
ARTICLE IN PRESS

Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303

Geant4—a simulation toolkit

S. Agostinelliae, J. Allisonas,*, K. Amakoe, J. Apostolakisa, H. Araujoaj,
P. Arcel,m,x,a, M. Asaig,ai, D. Axeni,t, S. Banerjeebi,l, G. Barrandan, F. Behnerl,
L. Bellagambac, J. Boudreaubd, L. Brogliaar, A. Brunengoc, H. Burkhardta,
S. Chauviebj,bl, J. Chumah, R. Chytraceka, G. Coopermanaz, G. Cosmoa,
P. Degtyarenkod, A. Dell’Acquaa,i, G. Depaolay, D. Dietrichaf, R. Enamiab,
A. Feliciellobj, C. Fergusonbh, H. Fesefeldtl,o, G. Folgera, F. Foppianoac,

A. Fortias, S. Garelliac, S. Giania, R. Giannitrapanibo, D. Gibinm,bc, J.J. G !omez
Cadenasm,bp, I. Gonz!alezq, G. Gracia Abriln, G. Greeniausp,h,ag, W. Greineraf,
V. Grichinef, A. Grossheimm,z, S. Guatelliad, P. Gumplingerh, R. Hamatsubk,
K. Hashimotoab, H. Hasuiab, A. Heikkinenah, A. Howardaj, V. Ivanchenkoa,ba,
A. Johnsong, F.W. Jonesh, J. Kallenbachaa, N. Kanayai,h, M. Kawabataab,
Y. Kawabataab, M. Kawagutiab, S. Kelnerat, P. Kentr, A. Kimuraay,bb,
T. Kodamaaw, R. Kokoulinat, M. Kossovd, H. Kurashigeam, E. Lamannaw,
T. Lamp!enah, V. Laraa,l,bq, V. Lefeburel, F. Leibh,be, M. Liendll,a,br,

W. Lockmanj,bn, F. Longobm, S. Magnik,au, M. Maireao, E. Medernacha,
K. Minamimotoaw,al, P. Mora de Freitasap, Y. Moritae, K. Murakamie,

M. Nagamatuaw, R. Nartallob, P. Nieminenb, T. Nishimuraab, K. Ohtsuboab,
M. Okamuraab, S. O’Neales, Y. Oohatabk, K. Paechaf, J. Perlg, A. Pfeiffera,
M.G. Piaad, F. Ranjardn, A. Rybinak, S. Sadilova,ak, E. Di Salvoc, G. Santinbm,
T. Sasakie, N. Savvasas, Y. Sawadaab, S. Schereraf, S. Seiaw, V. Sirotenkoi,al,

D. Smithg, N. Starkovf, H. Stoeckeraf, J. Sulkimoah, M. Takahataay, S. Tanakabg,
E. Tcherniaeva, E. Safai Tehranig, M. Tropeanoae, P. Truscottbe, H. Unoaw,
L. Urbanv, P. Urbanaq, M. Verderiap, A. Walkdenas, W. Wanderav, H. Weberaf,
J.P. Wellischa,l, T. Wenausu, D.C. Williamsj,bf, D. Wrightg,h, T. Yamadaaw,

H. Yoshidaaw, D. Zschiescheaf

aEuropean Organization for Nuclear Research (CERN) Switzerland
bEuropean Space Agency (ESA), ESTEC, The Netherlands

c Istituto Nazionale di Fisica Nucleare (INFN), Italy
dJefferson Lab, USA

eKEK, Japan

*Corresponding author. Tel.: +44-161-275-4179; fax: +44-161-273-5867.

E-mail address: john.allison@man.ac.uk (J. Allison).

0168-9002/03/$ - see front matter r 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0168-9002(03)01368-8

fLebedev Institute, Russia
gStanford Linear Accelerator Center (SLAC), USA

hTRIUMF, Canada
iATLAS Collaboration, CERN, Switzerland

jBaBar Collaboration, USA
kBorexino Collaboration, Italy

lCMS Collaboration, CERN, Switzerland
mHARP Collaboration, CERN, Switzerland
nLHCb Collaboration, CERN, Switzerland

oRWTH, Aachen, Germany
pUniversity of Alberta, Canada

qALICE Collaboration, CERN, Switzerland
rUniversity of Bath, UK

sUniversity of Birmingham, UK
tUniversity of British Columbia, Canada
uBrookhaven National Laboratory, USA

vKfki, Budapest, Hungary
wUniversit "a della Calabria and INFN, Italy

xCIEMAT, Italy
yUniversity of Cordoba, Spain

zUniversity of Dortmund, Germany
aaFNAL, USA

abFukui University, Japan
ac IST Natl. Inst. for Cancer Research of Genova, Italy

ad INFN Genova, Italy
aeUniversit "a di Genova, Italy

af Inst. f .ur Theoretische Physik, Johann Wolfgang Goethe Universit .at, Frankfurt, Germany
agHERMES Collaboration, DESY, Germany
ahHelsinki Institute of Physics (HIP), Finland
aiHiroshima Institute of Technology, Japan

aj Imperial College of Science, Technology and Medicine, London, UK
ak IHEP Protvino, Russia

alNorth Illinois University, USA
amKobe University, Japan

an IN2P3/LAL, Orsay, France
ao IN2P3/LAPP, Annecy, France
ap IN2P3/LLR, Palaiseau, France
aqEPFL, Lausanne, Switzerland
arLyon University, France

asDepartment of Physics and Astronomy, The University of Manchester, UK
atMEPhI, Moscow, Russia
au INFN, Milan, Italy

avMIT, USA
awNaruto University of Education, Japan

ayNiigata University, Japan
azNortheastern University, USA

baBudker Institute for Nuclear Physics, Novosibirsk, Russia
bbOsaka Institute of Technology, Japan

bcUniversit "a di Padova, Italy
bdUniversity of Pittsburg, USA

beQinetiQ, UK
bfSCIPP/UCSC, Santa Cruz, USA
bgRitsumeikan University, Japan
bhUniversity of Southampton, UK

biTIFR, Mumbai, India
bj INFN, Torino, Italy

bkTokyo Metropolitan University, Japan

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 251

blUniversit "a di Torino, Italy
bmUniversit "a di Trieste and INFN Trieste, Italy

bnUCSC, Santa Cruz, USA
boUniversit "a di Udine and INFN Udine, Italy

bpUniversity of Valencia, Spain
bq IFIC Instituto de Fisica Corpuscular de Valencia, Spain

brVienna University of Technology, Austria

Geant4 Collaboration

Received 9 August 2002; received in revised form 11 March 2003; accepted 14 March 2003

Abstract

Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of

functionality including tracking, geometry, physics models and hits. The physics processes offered cover a

comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived

particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in

others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle

complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit

is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting

software engineering and object-oriented technology and implemented in the C++ programming language.

It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical

physics.

r 2003 Elsevier Science B.V. All rights reserved.

PACS: 07.05.Tp; 13; 23

Keywords: Simulation; Particle interactions; Geometrical modelling; Software engineering; Object-oriented technology; Distributed

software development

1. Introduction

Modern particle and nuclear physics experi-
ments pose enormous challenges in the creation of
complex yet robust software frameworks and
applications. Of particular importance is the
ever-increasing demand for large-scale, accurate
and comprehensive simulations of the particle
detectors used in these experiments. The demand
is driven by the escalating size, complexity, and
sensitivity of the detectors and fueled by the
availability of moderate-cost, high-capacity com-
puter systems on which larger and more complex
simulations become possible. Similar considera-
tions arise in other disciplines, such as: radiation
physics, space science, nuclear medicine and, in
fact, any area where particle interactions in matter
play a role.

In response to this, a new object-oriented
simulation toolkit, Geant4, has been developed.
The toolkit provides a diverse, wide-ranging, yet
cohesive set of software components which can be
employed in a variety of settings. These range from
simple one-off studies of basic phenomena and
geometries to full-scale detector simulations for
experiments at the Large Hadron Collider and
other facilities.
In defining and implementing the software

components, all aspects of the simulation process
have been included: the geometry of the system,
the materials involved, the fundamental particles
of interest, the generation of primary particles of
events, the tracking of particles through materials
and external electromagnetic fields, the physics
processes governing particle interactions, the
response of sensitive detector components, the

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303252

generation of event data, the storage of events and
tracks, the visualisation of the detector and
particle trajectories, and the capture for subse-
quent analysis of simulation data at different levels
of detail and refinement.
Early in the design phase of the project, it was

recognised that while many users would incorpo-
rate the Geant4 tools within their own computa-
tional framework, others would want the
capability of easily constructing stand-alone ap-
plications which carry them from the initial
problem definition right through to the production
of results and graphics for publication. To this
end, the toolkit includes built-in steering routines
and command interpreters which operate at the
problem setup, run, event, particle transportation,
visualisation, and analysis levels, allowing all parts
of the toolkit to work in concert.
At the heart of this software system is an

abundant set of physics models to handle the
interactions of particles with matter across a very
wide energy range. Data and expertise have been
drawn from many sources around the world and in
this respect Geant4 acts as a repository that
incorporates a large part of all that is known about
particle interactions; moreover it continues to be
refined, expanded and developed. A serious
limitation of many previous simulation systems
was the difficulty of adding new or variant physics
models; development became difficult due to the
increasing size, complexity and interdependency of
the procedure-based code. In contrast, object-
oriented methods have allowed us effectively to
manage complexity and limit dependencies by
defining a uniform interface and common organi-
sational principles for all physics models. Within
this framework, the functionality of models can be
more easily seen and understood, and the creation
and addition of new models is a well-defined
procedure that entails little or no modification to
the existing code.
Geant4 was designed and developed by an

international collaboration, formed by individuals
from a number of cooperating institutes, HEP
experiments, and universities. It builds on the
accumulated experience of many contributors to
the field of Monte Carlo simulation of physics
detectors and physical processes. While geogra-

phically distributed software development and
large-scale object-oriented systems are no longer
a novelty, we consider that the Geant4 Collabora-
tion, in terms of the size and scope of the code and
the number of contributors, represents one of the
largest and most ambitious projects of this kind. It
has demonstrated that rigorous software engineer-
ing practices and object-oriented methods can be
profitably applied to the production of a coherent
and maintainable software product, even with the
fast-changing and open-ended requirements pre-
sented by physics research.
In the following sections we present a detailed

overview of Geant4 and its features and capabil-
ities, including the design and implementation of
the various categories of physics models. Many
new physics models have been developed, and
others have been refined or extended. They have
been created to support a growing range of
applications for the software, including particle,
nuclear, medical, accelerator and space physics.
The code and documentation, as well as tutorials
and examples, are available from our Web site [1].

1.1. History of Geant4

The origin of Geant4 development can be
traced back to two studies done independently at
CERN and KEK in 1993 [2]. Both groups sought
to investigate how modern computing techniques
could be applied to improve what was offered by
the existing GEANT3 program [3], which was a
benchmark and source of ideas and valuable
experience. These two activities merged and a
proposal was submitted to the CERN Detector
Research and Development Committee (DRDC)
[4] to construct a simulation program based on
object-oriented technology. The resulting project
was RD44, a worldwide collaboration that grew to
include the efforts of 100 scientists and engineers,
drawn from more than 10 experiments in Europe,
Russia, Japan, Canada and the United States.
The design choices faced by RD44 and the

decisions arrived at are described in later sections,
but key to its success was a careful design adapting
object-oriented methodology and an early decision
to use the practical C++ language.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 253

The R&D phase was completed in December
1998 [1] with the delivery of the first production
release. Subsequently the Geant4 Collaboration
was established in January 1999 to continue the
development and refinement of the toolkit, and to
provide maintenance and user support.

1.2. Organisation of the collaboration

A Memorandum of Understanding (MoU) [5]
signed by all participating parties governs the
formal collaboration. It is subject to tacit renewal
every 2 years and sets out a collaboration structure
composed of a Collaboration Board (CB), a
Technical Steering Board (TSB) and several work-
ing groups. The MoU also defines the way in
which collaboration resources—money, man-
power, expertise, and key roles and activities (such
as program librarian and documentation man-
ager)—are measured in Contribution Units (CU),
and it further delineates how the boards are
constituted depending on the CU count for each
signatory. Participating groups include experimen-
tal teams and collaborations, laboratories and
national institutes.
It is the CB’s mandate to manage these

resources and to monitor the agreed responsibil-
ities among the affiliates. This body is also charged
with the evolution of the MoU. The TSB, on the
other hand, is the forum where technical matters,
like software engineering details and physics model
implementation issues, are discussed and decided
and where priorities are given to user requests. Its
primary tasks are the supervision of the produc-
tion service and the user support and the over-
seeing of ongoing further development of the
program. The TSB is chaired by the spokesperson
of the Collaboration, who is appointed by and
reports to the CB. The spokesperson is (re)elected
every two years.
Every domain of the Geant4 software that

corresponds to a releasable component (library) is
individually managed by a working group of
experts. In addition, there is a working group for
each of the activities of testing and quality
assurance, software management and documenta-
tion management. A coordinator who is selected
by the TSB heads each group. There is also an

overall release coordinator. This clean overall
problem decomposition makes the distributed
software design and development possible in a
worldwide collaboration. Every group can work in
parallel, allowing an optimal use of manpower and
expertise.

1.3. User support, documentation and source code

The Collaboration provides documentation and
user support for the toolkit. The support model is
described in more detail in Section 3.6.
Documentation [6] includes installation, user

and reference guides, and a range of training kits
(see also Section 1.4). It is intended to cover the
need of the beginner through to the expert user
who wishes to expand the capabilities of Geant4.
User support covers help with problems relating

to the code, consultation on using the toolkit and
responding to enhancement requests. A user may
also expect assistance in investigating anomalous
results.
A Web-based reporting system and a list of

frequently asked questions (FAQs) are available
on the Geant4. Web site [1]. The Collaboration
also runs a Web-based user forum [7], with sub-
forums according to areas of different interest.
Regular releases of the source code and doc-

umentation are freely available on the Web.

1.4. Examples and training kits

The toolkit includes examples at three levels:

* Novice: for understanding basic functionalities;
* Extended: focused on specific domains of
application (they may also need additional
third party libraries);

* Advanced: full programs created to utilise
Geant4 in HEP experiments, and for space
and medical applications.

They are intended to develop the user’s under-
standing in many areas. Initial emphasis is on the
classes describing the user’s setup, which are
required by the toolkit. These classes are explained
in Section 2.4.
Geant4 also provides a training kit. It consists

of a modular set of units, each covering a specific

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303254

domain. The units contain descriptive material and
examples, such as code excerpts, or plots with
performance results. They are modular in them-
selves, providing different levels of coverage and
complexity.

1.5. Structure of this paper

For the reader who wishes to obtain a broad
overall view of the project from inception to
realisation we describe basic principles of the
design in Section 2.
Details that are needed to understand how to

extend the toolkit, tailor it for special use and
obtain optimal performance, are postponed to
Sections 4 and 5.
In between, we devote Section 3 to the

important issue of the software process as it
applies to a large, dispersed collaboration. It is
here that the exploitation of modern software
engineering techniques and object-oriented meth-
ods are discussed.
The basic algorithms and capabilities of the

kernel are described in Section 4 and an overview
of available physics processes and models is
presented in Section 5. The latter also includes a
sample of results and comparisons with GEANT3
and experimental measurements.
Additional capabilities are discussed in Section 6

and interactivity (user interfaces, visualisation and
analysis) in Section 7.

2. Design overview

2.1. General considerations

Geant4 is driven by the software needs of
modern experiments. A typical software system
contains components—event generator, detector
simulation, reconstruction and analysis—that can
be used separately or in combinations. The toolkit
has been built as the basis for the simulation
component. Thus it was required

* to have well-defined interfaces to other compo-
nents, and

* to provide parts to be used by the other
components.

Other design requirements are that it is modular
and flexible, and that its implementation of physics
is transparent and open to user validation. It
should allow the user to understand, customise
and extend it in all domains. Its modular
architecture should enable the user to pick only
those components he/she needs.
The high-level design was based on an

analysis of the initial user requirements [8]. This
ultimately led to a modular and hierarchical
structure for the toolkit (see Fig. 1), where sub-
domains are linked by a uni-directional flow of
dependencies.
The key domains of the simulation of the

passage of particles through matter are:

* geometry and materials;
* particle interaction in matter;
* tracking management;
* digitisation and hit management;
* event and track management;
* visualisation and visualisation framework;
* user interface.

These domains naturally led to the creation of
class categories with coherent interfaces and, for
each category, a corresponding working group
with a well defined responsibility. It also led to the
concept of a ‘‘toolkit’’, which implies that a user
may assemble his/her program at compile time
from components chosen from the toolkit or self-
supplied.
Geant4 exploits advanced software engineering

techniques to deliver these key requirements of
functionality, modularity, extensibility and open-
ness. The techniques used for the Architectural
Design were based on the Booch Methodology
and followed an iterative approach with progres-
sive refinement of user requirements, architectural
and detailed design. These issues are discussed in
more detail in Section 3.

2.1.1. General capabilities and properties

The toolkit offers the user the ability to create a
geometrical model with a (possibly) large number
of components of different shapes and materials,

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 255

and to define ‘‘sensitive’’ elements that record
information (hits) needed to simulate detector
responses (digitisation).
The primary particles of the events can be

derived from internal and external sources.
Geant4 provides a comprehensive set of physics

processes to model the behaviour of particles. The
user is able to choose from different approaches

and implementations, and to modify or add to the
set provided.
In addition the user can interact with the toolkit

through a choice of (graphical) user interfaces and
visualise the geometry and tracks with a variety of
graphics systems through a well-defined interface
and is given the ability to implement this interface
over other systems of his/her choice.

ARTICLE IN PRESS

Geant4

Readout

Run

Event

Tracking

Digits+Hits

Material

Particle

Processes

Geometry

Track

PersistencyVisualization

Graphic_Reps

Interfaces

Intercoms

Global

Fig. 1. The Top Level Category Diagram of the Geant4 toolkit. The open circle on the joining lines represents a using relationship;

the category at the circle end uses the adjoined category.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303256

In general, the classes in the toolkit are designed
in a highly reusable and a compact way so that
the user can extend or modify their services for
his/her specific applications. The user can realise
this by following the discipline of object-oriented
technology.
Maximum use has been made of the experience

acquired from previous simulation packages, in
particular GEANT3.
As computing performance is a crucial issue for

a detector simulator, the goal was to demonstrate
performance comparable to GEANT3 or better.

2.1.2. Openness

One of the most important design goals was to
make the design and implementation of the
physics open and transparent. Exploiting object-
oriented technology has enabled us to establish a
clear and customisable correspondence between
particles and processes and offer a choice of
models for each process. The result is a highly
granular implementation, each component of
which can be inspected at source code level.
The way cross-sections are calculated—via

formulas, parameterisations or interpolation of
databases—is exposed. In the last case the
information extracted from the database is sepa-
rated from the way it is accessed and used, giving
the opportunity of using different databases and
allowing their applicability to be tailored by
particle, energy, material, etc.
Similarly the generation of the final state is

separated from the calculation of the cross-
sections used for tracking and is also split into
alternative or complementary models, according
to the energy, range, particle type and material.

2.2. Global structure

The design has evolved during development. It
currently includes 17 major categories, identified
from an analysis driven by our User Require-
ments. Fig. 1 shows the top level categories and
illustrates how each category depends on the
others. There is a uni-directional flow of depen-
dencies, i.e., no circular dependencies, as required.
Categories at the bottom of the diagram are

used by virtually all higher categories and provide

the foundation of the toolkit. These include the
category global covering the system of units,1

constants, numerics and random number hand-
ling; materials; particles; graphical representations;
geometry including the volumes for detector
description and the navigation in the geometry
model; and intercoms which provides both a means
of interacting with Geant4 through the user
interface and also a way of communicating
between modules that should not otherwise
depend on one another. Intercoms is also the
repository of abstract interfaces for ‘‘plug-ins’’
(facilities which extend functionality by exploiting
the existing core functionality), namely Fast Simu-
lation (Section 6.1) and Visualisation (Section 7.2).
Above these reside categories required to

describe the tracking of particles and the physical
processes they undergo. The track category con-
tains classes for tracks and steps, used by processes

which contains implementations of models of
physical interactions. Additionally, one such pro-
cess, transportation, handles the transport of
particles in the geometry model and, optionally,
allows the triggering of parameterisations of
processes (see Section 6.1). All these processes
may be invoked by the tracking category, which
manages their contribution to the evolution of
a track’s state and undertakes to provide in-
formation in sensitive volumes for hits and
digitisation.
Over these the event category manages events in

terms of their tracks and run manages collections
of events that share a common beam and detector
implementation. A readout category allows the
handling of ‘‘pile-up’’.
Finally capabilities that use all of the above and

connect to facilities outside the toolkit (through
abstract interfaces) are provided by the visualisa-

tion, persistency and [user] interface categories.
In the following sections, some important

aspects of the architectural design are covered. A
study of these is essential for understanding the
structure and the behaviour of the toolkit.

