLiON..........ccveiiieeiiieie e 36
1.1. The startup procedure of the framework.............cccceeiveriiienieeree e, 36
1.2. The Static Class [0aErooouie i 36
1.3, FreBiNg MESSATES........ueeiueeiiieateesieeesiee st e st e st et e s et e snneesieeenbeesnnee e 37
1.4, EXAMPIES.....eeeeeiieiee ettt 37

2. HOW tOWIITE @IAYEN ..o 38
2.1. Theideaof @layer ... 38
2.2. MethOdS Of INTEIESE......c.eiiiiee et 38
220 INITAHZE() e 38
2.2.2. SEAITUP() e envee ettt ettt st 38
2.2.3. SENAMESSAGE(). ..+ eenveeenreesiriesieeeiee st e sttt et sttt e et snne e 38
2.2.4. haNAIEMESSAGE(). . eeveeenreeririeiieeiee sttt 38
2.2.5. getNEtWOrKMESSAgE(). .. cevvveeveeeiie sttt 39
2.2.6. PropOSENOUEI D()...ccveeirieririereeeiee sttt 39

2.3. HOw to configure the SYStem.........c.cviiieiierii e 39

3. How to implement a New MESSAJE tYPE......coveereierireeeiee et 41
3.1. How to write anew MeESSAgE tYPE.......eeiveeriieiie ettt 41
3.2. How to write ameSSage faCtory.........coouueeriiniiee e 41
3.3. HOow to configure the SYyStem.........cccoiieiiirie e 41

4. How to implement amOUIE...........cooiieiiiiiieiieie e 43
4.1. Theidea of amOCUUIE...........c.cceiriiiriiiie e 43
4.2. MethOdS OF INTEIESL......coiiiiieie e 43

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework

42,1 INITAITZE() . c.veeeeeeeieee et 43
4.2.2. SEAITUP() - eeenveeeireesiee ettt ettt sttt sttt ene e 43
4.2.3. deliVErMESSAE() ... veeeeeieiesiee ettt 43

4.3. How to configure the SyStem..........ooeeieieieiiie e 43
Part 4: REFEIENCES.....c..eiiiieeie e 45
L. CONTIGFTIE. ettt be e 46
1.1, SHUCLUIE. ...ttt e s e e e e e anns 46
1.2. List of all the different parameters used and their meaning....................... 46
1.2.1. Section SearChpath..........coceeiiiiiieee e 46
1.2.2. SECtON GIODAL......coeieieieieeiee e 47
1.2.3. SECHON NOUES.......ceeiiiie ettt e be e saee e 48

2. List of all KNOWN MESSAge tYPES.......eeiueieieeiiee st 51
2.0 RRE0. .ttt ettt ettt b e neenneas 51
2.2 RRED. .ttt b e nnes 51
2.3 REIT e 51
2.4, SEAMESSAJE. ...ttt 51
2.5, HE O 51
2.8, TOXE ettt ettt nee e 51
Part 5: Future Evolution of the Framework.............ccccooeeiiin e 53
1. EXtensions to the frameworkK..........oouveieiieiieiese e 54
1.1 LONG MESSAES........oeeeiiiieiiieee e e e e e nes 54
1.2. Geographical Virtual NEWOIKS............cooeiieriiieiiese e 54
1.3. Query for unkNOWN MESSAZE tYPES......ceveeieeeriieeriie s esiee e siee e 54
O = PR OPRTOPRPP 54
1.5, SearChpPatn.........ooieieiie e 54
1.6. Configuration NEIarChY.........c.ceeiiierieiie e 55
1.7. DYNamiC CONFIQUIAIION.ccueeiieeeeeeete et siee st 55

5/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEERALL B8 TALISANNLL

MANET Framework

6/55

Part 1. Project overview

7155

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 1: Project overview

1. Introduction

1.1. About the project

The MANET framework was a semester project administered by David Cavin and
Yoav Sasson under the direction of Professor Schiper of the distributed systems
laboratory (L SR) at the swiss federa institute of technology at Lausanne (EPFL).

The project was realized by Javier Bonny (javier.bonny@epfl.ch) and Urs Hunkeler
(urs.hunkeler@epfl.ch). Both are students in the third year of their
telecommuni cations studies (http://ssc.epfl.ch).

1.2. About this document

This document is aimed at various kinds of audience. For this reason the document is
structured into five different parts.

Part 1 (' Project Overview’) gives general information on the project, its goals and the
progress made. This part contains all information a classical project report should
contain.

Part 2 (' Detailed Project Description’) explains the internals of the project. This part
should explain the solutions adopted without going into too much details.

Part 3 (' Programming Guidelines’) is aimed at programmers who want to extend the
project or use it for their purposes. It explains in detail how to write new extensions
to the project and gives advice on critical points.

Part 4 (' References’) contains a complete reference for the configuration file, as well
asalist of standard extensions to the framework.

Part 5 ('Evolution of the Framework’) gives advice to future maintainers of the
framework about possible improvements and some ideas on how to implement them.

1.3. References to other projects

Other projects were based on this Framework. They implemented different parts
(modules, routing algorithm). Here are the full references of those projects:

Use of Modules for better inter—layer communication, February 2003
by Reto Krummenacher (SSC5)
reto.krummenacher @epfl.ch

AODYV routing algorithm for multinop Ad Hoc Networks, February 2003
by Bertrand Grandgeorge (SSC3)
bertrand.grandgeorge@epfl.ch

In this document, we will reference those project as Reto’s and Bertrand’ s projects.

8/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler ;
-) \
LCOLE POIYTTEHNIOU L =
\(Hk)\ \\\ML\);7 1/\[)5/\7\}\‘\ J o

MANET Framework Part 1: Project overview

2. What is a MANET?

MANET stands for Mobile Adhoc NETwork. Think of it as the term for a reunion of
mobile computers at a random place. For instance, people might form a MANET with
their PDAS' at atrain station. There is no central connecting point and no knowledge
about the network configuration and topology. The mobile nodes? don’'t know each
other beforehand. So how can they communicate?

This is the central question of MANETS. For the purpose of this project we assume
that each node can send messages to all nodes within its radio range. Any node within
this radio range might receive the message. The message might not be received by all
nodes within the radio range due to interference. The sending of messages to all
nodes within radio range is called broadcast.

In the train station example, lets assume that Alice has a PDA and stands 5 meters
away from Bob who uses a laptop computer. When the PDA from Alice sends a
broadcast message, the laptop computer from Bob might receive it. But the PDA from
Cecil, who is standing 50 meters away, doesn’t receive the message.

This example poses immediately a number of questions:

How can Alice know about Bob (or rather, how can Alice's PDA know about
Bob' s laptop)?

How could Alice send a message to Cecil?

These questions are handled under the terms of routing. Routing is the task of
controlling the path of messages. For instance, if Alice's PDA finds out that there is
another PDA within its radio range, lets say the laptop of Dahli, and that this laptop
can reach the PDA of Cecil, then Alice could send a message to Dahli, which
forwards the message to Cecil. And Cecil could answer by sending a message back to
Dahli, who forwardsit to Alice.

Discovering a possible route is probably the most challenging problem for MANETS,
because:

Y ou don’'t have any beforehand knowledge about the topology of the network, and
The topology changes over time

Of course you could just send a message to any node within your radio range and ask
them to forward this message in turn to any node within their radio range, etc. Thisis
called flooding. But as the name already implies, this is a waste of bandwidth and
power (PDAs usualy have a limited amount of power and want to send as few
messages as possible).

Since there is no network structure guaranteed, nodes can only communicate through
other nodes. This means that every node has to offer some public services, such as

1 Personal Digital Assistant: sophisticated el ectronic agenda or handheld computer
2 Here: any electronic device which can participate in a MANET (such asa PDA or laptop
computer)

9/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLL POLYITCHNIOUL, -9
\(Hk)\ P\Mk\)7(1 1/\US/\NLK‘\ i o

MANET Framework Part 1: Project overview

routing. There are projects analyzing the effects of egoistic nodes® (nodes that profit
for instance from the routing offered by other nodes but don’t do routing themselves).
Such projects also propose mechanisms to force all nodes to participate (for instances,
nodes might be excluded if they don’t behave).

