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Abstract. In this paper, we study the safety guarantees of group communication-
based database replication techniques. We show that there is a model mismatch
between group communication and database, and because of this, classical group
communication systems cannot be used to build 2-safe database replication. We
propose a new group communication primitive cakadi-to-end atomic broad-
castthat solves the problem, i.e., can be used to implement 2-safe database repli-
cation. We also introduce a new safety criterion, caligoup-safety that has
advantages both over 1-safety and 2-safety. Experimental results show the gain
of efficiency of group-safety over lazy replication, which ensures only 1-safety.

1 Introduction

Database systems represent an important aspect of any IT infrastructure and as such
require high availability. Software-based database replication is an interesting option
because it promises increased availability at low cost. Traditional database replication is
usually presented as a trade-off between performance and consistency [1], i.e., between
eager and lazy replication. Eager replication, based on an atomic commitment protocol,
is slow and deadlock prone. Lazy replication, which foregoes the atomic commitment
protocol, can introduce inconsistencies, even in the absence of failures.

However, eager replication does not need to be based on atomic commitment. A
different approach, which relies on group communication primitives to abstract the
network functionality, has been proposed in [2, 3], These techniques typically use an
atomic broadcast primitive (also called total order broadcast) to deliver and order trans-
actions in the same serial order on all replicas, and offer an answer to many problems
of eager replication without the drawbacks of lazy replication: they offer good perfor-
mance [4], use the network more efficiently [5] and also reduce the number of dead-
locks [6].

Conceptually, group communication-based data replication systems are built by
combining two modules: (1) a database module, which handles transactions and (2) a
group communication module, which handles communication. When combined, these
two module result in a replicated database. However, the two modules assume differ-
ent failure models, which means that the failure semantics of the resulting system are
unclear.
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In this paper, we examine the fault tolerance guarantees offered by database repli-
cation techniques based on group communication. The model mismatch between group
communication and database systems comes from the fact that they originate from two
different communities. We explore this mismatch from two point of views: from the
database point of view, and from the distributed system point of view. Database repli-
cation is usually specified with thHe-safetyand 2-safetycriteria. The first offers good
performance, the second strong safety. However, group communication as currently
specified, cannot be used to implement 2-safe database replication. The paper shows
how this can be corrected. Moreover, we show that the 1-safety and 2-safety criteria
can advantageously be replaced by a new safety criterion, which wgroaf-safety
Group safety ensures ensures that the databases say consistent as long as the number of
server crashes are bounded. While this notion is natural for group communication, it is
not for replicated databases. Simulation result show that group-safe database replication
leads to improved performance over 1-safety, while at the same time offering stronger
guarantees.

The rest of the paper is structured as follows. Section 2 presents the model for the
database system and for group communication, and explains the use of group commu-
nication (more specifically atomic broadcast) for database replication. Section 3 shows
that this solution, based on current specification of atomic broadcast, cannot be 2-safe.
Section 4 proposes a new specification for atomic broadcast, in order to achieve 2-
safety. Section 5 defines the new safety criterion cadledip-safety Section 6 com-
pares the efficiency of group-safe replication and 1-safe replication by simulation. Sec-
tion 7 discusses the relationship between group-safe replication and lazy replication.
Finally Sect. 8 presents related work and Sect. 9 concludes the paper.

2 Model and Definitions

We assume that the overall system is built from three components (Fig. 1): the database
component, the group communication component and the replicated database compo-
nent. The first two components offer the infrastructure needed to build the application
—in our case a replicated database. These two infrastructure components are accessed
by the application, but they have no direct interaction with each other.

The replicated database component implements the actual replicated database and
is described in Sect. 2.1. The database component contains all the facilities to store the
data and execute transactions locally, and is described in Sect. 2.2. The group commu-
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nication component offers broadcast primitives, in particular atomic broadcast, and is
described in Sect. 2.3).