ARTICLE IN PRESS

1A key design feature is independence from the internal

representation of quantities. The internal representation can be

chosen at compile time to suit the application. This feature is

provided by CLHEP’s Units package [9].

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 257

2.3. Design and architecture

2.3.1. Events

The event category provides an abstract inter-
face to external physics event generators for the
generation of the primary particles which define a
physics event. Primary vertices and primary
particles are represented by special classes which
are free from any other. Through these special
classes, the user can interface to the physics
generators by preparing his/her own conversion
codes. (The General Particle Source Module [10]
can simplify this task by allowing a source with
arbitrary energy, spatial and angular distribution
to be defined at run time.) This isolation allows a
Geant4-based simulation program not to rely on
specific choices for physics generators and also to
be independent of the specific solution adopted for
storing the ‘‘simulation truth’’. Moreover, the
primary particle can represent any kind of particle,
even one that cannot be treated by Geant4, such
as a quark or a gauge boson. It keeps the mother–
daughter relations between primary particles so
that the specific decay chain can be imported from
the physics generator. For example, the user can
specify the decay products of each of two B-
mesons separately.
The class G4Event represents an event, which is

the main unit of simulation. This class avoids
keeping any transient information which is not
meaningful after the processing of an event is
complete. Thus it is objects of this class that the
user can store for processing further down the
program chain, such as reconstruction. It contains
primary vertices and primary particles before
processing the event. After processing, it has hits
and digitisations generated by the simulation and,
optionally, trajectories of the simulated particles
for the recording of ‘‘simulation truth’’. For
performance reasons, G4Event and its content
classes are not persistent (permanently storable).
Instead, the user is assumed to provide his/her own
conversion code between them and corresponding
persistent classes [11] (see also Section 6.3).
The fact that G4Event is independent of other

classes also benefits pile-up simulation. Digitisa-
tion can be postponed until after the processing of
two or more events on a rolling basis and G4Event

objects can be ‘‘added’’ to each other, making use
of information about primary timing, so that
detector output signals can be generated as the
consequence of signal overlapping.

2.3.2. Geometry and detector representation

The geometry module (category) offers the
ability to describe a geometrical structure and
propagate particles efficiently through it. Some
concepts have been borrowed from previous
simulation packages but improvements, refine-
ments and advances have been made in some key
areas to cope with the greater number and
different organisation of detector volumes now
experienced. In particular, the requirement to
exchange detector geometry with Computer Aided
Design (CAD) systems—via the ISO STEP stan-
dard [12]—and navigate efficiently in such geome-
tries led to a new optimisation technique.
The concepts of logical and physical volume are

not unlike those of GEANT3. A logical volume
represents a detector element of a certain shape
that can hold other volumes inside it and can have
other attributes; it also has access to other
information that is independent of its physical
position in the detector, such as material and
sensitive detector behaviour. A physical volume
represents the spatial positioning or placement of
the logical volume with respect to an enclosing
mother (logical) volume. Thus a hierarchical tree
structure of volumes can be built, each volume
containing smaller volumes (which may not over-
lap). Repetitive structures can be represented by
specialised physical volumes—replicas and para-
meterised placements—with sometimes enormous
saving of memory.
In Geant4 the logical volume has been refined

by defining the shape as a separate entity, named
solid. Solids with simple shapes, like rectilinear
boxes, trapezoids, spherical and cylindrical sec-
tions or shells, each have their properties coded
separately, in accord with the concept of Con-

structive Solid Geometry (CSG). More complex
solids are defined by their bounding sur-
faces, which can be planes, second order surfaces
or higher order B-spline surfaces [13], and be-
long to the Boundary Representations (BREPs)

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303258

sub-category. This variety matches those described
by the ISO STEP standard for CAD systems.
Another way of obtaining solids is by boolean

combination—union, intersection and subtraction.
The solids should be either CSGs or other boolean
solids (the product of a previous boolean opera-
tion). One of the components may have an
optional transformation relative to the other.
Some actual shapes lend themselves to this
approach and their navigation is efficient.
Although a detector is naturally and best

described by a hierarchy of volumes, efficiency is
not critically dependent on this. An optimisation
technique, called voxelisation, described in Section
4.4.1, allows efficient navigation even in ‘‘flat’’
geometries, typical of those produced by CAD
systems.

2.3.3. Tracking

It is well known that the overall performance of
detector simulation depends critically on the CPU
time spent moving the particle by one step. This is
a key consideration in the object design of the
tracking category.
A consequence of this is that in Geant4

particles are transported, instead of being consid-
ered self moving. However, this is done by the
transportation process, described later in Section
4.2. The tracking category simply steers the
invocation of processes.
Contrary to GEANT3, Geant4 treats physics

processes in a very generic way [14]. Geant4
tracking does not depend on the particle type nor
on the specific physics process, including particle
transportation.
In Geant4, each particle is moved step by step

with a tolerance that permits significant optimising
of execution performance but that preserves the
required tracking precision. All physics processes
associated with the particle propose a step. For a
particle at rest this is a time rather than a length.
The smallest of the following is chosen:

* the maximum allowed step stipulated by the user
(through the SetMax-AllowedStep method in
the G4UserLimits class);

* the steps proposed by the actions of all attached
processes, including that imposed by the geo-

metrical limit as proposed by the transportation
process.

Depending on its nature, a physics process
possesses one or more characteristics represented
by the following actions handled by the tracking:

(1) at rest, for particles at rest (e.g., decay at rest);
(2) along step, which implements behaviour such
as energy loss or secondary particle produc-
tion that happen ‘‘continuously’’ along a step
(e.g., Cherenkov radiation);

(3) post step, which is invoked at the end of the
step (e.g., secondary particle production by a
decay or interaction).

Along step actions take place cumulatively,
while the others are exclusive. The tracking
handles each type of action in turn. For these
three actions, each physics process has a GetPhy-
sicalInteractionLength, which proposes a step,
and a DoIt method that carries out the action. A
process can stipulate that its action must always be
done (multiple scattering and transportation are
examples). The tracking scans all physics processes
and actions for the given particle, and decides
which one is to be invoked.
More details of the class structure are given in

Section 4.3.
The physical values associated with each step

are exchanged between the tracking and each
physics process using objects of the G4Step class.

2.3.4. Physics

The three types of action described above and
the corresponding virtual methods are defined in
the base class G4VProcess (see Section 4.3). All
physics processes conform to this basic interface.
However, different approaches for the detailed
design of the subdomains have been developed; for
hadronic processes, the abundance and complexity
has required an additional decomposition de-
scribed in outline in the section on hadronic
physics below.

Particle decay. The step length (or life time for
the at rest action) is straightforwardly calculated
from the mean life of the particle. The generation
of decay products is more difficult, requiring a
knowledge of branching ratios and, for 3 or more

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 259

body decays, theory or parameter or data driven
distributions. The issues are discussed in Section
5.5.

Electromagnetic physics. Geant4 electromag-
netic physics manages the electromagnetic interac-
tions of leptons, photons, hadrons and ions.
The electromagnetic package is organised as a

set of class categories:

* standard: handling basic processes for electron,
positron, photon and hadron interactions;

* low energy: providing alternative models ex-
tended down to lower energies than the
standard category;

* muons: handling muon interactions;
* X-rays: providing specific code for X-ray
physics;

* optical: providing specific code for optical
photons;

* utils: collecting utility classes used by the other
categories.

It provides the features of openness and
extensibility resulting from the use of object-
oriented technology; alternative physics models,
obeying the same process abstract interface, are
often available for a given type of interaction; an
example of such case is shown in Fig. 2.
Public evaluated databases are used in electro-

magnetic processes without introducing any ex-
ternal dependence, while keeping the physics open
to future evolutions of available data sets. This
feature also contributes to the reliability and the
openness of the physics implementation.
The package includes the processes of ionisa-

tion, bremsstrahlung, multiple scattering, Comp-
ton and Rayleigh scattering, photo-electric effect,
pair conversion, annihilation, synchrotron and
transition radiation, scintillation, refraction, re-
flection, absorption and Cherenkov effect.
In the standard electromagnetic processes cate-

gory, the class G4eIonisation calculates for
electrons and positrons the energy loss contribu-
tion due to ionisation and simulates the ‘‘discrete’’
part of the ionisation, namely the Moller and
Bhabha scattering and d-ray production. For each
material and for eþ and e�; it produces an energy
loss, range and inverse range table. The class

G4eBremsstrahlung computes the energy loss
contribution due to soft bremsstrahlung and
simulates the ‘‘discrete’’ or hard bremsstrahlung.
These two physics processes are closely connected
by the design adopted. For the electromagnetic
processes of hadrons, the G4hIonisation class
computes the continuous energy loss and simulates
d-ray production. In this case, energy loss, range
and inverse range tables are constructed only for
proton and anti-proton; the energy loss for other
charged hadrons are computed from these tables
at the scaled kinetic energy (see Section 5.6.3). The
energy loss also depends on the cut in range, which
is described in more detail in Section 5.6.2.
The low energy electromagnetic processes cate-

gory adopts a more complex design approach, by
distinguishing the concepts of ‘‘physics process’’
and ‘‘model’’. A physics process may aggregate
various components, each one being represented
by a model; models can play complementary or
alternative roles. A strategy [15] design pattern is
adopted to define the family of physics models,
encapsulate them and make them interchangeable.
Thanks to this design, the system is open to
evolution, without requiring any internal modifi-
cation if new or alternative features are intro-
duced. An example is, for instance, in the low
energy hadron ionisation process (G4hLowEner-
gyIonisation) where a strategy pattern handles
the complementary models of energy loss—Bethe-
Bloch, parameterisation, free electron gas, quan-
tum harmonic oscillator—depending on the energy
range and charge of the incident particle. Other
strategy patterns handle the models for electronic
and nuclear stopping power respectively, while
energy loss fluctuation models are treated sepa-
rately. The development of an additional stopping
power parameterisation, based on new data, is
straightforward; the new algorithm would just be
required to satisfy the common abstract interface
and to be registered in the list of available
parameterisations.
The muons category is modelled on the standard

category. The energy loss of muons is computed by
the class G4MuEnergyLoss using a scheme of
computation which is the same as in the case of
eþ=e�: The G4MuIonisation class computes the
contribution to the continuous energy loss due to

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303260

ARTICLE IN PRESS

F
ig
.
2
.
A
cl
a
ss
d
ia
g
ra
m
o
f
el
ec
tr
o
m
a
g
n
et
ic
p
ro
ce
ss
es
,
sh
o
w
in
g
h
o
w
a
lt
er
n
a
ti
v
e
p
ro
ce
ss
es
,
o
b
ey
in
g
th
e
sa
m
e
a
b
st
ra
ct
in
te
rf
a
ce
,
a
re
p
ro
v
id
ed
.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 261

ionisation and simulates the corresponding ‘‘dis-
crete’’ process, knock-on electron or d-ray produc-
tion. The G4MuBremsstrahlung class calculates
the continuous loss due to soft bremsstrahlung
and simulates ‘‘discrete’’, hard bremsstrahlung.
The G4MuPairProduction class gives the contri-
bution to the continuous energy loss due to soft
eþ=e� pairs and performs the simulation of pair
production.
The features of energy loss are very similar for

eþ=e�; mþ=m� and charged hadrons so, by design,
a common description for them has been adopted.
The continuous energy loss is calculated as a sum
of the contributions of the different processes. It
also proposes a step that, by the mechanism of
chosing the smallest step described above, limits
the step of all processes in order to preserve
precision in a situation where the energy is
changing along the step; for example, the stopping
range may be required to decrease by not more
than some fraction of the total ionisation range, if
this limit is not less than some finalRange

parameter. It is worth mentioning that the lower
limit used here is more natural and physical than
the one used in GEANT3’s automatic calculation
of the tracking parameters.

Hadronic physics. Given the vast number of
possible modelling approaches, we have chosen to
design an additional set of implementation frame-
works to help generate the corresponding code in a
distributed manner, and allow significant flexibility
to the final user. Fig. 3 illustrates the various
framework levels in an annotated package depen-
dency diagram.
The so called ‘‘Russian dolls’’ approach for the

implementation framework design was followed.
In this approach, an abstract top-level framework
provides the basic interface to other Geant4
categories. It satisfies the most general use-case
for hadronic shower simulation, namely to provide
inclusive cross-sections and final state generation.
The framework is then refined for more specific
use-cases by implementing a hierarchy of frame-
works. Each sub-level implements the interface
specification of the ancestor framework level. It
adds implementation for the common logic of a
particular use-case package, like the information
flow between parton string models and codes

simulating de-excitation of nuclear matter into
hadrons, and provides the abstract interfaces for
the associated use-case package. By so doing, the
granularity of abstraction and delegation is refined
at each framework level. The delegation mechan-
ism is implemented through abstract classes.2

To illustrate this, in the following we present the
second framework level in some detail. (For a
complete descriptions of all levels, please see Ref.
[16].) This framework level is very relevant for
Geant4, and defines at the same time some of the
most relevant abstractions. It concerns processes
that occur for particles in flight. For these cases,
one soon finds that the sources of cross-sections
and final state production are rarely the same.
Moreover, different sources will come with differ-
ent restrictions. The most important use-cases of
the framework address these issues. A user might
want to combine different cross-sections and final
state or isotope production models provided by
Geant4, and a physicist might want to implement
a model for a particular situation and add, in a
seamless manner, cross-section data sets that are
relevant for a particular analysis. The require-
ments on this framework level are the following:

* The ability to add user defined data sets, final
state and isotope production models in a
seamless manner.

* The ability to use different data sets, different
isotope production and final state production
codes for different parts of the simulation,
depending on the conditions at the point of
interaction.

* A flexible choice of inclusive scattering cross-
sections, final state production models and
isotope production models, to run in parasitic
mode to any kind of transport model.

These requirements are implemented in three
framework components, one each for cross-sec-
tions, final state production, and isotope pro-
duction. These three parts are integrated in
the G4HadronicProcess class, which serves as

ARTICLE IN PRESS

2The same can be achieved with template specialisations with

slightly improved CPU performance but at the cost of

significantly more complex designs and, with present compilers,

reduced portability.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303262

ARTICLE IN PRESS

Level1:

Elastic
Process

Level2:

Level3

Level4

Level5

Implementation
frameworks
(flexibility)

Implementations
(functionality)

PionMinus
Capture

LowEnergy
Models

etc..

etc..NeutronIsotope
Production

ProtonNuclear
CrossSection

Pythia
Adapter

Cascade

QMD

Pre-
Compound etc..

QuarkGluon
String

Scatterer

3DNucleus

etc..

LundFrag-
mentation

qMD

Feynman
Field

QGS
Fragmentation etc..

Inelastic
Process

Diffractive
String

.

.

.

Physical
Processes

Final states,
cross-sections and
isotope production

Partial final
states in theory
driven modelling

Cascade

String excitation,
and parts of the
transport equation

Coherent and
non-coherent string
fragmentation and
fragmentation functions

Implementations
(functionality)

Fig. 3. Package diagram of implementation frameworks and example implementations available for the hadronic physics category.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 263

base-class for all hadronic processes of particles in
flight. Each process holds a list of ‘‘cross-section
data sets’’. The term ‘‘data set’’ represents an
object which encapsulates methods and data for
calculating total cross-sections for a given process
in a certain range of validity. The implementations
may take any form: it can be a simple equation or
a sophisticated parameterisation or evaluated
data. All concrete cross-section data set classes
are derived from the abstract class G4VCrossSec-
tionDataSet, which declares methods that allow
the process to inquire about the applicability of an
individual data set through IsApplicable, and to
delegate the calculation of the actual cross-section
value through the method GetCrossSection.
G4HadronicProcess has provision for registering
data sets. A default covers all possible conditions
to some approximation. The process stores and
retrieves the data sets through a data store that
acts like a FILO stack (a ‘‘Chain of Responsi-
bility’’ with a First In Last Out decision strategy).
This allows the user to map out the entire
parameter space by overlaying data sets and hence
optimise the overall result. An example is the use
of the cross-sections for low energy neutron
transport; if these are registered last by the user
they will be used whenever low energy neutrons
are encountered. In all other conditions the system
will fall back on the default or other data sets with
earlier registration times. The fact that the
registration is done through abstract base classes
with no side effects allows the user to implement
and use his/her own cross-sections. An example is
the use of special reaction cross-sections for K0-
nuclear interactions for e=e0 analysis to control
systematic error.
For final state production we provide the

G4HadronicInteraction base class. It declares a
minimal interface of just one pure virtual method
for final state production: ApplyYourself. G4Ha-
dronicProcess provides a registry for final state
production models inheriting from this class.
Again, the final state production model is meant
in very general terms; it might be an implementa-
tion of a quark gluon string model [17], a sampling
code for ENDF/B data formats [18], or a
parameterisation describing only neutron elastic
scattering off silicon up to 300 MeV: The G4Ha-

dronicProcess delegates final state production to
the applicable final state production model.
G4HadronicInteraction provides the functional-
ity needed to define and enforce the applicability
of a particular model. Models inheriting from
G4HadronicInteraction can be restricted in
applicability in projectile type and energy and
can be activated/deactivated for individual materi-
als and elements. The design is a variant of the
Chain of Responsibility pattern [15]. This allows a
user to use models in arbitrary combinations and
to write his/her own models for final state
production. An example is the combination of
low energy neutron transport with a quantum
molecular dynamics [19] or chiral invariant phase
space decay [20–22] model in the case of tracker
materials and fast parameterised models for
calorimeter materials, with user defined modelling
of interactions of spallation nucleons with the
most abundant tracker and calorimeter materials.
For dedicated isotope production codes, a base

class, G4VIsotopeProduction, is provided. It
declares a method GetIsotope that calculates
and returns the isotope production information.
Any concrete isotope production model inherits
from this class and implements the method. Again,
the modelling possibilities are not limited, and the
implementation of concrete production models is
not restricted in any way. By convention, the
GetIsotope method returns NULL if the model is
not applicable for the current projectile-target
combination. If no applicable isotope production
model is registered the G4HadronicProcess calcu-
lates the isotope production information from the
final state given by the transport model. In
addition, it provides a registering mechanism for
isotope production models that run parasitically to
the transport models and inherit from G4VIsoto-

peProduction. The registering mechanism be-
haves like a FILO stack, and the first model that
returns a non-NULL value will be applied. In
addition, the G4HadronicProcess provides the
basic infrastructure for the accessing and steering
of isotope production information. It allows one
to enable and disable the calculation of isotope
production information globally or for individual
processes, and to retrieve the isotope production
information through the GetIsotopeProductio-

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303264

nInfo method at the end of each step. The
G4HadronicProcess is a finite state machine that
ensures that the method GetIsotopeProductio-

nInfo returns a non-zero value only at the first call
after isotope production occurred. An example of
the use of this functionality is the study of the
activation of a germanium detector in a high
precision, low background experiment.
In general we want to stress that finding the

functional requirements of frameworks through
use-case analysis has proven to be a highly
effective tool. Framework components were found
through bundling use-cases. Framework interfaces
were defined by the need for delegation and
flexibility; framework functionality was defined
from detailed requirements analysis. The ‘‘Russian
dolls’’ approach to framework design is very
effective. Layering the implementation frame-
works, and keeping simple and general abstrac-
tions in the upper levels of the framework
hierarchy, has proven to result in a structured
and well suited solution for a complex problem.
Addressing more specific use-cases in lower level
frameworks that implement the interfaces of the
more general framework has kept the system
surprisingly extendible. It has facilitated the
distributed and largely decoupled contributions
of many scientists.