In order to help optimize and test routing algorithms and other network services (such
as the mechanism to exclude egoistic nodes), we built a framework for MANETS,
which permits easy implementation of a routing algorithm. Besides simulations on
PCs the framework can be used on real devices, such as PDAs.

3 Stimulation Cooperationin Self-Organizing Mobile Ad Hoc Networks by Levente Buttyane and
Jean—-Pierre Hubaux (http://lcawww/buttyan/publications/ButtyanHO3monet.pdf)

10/55

-(I)fl. Javier Bonny, Urs Hunkeler /J[’
[COLL POLTTCHNIOUL, * b
\(Hk)\ P\Mk\);1 1/\{)5/\%}\‘\ i il

MANET Framework Part 1: Project overview

3. What about JXTA for J2ME?

JXTA* is a P2P°> framework. It permits the discovery of other computers running
JXTA and exchanging messages between them. Furthermore it can forward messages
through peers. This is especially used to connect a network protected by a firewall to
other peers on the internet (supposing that one of the computers behind the firewall
has somehow access to the internet).

There exists an implementation of JXTA for J2ME®. So why create an own
framework? Why not simply use JXTA?

During the summer holidays we studied the internals of JXTA, its advantages and
drawbacks, the current status and how it could be used. Finally we found several
reasons why JXTA does not fulfill our needs:

« JXTA depends on infrastructure:
- uses multicast for discovering peers (this is an integral part of JXTA)
- gateways are statically configured

- JXTA assumes that the network topology doesn’t change, or changes only slowly
(when users connect/disconnect from the internet)

- JXTA isn’t concerned much by performance (LANs and even the internet are
relatively high bandwidth and low cost compared to the network technologies
potentially used by MANETS)

- JXTAs main goal is to decentralize the server functionality (and thus create a new
concept opposing the traditional client/server system)

Also J2ME only guaranties support for a single network protocol: HTTP. To use
HTTP on J2ME, one must configure an HTTP gateway. This is because J2ME is
aimed at cellphones, which cannot access a computer network directly. They usually
make dial-up internet connections through an internet provider.

For these reasons we decided to build a completely new framework which is
specialized on MANETS.

4 JXTA is a set of open, generalized peer—to—peer protocols that allow any computer on the
network to communicate and collaborate.

5 Peer to peer: direct communication between any two computers on the same network (usually
internet) without need for a server. There are no dedicated servers, but only peers. This new
concept is said to replace the old concept of client/server networking.

6 Java 2 microedition: Java version for small devices (such as cellphones or PDAS)

11/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 1: Project overview

4. Project goals

4.1. Assumptions

The whole MANET framework is based on the assumption that there is a mechanism
whatsoever to send a message to al nodes within radio range. Routing tasks, such as
sending a message to a specific node, are treated within the framework.

We decided to write the actual implementation of the framework in Java. The reason
for this decision is that Java is extremely portable (machine and operating system
independent). Furthermore Java has a good support for networking.

We decided to require Java 1.1.6 (or above), since this is the most recent version of
Java that actually runs on Windows CE on iPaq’. We decided against supporting
J2ME because it doesn’t permit normal networking or NI

4.2. Tasks
The tasks for our project were:

Define a framework: Define the different network layers (such as physica
interface, routing, etc.) and the interfaces between them. Define the message
format.

Develop a sample implementation: Implement the framework in Java Use
multicast® asthe physical layer.

Implement flooding as a smple routing algorithm: No need for optimizing traffic,
detecting routes or guaranteeing the delivery of messages.

Implement a simple application, such as a Chat, for testing the framework
Initially, the following additional tasks were proposed:

Create statistics

Discover network topology

Later it was decided to migrate the task about statistics to Reto’s project. The task of
discovering the network topology became a whole semester project of itself.

We implemented the following additional tasks:

Configuration file: The project became so complex that it was almost impossible to
maintain without a configuration file. Our implementation permits, for instance,
the definition of default values.

Message pool: Right from the beginning we were concerned about the
performance of the framework on small devices. One of the most time intensive

7 iPagisaPDA from Compag (now HP). We used iPags to test the framework.

8 Java Native Interface: permits to access subroutines written in an other language. This could be
used for instance to access a special network card through a driver written in C.

9 Multicast isa specia form of broadcast for tcp/ip, where a message is sent to all programs
participating in alogical group

12/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTTCHNIOU L
TEDERALL B2 LAUSANNLL

MANET Framework Part 1: Project overview

tasks in Java is to create new class instances. That is why we implemented a
message pool where message objects can be recycled.

13/55

-(I)fl. Javier Bonny, Urs Hunkeler
LCOLL POLYTTCHNIOU L /-
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ J -

MANET Framework Part 1: Project overview

5. Personal goals

5.1. Why personal goals?

A semester project is a perfect opportunity to apply theoretical knowledge. As an
additional challenge, our semester project was given to two persons.

We decided that we not only wanted to complete the tasks given to us, but that we
actually wanted to learn something. We therefore decided to use a new development
approach and to try to improve our team work.

5.2. Development approach

5.2.1. Cycles and phases

We decided to use a development approach called waterfall model. In this approach,
one completely implements and tests a part of the final product before continuing
with the next part. Each part we called cycle, and we divided each cycle into different
phases: design, test implementation, code implementation, testing, documentation.

5.2.2. Design

Before any implementation phase we specify the goal of the development cycle. The
classes are modeled using UML (with ArgoUML™). For every class and its methods
the usage, expected behavior and constraints are defined.

5.2.3. Test Implementation

Before the actual classes are written, the tests for them are already written. This
ensures that the tests are solely based on the specifications of the classes. The tests
should test all the specified behavior of the classes, in particular the critical situations
(bad arguments, etc.). We use a test approach called blackbox testing. In this
approach, the tests don’t have any knowledge about the internals of the objects to test,
but can only use their public members to test conformity to the specification.

5.2.4. Code Implementation
During the code implementation, only the most important aspects or unusual solutions
are documented.

5.2.5. Testing

After both the Test Implementation and Code Implementation phase have being
completed, we run the tests generated in the Test Implementation phase. If those tests
detect errors or non—conformities, we go back to the Code Implementation phase.
Otherwise we proceed with the Documentation phase.

10 ArgoUML is OpenSource and written in Java (http://argouml.tigris.org/).

14055

-(I)ﬂ. Javier Bonny, Urs Hunkeler

LCOLL POLY TFCHN IO,
|

\'\)\ RALL 128 TAUSANNL _ﬂW
MANET Framework Part 1: Project overview

5.2.6. Documentation

Every class and every method is documented (JavaDoc™). In addition to the Java
documentation, we write areport for every development cycle.

5.3. Team work

This special development approach makes it very easy to share the work. The design
phase is completed in a meeting. One of us then implements the tests based on the
design. The other implementsd the code. After both of us have finished their
respective tasks, we make the testing together and go, if necessary, back to our
previous tasks. Once the testing is completed successfully, one of us makes the
JavaDoc comments and the other writes areport for the cycle.

11 JavaDoc is an utility that extracts special comments from the code and creates a webpage. This
allows to have the documentation of the code directly inside the code, and still access it without
having to search the source code. It also alows references to other parts of the code.

15/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 1: Project overview

6. Design guidelines

6.1. Why design guidelines?

During the whole project we kept some guidelines in mind. This alowed usto have a
more consistent implementation.

6.2. Performance

To improve the performance of the framework, we decided to minimize, wherever
possible, the creation of class instances. The most extreme example of this is the
message pool. Another example is the reception of messages, where we use the same
buffer throughout a complete run of the framework.

Since the framework will be at the base of many projects, and not all programmers
might be concerned about performance, it is even more important that the framework
isas optimized as possible.

6.3. Modularization

It should be easy to change certain behavior aspects by just exchanging a class. This
is especialy necessary for a framework that should permit the development and
testing of new algorithms. For instance, one cannot know at the time of programming
which network layers and what types of messages will be used. But it is necessary to
know the notion of layers and messages. We therefore created abstract classes, which
can ssimply be implemented differently for different behavior. The actual classes are
not hardcoded into the program, but are rather initialized from a configuration file.