2.1 Database Replication Component

The database replication component is modelled as follows. We assume a set of servers
Si,...,S,, and a fully replicated databade = {D; ... D, }, where each serve¥;

holds a copyD; of the database. Since group communication does not make much sense
with a replication degree of 2, we consider that 3. We assume update-everywhere
replication [1]: clients can submit transactions to any sesyeClients wanting to ex-

ecute transactionsend it to one serve$,; that will act as thalelegatefor this transac-

tion: Sy is responsible for executing the transaction and sending back the results to the
client! The correctness criterion for the replicated database is one-copy serialisability:
the system appears to the outside world as one single non-replicated database.

Replication Scheme A detailed discussion of the different database replication tech-
niques appears in [7]. Among these techniques, we consider those that use group com-
munication, e.g., atomic broadcast (see Sect. 2.3). As a representative, we consider the
technique calledipdate-everywhere, non-voting, single network interactig. 2 il-
lustrates this technigueThe technique is calledon-votingbecause there is no voting
phase in the protocol to ensure that all servers commit or abort the transaction: this
property is ensured by the atomic broadcast group communication primitive.

The processing of transactigris done in the following way. The clier?’ sends
the transaction to the delegate ser$fgr The delegate processes the transaction, and,
if it contains some write operations, broadcasts the transaction to all servers using an
atomic broadcast. All servers apply the writes according to delivery order of the atomic
broadcast. Conflicts are detected deterministically and so, if a transaction needs to be
aborted, it is aborted on all servers. Techniques that fit in this category are described
in [8-10, 4, 11].

! The role of the delegate is conceptually the same than the primary server, simply any server
can acts as a “primary”.

2 However, the results in this paper apply as well to the other techniques in [7] based on group
communication.



Safety Criteria for Replicated DatabasesThere are three safety criteria for replicated
database, calletl-safe 2-safeandvery safe[12]. When a client receives a message
indicating that his transaction committed, it means different things depending on the
safety criterion.

1-safe: If the technique idl-safe when the client receives the notificationitsf com-
mit, thent has been logged and will eventually commit on the delegate server of

2-safe: If the technique i2-safe when the client receives the notification#s com-
mit, thent is guaranteed to have been loggedatimvailableservers, and thus will
eventually commit on all available servers.

Very safe: If the technique isvery safe when the client receives the notification of
t's commit, thent is guaranteed to have been loggedatinservers, and thus will
eventually commit on all servers.

Each safety criterion shows a different tradeoff between safety and availability: the
more safe a system, the less available itlisafereplication ensures that transactions
can be accepted and committed even if only one server is available: synchronisation
between copies is done outside of the scope of the transaction’s execution. So a transac-
tion can commit on the delegate server even if all other servers are unavailable. On the
other hand;l-safereplication schemes can lose transactions in case of a cragiryA
safesystem ensures that a transaction is committed on all servers, but this means that a
single crash renders the system unavailable. This last criterion is not very practical and
most systems are therefore 1-safe or 2-safe.

The distinction betweef-safeand2-safereplication is important. If the technique
is 1-safe transactions might get lost if one server crashes and another takes over, i.e.,
the durability part of the ACID properties is not ensured. If the technig@esiafe no
transaction can get lost, even if all servers crash.

2.2 Database Component

We assume a database component on each node of the system. Each database compo-
nent hosts a full copy of the database. The database component executes local transac-
tions and enforces the ACID properties (in particular serialisability) locally.

We also assume that the local database component offers all the facilities and guar-
antees needed by the database replication technique (see [7]), and has a mechanism to
detect and handle transactions that are submitted multiple timedesighle transac-
tions[13].

2.3 Group Communication Component

Each servel; hosts ongrocess;, which implements the group communication com-
ponent. While the database model is quite well established and agreed upon, there is a
large variety of group communication models [14]. Considering the context of the pa-
per, we mention two of them. The first model is thgamic crash no-recovemodel,

which is assumed by most group communication implementations. The other model is
thestatic crash-recoverynodel, which has been described in the literature, but has seen
little use in actual group communication infrastructure.