2.3.5. Particles and materials

These two categories implement facilities neces-
sary to describe the physical properties of particles
and materials for the simulation of particle-matter
interactions.
Particles are based on the G4ParticleDefini-

tion class, which describes the basic properties of
particles, like mass, charge, etc., and also allows
the particle to carry the list of processes to which it
is sensitive. A first-level extension of this class
defines the interface for particles that carry cuts
information, for example range cut versus energy
cut equivalence. A set of virtual intermediate
classes for leptons, bosons, mesons, baryons, etc.,
allows the implementation of concrete particle
classes, such as G4Electron, G4PionMinus, etc.,
which define the actual particle properties and, in
particular, implement the actual range versus
energy cuts equivalence. All concrete particle

classes are instantiated as singletons to ensure that
all physics processes refer to the same particle
properties.
The design of the materials category reflects

what exists in nature: materials are made of a
single element or a mixture of elements, elements
are made of a single isotope or a mixture of
isotopes. Because the physical properties of
materials can be described in a generic way by
quantities which can be either given directly, like
density, or derived from the element composition,
only concrete classes are necessary in this category.
Characteristics like radiation and interaction

length, excitation energy loss, coefficients in the
Bethe-Bloch formula, shell correction factors, etc.,
are computed from the element, and if necessary,
the isotope composition.
The materials category also implements facilities

to describe surface properties for the tracking of
optical photons (see Section 5.10).

2.4. User actions

Geant4 provides the abstract interface for eight
user classes. The concrete implementation, instan-
tiation and registration of these classes are
mandatory in three cases, optional in the other
five. This enables the user to customise Geant4 to
his/her specific situation. These user classes and
their functionality result from an analysis of the
user requirements document.
The three mandatory user class bases are:

* G4VUserDetectorConstruction for defining
the material and geometrical setup of the
detector. Several other properties, such as
detector sensitivities and visualisation attri-
butes, are also defined in this class.

* G4VUserPhysicsList for defining all the par-
ticles, physics processes and cut-off parameters.

* G4VUserPrimaryGeneratorAction for generat-
ing the primary vertices and particles.

For these three user classes, Geant4 provides
no default behaviour; instead there are pure
abstract definitions from which the user must
derive her/his own concrete classes. For example,
Geant4 defines no default physics process. Even

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 265

the particle transportation process must be regis-
tered by the user, otherwise Geant4 will not
transport any particle. On the other hand, because
of this, the user can easily switch the way
transportation or any specific physics process
without affecting any other processes or the
behaviour of Geant4. And because it is impossible
to provide a set of processes which are sure to
apply in every situation, and since a user needs to
optimise performance for his/her application,
instead of providing defaults the Geant4 distribu-
tion provides various examples, described briefly
in Section 1.4, which the user can draw on.
The optional user classes allow the user to

modify the default behaviour of Geant4. The five
optional user class bases are:

* G4UserRunAction for actions at the beginning
and end of every run.

* G4UserEventAction for actions at the begin-
ning and end of every event.

* G4UserStackingAction for customising access
to the track stacks.

* G4UserTrackingAction for actions at the
creation and completion of every track.

* G4UserSteppingAction for customising beha-
viour at every step.

For example, as described in detail in Section
4.5, the user can optimize the priority of proces-
sing any particle by implementing the G4User-

StackingAction class.

3. Software process

The term software process refers collectively to
the set of processes used by an organisation or
project to plan, manage, execute, monitor, control
and improve its software-related activities. Soft-
ware processes define the practices that are used in
the production and evolution of the software.
Although the Geant4 software product has

been in production and available to the public
since December 1998, a number of modules (class
categories) are still under active development and
therefore require different treatment in terms of
the application of software processes.

Most of the procedures and methods used in the
Geant4 software process are derived from the
RD44 project specifications. They were applied
during the development phase of the project, but
to a large extent are still valid.
There are many software processes applicable to

Geant4, both concerning software development
and organisational matters. The complexity of the
software involved, the wide areas of application of
the software product, the huge amount of code,
the number of class categories, the size and
distributed nature of the collaboration itself are
all ingredients which motivate an ongoing soft-
ware process improvement program [23].
Processes fall into several categories: primary

life-cycle of software development, supporting life-
cycle, management processes, organisational life-
cycle, and user–supplier processes. A particular
process can be deployed at different levels of
generality. Tailoring of processes in the different
domains is sometimes required, for instance for
reasons of quality or stability, or for the evolution
phase related to a specific domain, or due to
personnel issues [25].
By software life-cycle is meant the phases the

software product goes through between when it is
conceived and when it is no longer available for
use. The software life-cycle therefore includes:
requirements analysis, software design, construc-
tion, testing (validation), installation, operation,
maintenance, and retirement.
As discussed in the following sections, the life-

cycle model adopted for most domains in Geant4
is both iterative and incremental (also called the
spiral approach) [26]. In the current production
and maintenance phase, the life-cycle model is
essentially iterative for most domains; it allows the
application of successive refinements to the exist-
ing architecture and the consideration of experi-
enced solutions for analysis and design iterations.
Concerning software construction, we adopted
from the beginning flexible and well-defined
programming and coding guidelines [27], basically
dealing with adhesion to the object-oriented
paradigm (data-hiding, encapsulation, etc.), per-
formance, and portability of the software. Packa-
ging of the software has strictly followed the
domain decomposition into class categories and

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303266

sub-categories that resulted from the design
process.
In order to achieve maintainable software and

ensure its quality, the adoption of standards,
wherever possible, is promoted in Geant4.

3.1. Methodology

Because of the wide variety of requirements for
Geant4, not only from the HEP community but
also from other fields, we expected that the final
product would be a large and complex software
system. It was also envisaged during the planning
stage of the project that the creation of Geant4
would require HEP software expertise dispersed all
over the world, which inevitably required the
formation of a worldwide software collaboration.
We considered that it was absolutely essential to
employ an engineering discipline in the design and
construction of the software.
The study of software engineering (the applica-

tion of the engineering discipline to large-scale
complex software systems) has led to the emer-
gence of various ‘‘software methodologies’’ which
prescribe a comprehensive development process.
We spent considerable effort at the beginning of
the project to study the software methodologies
that were available. Because a software develop-
ment process based on the object-oriented (OO)
approach was considered to be the most promising
technology at the time, we studied the feasibility of
various OO methodologies during the first year
(1995) of the project. We evaluated, for example,
the Booch method [26], the OMT method [28], and
the Fusion method [29]. For the evaluation we
created a set of requirements for the methodology
of which the essential points are as follows: (1) the
process must be flexible, (2) it should provide a
way to decompose a system into independent
subsystems so that a clear job-sharing scheme (not
only for code implementation, but also for analysis
and design) can be defined, (3) it should provide
models, notations and tools which help to
exchange the ideas of design even if people are
dispersed over the world, (4) it should provide for
an incremental development strategy, (5) it should
provide a reverse engineering capability to guar-

antee a way of following the evolution of the
methodology.
Our most important conclusion from the

evaluation was that there was no absolute measure
for the selection of the best methodology. The
methodologies had basically the same philosophy
and approach, and defined similar phases in the
software process (for example, requirement gath-
ering, analysis, design, implementation and so on).
Each methodology had its strong and weak points.
The OMT method provided a base for other
methodologies. For example, the Fusion method
imported the OMT object model for its own object
model. The Booch method provided the richest
description for the analysis and design of a system.
The Fusion method had an excellent capability in
describing the object interactions. We also found
that multiple methodologies were often employed
simultaneously in the development of large-scale
software.
Based on these observations, we finally decided

to employ the Booch methodology for the
construction of the Geant4 software. The major
reasons for this choice were as follows: (1) it
provides a concept of dividing a system into
independent subsystems in the design and imple-
mentation phases, (2) it has a pragmatic and
common-sense approach with an incremental
and iterative process, (3) it has easy-to-understand
models with rich notations which fill the gap
between design and implementation, (4) it has
easy-to-obtain supporting software for Unix and
PC environments. Although we selected the Booch
method, our feasibility studies showed that the
basic approach and essential components of the
major methodologies were similar.
There was another reason we decided to use the

Booch method: it was announced in 1994 that the
OMT and Booch methods would be unified. There
was a strong belief at that time that this new
combined version would become a de facto

standard of OO methodology and would be
supported by the software engineering community.
Our basic principle in using the Booch method

was to adapt it for our purpose, not to blindly
adopt it—we did not expect that it would
automatically provide a series of well-defined steps
which would generate the necessary out-put

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 267

products. The essential point that we consider the
key to our successful usage of the software
methodology, was that we needed to judge for
ourselves which elements of the methodology were
important and were applicable to our project.

3.2. Object-oriented analysis and design

Although it is impossible to introduce all
important concepts of object-oriented methodol-
ogy in this section, we present here a brief
illustration of key aspects to help those who are
not familiar with the methodology.
Object-Oriented Analysis (OOA) and Design

(OOD) and code implementation define major
phases of the software development process in an
OO methodology. OOA and OOD provide an
object-based decomposition of a software system
into smaller and smaller parts, each of which can
be refined independently. They also offer a set of
logical and physical models with which the
developer can understand both the entire archi-
tecture and the fine detail of a class design. To
construct such models, OOA and OOD provide a
coherent set of processes the programmer can
follow.
In the Booch method, the software development

is structured into micro and macro processes. The
micro process serves as the framework for an
iterative and incremental approach in each phase
of the development. It is similar to the so-called
‘‘spiral model’’. The macro-process serves as the
controlling framework for the micro process, and
is similar to the ‘‘waterfall model’’. It consists of
four phases: (1) requirement gathering, (2) OOA,
(3) OOD, (4) code implementation and evolution.
In the following we summarise activities done in
each phase of the macro-process for Geant4
development. Various aspects which we found to
be important for the worldwide collaboration are
also described.

3.2.1. Requirement gathering and OOA phase

We started this phase by collecting user require-
ments for a new detector simulation software
product. The Geant4 core team (see below)
created a draft requirements document and it
was distributed among the GEANT3 user com-

munity. After receiving feedback from the com-
munity, we elaborated the requirements and
summarised them using the ESA standard format
[30]. The resulting requirements document was not
a static one; it was updated many times during the
development process.
Then we analysed the requirements document to

identify all major objects in the problem domain,
including all data attributes and major operations
that would be needed to provide the required
functionality. We produced central models (class
diagrams) containing all the semantics of the
system in a set of concise but accurate definitions.
We also identified clusters of classes (class
categories) that were themselves cohesive, but
were loosely coupled relative to other clusters.
Major products in this phase were the require-
ments document, class diagrams, scenario (object
interaction) diagrams and a class category dia-
gram. In this phase the core team (6–7 people)
played an essential role. With this relatively small
number of people, the members could work closely
together even though they were located in Switzer-
land, England, France and Japan.

3.2.2. OOD phase

The goal of this phase was to elaborate the
models created during the analysis phase so that
the objects and classes could be coded and
executed. The major products we produced in this
phase were the updated class diagrams and
scenario diagrams. We found that in most class
categories the OOA and OOD were concurrent
processes. About two-thirds of the first year of the
project were spent on OOA and OOD, and no
C++ code was written during this phase. The
‘‘class category diagram’’ created at the end of the
OOA had a fundamental importance during the
further course of the development. We used each
class category as a unit to share tasks in the OOD
and in the implementation phase. The loose
coupling between categories allowed us to imple-
ment each category relatively independently. A
working group was established for each category,
and members of a group could work without
interfering with the work in other categories. Also,
each working group could be kept relatively
small because a category covered only limited

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303268

functionality. This enabled members to work in a
very efficient manner.

3.2.3. Code implementation and evolution phase

We started this phase by writing C++ proto-
type code based on the design created during OOA
and OOD. Further refinements of the design were
done based on performance of the program or
addition of new requirements. Regular incremen-
tal releases of the code and progress reports to the
CERN review committee provided clear mile-
stones for the project. Each release was preceded
by an acceptance testing phase and thus gave us
the opportunity of regularly testing the quality of
the product. In this phase, the micro process
played a major role in the code development.

3.3. Software process improvement

According to ISO-15504 [32], a Software Pro-
cess Improvement (SPI) activity belongs to the
organisational life-cycle category of software
processes, and therefore must be considered indeed
‘‘life-cycle driven’’ and regularly applied. As such,
SPI is a process which cannot be forced and must
be gradually applied, after identifying the right
priorities and objectives [24].
The main goal of the SPI program [23] in

Geant4 is to understand, determine and propose
applicable procedures for software development
and maintenance in the production phase of the
software. In view of this, we periodically perform
process assessments making reference to the ISO/
IEC SPICE Model [31,32]. Experience from
members in the Geant4 Collaboration is some-
times used to help identify weaknesses in some
areas and where to apply SPI. Establishing well
defined methods and procedures is of vital
importance for the Geant4 project whose man-
date is first to provide to users, and then to
maintain, a software product with a reasonably
long lifetime, good reliability and robustness.

3.4. Configuration and release management

The creation and modification of requirement
and design documents, user documentation and
source code are activities shared by collaboration

members located at many different sites. To avoid
incompatible revisions and to ensure consistency,
changes in the code and documentation must be
controlled and tracked. In Geant4 we use the
Concurrent Versions System (CVS) [33], which
maintains a central repository for all documents
and source code and provides all the necessary
functionality for change management. The reposi-
tory consists of a tree of directories on backed-up
disk space in an AFS [34] distributed file system.
For collaborators without direct access to AFS,
the repository is also accessible through a server
using the CVS built-in client-server protocol.
The source code directory structure is derived

directly from the decomposition of the software
into domains or categories. In each category the
coordinator is responsible for the coordination of
the development, the testing, the bug fixing, the
release of the software and the documentation for
that category. Some categories are split further
into sub-categories according to a logical decom-
position. Several developers can share the work on
a given file, as the CVS tool supports concurrent
editing of files.
The build system is based on GNU Make [35],

for analysing source file dependencies and con-
trolling the build process.
For each file in the repository, the CVS tool

tracks versions, keeps comments on the changes
made and allows symbolic tagging of related
versions. A new file revision is generated whenever
a developer ‘‘checks in’’ a modified file. In Geant4
CVS tags are used in the preparation of releases,
for bug fixes and for regular testing. A CVS tag is a
symbolic name which can group several files in a
coherent set.
New or modified code in a category must be

submitted as a CVS tag for testing [36] and must
satisfy all tests as a condition for being included in
a public release [37] of the software.
Important bug-fixes are periodically collected

and publicly made available in the form of patches
or minor releases. Bug fixes to a particular release
are done on a CVS branch starting from the
released version. Changes on the branch are
merged back into the current development version,
assuring that no fixes get lost. Branches are also
useful if a consistent number of changes have to be

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 269

made and tested. This technique was successfully
used on several occasions, for example when the
code was ported to strict ISO C++ compilers
requiring the use of the std:: namespace prefix
for standard library classes.

3.5. Quality assurance and testing

As part of our software process, the develop-
ment of effective tests and testing procedures has
been a major effort of the Collaboration as a
whole and, particularly, of the dedicated Testing
and Quality Assurance working group. As with the
other software methodologies, we have been
guided by established and well-documented prac-
tices in software engineering [36].
Software testing protocols typically fall into two

classes: unit testing and integration or system

testing. In Geant4 each category team is respon-
sible for unit testing, i.e., testing the functionality
of their own code in relative isolation from other
class categories. For example, there are unit tests
dedicated to geometry, tracking, and the various
physics processes (electromagnetic, hadronic, and
so on). A team is expected to devise test programs
with good coverage to exercise the code within
their category and to perform these tests regularly
as new or revised code is developed. As a baseline
for testing each category team uses the latest
reference version of the Geant4 code as tagged
and announced by the System Testing Team
(STT).
In practice, unit tests allow for detecting many

faults, but comprehensive testing requires also
interactions between categories. The task of the
integration or system testing in Geant4 is to verify
the correct execution of specific real applications,
involving several coworking categories of the
software system.
According to this procedure, the new code in a

category is tagged and the CVS tag is proposed for
testing to the STT. If several category tags are
proposed, the STT must choose the order and time
of their introduction in the test cycle. This requires
careful analysis, keeping in mind the dependency
relationships as dictated by the design category
diagram, the need for prompt feedback to devel-
opers, and the virtues of moderating the amount of

new or modified code that is brought into each
round of tests.
System testing is done in parallel on a set of

‘‘test platforms’’ representing as far as possible the
range of actual systems in use in the Geant4 user
community. A platform comprises the machine
architecture, the operating system, and the C++
compiler. For example ‘‘Linux-g++’’ designates a
Linux (Intel) system with the GNU C++ compi-
ler.
Within each platform, testing is further diversi-

fied due to variations in building the tests, such as
compiling ‘‘debug’’ or ‘‘optimised’’ versions, and
the selection of code variants such as ISO
compliant C++.
With about 6 platforms and about 40 tests to be

performed on each, it is clear that system testing is
a large and complex task and must be well
organised and streamlined to make it a sustainable
process. Consequently the STT have developed a
system testing framework which utilises a set of
scripts and tools to perform almost all phases of
testing.
The launching and controlling of tests is done

through standard mechanisms such as ssh, cron,
and mail. Source code, test cases, and test logs are
maintained on a global file system (AFS),
although local disk space is preferred for building
libraries and running executables.
When a category team tags some code for

testing, the CVS system automatically provides the
relevant information to an extended version of
Bonsai [39], a World Wide Web (WWW)-based
CVS query and database system. Bonsai has been
modified by the STT to support tags-based
processing and to provide an on-line WWW form
where category teams can submit new tags for
system testing.
Another WWW-based tool, Tinderbox [40], has

been extended and tailored to Geant4 to provide
automated monitoring, logging, problem detection
and reporting (including hyperlinks to the relevant
source code) for all system tests. To aid with both
development and testing, the STT also maintains
an indexed and cross-referenced source code
browsing facility based on LXR [41].
At the conclusion of a test cycle, accepted tags

are incorporated into the next reference version of

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303270

Geant4. For rejected tags, reports about test
failure modes are inserted in the Bonsai system for
operative recognition and elimination. Problems
that cannot be resolved quickly may be logged into
the problem tracking system [38].
Although unit and system testing are critical to

ensure integrity and correctness of the Geant4
code, it is also important to monitor code quality
from the start. To achieve this end we employ
various Quality Assurance tools such as CodeWi-
zard [43], to detect unsafe, nonstandard or error-
prone coding practices in the source code,
Insure++ [43] and Valgrind [44], to detect data
integrity and memory management problems in a
running application. These tools, as well as our
adopted coding guidelines, help to provide a front-
line defence against the introduction of potential
problems into the software.

3.6. User support process

The Collaboration offers user support for
Geant4, providing assistance with software pro-
blems, consultancy on results, and response to
enhancement requests. In this section we explain in
more detail our support model and the process by
which we provide it.
Not only is the maintenance and development of

the various Geant4 domains distributed amongst
the collaborators, but so is the responsibility for
user support and documentation. Object-oriented
technology makes such a wide distribution of
responsibility among the experts of different parts
of the software package possible and effective.
Users of the software who encounter a problem

in running the code can use an Internet-based
problem reporting system. The system is accessible
from the World Wide Web and is open to all users.
It is set up automatically to assign problem reports
to the responsible person according to the category
affected. He or she may accept the report and
respond directly or forward it to a colleague. This
system is a customised version of the open source
reporting tool Bugzilla [42]. Besides routing the
problem to specialists, it tracks and documents the
responses until the problem is resolved.
New requirements, such as requests for new

functionality or refinements of existing abilities,

are presented to and decided by the TSB. The TSB
sets the priorities and agrees on time-scales for the
fulfillment of new requirements. Such support is
guaranteed to collaboration members, while re-
quests from outside are handled on a ‘‘best effort’’
basis. A customised version of the Bugzilla tool is
also used for the collection of requirements and
tracking of their evolution.
For each member organisation a contact person

has been designated. He/she acts as a first
reference for Geant4 users in that locality, which
may include affiliated institutions, user groups,
and others in the same geographic area. The
contact person is expected to respond to enquiries,
to help resolve simple problems, and to forward
more specialised queries to the relevant expert(s).
This method is chosen to avoid the overhead of
channelling all problems through a single central
group.
This distributed user support model arose

naturally from the existing distribution of exper-
tise and manpower across experiments, labora-
tories, and institutes which have contributed to
the creation and maintenance of Geant4. It
offers major advantages over the traditional
central support: a larger number of people are
involved, each in the domain of their compet-
ence, and in many instances supporting code that
they developed.
To exploit these advantages, an adequate

structure is needed to filter, analyse, dispatch, or
prioritise the users’ requests, and also to provide
the user with a direct interface to which one can
refer without knowing the details of the user
support mechanism. The needed structure is
provided by the TSB and the working groups.