6.4. Easy to use

The MANET framework is a fundament on which many other projects will be based.
It is therefore necessary that the project be as easy to use and maintain as possible.
Furthermore functionality that is likely to be used for other projects, or even other
parts of the framework, should be implemented only once and be easy to access. Thus
we have to implement, optimize and test those methods only once.

16/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 1: Project overview

7. Conclusion

7.1. What works

The MANET framework isin a state that can be used for testing new a ogrithmes and
building implementations for real devices. There exists a sample implementation of a
chat application which can broadcast messages to all nodes within a configurable
number of hops™. It is also possible to specify a destination node. The framework is
completely configurable through a configuration file.

We were surprised by the efficiency of the development approach. At first it seemed
to take a bit longer. But already at the next cycle we had to change part of the
implementation we made before, and we were really glad that we had the tests for the
old code.

This approach permitted us to produce unusually stable code.

7.2. What was different than expected

Towards the end we were not able to stick strictly to our own development approach.
The reason is that a the end the code became more and more dependent on other
parts of the code. This made it virtually impossible to test amodule just by itself. We
replaced therefore the blackbox testing approach by atest method called code review.
With code review, one writes the code and the other goes through it and tries to find
all the mistakes and possible bugs. We think that this approach helped us to find bugs
that could not have been found with blackbox testing and that it permitted us to
further improve performance of the code.

7.3. Final statement

We are positively surprised by the outcome of the project. We think that we were able
to exceed the initial goals and to produce an extremely stable and well designed
implementation.

12 The number of hopsis the maximum number of times a message is forwarded.

17/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEERALL B8 TALISANNLL

MANET Framework Part 1: Project overview

18/55

Part 2: Detailed project description

19/55

-(I)fl. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEDERALL BB LAUSANNL

MANET Framework Part 2: Detailed project description

1. Message path

1.1. The principle of routing

Without routing a node would only be able to send messages to its direct neighbors.
Routing allows a message to pass from one node to the next until it reaches its
destination.

The simplest routing algorithm is flooding. Using flooding a node simply sends any
messages it receives to all its neighbors. However, flooding is not very efficient (in
terms of bandwidth and collisions). Therefore many research projects are going on to
discover the ideal routing algorithm.

Another routing algorithm is AODV*,

1.2. The principle of layers (class AsynchronouslLayer)

After receiving the message on the physical interface (radio interface) until this
message is delivered to the final destination (i.e. application), the message passes
through several distinct layers. Each layer analyses the message and performs certain
tasks. For instance there is a layer that transforms the binary representation of the
message sent over the physical link into an object that can be handled more easily.
Another layer just counts all the messages that were sent and received.

Some of these layers don’t need to appear in a specific order. It might even be
interesting to change the order of the layers. Furthermore it is not possible to foresee
what kind of layer will be needed in the future.

Therefore we designed a unique interface between any layer. In fact, we implemented
an asynchronous mechanism for receiving messages and a synchronous mechanism
for sending them.

To simplify the implementation of a layer, we created an abstract layer, called
AsynchronousLayer. This layer could be used as is. It then would simply pass
messages in both direction without performing any operation on them.

sendMessage()

—Asynchronousl ayer |

sendMessage() getMessage()

The AsynchronousLayer has its own thread, which will always try to get the next
message from the layer below, using the method getNetworkMessage(). If no
message is available, the lower layer’s getMessage() method will block until a new

13 Adhoc On-demand Distance Vector. see Bertrand’s Project

20/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLE POIYTTEHNIOU L =
\(Hk)\ P\Mk\)7(1 1/\US/\NLK‘\ J]

MANET Framework Part 2: Detailed project descr‘iption

message arrives. As soon as the layer gets a new message from below, it calls the
handleMessage() method. This method simply puts the message into the layer’s
buffer. If the thread from the layer above was blocked because no message was
available in this layer, the thread from above will be released.

When the sendMessage() of the AsynchronousLayer is invoked, it will invoke itself
the sendMessage() method from the layer below to send a message.

To actually implement a layer one has only to extend the AsynchronousLayer class
and to override one or more of the following methods: sendMessage(),
getNetworkMessage() and handleMessage().

1.3. History of the different layers

As the first layer we implemented the network layer: AsyncMulticast. With this layer
we were able to send messages onto the network and receive messages from it.

To demonstrate this, we then wrote a chat application. The chat application became a
layer of its own only later.

Other layers might need some general utilities, such as a list of current direct
neighbors. Such utilities are outside of the normal layer hierarchy. We therefore
wrote a Dispatcher layer. The dispatcher knows about utilities (in the terminology of
the framework called modules). The dispatcher filters all incoming messages. If it
finds a message with a type that is used by a module, it forwards the message, directly
to this module.

With this, Reto'* was able to implement a module that maintains an up—to—date list of
the direct neighbors. We enhanced the chat application to show the current list of
such nodes.

Reto then added a statistics layer, which counts the number of messages and of bytes
sent and received. This information is forwarded to a module. We enhanced again the
chat application to show the current statistics as well.

In this state it was still not possible to test a routing algorithm because current radio
network interface (such as 802.11b or BlueTooth™) don’t support multihop adhoc
networks, and on a wired ethernet network the notion of radio range doesn’t make
sense. We therefore added another layer which permitts to specify virtual networks. A
virtual network simulates the connectivity between two nodes. With this it became
possible to specify that a node could only send and receive a message on this or that
virtual network. It was thus possible to limit the interaction of different nodes on the
same physical network and to simulate an environment where multihop routing is
necessary.

We then implemented the Flooding layer. This layer implements the routing
algorithm called flooding. We further enhanced the chat application so it would be

14 See Reto’s project

15 Actually, it is possible to build multi-hop networks with BlueTooth (this is called scatter net).
But the organization of such scatter nets is not very flexible and therefore not usable to test
general implementations of routing protocols.

21/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOL NIQUL
L

M T #ramework Part 2: Detailed project description

possible to specify the destination.

Since it cannot be predicted what message types will be used and whether a particular
node handles all message types, the last layer’s buffer would just accumulate all
messages with message types that are not handled by this node. To prevent this, we
implemented a final layer, the absorbing layer, which just discards any messages that
arrive. With thisit is for example possible to build a routing node which just discards
broadcast messages (which would normally be propagated through the routing layer
further up the stack).

1.4. AsyncMulticast

1.4.1. Why multicast?

The initial idea was that we could use different multicast groups for different virtua
networks and simulate with this a multihop environment. However it was impossible
to implement this approach and keep the smple model of the layer stack. This is
because you would need a separate thread per multicast group. This can either be
done by completely changing the AsynchronousLayer class, or by changing the layer
stack model to allow severa instances of a layer to exist on the same level of the
stack.

We therefore decided to use the VirtuaNetworking layer instead. We till keep the
multicast for accessing the wired network because it offers the same possibilities as
the smpler broadcast. Additionaly it would be possible to configure two different
sets of nodes to use different multicast groups. Thus two different teams could test
their enhancements to the framework on the same physical network without
interfering.

1.4.2. How does it work?

The AsyncMulticast class overwrites the method sendMessage() and the method
getNetworkM essage().

22/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler i
LCOLL POIITCHNIOU L \
FESHAL B0 1ADSAN =

MANET Framework Part 2: Detailed project description

In sendMessage(), the message object is serialized (see Part 2 chapter 2.2 Message
for details on how thisis done) and then directly sent to the multicast group.

The method getNetworkMessage() tries to receive a multicast packet on the physical
interface. When a packet is received, the AsyncMulticast uses the MessagePool (see
Part 2 chapter 2.1 MessagePool for details) to create a message object and returns it.

1.5. VirtualNetworking

1.5.1. How does virtual networking work?

Y ou can specify up to 20040 virtual networks (see also Part 2 chapter 2.2.1 Network
Bits), which are identified by their number. Each message will contain information
indicating on which virtual networks the message was sent. When the message is
received by a node, the messages are filtered depending on whether the node can
receive messages on one of the virtual networks on which the message was sent.

1.5.2. What happens when a message is sent?

The VirtualNetworkingL ayer class overrides the sendMessage() method. This method
simply adds a list of al virtual networks on which this node sends messages. It then
passes the message to the layer below.