Dynamic crash no-recovery model The dynamic crash no-recovery model has been
introduced in the Isis system [15], and is also sometimes calledi¢hebased model

In this model, the group idynamic processes can join and leave after the beginning
of the computation. This is handled by a list, which contains the processes that are
member of the group. The list is called thiew of the group. The history of the group

is represented as a sequence of views . . v,,,, @ new view being installed each time

a process leaves or joins the group.

In this model, processes that crash do not recover. This does not prevent crashed
processes from recovering. However, a process that recovers after a crash has to take a
new identity before being able the rejoin the group. When a crashed process recovers in
a new incarnation, it requests a view change to join the group again. During this view
change, astate transferoccurs: the group communication system requests that one of
the current members of the view makes a checkpoint, and this checkpoint is transferred
to the joining process. Most current group-communication toolkits [15-20] are based
on this model or models that are similar.

Dynamic crash no-recovery group communication systems cannot tolerate the crash
of all the members of a view. Depending on synchrony assumptions, if a view contains
n processes, then at best- 1 crashes can be tolerated.

Static crash recovery modelln the static crash recovery model, the grougt#dic i.e.,

no process can join the group after system initialisation. In this model, processes have
access to stable storage, which allows them to save (part of) their state. So, crashed
processes can recover, keep the same identity, and continue their computation. Most
database system implement their atomic commitment protocol in this model.

While this model might seem natural, handling of recovery complicates the im-
plementation. For this reason, in the context of group communication, this model has
mostly been considered in papers [21, 22]. Practical issues, like application recovery,
are not well defined in this model (in [23] the recovery is log based). Because of the ac-
cess to stable storage, static crash recovery group communication systems can tolerate
the simultaneous crash all the processes [21].

Process classedn one system model, processes do not recover after a crash. In the
other model, processes may recover after a crash, and possibly crash again, etc. Alto-
gether this leads us to consider three classes of processegseéhprocesses, which

never crash, (2yellowprocesses, which might crash one or many times, but eventually
stay forever up, and (3gd processes, which either crash forever, or are unstable (they
crash and recover indefinitely). Figure 3 illustrates those three classes, along with the
corresponding classes described by Aguikgral. [21]. Our terminology, with the dis-
tinction betweergreenandyellow processes, fits better the needs of this paper. In the
dynamic crash no-recovery model processes are either green or red. In the static crash
recovery model, processes may also be yellow.

Atomic Broadcast We consider that the group communication component offers an
atomic broadcast primitive. Informally, atomic broadcast ensures that messages are de-
livered in the same order by all destination processes. Formally, atomic broadcast is
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defined by two primitive#\-broadcast and A-deliver that satisfy the following prop-
erties:

Validity: If a processA-delivers m, thenm wasA-broadcast by some process.
Uniform Agreement: If a processA-delivers a messagen, then all non-red processes
eventuallyA-deliver m.
Uniform Integrity: For every message, every procesé\-delivers m at most once.
Uniform Total Order: If two proces andg A-deliver two messages: andm’, then
p deliversm beforem’ if and only if ¢ deliversm beforem/'.

In the following, we assume a system model where the atomic broadcast problem
can be solved, e.g., the asynchronous system model with failure detectors [24, 21], or
the synchronous system model [25].

2.4 Inter-Component Communications

Inter-component communication, and more specifically communication between the
group communication component and the application component, is usually done using
function calls. This leads to problems in case of a crash, since a message might have
been delivered by the group communication component, but the application might not
have processed it. To address this issue, we express the communication between the
group communication layer and the application layemessage$rig. 4). When the
application executes-send(m) (A stands for Atomic Broadcast), it sends the mes-
sage(m, A-send) to the group communication layer. To deliver message the ap-
plication (i.e executé\-deliver(m)), the group communication component sends the
messagém, A-deliver) to the application.