4. The kernel

4.1. Global structure

The kernel manages the tracking of particles
taking account of the geometry, fields and physics
processes. Efficiency is a key issue and various
optimisation techniques are used. Geant4 pro-
vides ways of controlling the order of processing of
tracks. User code is invoked when particles enter

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 271

sensitive volumes so that hits and digitisations can
be scored. All this is described below.
Geant4’s logical structure and the user action

classes were essentially described in Sections 2.2
and 2.4.

4.2. How a particle is tracked

In spite of its name, tracking in Geant4 does
not transport particles; transportation is per-
formed by the transportation process which is
handled as one of the generic processes (the
transportation process itself is described in some
detail in Section 4.4).
G4TrackingManager is an interface class bro-

kering transactions between the event, the track
and the tracking categories. The tracking manager
(a singleton instance of the class) handles the
necessary message passing between the upper
hierarchical object, which is the event manager (a
singleton instance of class G4EventManager), and
lower hierarchical objects in the tracking category.
The tracking manager receives a track from the
event manager and takes the necessary actions to
complete tracking it.
G4SteppingManager is the class which plays an

essential role in tracking the particle. It takes cares
of all message passing between objects in the
different categories which are relevant to trans-
porting a particle (for example, geometry, interac-
tions in matter, etc.). Its public method Stepping
steers the stepping of the particle. In the imple-
mentation of the algorithm, the inheritance
hierarchy of the physics interactions plays an
essential role. This hierarchical design of the
physics interactions enables the stepping manager
to handle these as abstract objects; the manager
does not need to be knowledgeable of the concrete
interaction objects, for example, bremsstrahlung,
pair creation, etc. The actual invocations of
various interactions during the stepping are done
through the dynamic binding mechanism. This is a
powerful programming technique which makes the
tracking category completely shielded from any
change in the design of classes in the physics
process, i.e., if we add in future a new physics
process for a particle, it is not necessary to change
anything on the tracking side.

Objects of class G4Track represent the particles
which are handled by the stepping manager. Each
object holds information particular to each step of
a particle, for example, the current position, the
time since the start of stepping, the identification
of the geometrical volume where the particle is,
etc. The dynamic information of the particle, like
momentum and energy, is held through a pointer
to an object of type G4DynamicParticle. Also the
static information of the particle, like mass and
charge, is stored through the pointer to an object
of type G4ParticleDefinition. Here the aggre-
gation technique is extensively employed to keep
the tracking performance very fast.
As described in Section 2.3.3, each physics

process proposes a step length, returned by
GetPhysicalInteractionLength (see Section
4.3). For example, for interaction processes it is
the distance to an interaction in the current
material. The stepping manager selects the process
that proposes the shortest step length. This
selection, which has to take account also of
geometrical boundaries and user parameters, is
described in more detail in Sections 5.3 and 5.4.
An object of type G4TrajectoryPoint holds the

state of the particle after propagating one step. It
includes information about space–time, energy-
momentum, geometrical volume, etc. A G4Tra-

jectory object aggregates all G4TrajectoryPoint
objects which belong to the particle being propa-
gated.

4.3. Process management

A large variety of interactions is experienced by
particles passing through matter. In Geant4 this
variety is expressed by a division into seven major
process categories: electromagnetic, hadronic,
transportation, decay, optical, photolepton hadron,
and parameterisation.
In designing Geant4, we focused on the

generalisation and abstraction of physics processes
before considering the implementation of the
varieties. Our approach enables anyone to create
a process and register it for a particle type in a
Geant4 simulation much more easily than in
GEANT3. This openness should allow the crea-
tion of processes for novel, domain specific or

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303272

customised purposes by individuals or groups
of users.
All physics processes are treated in a ‘‘unified

manner’’ to describe how particles behave in a
material. As described in Section 2.3.3 on tracking,
two kinds of process methods play an important
role: one is GetPhysicalInteractionLength (ab-
breviated GPIL) and the other is DoIt. There are
three kinds of DoIt methods or actions together
with three GPIL methods corresponding to each
DoIt. These are AtRestDoIt, AlongStepDoIt, and
PostStepDoIt. All physics processes are derived
from the base class of G4VProcess, which provides
three virtual DoIt and GPIL methods. In other
words, all physics processes can be treated in the
same manner from the tracking point of view.
Each process can perform any combination of

these three DoIt action. This is a major innovation
in Geant4, which goes beyond the categorisation
of processes made by previous simulation
packages that distinguished, at most, two types
of process, discrete and continuous. Those two are
still available as special cases but, in addition,
several novel types of process are possible.
As a result, the tracking code is completely

general and common to all processes of all particle
types. This unified model for physics processes
gives flexibility in design of a physics process. For
example, the transportation of particles is a kind
of process in Geant4 and a specific transportation
process can be applied in various cases (such as for
transportation in electric fields).
Each particle type contains a list of physics

processes that the particle can undertake. The
process manager of each particle manages the list
of processes. Users can choose physics processes
which are necessary for their own simulation and
register them via the process manager. The process
manager also contains information about the
ordering of DoIt actions for each process in
the list.
In Geant4, the concept of particle change,

represented by the class G4VParticleChange and
its derivatives, is introduced to keep the results in
DoIts, i.e., the final state of the track and
secondary tracks. Thus, only these objects know
which properties the physics process has updated.
A physics process can define its own particle

change derived from the base class G4VParticle-
Change to gain performance.
Clear separation between process and tracking

functionality can be realised by using particle

change. Processes cannot change track informa-
tion directly; they can only propose changes as a
result of an interaction. On the other hand, the
tracking accepts and judges proposals from
processes and triggers their action. In addition,
the tracking controls the timing of updating the
step and track information based on the particle

change.
This approach of using particle change and the

abstraction of physics processes ensures that we
can easily develop new physics processes and/or
extend the functionality of existing processes.

4.4. Propagation in the detector model

The primary task of the geometry category is to
supply information to the transportation process
and ultimately to the tracking manager for the
geometrical propagation of tracks. This includes
propagation in a field, for example, a magnetic
field.
In GEANT3, as in Geant4, particles are moved

in steps that are determined by physics processes
or by the detector geometry; however, in
GEANT3, small ‘‘pushes’’ are adopted to guaran-
tee the change of volume at a boundary in the face
of computational rounding errors. This mechan-
ism may cause errors, especially in the case of
photon reflection, and it has been demonstrated to
be inefficient when volume boundaries are not
coincident, since a series of many small steps may
be required when the ‘‘push’’ is not large enough.
Geant4’s propagation methods were designed to
overcome these limitations without sacrificing
accuracy and efficiency. After a step to a boundary
a track’s state records whether it is on a boundary,
whether it is exiting the current volume, etc.
Volumes effectively have boundaries of a very

small but finite ‘‘thickness’’ to take into account
the round-off and accumulated errors of floating
point arithmetic. In this ‘‘tolerant’’ geometry [45],
intersections with boundaries less than the toler-
ance from the current point are ignored if the
direction of the particle is away from the

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 273

boundary. The thickness (or tolerance) is chosen
to be very small compared to detector features but
much larger than the expected arithmetic errors.
Note that the internal unit of length can be chosen
at compile time (see Section 2.2) so that this
condition can generally be satisfied.
The number of steps a particle must take to

traverse a detector is therefore much reduced.
However, in order to traverse a detector model
geometry efficiently, it is also critical to reduce the
number of candidate volumes for which intersec-
tions have to be calculated and Geant4 has
adopted an optimisation technique which is
described next.

4.4.1. Tracking optimisation

While tracking through the detector, a particle
may encounter any one of several detector
parts at each step. Calculating the intersection of
a track with every daughter volume at each
tree level would be extremely inefficient. Different
methods, some inspired by techniques used
in ray tracing, to lower the number of candidate
volumes to be tested for intersection, have been
evaluated.
The technique of virtual divisions, like the one

adopted in GEANT3, consists of having mother
volumes sliced evenly along one axis into sections.
Each section stores pointers to the sub-volumes it
contains, compressed by bunching together com-
mon lists. This scheme works well in a hierarchical
detector description, where the number of daugh-
ter volumes at each node is small. It will fail for a
‘‘flat’’ geometry, i.e., where many volumes are
placed at the top or high level node without regard
to relationship, as might happen for geometries
imported from a CAD system, particularly if the
level of detail varies with position.
Other techniques based on fixed or variable grids

were investigated. Each cell of the grid stores a list
of pointers to the volumes intersected. The
contents of each cell can be determined entirely
at initialisation time, based on the bounding box
of each volume. Fixed size grids have the
disadvantage of memory consumption for fine
granularity dictated by small detector components.
The use of variable grids would overcome this
problem but would make the testing of intersec-

tions and the determining of which cell a particle is
inside more complex.
In Geant4 we have devised a new technique

derived from the voxel based method, used in ray
tracing, where space is subdivided into cubic
volume elements (voxels) and a tree based map is
created by recursively dividing the detector into
octants. This traditional voxel based technique
retains the disadvantage of grid based methods in
that every voxel intersected along the particle’s
trajectory must be tested for intersection of its
contents. In Geant4’s smart voxels technique [46],
for each mother volume, a one-dimensional virtual
division is performed. The best axis for the virtual
division is chosen by using an heuristic. Subdivi-
sions (slices) that contain the same volumes are
gathered into one in order to optimise memory
and performance (see Fig. 4).
Each division containing too many volumes is

then refined by applying virtual division again,
using a second Cartesian axis. If the resultant
subdivisions still contain too many volumes, a
further refinement can be performed by dividing
again along a third Cartesian axis.
For a hierarchical detector description the

mother volume local coordinate system is usually
a sufficient guide to the choice of voxel decom-
position axes. For a ‘‘flat’’ geometry, the smart
voxels technique produces a simple virtual division
if volumes are regular placed or a tree up to three
levels deep if it contains many volumes of different
sizes and placements.
Smart voxels are computed at initialisation time

and do not require large memory and computing
resources. At tracking time the searching is done in
the hierarchy of virtual divisions. This method for
tracking has been found to be very efficient.
Also it very much reduces the need to tune the
detector description, since the performance in
inadvertent or unavoidable ‘‘flat’’ regions of an
otherwise hierarchical description is not much
compromised.

4.4.2. Transportation in a field

Charged particles moving in a field do not
follow linear trajectories between interactions. In a
uniform magnetic field their trajectories are helical
(in the approximation of small energy loss), while

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303274

in non-uniform fields they are curves that, in most
cases, cannot be described analytically.
Propagation in the detector thus involves two

tasks: first the calculation of the trajectory
(numerically if the field is non-uniform) and
then the finding of its intersection with volume
boundaries.
We solve the particle’s motion using a selection

of methods, the majority involving Runge–Kutta
integration. The default method is a fourth order
Runge–Kutta, while lower order methods are
available for fields that are not smooth enough
and higher order methods are available for fields
that are smooth and do not vary greatly.
Furthermore, for magnetic fields in particular, a

new set of integration methods has been created
that combines Runge–Kutta and the known
helical solution for uniform fields. Here the
‘‘baseline’’ linear solution of first order Runge–
Kutta solution is replaced with a helical one in a
scheme similar to the implicit or explicit Euler
schemes of Runge–Kutta.
These new integration methods have the ability

to integrate over a large number of ‘‘turns’’ of a
near-helical path in an almost uniform field. Thus
they are best suited for fields that are nearly
uniform and reasonably smooth. In these circum-
stances, and for particles whose motion takes them
over several to thousands or more ‘‘loops’’ or

turns of a helix, these new methods can offer a
large performance benefit compared to ‘‘ordinary’’
Runge–Kutta methods, while taking into account
field variations.
To calculate the intersection with volume

boundaries we split the curved path into sections
and approximate each section by its chord. The
algorithm’s accuracy and performance is con-
trolled by a set of parameters, which can be
specified by the user. The sections are chosen so
that the maximum estimated separation between
the real (curved) path and the corresponding chord
is smaller than the ‘‘miss-distance’’ parameter. The
chord is then used to test for intersection with the
boundary of a volume and, of course, it might miss
where the curved track would intersect. However
the maximum depth in that ‘missed-volumed’ that
is entered by the curved track should be no less
than the ‘‘miss-distance’’.
Once a candidate intersection is found, it is

refined to within a distance defined by another
accuracy parameter. Currently the final intersec-
tion point is taken to lie on the chord. Thus the
intersection accuracy parameter must be chosen
carefully to limit the systematic error in tracks
whose position is measured accurately, else recon-
structed momenta will be influenced by this error.
The effects of a particle’s motion on the

precession of its spin angular momentum in slowly

ARTICLE IN PRESS

Fig. 4. Smart Voxels. A mother volume with divisions along the horizontal axis. Each one of these slices has an independent set of

vertical divisions (voxels). Here, the first one from the left is shown.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 275

varying external fields are simulated. The relati-
vistic equation of motion for spin is known as the
BMT equation [47]. The equation demonstrates a
remarkable property; in a purely magnetic field, in
vacuum, and neglecting small anomalous magnetic
moments, the particle’s spin precesses in such a
manner that the longitudinal polarization remains
a constant, whatever the motion of the particle.
But when the particle interacts with electric fields
of the medium and multiple scatters, the spin,
which is related to the particle’s magnetic moment,
does not participate, and the need thus arises to
propagate it independent of the momentum
vector. In the case of a polarized muon beam,
for example, it is important to predict the muon’s
spin direction at decay-time in order to simulate
the decay electron (Michel) distribution correctly.

4.5. Priority control of tracks

Since the tracks are represented by C++
objects, it is quite straightforward to use standard
containers to stack them. Event handling in
Geant4 has three stacks (by default), namely
‘‘urgent’’, ‘‘waiting’’ and ‘‘postpone to next
event’’. Each is a simple first-in-last-out stack.
In the former GEANTA3, there was only one

stack and each track was assigned a priority. For
every pop request it was necessary to scan for a
track with the highest priority, a rather heavy
procedure once many secondaries were stacked.
In Geant4, priorities can be controlled easily by

using the two stacks ‘‘urgent’’ and ‘‘waiting’’. A
user simply chooses in which stack to store the
newly pushed track by implementing, instantiating
and registering a concrete derivative of G4User-
StackingAction. When the ‘‘urgent’’ stack be-
comes empty, the user code is notified so that the
current event can be examined to see if it is worth
continuing to simulate or whether it is better to
abort. If continuing, tracks in the ‘‘waiting’’ stack
are re-examined and some or all are transferred to
the ‘‘urgent’’ stack for the next stage of simulation.
This continues recursively until the event is
complete or aborted. Not only the speed of
popping the track with the highest priority but
also the capability of easy abortion of uninterest-

ing events make the simulation much more
powerful.

4.6. Hits and digitisation

4.6.1. Detector sensitivity

In Geant4, a hit is a snapshot of a physical
interaction or an accumulation of interactions of a
track or tracks in a ‘‘sensitive’’ detector compo-
nent. On the other hand, the term digit represents a
detector output, for example, an ADC/TDC count
or a trigger signal. A digit is created from one or
more hits and/or other digits. Given the wide
variety of applications of Geant4, how to describe
the detector sensitivity and the quantities a user
needs to store in the hit and/or digit vary greatly.
Thus Geant4 provides only the abstract classes
for both detector sensitivity and hit/digit.
Each logical volume can have a pointer to a

sensitive detector, which is an object of a user class
derived from the abstract base class G4VSensiti-
veDetector. A sensitive detector creates hits using
the information given in the current step. The user
has to provide his/her own implementation of the
detector response. Hits, which are user-defined
objects derived from class G4VHit, are collected in
an event object. At tracking time, when the step is
inside of a volume which has a pointer to a
sensitive detector, this sensitive detector is invoked
with the current step information.
In contrast to sensitive detector, which is

invoked automatically at tracking time, the
digitisation module must be invoked by the user’s
code. Digitisation may be done during event
processing, at the end of each event, and/or even
after some number of events had been processed to
simulate ‘‘pile-up’’.

4.6.2. Readout geometry

In some cases, the readout segmentation can be
different to the geometrical structures of the
detector. For example, the user may implement a
detailed sandwich structure of a sampling calori-
meter, while the readout collects the energy
deposition of some of the layers. The readout

geometry is an artificial geometry which can be
associated with a sensitive detector. Each sensitive

detector can have its own readout geometry. (Note

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303276

that the transportation process does not see the
volume boundary of readout geometry and thus a
step does not end at the boundary of readout

geometry.) Once a step belongs to a sensitive

detector, geometrical information of both the
‘‘real’’ tracking and the readout geometry geome-
tries are available to the sensitive detector.

5. Physics processes

5.1. Scope

The Geant4 toolkit contains a large variety of
complementary and sometimes alternative physics
models covering the physics of photons, electrons,
muons, hadrons and ions from 250 eV up to
several PeV. The hierarchical structure of the
processes category was introduced in Sections 2.3.4
and 4.3. There are seven major sub-categories—
electromagnetic, hadronic, transportation, decay,
optical, photolepton hadron, and parameterisation.
The first two, electromagnetic and hadronic, are
further sub-divided, as mentioned in Section 2.3.4
and further described below.
We stress our design goal of achieving openness

of physics implementation. Object-oriented pro-
gramming makes the structure apparent; the result
is a highly granular implementation, each compo-
nent of which can be inspected at source code
level. The abstract interface common to all
processes makes the tracking independent from
the type of process. This, together with the
modular architectural framework, also allows the
continuous development of new models without
affecting the previous code.

5.2. Processes and models

For a particle interaction or decay it is useful to
distinguish between the process, i.e., a particular
initial and final state, which therefore has a well-
defined cross-section or mean-life, and the model

that implements the production of secondary
particles. It allows the possibility of offering
multiple models for the same process. One way
this is exploited was described in outline in Section
2.3.4 and further examples are given below.

5.3. Interactions and decays

A particle in flight is subject to many competing
processes. Moreover, in a real detector, it will
often travel through many regions of different
materials, shapes and sizes before interacting or
decaying. In simulation, the particle proceeds in
steps, and we have to find an efficient and
unbiased way of choosing what limits the step
and, if the particle continues, of updating the
parameters for the next step.
Let us consider the interaction or decay of a

particle in flight. (Similar considerations apply to a
particle at rest.) Firstly, we calculate a distance to
the point of interaction or decay. This is char-
acterised by the mean free path l: The probability
of surviving a distance c is

PðcÞ ¼ e�nl ;

where nl ¼
R c
0
dc=lðcÞ:

For a decay, l ¼ gvt; where v is the velocity and
t the mean life. For an interaction, if the cross-
section on isotope i of mass mi that has fraction xi

by mass in the current material of density r is si;
then 1=l ¼ rSifxisi=mig: We must keep in mind
that l varies as it looses energy and changes
discontinuously at a geometrical boundary.
The key point to note is that the probability

distribution of nl is a simple exponential indepen-
dent of material and energy. So, at the point of
production of the particle we set

nl ¼ �ln Z;

where Z is a random number uniformly distributed
in the range ð0; 1Þ; and this is used to determine the
distance to the point of interaction or decay in the
current material. This information from all pro-
cesses for the particle (each process using a
different random number, of course) is used to
decide what happens.

5.4. Deciding which process limits the step

Processes other than interaction or decay also
compete to limit the step. Continuous energy loss

may limit the step to preserve precision. Also,
transportation insists that the step should not cross

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 277

a geometrical boundary. The user can also request
a maximum allowed step.
The process which returns the smallest distance

is selected and its post step action is invoked. If this
is an interaction or decay, the particle is killed and
secondaries are generated. If not, the particle gets
another chance to interact or decay; nl for each
process is decremented by an amount correspond-
ing to the step length and the whole algorithm is
repeated at the next step.