1.5.3. What happens when a message is received?

The VirtualNetworkingLayer class overrides the handleMessage() method. If the
message was sent by this node, it smply puts the message into the buffer (a node
always receives all messages it sent). Otherwise for each of the the virtual networks
for this node the method tests whether the message was sent on that network. If thisis
the case, the method uses a random number generator to determine with a
configurable probability for that particular network whether the message should be
received. If so, the message will be put into the buffer, otherwise the method
continues with the next virtual network. If the message could not be received on any
of the virtual networks, it is ssimply discarded.

1.6. Statistics

1.6.1. How does the Statistics layer work?

The statistics layer counts al incoming and outgoing messages. It aso counts the
bytes needed for sending and receiving them (the bytes that were sent on the
network).

The statistics layer does not maintain the statistics information itself, but it rather
sends a message of its own to the statistics module. Those messages are never sent on
the network, they are strictly kept inside the layer stack.

For details consult Reto’s project.

23/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 2: Detailed project description

1.7. Dispatcher

1.7.1. What is a module?

A module is an implementation of an utility of general interest. Such a utility might
be an up—to—date list of direct neighbors (see the neighboring module from Reto’s
project) or statistics about messages sent and received (see the statistics module from
Reto’s project).

Modules are not clearly placed within the layer hierarchy, but might be needed at any
point within the framework. For this reason the dispatcher removes messages for
modules from the layer stack and directly delivers them to the corresponding
modules.

1.7.2. How does the Dispatcher work?

The dispatcher maintains a list of registered modules and the message type they are
interested in. The Dispatcher class overrides the handleMessage() method. When a
message arrives, this method checks whether the message’s type is one of the types
for which a module is registered. If this is the case, the dispatcher directly contacts
the module and delivers the message (through the module’s deliverMessage()
method). Otherwise the dispatcher puts the message into its buffer.

1.8. Flooding

1.8.1. How does flooding work?

The Flooding class maintains a list of previously received messages. It overwrites the
handleMessage() method. When a message arrives, this method tests whether the
message has been previously received. If this is not the case then the method tests
whether the message originated from this node. If this is not the case the method tests
whether the message’s destination is this node. If this is not the case the method tests
whether the TTL™ is bigger than or equal to 1. If this is the case, the method decides
with a random number generator whether to retransmit the message. If this is the
case, the TTL is decreased by one and the message is retransmitted after a random
delay (through the DelayedTransmission class). In all other cases the message is not
retransmitted.

If the message’s destination is this node, or if it is a broadcast (destination is the
number 0), then the message is put into the stack.

16 Time To Live: is decreased at every hop (retransmission). When it reaches 0, the message is
discarded.

24055

-(I)ﬂ. Javier Bonny, Urs Hunkeler i
LCOLL POIITCHNIOU L \
FESHAL B0 1ADSAN =

MANET Framework Part 2: Detailed project description

Below you see three nodes: n1, n2 and n3. Node nl is on the virtual network 1, node
n2 ison the virtual networks 1 and 2, and node n3 is on the virtual network 2. Node
nl cannot reach node n3 directly, but it can send a message to node n3 through node
n2.

®

1.9. Chat

1.9.1. What does the Chat application do?

The chat application displays awindow. In this window the user can write a short text
message, chose a destination and then send the message. By default, the list of
destinations only contains the broadcast address. For every message the Chat receives,
it tests whether the originating node is aready in the destination list, if not, it is
added. So after receiving a message from a given node (that might have been sent asa
broadcast), the user can choose that node as the destination for her/his message.

The Chat class overrides the method handleMessage(). If a message of a certain type
arrives, the message’' s text message is extracted and displayed on the Chat window.
Otherwise the message is put into the buffer.

1.10. AbsorbingLayer

1.10.1. Why an AbsorbingLayer?

If there are messages which are not removed from the layer stack by any of the layers,
then these messages end up filling the last layer’ s buffer. This might happen if a node
does not implement al layersor if there is a node on the network which implements a
new or different layer or an other type of service (such as a module or application)
which is unknown to this node. For instance, a node might use a minimalist
implementation of the layer stack, which doesn’t include the Chat layer. Such a node
could be used as a router between other nodes running the Chat application. The
messages for the Chat would then end up in the router’ slast layer.

To prevent an overflow of the last layer’s buffer, the AbsorbingLayer was written,
which will smply discard any arriving messages.

This approach was chosen to maintain the layer hierarchy as presented in this
document. Thus it is not necessary to implement anything special to tell the last layer
to discard messages, you can just put the AbsorbingLayer on top of the whole stack.

If there is an application, that is not implemented as a layer, then you one cannot use
the AbsorbingL ayer (otherwise the application doesn’'t receive any messages). In that
case the application needs to treat unknown messages appropriately.

25/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

Vi

MANET Framework Part 2: Detailed project description

1.10.2. What does the AbsorbingLayer do?

The AbsorbingL ayer overrides the handleMessage() method. All this method does is

recycle the messages (using the message pool). By doing this, the buffer of the layer
just below is steadily emptied.

26/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler i
LCOLL POIITCHNIOU L \
FESHAL B0 1ADSAN =

MANET Framework Part 2: Detailed project description

2. Message handling mechanism (mhm)

2.1. MessagePool

2.1.1. Why a message pool?

In Java, one of the most time consuming operations is the creation of class instances.
So throughout the whole project we aimed at avoiding unnecessary object creation.

Furthermore in the Java Specification the functionality of the garbage collector is not
guaranteed. On a Java implementation for small devices, a good implementation of
the Garbage collector could therefore easily be replaced by a poor implementation if
this would reduce the code size of the VM*. This could lead to memory leakage or
temporary heavy use of memory (when objects are not freed fast enough).

Since message objects are heavily used, we decided to implement a message pool. So
instead of just letting the garbage collector handle old message objects, we put them
in a pool where they can be reused. And instead of generating a new instance of a
message each time a message object is needed, we take already existing message
objects and just reinitialize them.

2.1.2. How does the message pool create new messages?

At the beginning, and when need exceeds the capacity, the message pool needs to
create new message objects. Since the message pool is a very genera tool, it should
be able to create and handle any type of message. To achieve this, there exists for
each type of message a message factory (interface |MessageFactory). The message
pool knows the message factory for each message type. If it needs to create a new
instance of a message type, it smply uses the message factory for this type.

2.2. Message

2.2.1. The supertype for all messages

We decided to create a super class for all message types. This supertype groups
information of global interest into a header and provides methods for serialization and
deserialization of the primitive datatypesin Java.

The seridization and deseridization isimplemented in the class Message to optimize
performance. This was done because the objects and methods in the java api, that
allow seriaization, are optimized for writing to a stream (like a file or a tcp
connection) rather than into a byte array (asis used on a broadcast network).

17 Java Virtual Machine: the program that emulates a Java processor

27/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler i
LCOLL POIITCHNIOU L \
FESHAL B0 1ADSAN =

MANET Framework Part 2: Detailed project description

2.2.2. Header

Message Type

The "message type' header field starts at byte O and is 2 bytes long. This number
should be interpreted as an unsigned integer (we use the data type char for thisin
Java). It contains a unique number for each message type. This allows the message
pool to choose the right object or the right message factory from its pool to transform
the byte array received by the physical network into the actual message object.

The message type header field is used by the message pool.

Version

The 'version’ header field starts at byte 2 and is 1 byte long. This number should be
interpreted as an unsigned integer.

A future extension of the message format might changes the header information or
the way in which data is seriadized. When deseridizing a network packet,
incompatibilities can be detected or the network packet could be treated differently
depending on the version number.

The’version’ header field is used by the Message class for checking of compatibility
of header information and the serialization mechansime.

Header length

The "header length’ header field starts at byte 3 and is 2 bytes long. This number
should be interpreted as an unsigned integer.

Even if header fields are added, an older implementation of the Message class should
still be able to read al the previous header fields if the order of those fields doesn't
change. The older implementation will not be able to profit from the new header
fields. But because the header length is known, the older implementation till can
continue to read the actual message data.

The "header length’ header field is used by the Message class to deserialize user data
even if header fields have been added which are not known by the current
implementation of the class Message.