So, we model the inter-component (intra-process) communication in the same way
as inter-process communication. The main difference is that all components reside in
the same process, and therefore fail together. This inter-layer communication is reliable
(no message loss), except in case of a crash.
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3 Group communication-based database replication is not 2-safe

In this section, we show that traditional group communication systems cannot be used
to implement 2-safe replication. There are two reasons for this. The first problem that
arises when trying to build a 2-safe system is the number of crashes the system can
tolerate. The 2-safety criterion imposes no bounds on the number of servers that may
crash, but the dynamic crash no-recovery model does not tolerate the crash of all servers.
This issue can be addressed by relying on the static crash recovery model.

The second problem is not linked to the model, but related to message delivery
and recovery procedures. The core problem lies in the fact that the delivery of a mes-
sage does not ensure the processing of that message [26]. Ignoring this fact can lead to
incorrect recovery protocols [27]. Note that this second problem exists in all group com-
munication toolkits, which rely on the state transfer mechanism for recovery regardless
of the model they are implemented in.

To illustrate this problem, consider the scenario illustrated in Fig. 5. Trans&ction
is submitted on the delegate sen#&r Whent terminates,S; sends a message con-
tainingt to all replicas. The messageis sent using an atomic broadcast. The delegate
S, deliversm, the local database component locally logs and comiratsd confirms
the commit to the client: transactidgris committed in the database componentSgf
ThenS, crashes. All other replicas§ and.Ss) deliverm, i.e., the group communica-
tion components of;, S; and.S; have done their job. Finallg, andS; crash (before
committingt), and later recover (befors;).

The system cannot rebuild a consistent state that incltislehanges. Servers,
and S; recover to the state of the databd3dhat does not include the executiontof
Messagen that contained is not kept in any group communication component (it was
delivered everywhere) andwas neither committed nor logged on serv8gsand Ss:
the technique is not 2-safe.

In this replication scheme, when a client is notified of the commit of transagttion
the only guarantee is thatvas committed by the delegatg. The use of group com-
munication does not ensure thiawill commit on the other servers, but merely that
the message: containingt will be deliveredon all servers in the view. If those servers
crash after the time ofi’s delivery and before is actually committed or logged to disk,
then transaction is lost. In the scenario of Fig. 5, if the recovery is based orsthte
transfer mechanisr{Bect. 2.3), there is no available server that has a state cont&ming



changes. If recovery is log-based (Sect. 2.3), the group communication system cannot
deliver again message without violating the uniform integrity property,{ cannot be
delivered twice).

The problem lies in the lack of end-to-end guarantees of group communication sys-
tems described by Cheriton and Skeen [28] and is related to the fact that message de-
livery is not an atomic event. Group communication systems enforce guarantees on
the delivery of messages to the application, but offer no guarantees with respect to the
application level: 2-safety is an application level guarantee.

4 Group Communication with end-to-end guarantees for 2-safe
replication

We have shown in the previous section that it is impossible to implement a 2-safe
database replication technique using a group communication toolkit that offers a tra-
ditional atomic broadcast. In order to build a 2-safe replication technique, we need to
address the end-to-end issue.

4.1 Ad-hoc solution

One way to solve the problem would be to add more messages to the protocol: for in-
stance each server could send a message signalling wed effectively logged and

will eventually commit. The delegat&; would confirm the commit to the client af-

ter receiving those messages. This approach has been proposed by é{eatidor
implementing a group communication toolkit on top of another group communication
toolkit [29]. While such an approach would work it has two drawbacks. First the tech-
nigue would have a higher latency because of the additional waiting: synchronisation
between replicas is expensive [5]. But most importantly, this approach ruins the modu-
larity of the architecture. The point of using a group communication system is to have
all complex network protocols implemented by the group communication component
and not to clutter the application with communication issues. If additional distributed
protocols are implemented in an ad-hoc fashion inside the application, they risk being
less efficient (some functionality of the group communication will be duplicated inside
the application, in this case, acknowledgement messages), and less reliable (distributed
system protocols tend to be complex; when implemented in an ad-hoc fashion, they
might be incorrect).