5.5. Decay processes

Class G4Decay implements at rest and post-step

actions for decay at rest and in flight respectively.
It chooses a decay time or path according to the
above algorithm. It also chooses a decay mode
from the branching ratios in the decay table for the
particle. (The user has, nevertheless, the freedom
to fix the proper decay time and decay mode of
primary particles.) Geant4 provides default decay
tables for most particles, such as p;Kmesons, S; L
hyperons and resonant baryons, based on data
from the Particle Data Group [48].
There are many models for determining the

distribution of secondaries, for example V-A
theory for muon decay, Dalitz theory for p0 decay,
or simple phase space. In Geant4, concrete classes
derived from G4VDecayChannel are implemented
for specific models and attached to each decay
mode.
Decays of heavy flavour particles, such as B

mesons, are very complex, with many decay modes
and decay mechanisms. Geant4 does not attempt
to model these but provides two ways of dealing
with them that take advantage of external event
generators. In the first way, the external decayer

approach, the G4VExtDecayer class provides an
interface to the external package that decides the
decay mode and secondary particle momenta.
This activated by attaching a concrete implemen-
tation of this class to the G4Decay object of that
particle.
The second way, the pre-assigned decay mode

approach, decays of heavy particles are simulated
by the primary event generator, which attaches
these daughter particles to the parent using the
PreAssignedDecayProducts method of G4Dyna-

micParticle. G4Decay adopts these pre-assigned
daughter particles instead of asking G4VDecay-

Channel to generate the decay products.

5.6. Electromagnetic processes

The range of available electromagnetic processes
is extensive. Whenever available, use is made of
the public evaluated databases distributed by a
variety of international sources; this contributes to
the reliability and openness of the physics im-
plementation.
Geant4 electromagnetic physics is usable in a

wide variety of simulation domains; a selection
of applications and results can be found in
Refs. [49–51].

5.6.1. Standard electromagnetic processes

Geant4 standard electromagnetic physics pro-
vides a variety of implementations of electron,
positron, photon and charged hadron interactions.
Photon processes include Compton scattering, g-
conversion into electron and muon pairs [52] and
the photo-electric effect. Electron/positron pro-
cesses handle bremsstrahlung, ionisation and d-ray
production, positron annihilation and synchrotron
radiation. The energy loss process manages the
continuous energy loss of particles due to ionisa-
tion and bremsstrahlung. A significant feature of
this is an algorithm [53] which can generate low
energy d-rays only near the boundaries of volumes,
which can lead to an improved performance while
keeping the quality of physics. The ionisation and
energy loss of hadrons has several models to
choose from, including Photo-Absorption Inter-
action (PAI) [54].
The Geant4 multiple scattering process can

handle all charged particles. It is based on a new
model that simulates the scattering of the particle
after a step, computes the mean path length
correction and the mean lateral displacement. Its
performance is compared to GEANT3 and experi-
mental data in Fig. 5.
A radial shower profile resulting from Geant4

standard electromagnetic physics processes is
compared to GEANT3 and experimental data in
Fig. 6.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303278

Standard electromagnetic processes average the
effects of the shell structure of atoms and cannot
expected to simulate details below 1 keV:

5.6.2. Range cuts

In Geant4, charged particles are tracked to the
end of their range. However, for performance,
when generating the particles produced in an
interaction, a process may, optionally, choose to
suppress particles whose range, as defined below,
would be less than a user-defined value that we
name the range cut. In this case the process must
add the energy of the particle to the energy
deposited during or at the end of the step.
Range is used, rather than energy, as a more

natural concept for designing a coherent policy for
different particles and materials. For photons, the
absorption length defines the cut—see Section
5.6.3.
For some processes, such as d-ray and brems-

strahlung production, the use of a cut is not an
option but a necessity, in order to suppress the
generation of large numbers of soft electrons and
gammas. The energy of non-produced particles is

transferred from the discrete component of a
process to the continuous (along-step) component.
This also means that the interaction length also
depends on the cut.
All this needs a fast way of finding the range of

charged particles and the absorption length of
photons in each material; Section 5.6.3 describes
this in more detail.
For electromagnetic physics it is important to

have a range cut which is uniform across particles
and materials in order to design a coherent set of
processes. We use range to ensure uniformity
between different particles (in particular between
electrons and photons). This production threshold
concept is used by the electromagnetic processes,
in particular by ionisation and bremsstrahlung.

5.6.3. Range and absorption length tables

In order to implement the range cut policy
described in Section 5.6.2, the relevant electro-

ARTICLE IN PRESS

radial energy profile (% of E inc)

H2O e- 1 GeV G4-G3-data comparison

10

102

103

0 0.1 0.2 0.3 0.4 0.5 0.6

G4

G3
data

R/Radl

(1
/E

0)
(d

E
/d

R
ad

l)

10

102

103

cumul radial energy dep (% of E inc)

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7

G4
G3
data

R/Radl

E
cu

m
ul

/E
0

0

100

Fig. 6. Radial shower profile of E0 ¼ 1 GeV pencil electron
beam in a cylinder of water, length 10 radiation lengths, radius

0.7 radiation lengths. The radial profile is the relative energy

deposited per radiation length of radius. The cumulative profile

is the energy deposited within a cylinder of given radius (the

binning is 0.1 radiation lengths). Comparisons of Geant4,

GEANT3 and measurements are from [56]. G3 and G4 results

are nearly identical.

Angular distribution (6.56 MeV proton, 92.6 micrometer silicon)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

G4

G3

angle (deg)

dN
/d

 (
co

st
he

ta
)

Fig. 5. Multiple scattering of 6:56 MeV protons by 92:6 mm of
silicon: the angular distribution of exiting protons. Comparison

of Geant4, GEANT3 and data from [55]: G3 and G4 results

are nearly identical, except at small angle.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 279

magnetic processes produce range-energy and
absorption length-energy tables for each material
for use by all processes. The range is computed by
numerical integration of energy loss for electrons/
positrons, muons, protons and antiprotons. The
range for other charged hadrons is computed from
the proton table by using the scaled kinetic energy
Ts ¼ Tmp=m; where T is the particle kinetic
energy, m is the particle mass and mp is the proton
mass, which is the energy of a proton with the
same velocity as the tracked particle. This
approach can be used because ionisation losses
depend only on the velocity.
For bremsstrahlung, a cut based on the absorp-

tion length for photons is approximated as
described below.
The energy loss processes for eþ=e�; mþ=m�

and charged hadrons are very similar, so
it is quite natural to have a common description
for them.

5.6.4. Energy loss of electrons/positrons

The G4VeEnergyLoss class computes the con-
tinuous energy loss of electrons and positrons. The
continuous energy loss is calculated as a sum of the
contribution of the different processes. At present
there are two processes contributing to the
continuous energy loss, they are: the ionisation
process (class G4eIonisation) and the brems-
strahlung process (class G4eBremsstrahlung).
G4eIonisation calculates the contribution due
to ionisation and simulates the ‘‘discrete’’ part of
the ionisation—Moller and Bhabha scattering or
d-ray production. G4eBremsstrahlung computes
the energy loss due to soft bremsstrahlung and
simulates ‘‘discrete’’ or hard bremsstrahlung.
The G4VeEnergyLoss class also constructs en-

ergy loss and range tables for every material. First
the energy loss tables are constructed and filled,
simply summing the contributions computed for
ionisation and bremsstrahlung. After this, it
creates range tables and their inverses for eþ=e�

for every material. All the tables are constructed at
the beginning of a Geant4 run, at initialisation
time. Later, during the simulation, the energy loss
process performs two tasks: it imposes a limit on
the step size of the particle and computes the
energy loss during a step travelled by the particle.

The computation of the mean energy loss during
a step uses the dE=dx and inverse range ðTðrÞÞ
tables. The mean loss is

DT ¼ Tðr0Þ � Tðr0 � sÞ;

where r0 is the range at the beginning of the step of
length s: For sokr0; where k is an arbitrary
parameter (the linear loss limit), an approximation
is used:

DTEs
dE

dx

�
�
�
�

�
�
�
�:

After the mean energy loss has been calculated, the
process computes the actual energy loss, i.e., the
loss with fluctuation. The fluctuation is computed
in the fluctuation model GLANDZ [57], also used
in the GEANT3 code.

5.6.5. Energy loss of muons

The energy loss of muons is computed by the
class G4VMuEnergyLoss. The scheme is the same as
in the case of eþ=e�; except that now there are
three processes contributing, namely the ionisation
process (class G4MuIonisation), the bremsstrah-
lung process (class G4MuBremsstrahlung) and the
direct production of eþ=e� pairs (class G4MuPair-
Production). They each also simulate the corre-
sponding discrete processes—d-ray production,
hard bremsstrahlung and hard direct eþ=e� pair
production, respectively.

5.6.6. Energy loss of charged hadrons

The continuous energy loss of charged hadrons
is calculated by the class G4VhEnergyLoss. Here
there is only one process which contributes,
namely ionisation (class G4hIonisation), which
also simulates the discrete process of hard d-ray
production.

5.6.7. Bremsstrahlung

In Geant4, the user specifies the cuts for the
suppression of soft particles as a distance. This is
straightforwardly interpreted as a range for d-rays,
as described above; for bremsstrahlung we inter-
pret it as follows. We use the fact that, to a good
approximation at low energies, averaging over
atomic shell effects, the absorption length de-
creases as energy decreases. In each material, a cut

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303280

is established at an energy such that five absorp-
tion lengths equals the user defined distance cut.
Only e�5E0:7% of suppressed photons of cut
energy, and a lesser proportion for photons for
lower energy, would travel further than the user
defined distance cut. We thus obtain an approx-
imate correspondence between the delta-ray and
bremsstrahlung cuts.
An approximate empirical formula is used to

compute the absorption cross-section of a photon
in an element. The absorption cross-section means
here the sum of the cross-sections for gamma
conversion, Compton scattering and the photo-
electric effect. These processes are the ‘‘destruc-
tive’’ processes for photons, i.e., they destroy the
photon or decrease its energy. (Coherent or
Rayleigh scattering only changes the direction of
the gamma, so its cross-section is not included.)

5.6.8. Multiple scattering

The G4MultipleScattering class simulates the
multiple scattering of charged particles in material.
It simulates the scattering of the particle after a
given step, computes the mean path length
correction and the mean lateral displacement.
However, it uses a new multiple scattering model
[60] which does not use the Moli"ere formalism.
Liljequist et al. [61] have calculated tables of

parameters for electrons and positrons in the
kinetic energy range 0:1 keV to 20 MeV in 15
materials. Our model uses these values, corrected
for a nuclear size effect, with an appropriate
interpolation or extrapolation in the atomic
number and in the velocity of the particle when
necessary.

5.6.9. Low energy extensions

A set of physics processes is implemented in
Geant4 to extend the range of validity of
electromagnetic interactions down to lower energy
than the standard electromagnetic processes. The
currently available extensions cover processes for
electrons, photons, positive and negative charged
hadrons and positive ions; further extensions to
cover positron and negative ion interactions are in
progress. The current implementation of low
energy electron and photon processes [62] can be
used down to 250 eV:

The low energy package includes the photo-
electric effect, Compton scattering, Rayleigh
scattering, bremsstrahlung and ionisation; for
completeness, a photon conversion process has
also been implemented and based on the same data
sources as the other low energy ones. In addition,
fluorescence emission from excited atoms is also
generated; the implementation of the Auger effect
is in progress. The implementation of electron and
gamma processes is based on the exploitation of
evaluated data libraries (EPDL97 [63], EEDL [64]
and EADL [65]) that provide data for the
determination of cross-sections and the sampling
of the final state. A simulation based on Geant4
low energy processes for photons and electrons is
compared with experimental data in Fig. 7, with
evidence of shell effects.
A low energy process is also available to handle

the ionisation by hadrons and ions [67,68]. It
adopts different models depending on the energy
range and the particle charge. In the high energy
ð> 2 MeVÞ domain the Bethe-Bloch formula and in
the low energy one (o1 keV for protons) the free

ARTICLE IN PRESS

photon transmission, Al 1 mum

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

data

GEANT4

energy(keV)

Fig. 7. Comparison of the Geant4 low energy photon

simulation and experimental data, showing relevance of shell

effects: photon transmission in 1 mm Al; data from [66].

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 281

electron gas model are applied respectively. In the
intermediate energy range parameterised models
based on experimental data from the Ziegler [69]
and ICRU [70] reviews are implemented; correc-
tions due to the molecular structure of materials
[71] and to the effect of the nuclear stopping power
[70] are taken into account. The Barkas effect is
described by means of a specialised model Fig. 8
shows a comparison with experimental data
for ions.

5.7. Photo- and electro-production of hadrons

Geant4 includes photonuclear and electronuc-
lear reactions which convert the energy flow of
electrons, positrons and photons into the energy
flow of mesons, baryons and nuclear fragments
[58]. In the nuclear giant resonance region the
cross-section of the photonuclear process is
comparable with the other electromagnetic pro-
cesses. At high energies, because of the Froissart
increase of interaction cross-sections and large
energy transferred to nucleus, this kind of reaction
can be very important [59].

The electronuclear reactions use the equivalent
photon method [58]. Approximation of structure
functions of nucleons and simulation of DIS
reactions are under development.

5.8. Muo-production of hadrons

Geant4 also provides the nuclear interaction of
muons with production of hadrons. This is
important for the simulation of detector response
to high energy muons, muon propagation and
muon-induced hadronic background at energies
above 10 GeV and relatively high energy transfers,
in particular in light materials [60]. The average
energy loss for this process increases almost
linearly with energy, and at TeV muon energies
constitutes about 10% in standard rock. Extension
to lower energies, starting from the nuclear
disintegration threshold, on the basis of the
equivalent photon method [58], is under develop-
ment.

5.9. Hadronic processes

The basic requirements on the physics modelling
of hadronic interactions in a simulation toolkit
span more than 15 orders of magnitude in energy.
The energy ranges from thermal for neutron cross-
sections and interactions, through 7 TeV (in the
laboratory) for LHC experiments, to even higher
for cosmic ray physics. In addition, depending on
the setup being simulated, the full range or only a
small part might be needed in a single application.
The complex nature of hadronic showers
and the particular needs of the experiment require
the user to be able easily to vary the models for
particular particles and materials depending on the
situation.
For calorimeter simulation at colliders, for

example, pion nuclear interactions are fundamen-
tal, and leading particle effects, transverse mo-
mentum distributions, inclusive cross-sections, and
the prediction of nuclear excitation energies largely
define the quantities of interest for measurement
and detector design. When simulating back-
grounds in the muon systems of the large LHC
experiments, critical items are the production of
muons in hadronic showers, as well as the

ARTICLE IN PRESS

log10(Ekin/M(MeV/amu))

dE
/d

x
(M

eV
/(

m
g/

cm
2))

Ion Ionisation Losses in Aluminum

12C

40Ar

0

10

20

-3 -2 -1 0 1 2 3

Fig. 8. Stopping power of Carbon and Argon ions in

aluminium as a function of the ion energy. Curves are Geant4

simulation, points are evaluated data based on Ref. [72].

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303282

simulation of punch-through and low energy
neutron interactions. When studying the impact
of a neutron irradiated gadolinium rod on a
tumour, precise Doppler broadening of cross-
sections and energy distributions of the capture
photons are vital.
A simulation tool-kit is therefore required to

include the calculation of cross-sections for the
scattering of any incident meson or baryon (having
a mean-life long enough for interactions to be non-
negligible) off any stable or long lived nuclear
isotope target and to include models of these
interactions. Lepton-nucleus scattering should also
be included. A good toolkit will offer flexible
choice of alternative cross-section algorithms and
interaction models that the user can choose
according to his computer memory and
performance and his needed precision. The
ability of the expert user to extend or adapt the
provided set of models is also a fundamental
requirement.
Of this huge domain of energy, incident particle,

target isotope and level of precision, much is
already available in the standard distribution. The
hadronic process category comprises several fa-
milies of classes: processes which define each
possible process and provide connections to the
underlying cross-sections and models which im-
plement the process; management, containing
classes which abstract some common properties
of hadronic interactions and provide steering
mechanisms for the application of appropriate
interaction models; cross-sections which encapsu-
late all cross-section data and associated calcula-
tion methods for computing the occurrence of
processes; stopping processes, a distinct category
for particles stopping or at rest; models, each of
which implements the final state generation of a
particular process or a set of processes for a
particle or class of particles within a specified
energy range; and utility classes which provide
various standardised computational methods for
use by the models.
Within the models category are a number of sub-

systems: low energy, high energy, generator, neu-

tron hp, radiative decay, etc., organised according
to energy range, methodology, reaction type, and
so on. This large array of models, many newly

developed or adapted for Geant4, is the result of a
wide-ranging development effort with many con-
tributors. As a result of the design of the process
management and steering facilities, a set of models
for a given application can be chosen with great
flexibility, combining broadly-applicable models
with specialised ones in a well-defined way and
invoking the appropriate model for a given
interaction depending on particle types, energy
ranges, and other characteristics.

5.9.1. Interaction cross-sections

The total cross-sections for inelastic scattering,
capture of neutral particles, induced fission and
elastic scattering have been carried over from
GEANTA3. The software design in Geant4
allows one to overload these defaults with
specialised data-sets. Custom data sets are pro-
vided for proton induced reactions [73] and
neutron induced reactions [74] at particle energies
below 20 GeV; and ion spallation reactions [75], as
well as neutron interactions at energies below
20 MeV:

5.9.2. Modelling final states

Three classes of models are distinguished for
modelling final states. There are models that are
largely based on evaluated or measured data,
models that are predominantly based on para-
meterisations and extrapolation of experimental
data under some theoretical assumptions, and
models that are predominantly based on theory. In
the following, we describe the usage of data driven,
parameterisation driven and theory driven model-
ling approaches in Geant4.

Data driven models. When experimental or
evaluated data are available with sufficient cover-
age, the data driven approach is considered to be
the optimal way of modelling. Data driven
modelling is used in the context of neutron
transport, photon evaporation, absorption at rest,
calculation of inclusive cross-sections, and isotope
production. We also use data driven modelling in
the calculation of the inclusive scattering cross-
sections for hadron nuclear scattering. Limitations
exist at high projectile energies, for particles with
short life-times, and for strange baryons, as well as
the K0 system. Theory based approaches are

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 283

employed to extract missing cross-sections from
the measured ones, or, at high energies, to predict
these cross-sections.
The main data driven models in Geant4 deal

with neutron and proton induced isotope produc-
tion, and with the detailed transport of neutrons at
low energies. The codes for neutron interactions
are generic sampling codes, based on the ENDF/
B-VI data format [18], and evaluated neutron data
libraries such as ENDF/B-VI [76], JENDL3.2 [77],
and FENDL2.2 [78]. Note that any combination
of these can be used with the sampling codes. The
approach is limited by the available data to
neutron kinetic energies up to 20 MeV; with
extensions to 150 MeV for some isotopes.
The data driven isotope production models that

run in parasitic mode to the transport codes are
based on the MENDL [79] data libraries for
proton and neutron induced production. They
complement the transport evaluations in the sense
that reaction cross-sections and final state
information from the transport codes define
the interaction rate and particle fluxes, and the
isotope production model is used only to predict
activation.
The data driven approach is also used to

simulate photon evaporation at moderate and
low excitation energies, and for simulating radio-
active decay. Both codes are based on the ENSDF
[80] data of nuclear levels, and transition, conver-
sion, and emission probabilities. The decay of
almost three thousand nuclide species are covered,
and all emitted a; b; n and %n particles can be
tracked by Geant4 and their interactions simu-
lated. Since the residual nucleus is often in an
excited state, the isomeric transitions are treated
using the photo-evaporation classes in Geant4,
including the treatment of internal conversion and
atomic de-excitation following decay and/or eva-
poration. In the case of photon evaporation the
evaluated data are supplemented by a theoretical
model (giant dipole resonance de-excitation) at
high excitation energies.
Finally, data driven modelling is used in the

simulation of the absorption of particles coming to
a rest, mainly for m�; p�; K�; and %p; in order to
describe the fast, direct part of the spectrum of
secondaries, and in the low energy part of the

modelling of elastic scattering final states in
scattering off hydrogen.

Parameterised models. Parameterisations and
extrapolations of cross-sections and interactions
are widely used in the full range of hadronic
shower energies, and for all kinds of reactions. In
Geant4, models based on this paradigm are
available for low and high particle energies
respectively, and for stopping particles. They are
exclusively the result of re-writes of models
available from GEANTA3, predominantly GEI-
SHA [81]. They include induced fission, capture,
and elastic scattering, as well as inelastic final state
production.