Source Node ID

The ’source node ID’ header field starts at byte 5 and is 8 bytes long. This number is
the unique identifier for the source node. This number is best interpreted as a long
(even though how you treat it doesn’t matter). No assumptions what so ever should be
made on the format of thisID.

The "source node ID’ header field is primarily used by the routing layer.

Destination Node ID
The ’"destination node ID’ header field starts at byte 13 and is 8 bytes long. This

28/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler i
LCOLL POIITCHNIOU L \
FESHAL B0 1ADSAN =

MANET Framework Part 2: Detailed project description

number is the unique identifier for the destination node (the node to which this
message finally should be sent). If this number is O (all bits are 0), then the message is
a broadcast message. This number is best interpreted as along (even though how you
treat it doesn’t matter). No assumptions what so ever should be made on the format of
thisID.

The ' destination node ID’ header field is primarily used by the routing layer.

TTL

The’timeto live' (TTL) header field starts at byte 21 and is 1 byte long. This number
should be interpreted as an unsigned integer.

The TTL indicates, how many times the message can be forwarded. Every time this
message is forwarded, the TTL value should be decreased by 1. If the TTL is O, then
the packet should not be forwarded.

The TTL header field is used by the routing layer.

Sequence number

The " sequence number’ header field starts at byte 22 and is 2 byteslong. This number
should be interpreted as an unsigned integer.

Every time a node sends a message, the node initializes the message’s sequence
number with the current value and then increments its local sequence number. If the
sequence number overflows (becomes bigger than OxXFFFF), then the sequence
number starts again at O.

The sequence number, together with the source node ID, uniquely identifies a
message. Actually, because the sequence numbers can be restarted at O if an overflow
occurs, this is not entirely true. However it is extremely unlikely that a message is
still on the network when the original node sends a new message with the same
sequence number (the maximum TTL is 255). Therefore the sequence number,
together with the source node ID, is a good enough unique identifier for routing
purposes.

The " sequence number’ header field is primarily used by the routing layer.

Network bits

Information about the network bits start at byte 24. The first byte (byte 24) should be
interpreted as an unsigned integer that indicates how many bytes with virtual network
information follow (see Part 2 chapter 1.5 Virtual Networking).

There are at most 255 network bytes, thus limiting the maximum number of virtual
networksto 255 * 8 = 2040.

The "network bits' header field is primarily used by the virtual networking layer. It
might be interesting to replace this layer by another layer that puts different
information into this field (such as topographic information, see Part 5 chapter 1.2
Geographical virtual networks).

29/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 2: Detailed project description

2.2.3. Serialization / Deserialization

A variable is serialized by adding a single byte to the output stream indicating the
type of variable that follows, followed by the number of bytes needed to represent
that value.

Integer numbers (int, short, long, char, byte) are serialized by extracting their bit
representation with bit—wise operators. The order of the bytes is from most important
to least important. This corresponds to the way serialization works in the Java API.

Floating point numbers (float and double) are serialized by transforming them to an
integer representation (Float.floatTolntBits and Double.doubleToLongBits). The
integer representation is then serialized as described above. The deserialization used
the methods Double.longBitsToDouble() and Float.intBitsToFloat().

Strings are serialized by first adding a byte indicating the length of the string. This
length should be interpreted as a unsigned integer. A value of 0 means the string is
empty. A value of 255 (all bits set to one) means that the string is a null string. This
limits the maximum length of a string to 254 characters.

The string is then transformed into a byte array using the string’s getBytes() method.
Note that this could lead to incompatibilities between two nodes that use different
encodings, since no information about the current encoding is transmitted (the
getBytes() method transforms the string into a byte representation for the native
character set of the computer).

Boolean values have a special format, the value indicating the data type also directly
indicates the value (there are two identifiers reserved for boolean).

Here is a list of all the data types that can be serialized. The list includes the
identifiers used and the number of bytes the serialized data type occupies.

Datatype | dentifier length

byte b 1+1

char c 1+2

short S 1+2

int i 1+4

long I 1+8

float f 1+4

double d 1+8

String S 1+ 1+ [0, 254]
boolean 0/1 1

30/55

-(I)fl. Javier Bonny, Urs Hunkeler /J[’
LCOLL POLYTTCHNIOU L) -
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ A o]

MANET Framework Part 2: Detailed project descr‘iption

3. Configuration file

3.1. Requirements for the configuration file reader

As the project grew more and more complex, it became apparent that some sort of
dynamic configuration was unavoidable. As the project was already quite complex at
that time, a flat configuration file (containing just data and no structure) was out of
question. To anticipate future needs, we decided upon an XML® like format. But
pure XML parsers are quit heavy and not yet included in the standard APIs for small
devices. We therefore decided to create our own file format and implement our own
parser. The file format can be read by an XML parser, however the parser cannot
handle all aspects of XML. Thus the parser can later be replaced by a standard API
XML parser.

3.2. Format

These are the restrictions of our own configuration file format in respect to XML:
- There may be only one tag per line.

- Only two tags are known: section and param.

- section expects exactly one argument: name.

- section may not be a single tag (i.e. it needs a separate closing tag).

-« param expects exactly two arguments: name and value.

-« param must be a single tag (i.e. must end with />).

- To use spaces and other special characters in a value, enclose them with double
quotes (")

- Standard XML-comments are allowed, but they must stand on one or more lines
by themselves.

- Comments (as long as they are on separate lines) and blank lines are ignored.

- There must be one principal tag. All other tags (excluding comments) must be
inside the body of this tag.

18 eXtended Markup Language: A standard for creating human readable data files. This format is
said to ensure that it can still be read in the future, even if the application that created the file
doesn’t exist anymore.

31/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler i
LCOLL POIITCHNIOU L \
FESHAL B0 1ADSAN =

MANET Framework Part 2: Detailed project description

Here is an example of afile that could be read by the parser:

<-— Comment before main tag

—— Second line of comment

-—>

<section name=MainTag>

<-— One line comment ——>
<param name=anything value='"some value"/>

<section name=sub>

<
More than one line comment
-—>
<param name=otherthing value="something else"/>
<param name=newParam value=123/>
</section>

</section>

<-- End of sample file ——>

3.3. Interface to access configuration information

3.3.1. IConfiguration

When the framework is started up, the configuration file is read. The file can then be
accessed through the 1Configuration interface.

The configuration file is read only once, but there might be different instances of
|Configuration that access the same information. Each instance has its own search
path. This makes it possible to specify different configurations for different instances
of nodes, but at the same time specify default values.

A path is composed of alist of section names, each separated by a period. If the path
denotes a parameter, then the last element is the name of the parameter rather than the
name of a section. If the path starts with a period, then the path is taken as an absolute
path, otherwise IConfiguration tries to locate the desired element by adding the path
to each element in the search path list until it finds the element.

For example, the path ’.sub.newParam’ is an absolute path that points to the paramter
containing the value ’ 123'.

The method addSearchPath() is used to add a search path. This path is aways taken
as an absolute path and may not start with a period. This new search path is added at
the beginning of thelist (and is thus searched first).

For example, if the list of search paths contains the entry 'sub’, then the path
"newParam’ would a so point to the parameter containing the value ’ 123'.

32/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL A
1EDERALL E25 L AUSANNI -

MANET Framework Part 2: Detailed project description

3.3.2. Section

A Section object represents a section in the configuration file. It can be queried to
retrieve subsections and parameter values. Thusit is possible to read alist of variable
length, such as the list of message types. To do this one just retrives the section
containing all the values of the list, and then reads all these values using the methods
offered by the class Section.

33/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEERALL B8 TALISANNLL

MANET Framework Part 2: Detailed project description

34/55

Part 3: Programming guidelines

35/55

-(I)fl. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLL POLYTECHNIOUL =
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ J |

MANET Framework Part 3: Programming guidelines

1. General programming information

1.1. The startup procedure of the framework

The MANET framework’s principal classis ch.epfl.Isr.adhoc.Main. The main method
reguires at least one argument: the name of the configuration file. It further accepts a
second argument: the name of the node. If the node’'s name is not specified, the
configuration for the default node is used.