4.2 End-To-End Atomic Broadcast

The problem of lost transactions appears when a crash occurs between the time a mes-
sage is delivered and the time it is processed by the application. When a message is
delivered to the application and the application is able to process the message, we say
that the delivery of the messagesisccessfulHowever, we cannot realistically prevent
servers from crashing during the time interval between delivery and successful delivery.
In the event of a crash, messages that were not successfully delivered must be delivered
again: we have to make sure that all messages are eventually delivered successfully.
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With current group communication primitives, there is no provision for specify-
ing successful delivery. For this reason, we introduce a new inter-component message
that acknowledges the end of processingrofi.e., successful delivery of:). We de-
note this messageck(m). The mechanism is similar to acknowledgement messages
used in inter-process communications. Figure 6 shows the exchange of messages for
an atomic broadcast. First, the application sends messagepresented by the inter-
component message, A-send) to the group communication system. When the group
communication components is about to deliwerit sends the inter-component mes-
sage(m, A-deliver). Once the application has processed messagesends the inter-
component messagen, ack) to signal thatn is successfully delivered

If a crash occurs, and the group communication component did not receive the mes-
sage(m, ack), then(m, deliver) should be sent again to the application upon recovery.
This requires the group communication component to log messages and to use log-
based recovery (instead of checkpoint-based recovery). So after each crash, the group
communication component “replays” all messagesuch that(m, ack) was not re-
ceived from the application. By replaying messages, the group communication compo-
nent ensures that, if the process is eventually forever up, i.e., non-red, then all messages
will eventually be successfully delivered.

We call the new primitiveend-to-end atomic broadcasthe specification of end-
to-end atomic broadcast is similar to the specification of atomic broadcast in Sect. 2.3,
except for (1) a new end-to-end property, and (2) a refined uniform integrity property:

a messagen might be delivered multiple times, but can only be delivesadcessfully
once A messagen is said to besuccessful deliveredthen ack(m) is received. The
new properties are the following:

End-to-End: If a non-red procesa-delivers a message:, then it eventuallysuccess-
fully A-delivers m.

Uniform Integrity For every message., every processuccessfullA-delivers m at
most once.

We assume a well-behaved application, that is, when the application receives mes-
sage(m, A-deliver) from the group communication component, it seds ack) as
soon as possible.

4.3 2-Safe Database Replication using end-to-end atomic broadcast

2-safe database replication can be built using end-to-end atomic broadcast. The repli-
cation technique uses the end-to-end atomic broadcast instead of the "classical” atomic



Transaction Start Transaction Ends
Successful

Delive
Comity vary

.
o
S T e
3 T ‘comm\t(!)
® oo [———>
|

Fig. 7. Recovery with end-to-end atomic broadcast

End-to-End
Atomic Broadcast

Sy & S3

broadcast. The only difference is that the replication technique must signal successful
delivery, i.e., generateck(m). This happens when the transactionontained inm
is logged and is therefore guaranteed to commit. According to the specification of the
end-to-end atomic broadcast primitive, every non-red process eventually successfully
deliversm. Thetestable transactiombstraction described in Sect. 2.2 ensures that a
transaction is commited at most once. So every process that is not permanently crashed
or unstable eventually commitsexactly once: the technique is 2-safe.

Figure 7 shows the scenario of Fig. 5 using end-to-end atomic broadcast. After the
recovery of server§s; andSs, messagen is delivered again. This time§, and.S; do
not crash, the delivery of. is successful andis committed on all available servers.