Theory based models. Theory based modelling is
the basic approach in many models that are
provided by Geant4 or are under development.
It includes a set of different theoretical approaches
to describing hadronic interactions, depending on
the addressed energy range and computing per-
formance needs.
Parton string models for the simulation of high

energy final states ðECMS > Oð5 GeVÞÞ are pro-
vided and in continuous development. The most
recent addition was the modelling of gamma and
electro nuclear reaction final states based on this
theory. Both diffractive string excitation and dual
parton model [82] or quark gluon string [17] model
are used. String decay is generally modelled using
well established fragmentation functions [83]. The
possibility of using quark molecular dynamic [84]
is still in preparation.
Below 5 GeV centre of mass energy, intra-

nuclear transport models are provided. For
cascade type models, a re-write of HETC [85]
and INUCL [86] is available, as well as an
implementation of a time-like, binary cascade
[87]. For quantum molecular dynamics models,
an enhanced version of UrQMD [88] is still in
preparation.
Note that the cascade models, with the excep-

tion of binary cascade, are based on average
geometrical descriptions of the nuclear medium,
and take effects like Pauli-blocking, coherence
length and formation times into account in an
effective manner. Scattering is done as in the
QMD model, with the possibility of using identical
scattering implementations. The QMD models

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303284

calculate the interaction Hamiltonian from two-
and three-body interactions of all particles in the
system, and solve the Newtonian equations of
motion with this time-dependent Hamiltonian
numerically. Scattering is done using smeared
resonance cross-sections, taking Pauli’s principle
into account by investigating local phase-space.
The approach promises to give all correlations in
the final state correctly, and has no significant
limitations in its applicability at low energies. It is
very CPU expensive.
At energies below Oð100 MeVÞ we provide the

possibility of using exciton based pre-compound
models [89] to describe the energy and angular
distributions of the fast particles, and of softening
the otherwise too steep behaviour of the quasi-
elastic peaks. In this area two models are released.
The last phase of a nuclear interaction is nuclear

evaporation. In order to model the behaviour of
excited, thermalised nuclei, variants of the classical
Weisskopf–Ewing model [90] are used. Specialised
improvements such as Fermi’s break-up model [91]
for light nuclei, and multi-fragmentation [92] for
very high excitation energies are employed. Fission
[93], and photon evaporation [60] can be treated as
competitive channels in the evaporation model.
Internal conversion is used as competitive channel
in photon evaporation.
At the end of the reaction chain, the electron

configuration on the residual atom is estimated,
and the necessary atomic relaxation is performed.
As an alternative for all nuclear fragmentation

models, including evaporation models, the chiral
invariant phase space (CHIPS) model [20,21] is
available. It is a quark-level 3-dimensional,
SUð3Þ 	 SUð3Þ symmetric event generator for
fragmentation of excited hadronic [20] and nuclear
[21] systems into hadrons. It is applied to a wide
range of hadron- and lepto-nuclear [22] interac-
tions. It is released in the toolkit as a final state
generator for the reactions of pion capture at rest,
anti-proton capture at rest, as fragmentation
model for photo- and electronuclear reactions,
and as nuclear fragmentation model for residual
nuclei absorbing the soft part of the Quark–Gluon
String or diffractive string.
A theoretical model for coherent elastic scatter-

ing was added recently, using the Glauber model

and a two Gaussian form for the nuclear density.
This expression for the density allows one to write
the amplitudes in analytic form. Note that this
assumption works only since the nucleus absorb
hadrons very strongly at small impact parameters,
and the model describes nuclear boundaries well.
For lepton nuclear interactions, muon nuclear

and electron nuclear interactions are provided.
Here the leptonic vertex is calculated from the
standard model, and the hadronic vertex is
simulated using a suitable set of models from the
above described.

Modelling summary. Already when taking only
the view of the large HEP experiments, it has
become evident that all modeling techniques—
data driven, parameterisation driven, and theory
driven—are necessary to satisfy the needs for
hadronic simulation in an optimal manner. Data
driven modeling is known to provide the best, if
not only, approach to low energy neutron trans-
port for radiation studies in large detectors.
Parameterisation driven modeling has proven to
allow for tuning of the hadronic shower for
particle energies accessible to test-beam studies,
and is widely used for calorimeter simulation.
Theory driven modeling is the approach that
promises safe extrapolation of results toward
energies beyond the test-beam region, and allows
for maximal extendibility and customisability of
the underlying physics.
The use of state of the art software technology is

the key that allows for distributed development of
the physics base of a tool-kit for simulation of
hadronic physics in the Geant4 context. It allows
the work of many experts in the field to be
combined in a coherent manner, and offers the
user the possibility of unifying his/her knowledge
in a single executable program in a manner that is
deemed optimal for a particular problem. This is a
completely new situation. In a very short time it
has lead to an unexpectedly wide range of
modelling possibilities in Geant4, and an unpre-
cedented ease of flexibility of usage of models and
cross-sections.

5.9.3. Sample data driven models

As an example of a data driven model, we briefly
describe the models for neutron and proton

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 285

induced isotope production. These models are
running in parasitic mode to the transport models,
and can be used in conjunction with any set of
models for final state production and total cross-
sections. They have been written to allow for
detailed isotope production studies, covering most
of the spallation neutron and proton energy
spectrum. They are based on evaluated nucleon
scattering data for kinetic energies below 20 MeV;
and a combination of evaluated data and extra-
polations at energies up to 100 MeV: The upper
limit of applicability of the model is 100 MeV
nucleon kinetic energy.
The evaluated data libraries that are the basis of

the Geant4 neutron transport and activation data
library are Brond-2.1 [94], CENDL2.2 [95], EFF-3
[96], ENDF/B-VI.0 [76], ENDF/B-VI.1, ENDF/B-
VI.5, FENDL/E2.0 [78], JEF2.2 [97], JENDL-FF
[77], JENDL-3.1, JENDL-3.2, and MENDL-2 [79].
Our selection was guided in large part by the
FENDL2.0 selection. Additions to and small
modifications of this selection were possible due
to the structure of the Geant4 neutron transport
code and the use of the file system to maximise the
flexibility of the data formats. The inclusion of the
MENDL data sets is fundamental for these models.
Fig. 9 shows an example of the simulated cross-

section in comparison to evaluated data from the
MENDL collection, using 106 events at each
energy. A systematic error of 15% was added to
the simulation results to take the error in the
extrapolation of the total cross-sections into
account. For a complete description and more
comparisons, see Ref. [98].

5.9.4. Sample parameterised models

Parameterisation based models have been found
to be very powerful in the case of calorimeter
simulation. Without giving a detailed description
of these models, we want to illustrate the
predictive power for the case of high energy
models in Fig. 10 for production of neutral pions
in interactions of kaons and pions with gold and
aluminum.

5.9.5. Sample theory driven models

Given that the chiral invariant phase-space
decay model CHIPS is a rather new invention

and is researched only within Geant4, we choose
this as an example for a theory based model.
CHIPS is a quark-level 3-dimensional event
generator for fragmentation of excited hadronic
systems into hadrons. An important feature is the
universal thermodynamic approach to different
types of excited hadronic systems including
nucleon excitations, hadron systems produced in
eþe� interactions, high energy nuclear excitations,
etc. Exclusive event generation, which models
hadron production conserving energy, momen-
tum, and charge, generally results in a good
description of particle multiplicities and spectra
in multi-hadron fragmentation processes. To
illustrate the predictive possibilities of this ansatz,
we show a comparison between CHIPS predictions
and measurement in the case of proton anti-proton
annihilation in Fig. 11. For details of the model see
Refs. [20–22].

5.10. Optical processes

Geant4 is an ideal framework for modelling the
optics of scintillation and Cherenkov detectors
and their associated light guides. This is founded
in its unique capacity of commencing the simula-
tion with the propagation of a charged particle
and completing it with the detection of the ensuing
optical photons on photo-sensitive areas, all with-
in the same event loop.
A photon is called optical when its wavelength is

much greater than the typical atomic spacing.
In Geant4 the concept of optical photons is a
class of particles detached from their higher
energy gamma cousins. This implementation al-
lows processes to be associated to them arising
from the wave like property of electromagnetic
radiation.
The catalog of processes at optical wavelengths

includes refraction and reflection at medium
boundaries, bulk absorption and Rayleigh scatter-
ing. The optical properties of the medium which
are key to the implementation of these types of
processes are stored as entries in a properties table
linked to the material in question. They can be
expressed as a function of the photon’s wave-
length.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303286

5.10.1. Cherenkov process

The flux, spectrum, polarization and emission of
this radiation follow well known formulae. The
time and position of Cherenkov photon emission
are calculated from quantities known at the
beginning of the charged particle’s step, which is

assumed to be rectilinear even in the presence of a
magnetic field. The need to suspend the primary
charged particle track arises in the production of
Cherenkov photons because the number of such
photons generated during the length of a typical
step, as defined by energy loss or multiple

ARTICLE IN PRESS

Fig. 9. Isotope production cross-sections for neutron induced production of important isotopes as simulated using the isotope-

production code in Geant4. Large points are simulation results, small points are evaluated data from the MENDL2 data library.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 287

scattering, is often very large. Hence, the tracking
of the Cherenkov radiating particle can be
suspended by putting it on its own stack of

generated secondaries, so that its proteges are
tracked in turn before it is revived and transported
further.

ARTICLE IN PRESS

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d
σ/

d
x[

m
b

]

10
-2

10
-1

1

10

10
2

-- GEANT 3

-- GEANT 4

● data π+p

❍ data K+p

(π,K) → π0X at 250 GeV/c

Fig. 10. Comparison of production cross-sections of neutral pions in kaon and pion induced reactions with measurement [99].

Proton antiproton annihilation at rest

Annihilation Channels with Two-Particle Final States

dN
/N

A
 (

A
nn

ih
ila

tio
n-1

)

CHIPS MCpoints: p
–
p data

Exp. sum of channels = 0.239±0.009
MC sum of channels = 0.17445

10
-5

10
-4

10
-3

10
-2

10
-1

1

5 10 15 20 25 30

Fig. 11. Comparison of the branchings in two particle final states in proton anti-proton annihilation [100] with the predictions of

CHIPS.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303288

5.10.2. Scintillation

Every scintillation material has a characteristic
light yield and an intrinsic resolution, which
generally broadens the statistical distribution,
due to impurities; typical examples are doped
crystals like NaI(Tl) and CsI(Tl). The average
yield can have a non-linear dependence on the
local energy deposition. Scintillating materials also
have emission time spectra with one or more
exponential decay time constants, with each decay
component having its intrinsic photon emission
spectrum. These empirical parameters are particu-
lar to each material and must be supplied by the
user. Geant4 provides a framework in which this
can be done effectively. A Poisson distributed
number of photons is generated according to the
energy lost during the step. The photons originate
evenly along the track segment and are emitted
isotropically with a random linear polarization.

5.10.3. Absorption and Rayleigh scattering

The implementation of optical photon bulk
absorption is trivial in that the process merely
kills the particle. The procedure requires the user
to fill the relevant material property table with
empirical data for the absorption length. The
differential cross-section in Rayleigh scattering is
proportional to the square of the cosine of the
angle between the new photon’s polarization
vector and that of the original photon. The
Rayleigh scattering process samples this angle
accordingly and then calculates the scattered
photon’s new direction by requiring that it be
perpendicular to the photon’s new polarization in
such a way that the final direction, initial and final
polarization are all in one plane.

5.10.4. Reflection and refraction

Before explaining the simulation of reflection
and refraction at medium boundaries, it is
necessary to introduce the concept of optical
surface in Geant4.
The optical boundary process design relies

heavily on the concept of surfaces. The informa-
tion is split into two classes. One class in the
materials category keeps information about the
physical properties of the surface itself, and a
second class in the geometry category holds

pointers to the relevant physical or logical volumes
involved and has an association with the physical
properties class. Objects of the second type are
stored in a related table and can be retrieved by
either specifying the logical volume entirely
surrounded by this surface or the pair of physical
volumes touching at the surface. The former is
called skin surface, while the latter is referred to as
a border surface. The first type of surface is useful
in situations where a volume is coded with a
reflector and is placed into many different mother
volumes. A limitation is that the skin surface can
only have one and the same optical property for all
of the enclosed volume’s sides. The border surface

is an ordered pair of physical volumes, so the user
can choose different optical properties for photons
arriving from different sides of the same interface.
The physical surface object also specifies which

model the boundary process should use to
simulate interactions with that surface. In addi-
tion, the physical surface can have a material
property table all its own. The usage of this table
allows all specular constants to be wavelength
dependent. In case the surface is painted, wrapped
or has a cladding, the table may include the thin
layer’s index of refraction. This allows the simula-
tion of boundary effects both at the intersection
between the medium and the surface layer, as
well as at the far side of the thin layer, all
within the process itself and without invoking
the Geant4 navigator. Combinations of surface
finish properties, such as polished or ground and
front painted or back painted, enumerate the
different situations.
When a photon arrives at a medium boundary

its passage depends on the nature of the two
materials that join at that boundary. The user can
specify the medium boundary as between two
dielectric materials, one dielectric and a metal, or
one dielectric and a black medium. In the case of
two dielectric materials, the photon can be totally
internal reflected, refracted or reflected, depending
on the photon’s wavelength, angle of incidence,
(linear) polarization and the refractive indices
on both sides of the boundary. The photon
can be absorbed by the metal or reflected back
into the dielectric. If the photon is absorbed it
can be detected according to the photo-electron

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 289

efficiency of the metal. Reflection and transmission
probabilities are sensitive to the state of linear
polarization.
The user has two choices in Geant4 for

modelling a realistic surface, either the UNIFIED
model [101] of the DETECT [102] program, or the
original GEANT3 implementation via the GLI-
SUR methods flag. Using GLISUR, the roughness
of a surface is specified by a single parameter,
while with the UNIFIED model a more compre-
hensive description is possible that deals with all
aspects of surface finish and reflector coating.

5.11. Transition radiation

Transition radiation emitted by a relativistic
charged particle crossing an interface between two
materials with different dielectric properties is
implemented as a boundary process. (An alter-
native implementation is described in Section 6.1.)
The class G4ForwardXrayTR is responsible for the
description of X-ray transition radiation (XTR)
photon generation from one interface between two
different materials. One of those material states
should be gas or vacuum. The base class G4Tran-
sitionRadiation consists of methods and data
members which can be used in both optical and X-
ray transition radiations.

6. Additional capabilities

The real power of the object-oriented approach
lies in the ability to extend the basic functionality
either by implementing classes derived from the
kernel base classes or writing ‘‘plug-ins’’ which use
Geant4.
An example of the former, in fact, is the whole

of the physics processes; the kernel is written for
the generic process defined by the abstract inter-
face and any process which conforms to this
interface can be used. Below we describe another
extension, namely to ‘‘parameterised processes’’ or
‘‘fast simulation processes’’, which allows the user
to define what happens when a particular particle
enters a particular volume. All this can happen
without modifying the kernel.

‘‘Plug-ins’’ simply use Geant4. In this category
are user interfaces, visualization and analysis,
described in Section 7 and persistency, described
below. Like processes, these are distributed with
Geant4 but, if the user wishes, can be replaced.
This might happen in a large project that has
already defined its software framework and
already made decisions about such functions. It
is a relative straightforward matter to integrate
Geant4 into an existing software framework.

6.1. Parameterisation for fast simulation

Fast simulation or parameterisation allows one
to take over the tracking and implement, for
example, a fast algorithm of detector response.
The typical use case is shower parameterisation
where the several thousand steps per GeV com-
puted in the detailed simulation are replaced by a
few tens of energy deposits [103,104]. Very fast
simulation, in which the tracking is intercepted to
produce reconstructed-like objects, is also useful
[105].
Parameterisation characteristics which have

been identified as impacting the design are:
parameterisations are generally experiment depen-
dent; they take place in an envelope, which is
typically the mother volume of a sub-detector, for
example a calorimeter; they apply to specific
particles types. Parameterisation may also be
required not to trigger in complicated regions,
like module overlaps of a calorimeter, and may
require kinematic criteria, like a sufficiently high
energy, to be valid.
The above requirements have been expressed in

the following way. Parameterisations take place at
tracking time so that access to kinematic and
geometrical information is natural. Parameterisa-
tions compete with the normal tracking; at the
beginning of each step starting inside an envelope,
parameterisations are given a chance to issue a
trigger. If it does so, it is applied, otherwise the
tracking proceeds with a normal step.
Parameterisations are designed as models, ap-

plicable to specific particle types and defining a
trigger method. Geant4 provides an abstract
interface only, since parameterisations are usually
experiment dependent. This interface, G4VFastSi-

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303290

mulationModel, defines three pure virtual meth-
ods IsApplicable, ModelTrigger and DoIt. The
IsApplicable method allows the user to ascertain
for which particle types the model is valid.
ModelTrigger defines the trigger and is the place
where the user makes the decision not to trigger in
complicated regions or in non suited kinematic
ranges. DoIt is the user parameterisation code
proper, invoked if the model has previously issued
a trigger. The DoIt signature is general enough to
change the state of the current particle and to
create secondaries.
The notion of ‘‘envelope’’ has been explicitly

introduced: envelopes are the geometrical regions
where (and only where) parameterisations may
trigger. Envelopes can be defined in two ways.
They can be volumes of the geometry for tracking
or they can be volumes, called ‘‘ghost volumes’’,
independent of that geometry. The former are,
perhaps, more usual while the latter allows a
general envelope definition.
In this latter case, envelopes are volumes that

are ‘‘overlayed’’ on the normal tracking geometry
and an extra navigation method is performed to
check whether the current particle is inside this
volume. This allows one in particular to create
envelopes for geometries produced by CAD
systems, where no hierarchical structure exists.
Those ghost volumes are, in addition, particle type
sensitive, allowing the creation of different envel-
opes for different particle types. For example,
defining an envelope solely for pions enclosing
both electromagnetic and hadronic calorimeters is
possible.
In practice, envelopes are G4LogicalVolume

objects. Parameterisation models are bound to
this volume through a G4FastSimulationManager
object, which gathers and messages those models.
The pointer of this manager is recursively propa-
gated to the daughters of the G4LogicalVolume,
allowing fast checking of the presence of such a
manager at tracking time.
The interface between the parameterisation and

the tracking is provided by a G4VProcess, the
G4FastSimulationManagerProcess (G4FMP),
which checks for the presence of a G4FastSimu-

lationManager object and messages it if any.
Modification of the current track and information

of possible secondaries created by a parameterisa-
tion model are communicated to the tracking
through a G4VParticleChange, like any G4VPro-
cess. The G4FMP also provides the extra naviga-
tion in case ghost volumes are used. The G4FMP
makes use of the ‘‘exclusive’’ signal in the case that
a model triggers to tell the tracking that it is to be
the only process applied in the current step.
As a concrete example for the use of fast

simulation we give X-ray transition radiation
(XTR) generation from radiators [106]. It is
described by a family of classes inheriting from
G4VFastSimulationModel. (It has also been im-
plemented as a boundary process—see Section
5.11.) The base class G4XrayTRmodel is responsible
for the creation of tables with integral energy and
angular distributions of XTR photons. It has also
the DoIt function providing XTR photon genera-
tion and moving the incident particle through the
XTR radiator. Particular models like G4Irregu-
larXrayTRmodel realise the pure virtual function
GetStackFactor. The latter calculates the re-
sponse of the XTR radiator. This is illustrated in
Fig. 12.