The syntax of the program invocation is as follows:
ch_epfl.lIsr.adhoc.Main —-c:<configuration file> [-n:<node name>]

There is no space between the colon and the argument.

Hereis an example on how the framework could be started:
ch_epfl.lIsr.adhoc.Main —-c:manet.config —-n:nl

With these arguments, the framework will use the configuration file called
"manet.config’ in the current directory. It will further use the configuration for the
node called 'nl’.

The framework itself iswritten in such away as that it is possible to have more than
one node running inside asingle JVM. Each node is represented by an instance of the
class CommunicationsL ayer.

When the framework is started, the main method first reads the configuration file. It
then creates an instance of CommunicationsLayer and passes a reference to the
configuration information (IConfiguration).

The CommunicationsLayer first initializes a list of al known message factories and
obtains an instance for each one (section ' MessageFactories'). It then reads a list of
all known message types (section 'messageTypes) and registers each message type,
for which a message factory exists, with the message pool.

The CommunicationsLayer then creates a list of all layers (section 'layerHierarchy’)
and obtains an instance for each one. It then initializes every layer, starting at the
lowest layer (the network layer). The CommunicationsLayer also keeps a separate
reference to the dispatcher layer (identified by the parameter * dispNum’).

The CommunicationsLayer then creates a list of all modules (section "'modules’),
initializes them and registers them with the dispatcher.

Finaly, all layers are started (method startup()), starting with the lowest layer. After
that, all modules are started (method startup()).

1.2. The static class loader

Classes could be loaded dynamicaly (through the method Class.forName()).
However we think that an implementation on J2ME should be possible and would
open a whole range of very small devices. 2ME does not support reflection®® and

19 package java.lang.reflection: An API for obtaining information about a class at runtime.

36/55

-(I)fl. Javier Bonny, Urs Hunkeler
e . L
LCOLL POLYTECHNIOUL -
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ Aef

MANET Framework Part 3: Programming guidelines

dynamic loading of classes. For this reason we implemented a class loader which
knows already at compile time all the classes it will later be able to initialize.

So if you implement a new layer, module or message factory (or in fact anything that
might be loaded dynamically), you should ensure that the class StaticClassLoader can
instantiate a reference of your class. Simply add an if-statement (that tests for your
class name) and a line that instantiates your class to the getinstanceFor() method.

1.3. Freeing messages

Message objects that are no longer used should be freed. That way the message pool
can recycle them. To do this, simply call the message pool’s freeMessag() method
with the message to free as the argument.

Sometimes a reference to a message object is copied to different parts of the
framework, which all will free the message object. To prevent a method from
accidentaly freeing a message object that is still used somewhere else, the class
Message counts the number of references. With Java 1.1.6 it is not possible to directly
access the reference counters of the JVM. Therefore you have to increase this counter
yourself when you give the reference to separate parts of the framework. You can do
this with the method createCopy().

The createCopy() method is used by the Flooding layer, because a message can
potentially be retransmitted and be sent further up the layer stack. This method is also
used in the statistics layer.

1.4. Examples

To better understand this document, it’s best to look at the code to see how it really is
done. Here are some suggestions on which classes should best illustrate the
explanations of this document. Also note that all core classes of the framework are
well documented (you might want to use JavaDoc).

An example of a very simple layer is the AbsorbingLayer. Once you understand this
layer, you might also want to look at the layer called Dispatcher. If you are interested
in creating your own network layer, have a look at AsyncMulticast.

Probably the simplest message is TextMessage. Its message factory is the
TextMessageFactory.

If you want to look at an example of a module, you should first look at the
neighboring module. The statistics module is an example of how to collect
information in a layer (StatisticsLayer) and analyze this information in a module. In
particular, look at the way information is sent from the layer through messages to the
module.

37/55

-(I)fl. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLL POLYTECHNIOUL =
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ J |

MANET Framework Part 3: Programming guidelines

2. How to write a layer

2.1. The idea of a layer

A layer processes a message before it is sent to the network or after it has been
received. There are various functions a layer can perform. For instance the virtual
networking layer filters messages according to a header field.

A new layer has to extend AsynchronousLayer (or one of its subclasses). The super
class aready implements all the basic functionality of alayer, such as a thread which
looks for new messagesin the layer below and puts them into the buffer. However the
subclass can change this default behavior.

2.2. Methods of interest

2.2.1. initialize()

The initialize() method is abstract and must be implemented. This method has access
to the configuration and to the node’ s objects (such as MessagePool and Dispatcher).
All variables should be initialized here.

Note that at the time of initialization, the layer stack is not completely initialized and
no messages should be sent at that time.
2.2.2. startup()

The startup() method is abstract and must be implemented. Usualy, this method
simply starts the layer’ sthread by calling the start() method.

When this method isinvoked, the layer stack is ready and messages can be sent. So if
your layer sends periodic messages through its own thread, you can just start the
thread and don’t have to worry about delaying the sending of messages.

2.2.3. sendMessage()

The default implementation of this method just forwards the message to the layer
below.

The lowest layer (the layer with access to the physical network: network layer) must
override this method and send the message to the real network instead. Other layers
might wish to override this method as well to modify some information of the
message. When they are done, they should call the method super.sendMessage() to
forward the message to the layer below.

2.2.4. handleMessage()

The handleMessage() method is invoked with a newly retrieved message from the
layer below. The default implementation of this method just puts this message into
the layer’ s buffer.

A layer might wish to override this method to modify some information of the

38/55

-(I)fl. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLL POLYTECHNIOUL =
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ J |

MANET Framework Part 3: Programming guidelines

message. After this the layer should call super.handleMessage() to put the message
into the layer’ s buffer.

2.2.5. getNetworkMessage()

The getNetworkMessage() method is invoked by the layer’s thread to retrieve a new
message. The default implementation invokes the getMessage() method from the
layer below (which just returns the next message from the layer’s buffer). If no
message is available, this method should block until a message becomes available.

The lowest layer (the layer with access to the physical network: network layer) must
override this method and return messages received from the physical network. There
isno interest for other layers to override this method.

2.2.6. proposeNodelD()

Each layer can theoretically propose a unique ID for the node. Since this is most
easily done with some information about the physical network (such as the MAC®
address or the IP* address of the network adapter), the CommunicationsLayer class
always asks the lowest layer to determine the node ID. Therefore the lowest layer
must implement this method. There is no interest for other layers to implement this
method.

Note that you should aways use the method getNodelD() from
CommunicationsLayer to obtain the unique node ID that isreally used for this node.

The node ID is initialized bevore the layer’s initialize() methods are called, so the
layers can initialize alocal copy of the node ID in the method initialize(). The lowest
layer is an exception, since it is initialized before the CommunicationsLayer class
initializes the node ID. Therefore the lowest layer (network layer) cannot access the
node ID in the method initialize(), but has to wait until the method startup() is
invoked.

2.3. How to configure the system

In the configuration file there is a section called ’layers (usually inside another
section called "global’). There you add a section with your name for the new layer.
This section has to contain at least one parameter: ’class . This parameter’s value is
the fully qualified class name for your layer (including the package name). You can
add other values that are used to configure your layer.

Once you added the layer to the configuration file, you can add it to the layer
hierarchy. To do this, add a parameter to the section called ’'layerHierarchy’ (the
default layer hierarchy section is insde 'nodes.default’, but you could specify a
different layer hierarchy for every instance of a node). The parameter names are the
numbers of the layers in the order they appear in the stack, starting with zero for the
lowest layer.

20 Media Access Control: the hardware address of network adapters.
21 Internet Protocol

39/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 3: Programming guidelines

Vi

Once you added the layer to the layer hierarchy, check that all layersin the hierarchy
have consecutive numbers. Check that the value of the parameter called 'numLayer’
corresponds to the actual number of layersin the hierarchy. Also check that the value
of the parameter called ' dispatcherNum’ corresponds to the number of the dispatcher
layer.

40/55

-(I)fl. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLL POLYTECHNIOUL =
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ J |

MANET Framework Part 3: Programming guidelines

3. How to implement a new message type

3.1. How to write a new Message type

A new message type extends the class Message or one of its subclasses. The
superclass handles everything about the header and provides methods for the
serialization of the data.