5 A new safety criterion: group-safety

We have shown in Sect. 3 that the techniques of Sect. 2.1 based on traditional group
communication are not 2-safe. They are only 1-safe: when the client is notifigsl of
commit,t did commit on the delegate server. As shown in Sect. 4, 2-safety can be ob-
tained by extending group communication with end-to-end guarantees. However, group
communication without end-to-end guarantees, even though it does not ensure 2-safety,
provides an additional guarantee that is orthogonal to 1-safety and 2-safety. We call this
guarantegroup-safety

5.1 Group Safety

A replication technique igroup-safdf, when a client receives confirmation of a trans-
action’s commit, the message that contains the transaction is guaranteetktivbred

(but not necessarily processed) on all available servers. In contrast, 2-safety guarantees
that the transaction will bprocessedi.e., logged) on all available servers. Group-safety
relies on the group of servers to ensure durability, whereas 2-safety relies on stable stor-
age. With group-safety, if the group does not falil, i.e., enough servers remain up then
durability is ensured (the number of servers depends on the system model and the algo-
rithm used, typically a majority of the servers must stay up). Notice that group safety
does not guarantee that the transaction was logged or committed on any replica. A client
might be notified of the termination of some transactidreforet was actually logged

on any replica.
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Table 1. Summary of different safety levels

The relationship between group-safety, 1-safety and 2-safety is summarised in Ta-
ble 1. We use two criteria: (1) the number of servers that are guaranteletivter the
(message containing the) transaction (vertical axis), and (2) the number of servers that
are guaranteed to eventuatlgmmitthe transaction (horizontal axis), that is the number
of servers that have logged the transaction. We distinguish a transdefigvaredon
(one, al) replicas, and a transactidoggedon (hone, one, ajlreplicas. A transaction
cannot be logged on a site before being delivered, so the corresponding entry in the
table is grayed out. For each remaining entry in the table the corresponding safety level
is indicated:

No Safety: The client is notified as soon as the transactigdelivered on one server
Sy (t did not yet commit). No safety is enforced.df; crashes beforés writes are
flushed to stable storage, theis lost. We call thig-safereplication.

1-Safe: With 1-safety the client is notified when transactions delivered and logged
on one server only, the delegate senggr If S; crashes, them might get lost.
Indeed, whileS, is down, the system might commit new transactions that conflict
with ¢: ¢t must be discarded whe$y; recovers. The only alternative would be to
block all new transactions whilé, is down [30].

Group-Safe: The client is notified when a transaction is guaranteed to be delivered on
all available servers (but might not be logged on any servers). If the group fails
because too many servers crash, themght be lost. Group-safe replication basi-
cally allows all disk writes to be done asynchronously (outside of the scope of the
transaction) thus enabling optimisations like write caching. Typically, disk writes
would not be done immediately, but periodically. Writes of adjacent pages would
also be scheduled together to maximise disk throughput.

Group-Safe & 1-Safe: The client is notified when transactiagnis guaranteed to be
delivered on all serve@ndwas logged on one server, the delegatend thus will
eventually commit orb,;. Since the system is both group-safe and 1-safe, we call
this safety levegjroup-1-safetyWith group-1-safety, the transaction might be lost if
too many serversncluding .S, crash. A transaction loss occurs eithefjfnever
recovers, or the system accepts conflicting transactions While crashed [30].
Most proposed database replication strategies based on group communication fall
in this category [31, 10, 32—34].
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2-Safe: The client is notified when a transaction is logged on all available servers. Even
if all servers crash, the transaction will eventually commit and therefore cannot get
lost.

If we consider the number of crashes that can be tolerated, we have basically three
safety levels (Table 2): a) 0-safe and 1-safe replication cannot tolerate any crash, i.e.,
one single crash can lead to loose a transaction, b) Group-safe replication cannot tolerate
the crash of alh servers, c) 2-safe replication can tolerate the crash of sdirvers.