6.2. Event biasing

Variance reduction techniques are an important
aspect of most Monte Carlo calculations and allow

ARTICLE IN PRESS

Incident
particle p 1 p 2

 v
g1

g2

XTR photon
Foils

XTR radiator

• • • • •

Fig. 12. Illustrating the working of the G4XrayTRmodel::DoIt

function. An incident charged particle with the Lorentz factor

gX100 enters the logical volume G4Envelope at the point p1 and

exits at p2: It moves along the direction given by the unit vector
~vv: XTR photons are generated randomly along the particle
trajectory inside G4Envelope with energies and polar angles

relative to~vv randomly selected from the corresponding tables of
the integral and angular distributions. Each XTR photon then

will be moved to the border of G4Envelope. The sum of the

XTR photon energies is subtracted from the kinetic energy of

the incident particle.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 291

the user to tune the simulation to the part of the
problem space (particle species, energy, position,
etc.) most relevant to his/her application [107].
In Geant4 facilities exist to allow the user to
modify the statistical weight associated with
each G4Track object so that, for example,
the user can modify the probability of interaction
processes (currently through user-written code) to
increase the sampling of high-energy secondary
particles, which will have correspondingly lower
track weights. More general facilities to allow a
user to bias the simulation conditions, without the
need for significant code development, are cur-
rently being developed. However, there are already
two classes that allow biasing schemes to be
applied.
When simulating radioactive decay following

energetic particle interactions, it is often necessary
to treat the decays of a range of nuclide species
over many generations. Furthermore, results are
often required only for decays within particular
‘‘time-windows’’ that are much shorter than the
times between nuclide production and observa-
tion. To deal with the former, the Geant4
radioactive decay processes applies recursive for-
mulae based on the work of Bateman [108] and
Truscott [109] to allow determination of the decay
rates for all nuclear generations. This is used in
combination with the variance reduction modes
that can be invoked in the class G4Radioactive-
Decay preferentially to sample the times of the
decay according to the times of observation. In the
extreme case, all radionuclides and their progeny
can be forced to decay at a user-defined observa-
tion time. An additional feature of this variance
reduction mode in G4RadioactiveDecay is that
the user can infer the effects of a time-varying
source (e.g., if assessing radiation effects on a
satellite from a solar particle event) from each
radionucleus created in the simulation at time t ¼
0: This is achieved by convolving the decay rate
over a user-defined source time profile. (Clearly
performing a similar calculation using an analogue
Monte Carlo approach to sample source particles
as a function of time would be very inefficient in
comparison.)
Other variance reduction schemes within

G4RadioactiveDecay include:

* splitting of radionuclides prior to decay, which
can be used to increase the sampling of decay
radioactive decay products;

* re-biasing of the decay branches, so that there is
increased sampling of low-probability branches
that may, because of particle energy or species,
have a more important effect on the observa-
tion.

The class G4GeneralParticleSource also pro-
vides facilities for the user to bias the source
particle distribution in energy, in the x-, y- or z-
direction for the point at which it is created, or in
angular direction. Here the user has only to
provide the desired sampling distribution in the
form of a cumulative probability distribution
histogram, and G4GeneralParticleSource recal-
culates the weights of the biased source particles
sampled from the distribution. This feature
permits, for example, more particles to be sampled
closer to the volumes of the simulated geometry
where greater sensitivity to radiation effects is
expected, or increased sampling of the high-energy
portion of a cosmic ray spectrum, which can
produce more secondary particles.

6.3. Persistency

The persistency category provides an interface
for storing and retrieving run, event, hits, digits
and geometry information in and from ODMG-
compliant object databases so that users may
perform post-simulation analysis in separate pro-
cesses. The object persistency has been achieved by
using the ODMG class description and He-
pODBMS [110].
It is a functional requirement that the kernel

part of Geant4 must be able to run with and
without HepODBMS and the related commercial
packages. This category can be built optionally.
Users must set an environment switch before the
installation of the toolkit to use this category. This
requirement leads to a design decision that normal
kernel objects (transient objects) must have
corresponding persistent objects to perform a deep
copy of data members. The ODMG-compliant
class description allows one to one mapping of the

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303292

association between complicated objects such as
geometry.
A persistent class must inherit the persistency

characteristics from the class HepPersObj in
HepODBMS. Data members of the persistent
class are updated and committed during the
database transaction methods defined in HepD-

bApplication. Schema information is extracted
from the class header files and compiled as meta-
data with a preprocessor. Currently a commercial
object database package Objectivity/DB is sup-
ported by HepODBMS.
To use persistency, users must instantiate a

singleton object of class G4PersistencyManager.
This object is messaged by the Geant4 run
manager to trigger the actual deep copy of the
objects related to run, event and geometry.
Location of the database and the transactions to
the database are specified through the user inter-
face class G4PersistencyMessenger and the
information is transferred to an object of class
G4TransactionManager, which handles the data-
base transaction messages using HepDbApplica-

tion. The deep copy operations are performed
during these transactions.
When a pointer of a transient G4Event object is

handed to G4PersistencyManager, it is handed
on to a G4PersistentEventMan object which then
constructs a persistent object of class G4PEvent
with data member which are values of G4Event. A
constructor of G4PEvent then constructs G4PPri-
maryVertex, and makes associations to the
primary vertex, hit collections and digit collections
if they exist. G4PPrimaryVertex then constructs
G4PPrimaryParticle objects. Similar deep copy
transactions occur for run and geometry when
triggered by G4RunManager. The relation of the
persistent and the transient objects is reversed in
the retrieve transaction.
Hit and digit classes and their collections belong

to the user domain and actual implementation of
these classes differ from detector to detector.
Geant4 persistency category provides persistent
abstract base classes so that users can directly store
and retrieve their hits and digits collections. In a
user implementation, hit and hits collection
inherits persistency from G4PVHit and G4PVHits-
Collection respectively. Actual storing and re-

trieving of the data members is triggered in the
methods of G4TransactionManager. In this case,
the user must explicitly take control of database
transactions for their user defined persistent
classes by specifying a transaction type parameter
in G4PersistencyManager methods.

7. Interactivity and visualisation

Interactivity and visualisation span three related
categories, i.e., intercoms, interfaces, and visualisa-

tion categories. At the lowest level resides inter-

coms, which provides, amongst other things (see
Section 2.2), command definition and interpreta-
tion tools. User interaction is realised through the
concept of a ‘‘session’’ and graphical and non-
graphical concrete sessions are available in the
interfaces category.

Visualisation is a high level category which uses
intercoms and—if interactive graphical tools are
shared, such as the X Windows Toolkit (Unix) or
Microsoft Windows—also uses interfaces, where
the windows event handlers are coded. Drivers for
several graphics systems are offered and can be
instantiated in parallel.
Below, we describe these categories in turn. We

also describe how the visual debugging of detector
geometry models can be realised in Geant4.

7.1. User interfaces

The design of Geant4 (graphical) user inter-
faces was influenced by two considerations: the
categories of users and the phases of user actions.
Three categories of users were envisioned:

(1) End user who runs a Geant4 application by
setting run-time parameters and executing
commands with the (graphical) user interfaces.

(2) Application programmer who creates applica-
tion programs specific to his/her simulation.
He/she may wish to define specialised com-
mands and sets of associated parameters.
Available commands may vary from one
application to another.

(3) Framework provider who is a Geant4
developer.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 293

This leads us to separating the creation of
(graphical) user interfaces from the creation of
commands.
During the execution of an application, two

phases of user actions arise, namely for initialisa-
tion of simulation and for control of event
generation and processing. The user interaction is
different in each phase and this requires that a
Geant4 application is a state-machine and that its
available commands and their parameters may
vary according to state.
It was our design choice to have the intercoms

category separate from the user interfaces cate-
gory. The intercoms category implements an
expandable command interpreter which is the
key mechanism in Geant4 for realising customi-
sable and state-dependent user interactions with
all categories without being perturbed by the
dependencies among classes.
The capturing of commands is handled by a

C++ abstract class G4UIsession of the intercoms

category. Various concrete implementations of the
command capturer are contained in the [user]
interfaces category. Taking into account the rapid
evolution of graphical user interface (GUI) tech-
nology and consequent dependence on external
facilities, it was decided to offer plural and
extensible GUIs. Application programmers and
framework providers, however, are asked only to
know how to register their commands and para-
meters appropriate to their problem domain; no
knowledge of GUI programming is required to
allow the application to use them through one of
the available GUIs.

7.1.1. Concrete implementations

Various user interface tools like Motif, Tk/tcl,
JAVA, etc., have been used to implement the
command ‘‘capturer’’. The richness of the
Collaboration has permitted different groups
to offer various front-ends to the Geant4
command system. We list below the currently
available implementations according their main
technologies:

* batch to read and execute a file containing
commands,

* tcsh-like terminal for interactive sessions,

* Xm, Xaw, Win32 variations of the above using a
Motif, Athena or Windows widget to retrieve
commands, useful if working in conjunction
with visualisation drivers that use the Xt library
or the WIN32 one,

* GAG [111,112], a client/server type adaptive
GUI reflecting Geant4 states, and

* OPACS [113], an OPACS/Wo widget manager
implementation.

Fig. 13 is a display dump of GAG co-working
with JAS (Java Analysis Studio) [114].

7.1.2. Other tools for application programmers

Geant4 requires the application programmer to
create three mandatory classes relating to detector
geometry, physics processes and the primary
generator. The following tools have been devel-
oped to help him/her to create the first two of these
classes without memorising the straight-forward
but tedious names and methods of relevant classes
like materials, solids, particles, etc. These have
proved very useful for rapid prototyping of
simulation applications [115].

* GGE (Geant4 Geometry Editor) is a tabular
tool written in Java which has a material editor
and a volume editor. Complete C++ source
codes, ready for compilation, implementing the
programmer’s geometry are produced from the
tables filled by the user. It can be saved in a
persistent file for reuse.

* MGA (Material Generation and Association) is
similar with GGE. It uses CAD’s STEP output
and associates it with materials to generate
C++ source codes.

* GPE (Geant4 Physics Editor) has tables for
particles and electromagnetic processes. The
programmer associates a particle with a process
by filling the physics list table. From the table
are generated complete C++ source codes
including the default cut value.

7.2. Visualisation

Geant4 visualisation is designed to visualise
detector geometry, particle trajectories, tracking
steps, hits, texts (character strings), etc., to help
users to prepare and execute detector simulation.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303294

There is a wide variety of user requirements on
visualisation. For example:

* very quick response to survey successive events;
* high-quality outputs for presentation and doc-
umentation;

* impressive special effects for demonstration;
* flexible camera control for debugging detector
geometry and physics;

* selection of visualisable objects;
* interactive picking of graphical objects for
attribute editing or feedback to the associated
data;

* highlighting wrong intersections of physical
volumes;

* cooperative working with graphical user inter-
faces.

It is very difficult to respond to all of these
requirements with only one built-in visualiser, so
we have designed an abstract interface which
supports several complementary graphics systems.
Here the term ‘‘graphics system’’ means either an
application running as a process independent of
Geant4 or a graphics library to be compiled
with Geant4. A concrete implementation of the

ARTICLE IN PRESS

Fig. 13. Java-based GAG (Geant4 Adaptive GUI) starts a run in collaboration with JAS (Java Analysis Studio) allowing ‘‘real-time’’

histogramming.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 295

interface is called a visualisation driver, and this can
use a graphics library directly, communicate with an
independent process via pipe or socket, or simply
write an intermediate file for a separate viewer.
The current distribution of Geant4 contains

several established drivers. Those which need
external libraries or packages may only be
activated if the corresponding external system is
installed, and it is the user’s responsibility to check
this and set environment variables to control the
compilation of the drivers. In addition, in princi-
ple, the user may extend this list by implementing
his/her own driver to the specification of the
abstract interface.
The following drivers write intermediate files for

a separate viewing. The drivers themselves need no
external libraries or packages and are normally
built by default into any Geant4 executable.

* DAWNFILE [116]: produces files for the Fukui
Renderer, DAWN [116], which is well suited to
preparing technical-high-quality PostScript out-
puts for presentation and/or documentation.
Fig. 14 shows an example.

* HepRepFile: generates files in the HepRep [117]
format, suitable for viewing with several view-
ers, notably the WIRED [118] event display
viewer. As well as various 3D representations of
the geometry model and trajectories, etc., the
geometry hierarchy can be viewed as a tree
structure and used to select visible components.

* RayTracer This driver performs ray-tracing
rendering using the tracking algorithms of
Geant4, and generates a JPEG file. The driver
is, therefore, a useful debugging tool for
Geant4 developers. For users, it is useful for
generating photo-realistic high-quality images.

* VRMLFILE [116]: generates VRML (versions
1 and 2) files that can be viewed with one of the
many attractive VRML viewers now available.
These enable one to perform interactive spin-
ning of detectors, flying inside detectors or
particle showers, and so on.

The following link directly to external libraries
and require activating by the setting of environ-
ment variables. These graphics systems establish
their own graphical database for fast refreshing
and view re-orienting, except for the so-called

immediate mode of OpenGL. Free implementa-
tions of all these libraries are available.

* OPACS [113]: The OPACS library supports
many useful functions such as an event display
and picking.

* OpenGL [119]: OpenGL is widely available and
is well suited to real-time, fast visualisation. Its
immediate mode has no limitation on picture
complexity.

* OpenInventor [120]: This driver supports high
interactivity, e.g., attribute editing of picked
objects, virtual-reality visualisation, and other
advanced functions.

The following use the socket mechanism to
communicate with viewers running in daemon
mode and require activating by the setting of
environment variables. They have the features of
their file-writing equivalents above but have the
advantage of remote visualisation.

* DAWN [116]: has the features of DAWNFILE
above.

* VRML [116]: has the features of VRMLFILE
above.

The following use the visualisation driver
mechanism to provide an alternative tree repre-
sentation of the geometry model. The drivers
themselves need no external libraries or packages
and are normally built by default into any Geant4
executable.

* ASCIITree: simply tabulates the geometry
model hierarchy on standard output.

* GAGTree: communicates with the GAG user
interface (Section 7.1.1), if instantiated, and
allows a tree-widget-like viewing of the geome-
try model hierarchy.

Visualisation procedures are controlled by the
visualisation manager described in a user class,
say, MyVisManager that inherits the class G4Vis-
Manager defined in the visualization category [121].
The visualisation manager accepts a user’s re-
quests for visualisation, processes them, and passes
the processed requirements through the abstract
interface to the currently selected visualisation
driver. In this process, the visualisation manager
uses various classes for visualisable 3D objects

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303296

ARTICLE IN PRESS

Fig. 14. Technical high-quality visualisation of a complicated detector geometry with particle trajectories using the DAWNFILE

driver and DAWN renderer.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 297

(volumes, lines, texts, markers, etc.) defined in the
graphics reps category and the geometry category.
The visualisation manager also uses utility classes
defined in the visualization/modeling sub-category
to generate 3D data ready for visualisation.

7.3. Data analysis

There are various analysis systems that generate
histograms, analyse event data statistically,
and so forth. It is possible to plug in many of
these to Geant4. Examples of plugging in analysis
systems supporting the AIDA abstract interface
[122], e.g., JAS [114], Lizard [123], and Open-
Scientist [124], are included in the Geant4
package.

7.4. Geometry verification

The application developer’s job includes de-
scribing a detector geometry, usually by writing
C++ codes. In debugging, the most time-con-
suming work is the checking of the detector model.
Visualisation is indispensable. It is a requirement
and assumption of the Geant4 tracking that
volumes do not overlap and that daughter volumes
are fully contained within the mother. This means
that there should be no intersections of physical
volume surfaces. Correct tracking behaviour is not
guaranteed if this happens.
In general, the most powerful intersection

detection algorithms are provided by CAD sys-
tems, treating intersections between the solids in
their topological form, and users are encouraged
to use such facilities. In principle, the STEP
interface enables transfer between Geant4 and
CAD systems, but this might not always be
practical.
Geant4 visualisation supports a powerful way

of visually debugging intersections of physical-
volume surfaces. Physical volume surfaces are
decomposed into 3D polygons, and intersections
of the generated polygons are investigated. If a
polygon intersects with another one, physical
volumes to which these polygons belong are drawn
with a highlight colour (red by default). Fig. 15 is a
sample visualisation of detector geometry with
intersecting physical volumes highlighted. This

visual debugging of physical volume surfaces is
performed with the DAWNFILE visualisation
driver (see Section 7.2) in cooperation with the
debugger application DAVID [125].
Geant4 also provides some facilities for helping

in detecting geometry errors, these facilities are
also available as run-time commands. A series of
linear trajectories are used to calculate the points
of intersection with the solids. The requirement of
no overlaps and full containment proscribe the
ordering of these points along the trajectory. This
is an approach which is complementary to that of
CAD systems and DAVID. The disadvantage is
that small errors may be missed if the linear
trajectories do not happen to pass through the
problematic region of space. On the other hand, it
uses the geometry algorithms built into Geant4
itself and the geometry is sampled where the user is
most interested in its validation.

8. Conclusion

The Geant4 toolkit provides a versatile and
comprehensive software package for modern
simulation applications that involve the interac-
tion and passage of particles through matter. It
can handle complex geometries efficiently and
compactly, and allows visualization of the geome-
try and particle tracks through a variety of
interfaces. It provides simulation for a wide range
of physics processes based on theory, data or
parameterisation. These treat, for example, ha-
dronic interactions from thermal energies up to
1 PeV; electromagnetic interactions of charged
hadrons, ions, leptons and photons from 250 eV
to 1 PeV or more, as well as the production and
propagation of optical photons. The implementa-
tion of the toolkit in an object-oriented design
allows it to be easily extended, where appropriate,
to meet the requirements of the user, through class
inheritance. In addition, there are a growing range
of utilities for visualization and analysis of
resulting data. The software itself, which is freely
available at source-code level over the Web [1], has
been developed in accordance with software
engineering standards in order to attain a high
quality, reliable product.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303298

ARTICLE IN PRESS

Fig. 15. Highlighting wrong intersections of physical volumes.

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 299

Geant4 has been, and continues to be devel-
oped and maintained through a Memorandum of
Understanding agreed between the many collabor-
ating institutes. This worldwide international
collaboration, and the user community, is con-
tinuing to expand due to the applicability,
accessibility and versatility of this toolkit, with
current applications ranging from medical physics
to high-energy astrophysics, as well as of course
particle physics and accelerator design. The reader
is referred to user forums and separate papers,
many associated with joint projects and experi-
ments, for more detailed discussions, development
and validation of the Geant4 toolkit.

Acknowledgements

The support for this work has come directly or
indirectly from many sources. Primarily, we
acknowledge the member institutes: European
Organization for Nuclear Research (CERN),
European Space Agency, Helsinki Institute of
Physics (HIP), Inst. f .ur Theoretische Physik,
Johann Wolfgang Goethe Universit.at, Frankfurt,
Jefferson Lab, Karolinska Institutet, KEK (Ja-
pan), Stanford Linear Accelerator Center (SLAC),
TERA Foundation, TRIUMF (Canada) and
Universitat de Barcelona and the Collaborating
National Organisations: IN2P3 (France), Istituto
Nazionale di Fisica Nucleare (INFN), Italy,
Lebedev Institute and UK Particle Physics and
Astronomy Research Council (PPARC). From
those we particularly recognise the contribution of
CERN in terms of manpower (both local and
visiting associateships) and of equipment through
its IT Division (Simulation Group), with the
support of the Large Hadron Collider Board
during both the R&D phase and the current
production phase, and of SLAC in terms of
manpower through Computer Services. Without
this direct support, this project would not have
come to fruition.
But perhaps, when all is added up, most of the

effort has come from the generous support of
experiment collaborations and universities that
have allowed and encouraged their members to
contribute to Geant4 in a spirit of worldwide

collaboration to everyone’s mutual benefit. Ex-
periment collaborations who are formally mem-
bers of Geant4 are: ATLAS, BaBar, CMS,
HARP and LHCb. There have been significant
contributions from non-member experiments too.
The universities are too numerous to mention.
Satoshi Tanaka would like to acknowledge the

support of Prof. Hiroaki Yamamoto, Department
of Information Science, Fukui University.
Marc Verderi would like to acknowledge many

useful discussions with Claude Charlot.

References

[1] S. Giani, et al., Geant4: An object-oriented toolkit for

simulation in HEP, CERN/LHCC 98-44, 1998;

Geant4 Web page: http://cern.ch/geant4.

[2] K. Amako, et al., Proceedings of CHEP94, San Francis-

co, CA, USA, LBL-35822 CONF-940492.

[3] GEANT—Detector description and simulation tool,

CERN Program Library Long Write-up W5013, CERN

Geneva.

[4] A. Dellacqua, et al., Geant4: an object-oriented toolkit

for simulation in HEP, CERN/DRDC/94-29 DRDC/

P58, 1994.

[5] See MOU document at the Geant4 Web page [1] under

Organization.

[6] See User Documents at the Geant4 Web page [1] under

Documentation.

[7] See Hypernews system at the Geant4 Web page [1] under

User Forum.

[8] Geant4 Collaboration, Geant4 User Requirements

Document, CERN, 2002.

[9] L. L .onnblad, CLHEP: a project for designing a C++

class library for high energy physics, Comput. Phys.

Commun. 84 (1994) 307;

(See also: http://cern.ch/clhep).