A message has some values it wants to transmit. It has therefore a number of internal
variables plus the corresponding getter and setter methods. But these variables are not
automatically serialized/deserialized when the message is sent/received. To do this,
you have to implement the methods prepareData() for seriaization and readData() for
deserialization.

In the method prepareData(), all you have to do is to add the variables to the output
stream using the corresponding addX X X() methods.

In the method readData(), all you have to do is to read the variables from the input
stream using the corresponding getX XX () methods.

Y ou must use the same order for serializing and deserializing the data.

You might want to overwrite the method reset() to reinitialize your variables when
the message isrecycled.

3.2. How to write a message factory

Message objects should not directly be created, but always be requested from the
message pool. This way it is possible to recycle message objects and greatly improve
performance. However the message pool still needs to create instances of your new
message type. To do this, it needs a message factory for your message type.

A message factory is smply a class that implements the interface |MessageFactory.
This interface defines a single method, createMessage(), which simply returns a new
instance of that type of message.

3.3. How to configure the system

In the configuration file, there is a section called 'MessageTypes (usualy in the
section called "globa’). In this section you add a section for your message type. The
name of the section is the numerical type of your message. This type has to be unique
(no other message may use the same type), and the value must be between 0 and
65535 inclusive.

You must specify two parameters for this message type: 'name’ and ’'class. The
'name’ parameter contains a textual name for the message type (which has to be
unique as well). Other configuration parameters should refer to the name rather than
to the number (see for instance ' global.layers.Chat.msgType').

The ’class parameter contains the fully qualified class name (including the package
name) of your message.

41/55

-(I)fl. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLL POLYTECHNIOUL =
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ J |

MANET Framework Part 3: Programming guidelines

Once you added the message type, you aso need to add its message factory. To do
this, add a section insde the section called *MessageFactories (usually inside the
"global’ section). The name of the section is the name for the factory. This name need
not be the same as the class name or the message type, but it must be unique.

Each message factory needs two parameters. 'class and 'msgClass . The parameter
"class is the fully qualified class name (including the package) of the message
factory. The 'msgClass parameter is the fully qualified class name of the message
type this factory can create.

Note that the numerical message type has a similar function as the port number in IP.
The same way it is possible to use the same application protocol (such as HTTP) on
different ports at the same time, it is aso possible to use the same message format for
different message type numbers. Just create several entries in 'messageTypes with
different names and numbers, but using the same class. You don't need to repeat
entries for the message factory, since the right factory for a message type is found by
looking for afactory that can create instances of the class used for that message type.

42/55

-(I)fl. Javier Bonny, Urs Hunkeler ‘J[’
™ .) &
LCOLL POLYTECHNIOUL =
\(Hk)\ P\Mk\)7(7 1/\US/\Nk\‘\ J |

MANET Framework Part 3: Programming guidelines

4. How to implement a module

4.1. The idea of a module

A module provides information of genera interest. A module must be able to send
and receive data, but at the same time it should stand outside the norma layer
hierarchy.

Modules implement the interface IModule. They are registered with the Dispatcher (a
particular layer). When the dispatcher receives a message with a type for which a
module is registered, the dispatcher immediately delivers the message to the
corresponding module. Otherwise the dispatcher puts the message into the layer’s
buffer.

The dispatcher aso has methods for obtaining a reference to a particular module.

4.2. Methods of interest

4.2.1. initialize()

The initialize() method has access to the configuration and to the node’ s objects (such
as MessagePool and Dispatcher). All variables should be initialized here.

Note that at the time of initialization, the layer stack is not completely initialized and
no messages should be sent at that time.

4.2.2. startup()

If the module has its own thread, it should be started here. When this method has
been invoked, it is safe for the module to send messages.

4.2.3. deliverMessage()

The deliverMessage() method is called from the dispatcher to deliver messages. This
method should return as fast as possible, because it otherwise blocks the main thread
of the dispatcher. A typical implementation would for instance put the delivered
message into a buffer, where it can be accessed from the modul€’ s thread for further
treatment.

4.3. How to configure the system

In the configuration file there is a section called 'modules (for instance in
"nodes.default’). In this section you add a new section for your module. The name of
this section is the name you give the module. The name must be unique.

For each module, there are two parameters required: 'class and 'msgType’ . The
parameter 'class is the fully qualified class name of the module. The parameter
"msgType’ isthe name of the message type that the module handles.

Y ou can add your own parameters there for configuring your module.

43/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEERALL B8 TALISANNLL

MANET Framework Part 3: Programming guidelines

44/55

Part 4: References

45/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 4. References

1. ConfigFile

1.1. Structure
Here is the basic structure of the configuration file:

® scarchpath

® global
MessageTypes
MessageFactories
layers

® nodes
default
¢ modules
+ layerHierarchie
+ VirtualNetworks

The section " searchpath’ determines how relative paths are treated.

The section 'global’ contains information of general interest. Information in this
section should not be changed in the section of a node. For instance all nodes should
use the same message types.

The section "nodes’ contains the configuration information for the different nodes.

The section "nodes.default’” contains the configuration for the default node. Also if a
value is not specified for a particular node (other than the default node), the value is
taken from the default node.

The section ' nodes.<nodename>.modules contains the list of modules that is used for
thisnode. If this section is specified for a module (other than the default module) then
only modules specified here are loaded for this node.

The section ’nodes.<nodename>.layerHierarchie' contains the layer hierarchy that is
used for this node. The layers specified here are loaded and used in the given order
for this node.

The section 'nodes.<nodename>.VirtualNetworks specifies the virtual networks on
which the node can send and receive messages. It also specifies the probability of
reception of messages on the different virtua networks.

1.2. List of all the different parameters used and their meaning

1.2.1. Section searchpath

In this section, search path entries can be added. Search paths are used for relative
paths (see Part 2 chapter 3.3.1 IConfiguration for more information on relative

46/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 4. References

paths). The names of the parameters are ignored. The order is the same as in the
configuration file. Each entry is added at the first position of the search path (so the
effective search path isin reverse order). The root path is always the last entry in the
search path (that means that if everything else fails, a relative path is treated as an
absolute path).

1.2.2. Section global

Section MessageTypes

Every message type has its own subsection here. The name of the subsection is the
numerical message ID (must be unique). The subsections for the message types
require two parameters. 'name’ and 'class. The parameter 'name’ is an arbitrary
chosen name (must be unique). The parameter "class isthe fully qualified class name
of the class implementing the message type. This parameter is not required to be
unique (i.e. two different message types may have the same implementing class).

Section MessageFactories

For every class that implements a message type, there must be a corresponding
message factory. For each message factory there is a subsection here. The name of the
subsection is an arbitrarily chosen name (must be unique). The subsections require
two arguments: 'class and 'msgClass’. The parameter 'class is the fully qualified
class name of the message factory. The parameter 'msgClass is the fully quaified
class name of the class that implements a message (must be unique).

Section layers

General

For every layer there is a corresponding subsection in this section. The name of the
subsection is an arbitrarily chosen name for the layer (must be unique). Each layer
subsection requires at least one argument: 'class. The parameter "class is the fully
qualified class name of the class that implements the layer.

Section AsyncMulticast

The AsyncMulticast layer requires three additional parameters. ’multicastgroup’,
"port’ and 'maxBufferSize’'. The parameter 'multicastgroup’ is the multicast group
that will be used for sending and receiving messages (a class D IP address). The
parameter 'port’ is the IP port number used for sending and receiving network
messages. The parameter 'maxBufferSize' is the number of bytes allocated for
receiving and sending messages. This is the maximum number of bytes a message
may occupy on the network (the maximum packet size for sending/receiving over
multicast).

The AsyncMulticast layer accepts one optional parameter: ' networkinterface’. Thisis
the IP address of a network interface to use for sending and receiving messages. This
is useful on computers which have more than one network adapter, since the multicast

47/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEDERALL B2 LAUSANNLL

MANET Framework Part 4. References

socket is only bound to one interface. With this parameter you can determine to
which interface the socket should be bound.
Section VirtualNetworks

The VirtualNetworks layer does not accept any additional parameters.

Section Statistics

The Statistics layer does not accept any additional parameters. See Reto’s Project for
more details.