5.2 Group Safety is preferable to Group-1-Safety

Group-safe as well as group-1-safe replication techniques cannot tolerate the crash of
all servers. So, what is the real difference between both criteria? Table 3 summarises
the conditions that lead to the loss of the transaction, using two criteria: (1) failure of
the group (typically failure of a majority of servers) and (2) crash of the delegate server
S4. The difference appears in the middle column (failure of the group, but n&)of
Group communication-based replication scheme are specially interesting in update-
everywhere settings where the strong properties of atomic broadcast are used to han-
dle concurrent transactions. If the replication is update-everywhere, then all servers
S ... S, might be the delegate server for some transactibthe group fails, at least
one server crashed, and this server might be the delegate Sgriegrsome transaction
t. In this case, the middle column of Table 3 does not exist. In such settings it makes lit-
tle sense to deploy a group-1-safe replication technique. It must be noted that switching
between group-1-safe and group-safe can be done easily at runtime: an actual imple-
mentation might choose to switch between both modes depending on the situation.
The replication technique illustrated in Fig. 2 ensures group-1-safety. It can be trans-
formed into group-safe-only quite easily. Figure 8 illustrates the group-safe version of
the same technique. Read operations are typically done only on the delegateSserver

% This is not the case with therimary-copytechnique.
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[ Parameter [ Value ]
Number of items in the database 10’000
Number of Servers 9
Number of Clients per Server 4
Disks per Server 2
CPUs per Server 2
Transaction Length 10 — 20 Operation$
Probability that an operation is a write 50%
Probability that an operation is a query 50%
Buffer hit ratio 20%
Time for a read 4-12ms
Time for a write 4-12ms
CPU Time used for an 1/O operation 0.4ms
Time for a message or a broadcast on the Netywork 0.07ms
CPU time for a network operation 0.07ms

Table 4. Simulator parameters

before the broadcasting, writes are executed once the transactions is delivered by the
atomic broadcast. The main difference with Fig. 2 is the response to the client, which
is sent back as soon as the transactions is delivered by the atomic broadcast and the
decision to commit/abort the transaction is known. The observed response time by the
client is shortened by the time needed to write the decision to disk. The performance
gain is shown by the simulation results presented in Sect. 6.

6 Performance Evaluation

In this section we compare the performance of group-safety, group-1-safety and 1-
safety (i.e., lazy replication). The evaluation is done using a replicated database sim-
ulator [5]. The group communication-based technique is the database state machine
technique [10], which is an instance of the replication technique illustrated on Fig. 2
(for group-1-safety) and Fig. 8 (for group-safety). The setting of the simulator are de-
scribed in Table 4. The load of the system is between 20 and 40 transactions per second;
the network settings correspond to a 100 Mb/s LAN. All three techniques used the same
logging setting, so they share the same throughput limits.

Figure 9 shows the results of this experiment. Theaxis represents the load of the
system in transactions per second, Yhaxis the response time, in milliseconds.

Each replication technique is represented by one curve. The results show that group-
safe replication has very good performance: it even outperforms lazy replication when
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the load is below 38 transactions per second. The abort rate of the group-safe technique
was constant, slightly below 7%. As the lazy technique does no conflict handling, abort
rate is unknown. The very good performance of the group safe technique is due to the
asynchrony of the writes (the writes to disk are done outside the scope of the transac-
tion).

In high-load situations, group-safe replication becomes less efficient than lazy repli-
cation. The results show also that group-1-safe replication behaves significantly worse
than group-safe replication: the technique scales poorly when the load increases.

To summarise, the results show that transferring the responsibility of durability from
stable storage to the group is a good idea in a LAN: in our setting, writing to disk takes
around 8ms while performing an atomic broadcast takes approximatehsl

7 Group-safe replicationvs.lazy replication

On a conceptual level, group-safe replication can be seen as a complement to lazy repli-
cation. Both approaches try to get better performance by weakening the link between
some parts of the system. Figure 10 illustrates this relationship. Group-safe replication
relaxes the link between server and stable storage: when a transactiommits, the

state in memory and in stable storage might be differéatrites are not committed

to disk, they are done asynchronously).