[10] C. Ferguson, General purpose source particle module for

Geant4 SPARSET; Technical Note, Uos-GSPM-Tech,

Issue 1.0, 2000.

[11] M. Asai, Comput. Phys. Commun. 110 (1998) 125.

[12] ISO 10303-203. Application protocol: configuration

controlled design, Industrial automation systems and

integration—product data representation and exchange,

ISO TC 184/SC4, 1994.

[13] J. Sulkimo, J. Vuoskoski, GEREP, a boundary repre-

sentation modeller proposal for Geant4, IT Division

Internal Report, CERN.

[14] M. Asai, et al., Design of tracking and generic processes

in Geant4, Proceedings of the MC2000 Conference,

Lisbon, 2000.

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns, Addison-Wesley, Reading, MA, 1995.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303300

http://cern.ch/geant4
http://cern.ch/clhep

[16] J.P. Wellisch, Hadronic shower models in Geant4—the

frameworks, Comput. Phys. Commun. 140 (2001) 65.

[17] A.B. Kaidalov, K.A. Ter-Martirosyan, Phys. Lett. B 117

(1982) 247.

[18] Data formats and procedures for the evaluated nuclear

data file, National Nuclear Data Center, Brookhaven

National Laboratory, Upton, NY, USA.

[19] H. Stocker, et al., Nucl. Phys. A 538 (1992) 53.

[20] P.V. Degtyarenko, M.V. Kosov, H.P. Wellisch, Chiral

invariant phase space event generator. I: nucleon

anti-nucleon annihilation at rest, Eur. Phys. J. A 8 (2000)

217.

[21] P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch, Chiral

invariant phase space event generator. II: nuclear pion

capture at rest and photo-nuclear reactions below the

Delta(3,3) resonance, Eur. Phys. J. A 9 (2000) 411.

[22] P.V. Degtyarenko, M.V. Kossov, H.P. Wellisch, Chiral

invariant phase space event generator. III: modeling of

real and virtual photon interactions with nuclei below

pion production threshold, Eur. Phys. J. A 9 (2000) 421.

[23] G. Cosmo, Software Process in Geant4, CERN-IT-2001-

005; Proceedings of the CHEP 2001 Conference, Bejing,

China, September 2001.

[24] M. Paulk, et al., The Capability Maturity Model:

Guidelines for Improving the Software Process, Addi-

son-Wesley, Reading, MA, 1995, ISBN 0-201-54664-7.

[25] D.A. Reo, et al., Measuring software process improve-

ment: there’s more to it than just measuring processes,

ESI-FESMA 99, September 1999.

[26] G. Booch, Object-Oriented Analysis and Design with

Applications, The Benjamin/Cummings Publishing Co.,

Menlo Park, CA, 1994, ISBN 0-805-35340-2.

[27] See Coding guidelines document from the Geant4 Web

page [1].

[28] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.

Lornsen, Object-oriented modeling and design, Prentice-

Hall International Editions, Englewood Cliffs, NJ, ISBN

0-13-630054.

[29] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,

F. Hayes, P. Jeremes, Object-oriented development: The

fusion method, Prentice-Hall International Edition, Eng-

lewood Cliffs, NJ, 1994, ISBN 0-13-101040-9.

[30] ESA PSS-05-0 Issue2, ESA Software Engineering Stan-

dards, European Space Agency.

[31] ISO/IEC Joint Technical Committee 1 (JTC1), ISO/IEC

DTR 15504 Software Process Assessment.

[32] ISO/IEC Joint Technical Committee 1 (JTC1), ISO/IEC

DTR 15504-5 Part 5: An Assessment Model and

Indicator Guidance.

[33] P. Cederqvist, et al., Version Management with CVS,

Signum Support AB, 1992;

(See also: http://www.cvshome.org).

[34] AFS is an acronym for the Andrew File System,

developed at Carnegie-Mellon University, Pittsburgh,

under a sponsorship from IBM;

R. Campbell, Managing AFS: The Andrew File System,

Prentice Hall PTR, Englewood Cliffs, NJ, 1998.

[35] R.M. Stallman, R. McGrath, GNU Make—a program

for directing recompilation, ISBN 1-882114-79-5; Free

Software Foundation, 1996.

[36] See testing policy at the Geant4 Web page [1].

[37] See Tag and Release Policy document from the Geant4

Web page [1].

[38] See Problem Reporting System at the Geant4 Web page

[1] under Support.

[39] Bonsai Web page: http://www.mozilla.org/bon-

sai.html.

[40] Tinderbox Web page: http://www.mozilla.org/tin-

derbox.html.

[41] LXR Web page: http://lxr.linux.no.

[42] Bugzilla Web page: http://www.bugzilla.org.

[43] Parasoft, Product Review: CodeWizard, InfoWorld,

November 1999 Parasoft, Product Review: Insure++,

The X Journal, June 1996.

[44] J. Seward, Valgrind: an open-source memory debugger

for Linux, July 2002.

[45] P. Kent, Minimising Precision Problems in Geant4

Geometry, Geant4 internal note, April 1995.

[46] P. Kent, Pure Tracking and Geometry in Geant4,

Geant4 internal note, April 1995.

[47] V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2

(1959) 435;

J.D. Jackson, Classical Electrodynamics, 2nd Edition,

Wiley, New York, p. 559 ff.

[48] Review of Particle Physics, Eur. Phys. J. C 15 (2000).

[49] See a ‘‘gallery’’ of results comparing Geant4 with

GEANT3 and experimental data, from the Geant4

Web page [1].

[50] E. Daly, et al., Space applications of the Geant4

simulation toolkit, Proceedings of the MC2000 Confer-

ence, Lisbon, 2000.

[51] S. Chauvie, et al., Medical applications of the Geant4

simulation toolkit, Proceedings of the MC2000 Confer-

ence, Lisbon, 2000.

[52] H. Burkhardt, S.R. Kelner, R.P. Kokoulin, Monte Carlo

Generator for Muon Pair Production, CERN-SL-2002-

016 (AP) and CLIC Note 511, May 2002.

[53] J. Apostolakis, et al., CERN-OPEN-99-299, 1999.

[54] J. Apostolakis, S. Giani, V. Grichine, et al., Nucl. Instr.

and Meth. A 453 (2000) 597.

[55] J. Vincour, P. Bem, Nucl. Instr. Meth. 148 (1978) 399.

[56] J.H. Crannel, Phys. Rev. 184 (1969) 2.

[57] K.M. Lassila-Perini, L. Urba’n, Energy loss in thin layers

in GEANT, Nucl. Instr. and Meth. A 362 (1995) 416.

[58] M.V. Kossov, Approximation of photonuclear interac-

tion cross-sections, submitted to EPJA, 2002.

[59] R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 55 (1998) 69;

R. Engel, A. Schiller, V.G. Serbo, Z. Phys. C 71 (1996)

651.

[60] See Physics Reference Manual at the Geant4 Web page

[1] under Documentation.

[61] D. Liljequist, et al., J. Appl. Phys. 68 (1990) 3061.

[62] J. Apostolakis, et al., CERN-OPEN-99-034 and INFN/

AE-99/18, 1999.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 301

http://www.cvshome.org
http://www.mozilla.org/bonsai.html
http://www.mozilla.org/bonsai.html
http://www.mozilla.org/tinderbox.html
http://www.mozilla.org/tinderbox.html
http://lxr.linux.no
http://www.bugzilla.org

[63] D. Cullen, et al., EPDL97: the Evaluated Photon Data

Library, 97 version, UCRL-50400, Vol. 6, Rev. 5, 1997.

[64] S.T. Perkins, et al., Tables and Graphs of Electron-

Interaction Cross Sections from 10 eV to 100 GeV

Derived from the LLNL Evaluated Electron Data

Library (EEDL), UCRL-50400, Vol. 31, 1997.

[65] S.T. Perkins, et al., Tables and Graphs of Atomic Sub-

shell and Relaxation Data Derived from the LLNL

Evaluated Atomic Data Library (EADL), Z ¼ 1� 100;
UCRL-50400, Vol. 30, 1997.

[66] R. Shimizu, et al., J. Phys. D 9 (1976) 101.

[67] S. Giani, et al., CERN-OPEN-99-121 and INFN/AE-99/

20, 1999.

[68] S. Giani, et al., CERN-OPEN-99-300 and INFN/AE-99/

21, 1999.

[69] H.H. Andersen, J.F. Ziegler, The Stopping and Ranges of

Ions in Matter, Vol. 3, Pergamon Press, Oxford, 1977.

[70] A. Allisy, et al., ICRU Report 49, 1993.

[71] J.F. Ziegler, J.M. Manoyan, Nucl. Instr. and Meth. B 35

(1988) 215.

[72] H. Paul, Nucl. Instr. and Meth. Phys. Res. B 179 (2001)

299.

[73] J.P. Wellisch, D. Axen, Phys. Rev. C 54 (1996) 1329.

[74] M. Laidlaw, J.P. Wellisch, Private communication.

[75] A. Tripathi, et al., NASA technical paper 3621, 1997.

[76] ENDF/B-VI, Cross Section Evaluation Working Group,

ENDF/B-VI Summary Document, BNL-NCS-17541

(ENDF-201) National Nuclear Data Center, Brookhaven

National Laboratory, Upton, NY, USA, 1991.

[77] T. Nakagawa, et al., JENDL-3 Japanese Evaluated

Nuclear Data Library, Version 3, Revision 2, J. Nucl.

Sci. Technol. 32 (1995) 1259.

[78] FENDL/E2.0, The processed cross-section libraries for

neutron-photon transport calculations, version 1 of

February 1998. Summary documentation H. Wienke,

M. Herman, Report IAEA-NDS-176 Rev. 0 (Interna-

tional Atomic Energy Agency, April 1998). Data received

on tape (or: retrieved on-line) from the IAEA Nuclear

Data Section.

[79] Yu.N. Shubin, V.P. Lunev, A.Yu. Konobeyev, A.I.

Ditjuk, Cross section data library MENDL-2 to study

activation as transmutation of materials irradiated by

nucleons of intermediate energies, INDC(CCP)-385

(International Atomic Energy Agency, May 1995).

[80] M.R. Bhat, Evaluated Nuclear Data File (ENSDF),

Nuclear Data for Science and Technology, Springer,

Berlin, Germany, 1992, pp. 817.

[81] H.C. Fesefeldt, Simulation of hadronic showers, physics

and application, Technical Report PITHA 85–02, 1985.

[82] A. Capella, J. Tran Thanh Van, Hadron-nucleus interac-

tions and the leading particle effect in a dual parton

model, Z. Phys. C 10 (1981) 249.

[83] B. Andersson, G. Gustafson, G. Ingelman, T. Sj .ostrand,

Phys. Rep. 97 (1983) 31;

A.B. Kaidalov, Sov. J. Nucl. Phys. 45 (1987) 1452.

[84] M. Hofmann, J.M. Eisenberg, S. Scherer, M. Bleicher, L.

Neise, H. Stocker, W. Greiner, Non-equilibrium dy-

namics of a hadronising quark–gluon plasma, nucl-th/

9908031.

[85] R.G. Alsmiller, F.S. Alsmiller, O.W. Hermann, Nucl.

Instr. and Meth. A 295 (1990) 337.

[86] Yu.E. Titarenko, et al., Experimental and computer

simulations study of radio-nuclide production in heavy

materials irradiated by intermediate energy protons, nucl-

ex/9908012.

[87] M.G. Pia, Object-oriented design and implementation of

an intra-nuclear transport model, Proceedings of the

CHEP 2000 Conference, Padova, Italy, February 2000.

[88] S.A. Bass, et al., URQMD: A new molecular dynamics

model from GANIL to CERN energies, Wilderness 1996,

Structure of vacuum and elementary matter, pp. 399–405.

[89] V. Lara, J.P. Wellisch, Pre-equilibrium and equilibrium

decays in Geant4, Proceedings of the CHEP 2000

Conference, Padova, Italy, February 2000.

[90] V.E. Weisskopf, D.H. Ewing, Phys. Rev. 57 (1940) 472.

[91] E. Fermi, Prog. Theor. Phys. 5 (1950) 1570.

[92] J.P. Bondorf, A.S, Botvina, A.S, Iljinov, I.N. Mishustin,

K. Sneppen, Phys. Rep. 257 (1995) 133.

[93] N. Bohr, J.W. Wheeler, Phys. Rev. 56 (1939) 426.

[94] A.I. Blokhin, et al., Brond-2.2: Current Status of Russian

Nuclear Data Libraries, Nuclear Data for Science and

Technology, Vol. 2, American Nuclear Society, La-

Grange, IL, 1994, pp. 695.

[95] CENDL-2: Chinese Nuclear Data Center, CENDL-2,

The Chinese Evaluated Nuclear Data Library for

Neutron Reaction Data, IAEA-NDS-61, Rev. 3, Inter-

national Atomic Energy Agency, Vienna, Austria, 1996.

[96] H.D. Lemmel, EFF-2.4: The European Fusion File 1994,

including revisions up to May 1995, Summary Docu-

mentation, IAEA-NDS-170, June 1995.

[97] C. Nordborg, M. Salvatores, Jef-2: Status of the JEF

Evaluated Data Library, Nuclear Data for Science and

Technology, American Nuclear Society, LaGrange, IL,

1994.

[98] J.P. Wellisch, Neutron Induced Isotope Production On

Selected CMS Elements Using Geant4, CMS-Note 1999/

07.

[99] M.R. Ataian, et al., EHS-NA22 Collaboration, p0 and Z
meson production in pþp and Kþp collisions at

250 GeV=c; Z. Phys. C 54 (1992) 247.
[100] C. Amsler, Rev. Mod. Phys. 70 (1998) 1293;

C. Amsler, F. Myher, Annu. Rev. Nucl. Part. Sci. 41

(1991) 219.

[101] A. Levin, C. Moisan, A More Physical Approach to

Model the Surface Treatment of Scintillation Counters

and its Implementation into DETECT, TRIUMF Pre-

print TRI-PP-96-64, October 1996.

[102] G.F. Knoll, T.F. Knoll, T.M. Henderson, Light collec-

tion scintillation detector composites for neutron detec-

tion, IEEE Trans. Nucl. Sci. 35 (1988) 872.

[103] G. Grindhammer, et al., Nucl. Instr. and Meth. A 290

(1990) 469.

[104] J. del Peso, E. Ros, Nucl. Instr. and Meth. A 306 (1991)

485.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303302

[105] BOGUS (BaBar Object-oriented Geant4-based Unified

Simulation) (to be published).

[106] J. Apostolakis, S. Giani, V. Grichine, et al., Comput.

Phys. Commun. 132 (2000) 241.

[107] L.L. Carter, E.D. Cashwell, Particle transport simulation

with the Monte Carlo method, TID-26607, Published by

the US National Technical Information Center, Energy

Research and Development Administration, 1975.

[108] H. Bateman, Cambridge Philos. Soc. Proc. 15 (1910) 423.

[109] P.R. Truscott, Ph.D. Thesis, University of London, 1996.

[110] J. Shiers, Massive-scale data management using stan-

dards-based solutions, 16th IEEE Symposium on Mass

Storage Systems, San Diego, USA, 1999.

[111] M. Nagamatsu, T. Kodama, H. Uno, H. Yoshida, K.

Ohtsubo, S. Tanaka, M. Asai, Proceedings of the CHEP

’98 Conference, Chicago, September 1998.

[112] M. Nagamatsu, U. Uno, A. Obana, H. Yoshida, M. Asai,

Y. OOhata, R. Hamatsu, Experience of prototyping Tcl/

Tk-based GUI for GEANT4 USENIX 5th Annual Tcl/

Tk Workshop ’97.

[113] G. Barrand, OPACS and Geant4, Proceedings of CHEP

’97 Conference, Berlin, Germany, April 1997;

(See also: http://www.lal.in2p3.fr/OPACS).

[114] T. Johnson, Java Analysis Studio (JAS) 3.0, Proceedings

of the CHEP 2001 Conference, Bejing (China), September

2001;

(See also: http://jas.freehep.org).

[115] H. Yoshida, T. Kodama, S. Sei, H. Kurashige, Proceed-

ings of the CHEP 2000 Conference, Padova, Italy,

February 2000.

[116] S. Tanaka, M. Kawaguti, DAWN for Geant4 visualiza-

tion, Proceedings of the CHEP ’97 Conference, Berlin,

Germany, April 1997.

[117] J. Perl, HepRep: a generic interface definition for HEP

event display representables, SLAC-REPRINT-2000-020;

Proceedings of the CHEP 2000 Conference, Padova,

Italy, February 2000;

(See also: http://heprep.freehep.org).

[118] M.C. Coperchio, et al., Comput. Phys. Commun. 110

(1998) 155;

(See also: http://wired.freehep.org).

[119] M.A. Reading, OpenGL Reference Manual: The Official

Reference Document for OpenGL, Addison-Wesley,

Reading, MA, 1996;

(See also http://www.opengl.org).

[120] M.A. Reading, The Inventor Mentor: Programming

Object-Oriented 3D Graphics with Open Inventor,

Addison-Wesley, Reading, MA, 1994;

G. Alverson, et al., The HEPVis class library, FERMI-

LAB-Conference-98-363, FERMILAB—Batavia, Illi-

nois, 1998.

[121] J. Allison, S. Tanaka, The Geant4 visualization system,

Proceedings of the CHEP ’97 Conference, Berlin,

Germany, April 1997.

[122] G. Barrand, et al., Abstract interfaces for data analysis:

component architecture for data analysis tools, Proceed-

ings of the CHEP 2001 Conference, Bejing, China,

CERN-IT-2001-013, September 2001;

(See also: http://aida.freehep.org).

[123] O. Couet, et al., ANAPHE—OO Libraries and

tools for data analysis, CERN-IT-2001-012;

Proceedings of the CHEP 2001 Conference, Bejing,

China, September 2001. (See also: http://cern.ch/

anaphe/Lizard).

[124] G. Barrand, OPACS and data analysis; Proceedings

of the CHEP ’98 Conference, Chicago, September

1998;

(See also: http://www.lal.in2p3.fr/OpenScientist).

[125] S. Tanaka, K. Hashimoto, Proceedings of the CHEP ’98

Conference, Chicago, September 1998.

ARTICLE IN PRESS

S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303 303

http://www.lal.in2p3.fr/OPACS
http://jas.freehep.org
http://heprep.freehep.org
http://wired.freehep.org
http://www.opengl.org
http://aida.freehep.org
http://cern.ch/anaphe/Lizard
http://cern.ch/anaphe/Lizard
http://www.lal.in2p3.fr/OpenScientist

	Geant4-a simulation toolkit
	Introduction
	History of Geant4
	Organisation of the collaboration
	User support, documentation and source code
	Examples and training kits
	Structure of this paper

	Design overview
	General considerations
	General capabilities and properties
	Openness

	Global structure
	Design and architecture
	Events
	Geometry and detector representation
	Tracking
	Physics
	Particles and materials

	User actions

	Software process
	Methodology
	Object-oriented analysis and design
	Requirement gathering and OOA phase
	OOD phase
	Code implementation and evolution phase

	Software process improvement
	Configuration and release management
	Quality assurance and testing
	User support process

	The kernel
	Global structure
	How a particle is tracked
	Process management
	Propagation in the detector model
	Tracking optimisation
	Transportation in a field

	Priority control of tracks
	Hits and digitisation
	Detector sensitivity
	Readout geometry

	Physics processes
	Scope
	Processes and models
	Interactions and decays
	Deciding which process limits the step
	Decay processes
	Electromagnetic processes
	Standard electromagnetic processes
	Range cuts
	Range and absorption length tables
	Energy loss of electrons/positrons
	Energy loss of muons
	Energy loss of charged hadrons
	Bremsstrahlung
	Multiple scattering
	Low energy extensions

	Photo- and electro-production of hadrons
	Muo-production of hadrons
	Hadronic processes
	Interaction cross-sections
	Modelling final states
	Sample data driven models
	Sample parameterised models
	Sample theory driven models

	Optical processes
	Cherenkov process
	Scintillation
	Absorption and Rayleigh scattering
	Reflection and refraction

	Transition radiation

	Additional capabilities
	Parameterisation for fast simulation
	Event biasing
	Persistency

	Interactivity and visualisation
	User interfaces
	Concrete implementations
	Other tools for application programmers

	Visualisation
	Data analysis
	Geometry verification

	Conclusion
	Acknowledgements
	References