Section Dispatcher

The Dispatcher layer does not accept any additional parameters.

Section Flooding

The Flooding layer requires three additional parameters: ’bufferLength’, 'prT’ and
"delayMax’. The parameter "bufferLength’ is the maximum number of messages that
can be queued for retransmission. The parameter 'prT’ is the probability that a
message (that satisfies all other requirements) redly is retransmitted. This must be a
numerical, integer value between 0 and 100 inclusive (the probability in percent). The
parameter delayMax’ is the maximum delay between retransmission in milliseconds.
That means, if the queue is not empty, at least every maxDelay milliseconds a
message is sent (of course, Java gives no guarantees that the delay might not be
longer).

Section AODV

The AODV layer requires a certain number of parameters. See Bertrand’ s Project for
more details.

Section Chat

The Chat layer requires two additional parameters. 'ttI’ and 'msgType. The
parameter 'ttl’ isthe initial time to live with which the Chat layer sends its messages.
Thisvalue isainteger number between 0 and 255 (inclusive). A value of 0 means that
the messages are only sent to the node' s direct neighbors. The parameter 'msgType’
is the name of the message type used for sending messages. The class that implements
this message type must be the TextMessage class (or a subclass of TextMessage).
Section AbsorbingLayer

The AbsorbingLayer layer does not accept any additional parameters.
1.2.3. Section nodes

General

This node contains the configuration for every node. If no nodename is specified (see
Part 3 chapter 1.1), the configuration for the default node is taken. Also, if a node

48/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 4. References

configuration does not include a particular value, then this value is taken from the
default node. So in away the default node is the general configuration. The different
node configurations only change the values that are particular for that node.

Section modules

General

In this section, all modules are specified. Every module has its own subsection here.
The name of this subsection is an arbitrarily chosen name (must be unique). Every
module requires at least two parameters. 'class and 'msgType. The parameter
"class isthe fully qualified class name of the class that implements the module. The
parameter 'msgType’ isthe name of the message type this module uses.

Section Neighboring

The Neighboring module requires three additional parameters. ’entryExp’,
"alowedHelloLoss and ’hellolnterval’. See Reto’s project for more details.

Section Statistics

The Statistics module does not accept any additional parameters. See Reto’s project
for more details.

Section layerHierarchie

For each layer in the layer stack of a node, there is a corresponding parameter here.
The name of the parameter is a integer number indication the layer’s position. The
numbers are consecutive. The lowest layer (the network layer) has the number O.

In addition there are two additional parameters: 'numLayer’ and ’dispatcherNum’.
The parameter 'numLayer’ is the number of layers for this node. The parameter
"dispatcherNum’ is the number of the dispatcher layer.

Section VirtualNetworks

In this section there exists a parameter for each virtual network. The name of such a
parameter is its network number. This is an integer number between 0 and 2039
inclusive (there are 255 * 8 = 2040 virtual networks). The value of the parameter is
an integer number between 0 and 100 (inclusive). This is the percentage of the
probability to actually receive a message that was sent on this virtual network. A
value of 100 means that all such messages are received, a value of 0 means that all
such messages are discarded.

Parameter daemon

The parameter daemon’ is directly inserted in the node’s section. This parameter is
optional. It expects eigher "true" or "false" as value (the case of the lettersisignored).

If this parameter is set to "false”, the thread of the last layer (usually AbsorbingL ayer)
isanormal thread instead of a daemon thread. This might be necessary for a node that

49/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 4: References

does not specify an application with a non—daemon thread. In Java an application
stops execution as soon as no non—daemon threads exist anymore. This parameter
might for instance be used for a router node with a very simple layer stack.

50/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 4. References

2. List of all known message types

2.1. RReq

Class: ch.epfl.Isr.adhoc.routing.aodv.RReq
Message Factory: ch.epfl.Isr.adhoc.routing.aodv.RRegM sgFactory
Thismessage is used by AODV. See Bertrand’ s project for more details.

2.2. RRep

Class: ch.epfl.Isr.adhoc.routing.aodv.RRep
Message Factory: ch.epfl.Isr.adhoc.routing.aodv.RRepM sgFactory
Thismessage is used by AODV. See Bertrand’ s project for more details.

2.3. RErr

Class: ch.epfl.Isr.adhoc.routing.aodv.RErr
Message Factory: ch.epfl.Isr.adhoc.routing.aodv.RErrM sgFactory
Thismessageis used by AODV. See Bertrand’s project for more details.

2.4. StatMessage
Class: ch.epfl.Isr.adhoc.statistics. StatM essage
Message Factory: ch.epfl.lsr.adhoc.statistics. StatM essageFactory

This message is used by the statistics layer. The statistics layer sends such messages, which
are then routed to the statistics module. These messages stay inside the layer stack and should
not be sent over the network.

See Ret0' s project for more details.

2.5. Hello

Class: ch.epfl.Isr.adhoc.routing.neighboring.HelloM sg
M essage Factory: ch.epfl.Isr.adhoc.routing.neighboring.HelloM sgFactory

This message is used by the neighbors module. The neighbor module sends such messages
periodically to al its direct neighbors (ttl is 0). When the neighbors module receives such
messages from a node, it knows that this node is a direct neighbor and updates its tables
accordingly.

See Ret0' s project for more details.

2.6. Text

Class: ch.epfl.Isr.adhoc.chat. TextM essage
Message Factory: ch.epfl.lsr.adhoc.chat. TextM essageFactory
This message is used by the chat to exchange text messages.

51/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
LCOLL POLYTECHNIOUL
TEERALL B8 TALISANNLL

MANET Framework Part 4. References

52/55

Part 5: Future Evolution of the Framework

53/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 5: Future Evolution of the Framework

1. Extensions to the framework

1.1. Long Messages

At the moment, the maximum size of a message sent over the network is limited to
the buffer size reserved for the AsynchronousLayer. The routing layer could
implement a mechanism to split long messages into shorter ones (smilar to tcp).

1.2. Geographical virtual networks

The VirtualNetworks layer creates virtua networks. But it is not possible to
realisticicly simulate distance or interference. One could send coordinates instead of
network numbers with the message. Then it would be possible to calculate the
probability of reception as afunction of the distance between the two nodes.

Additionally it would be possible to maintain information about noise level (basically
a moving average function of the traffic and the distance from the emitting nodes).
This could further modify the probability of reception (and make this probability
dependent on the actual traffic in the air, etc.).

1.3. Query for unknown message types

When a node receives a message with atype it doesn’t know, it could send a query to
the source node and ask it about this type. Maybe it would even be possible to send a
small program back which the user then could install.

Imagine the scenario where passengers meet in a train station and want to exchange
data. It would be very annoying if they used different modules. But if the computer
that doesn’t understand the messages it received, just could ask the sender to also
send the program (or a demo version of that program, or just a viewer to display the
data), then they could still communicate.

1.4. Tests

One could develop a detailed test suite for this framework. For instance, it should be
possible to check whether messages are correctly freed, using Java 2 and the
javalang.ref api. The tests don’'t need to be compatible with JDK 1.1.6. If the tests
succeed under Java 2 and the framework compiles with the JDK 1.1.6, then it should
work properly under JDK 1.1.6.

1.5. Searchpath

At the moment, there is no mechanism to ensure the order of the searchpath
configured in the section ’searchpath’ of the configuration file. The current
implementation keeps the same order it recelves the information from the
configuration file. But XML does not guarantee a particular order. Therefore there
should be a mechanism that sorts the searchpath according to some criteria (such as
its name).

54/55

-(I)ﬂ. Javier Bonny, Urs Hunkeler
: e

LCOLL POLYTECHNIOUL
1EDERALL E25 L AUSANNI

MANET Framework Part 5: Future Evolution of the Framework

1.6. Configuration hierarchy

It might also be of interest to create a policy on which values can be overridden at
what stage and how this is done exactly.

At the moment, in order to change certain values for a node, the whole section
containting these values has to be configured for that node. It has to be analyzed
whether thisisreally necessary or how this could be solved aternatively.

1.7. Dynamic configuration

It might be interesting to be able to change certain configuration options on the fly.
This could be especially interesting for the virtual networks layer. That way it would
be possible to ssmulate node movements.

55/55