Lazy replication relaxes the link between replicas: when a transaction commits, the
state in the different replicas might be different (some replicas have not seen transac-
tion ¢; t's writes are sent asynchronously). The two approaches relax the synchrony that
is deemed too expensive.

The main difference is the condition that leads to a violation of the ACID properties.
In an update-everywhere setting, a lazy technique can violate the ACID properties even
if no failure occurs. On the other hand, a group-safe replication will only violate this
ACID properties if the group fails (too many servers crash). Group-safe replication has
another advantage over lazy replication. With lazy replication in an update-everywhere
setting, if the number of servers grow, the chances that two transaction originating from
two different sites conflict grows. So the chances that the ACID properties are violated
grows with the number of servers.

With group-safe replication the ACID properties might get violated if too many
servers crash. If we assume that the probability of the crash of a server is independent
of the number of servers, the chance of violating the ACID properties decreases when
the number of servers increases. So, the chances that somiedldihgppens increases
with n for lazy replication, and decreases with group-safe replication.

8 Related Work

As already mentionned, traditional database replication is usually either (i) 2-safe and
built around an atomic commitment protocol like 2PC, or (ii) does not rely on atomic
commitment and is therefore 1-safe [12]. As the the atomic commitment protocol is
implemented inside the database system, coupling between database and communica-
tion systems is not an issue. Techniques to improve atomic commitment using group
communication have also been proposed [35-37].

The fact that 2-safety does not require atomic commitment has been hinted at
in [38]. The paper explores the relationship between safety levels and the semantics
of communication protocols. However, the distinction between 2-safety and the safety
properties ensured by traditional group communication does not appear explicitely
in [38].

While the notion of group safety is formally defined here, existing database repli-
cation protocols have in the past relied on this property, e.g., [39, 27]. The trade-off
between 2-safety and group-safety has never been presented before.

The COReL toolkit [29] is a group communication toolkit that is built on top of
another group communication toolkit. The COReL toolkit has to cope with the absence
of end-to-end guarantees of the underlying toolkit. This issue is addressed by logging
incoming messages and sending explicit acknowledgement messages on the network.
However, an application built on top of COReL will not get end-to-end guarantees.

The issue of end-to-end properties for application are mentioned in [40]. While
the proposed solution solves the problem of partitions and partition healing, the issue of
synchronisation between application and group communication toolkit is not discussed.
In general, partitionable group membership systems solve some issues raised in this
paper: failure of the group communication because of crashes and partitions [41]. Yet,
the issue of application recovery after a crash is not handled.



The Disk Paxos[22] algorithm can also be loosely related to 2-safety, even though
the paper does not address database replication issues. The paper presents an original
way, using stable storage, to couple the application component with a component solv-
ing an agreement problem. However, the paper assumes a network attached storage,
which is quite different from the model considered here, where each network node only
has direct access to its own database.

The issue of connecting the group communication component and the database
component can also be related to theactly onceproperty in three-tier applica-
tions [13]. In our case, group communication system and database system can be seen
as two tiers co-located on the same machine that communicate using messages.

9 Conclusion

In this paper, we have shown that traditional group communication primitives are not
suited for building 2-safe database replication techniques. This led us to intreddee
to-end atomic broadcasto solve the problem. We have also shown that, while tradi-
tional group communication (without end-to-end guarantees) are not suited for 2-safe
replication, they offer stronger guarantees than 1-safety. To formalise this, we have in-
troduced a new safety criterion, callgtbup-safetythat captures the safety guarantees

of group communication-based replication techniques. While this safety criterion is
natural in distributed systems, it is less in the replicated database context. Performance
evaluation show that group-safe replication compares favourably to lazy replication,
while providing better guarantees in terms of the ACID properties.
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