

Group Communications
and APEX

Marc Stöcklin

Section Systèmes de Communication
Faculté Informatique et Communication
Ecole Polytechnique Fédérale Lausanne

Advisor :

Dr. Matthias Wiesmann
Distributed Systems Laboratory

EPFL-LSR

Lausanne, February 2004

 ii

 iii

Abstract

This document is the report of my semester project at the Distributed Systems

Laboratory (LSR) at École Polytechnique Fédérale Lausanne (EPFL). The aim of the project

was to explore the Application Exchange (APEX) protocol, an application layer datagram

relaying service which recently reached RFC status, and to use it in context of group

communications.

In a first, theoretical phase, I describe and analyze the APEX and its underlying

protocol, the Blocks Extensible Exchange Protocol (BEEP). When looking for an appropriate

implementation to use APEX in an application at the second stage, I realized the two

implementations available did not fit my needs. Therefore I designed a new implemen tation

of the APEX core in Java and integrated two services: the APEX Report Service defined in

the specification and the Reliable Broadcast Service. In the second phase of this report, I

present the design issues of my APEX implementation as well as the integrated services

and the requirements. Examples of how to use APEX in an application and how to design

new services are annexed in a tutorial.

 iv

 v

Table of Contents

1 Introduction 1

1.1 Task Specification 2

1.2 Overview 4

2 Blocks Extensible Exchange Protocol (BEEP) 5

2.1 BEEP Specification 5

2.2 BEEP Syntax and Architecture 7

2.3 Example: initiating a BEEP session 9

2.4 BEEP Applications 11
2.4.1 Apple's Xgrid 11
2.4.2 Profile Development Training at Clipcode Knowledge Services 11
2.4.3 Intrusion Detection Working Group of the IETF 11

3 Application Exchange Protocol (APEX) 13

3.1 APEX Specification 13

3.2 APEX Architecture 14
3.2.1 Endpoint-Relay mode: APEX edge connection 14
3.2.2 Relay-Relay mode: APEX mesh connection 14
3.2.3 Well-Known TCP port numbers 15
3.2.4 Naming conventions 15

3.3 Message Semantics 16
3.3.1 Channel creation (BEEP) 16
3.3.2 Attach operation 16
3.3.3 Bind operation 17
3.3.4 Terminate operation 17
3.3.5 Data operation 18

3.4 Operation processing 19

3.5 APEX Options 22

 vi

3.5.1 Option element 22
3.5.2 The dataTiming option 23
3.5.3 The hold4Endpoint option 24

3.6 APEX Services 26
3.6.1 APEX Report Service 26
3.6.2 APEX Access Service 28
3.6.3 APEX Presence Service 28

3.7 Auxiliary elements 30
3.7.1 Transaction identifiers 30
3.7.2 The ok element 30
3.7.3 The error element 30
3.7.4 The reply element 31
3.7.5 APEX reply codes 32

3.8 APEX and group communications 33
3.8.1 Unicast messaging 33
3.8.2 Multicast messaging 33
3.8.3 Reliable broadcast messaging 33

4 Existing APEX implementations 35

4.1 APEX Implementation of the IMPP 35

4.2 RRAPEX, an APEX implementation for the RoadRunner toolkit 35

4.3 APEX working group newsgroup 36

4.4 Conclusion 36

5 APEX Implementation 37

5.1 Using the Blocks Extensible Exchange Protocol in Java 37

5.2 A first BEEP example 38

5.3 Application Programming Interface (API) 40

5.4 Package dependency 43

5.5 Implementation details 45
5.5.1 APEXProcess, APEXEndpointProcess, APEXRelayProcess 45
5.5.2 APEX 45
5.5.3 APEXManager, APEXRelayManager, APEXEndpointManager 46
5.5.4 APEXConnection, APEXEdgeConnection, APEXMeshConnection 46

 vii

5.5.5 APEXConnectionThread 47
5.5.6 APEXMessage 47
5.5.7 APEXProfile 48
5.5.8 APEXService 49
5.5.9 APEXStatus 49

5.6 In a relay: example of fully processing a data operation 50

5.7 Configuration Files 55
5.7.1 Service configuration DTD 55
5.7.2 Relay configuration DTD 55

5.8 Selected problems arisen on implementation 57
5.8.1 Connection control 57
5.8.2 APEXStatus notification 58
5.8.3 Transaction identifiers 59

5.9 Assumptions 60
5.9.1 Sequence of incoming message segments 60
5.9.2 MIME Multipart messages 60

5.10 Testing the APEX implementation 61

5.11 Limitations 62
5.11.1 Additional APEX services 62
5.11.2 Option processing 62
5.11.3 MIME Multipart messages 62
5.11.4 XML content in messages 63

6 Reliable Broadcast Service 65

6.1 Reliable broadcast 65

6.2 Implementing the Reliable Broadcast Service 67
6.2.1 The basic behaviour 67
6.2.2 The Reliable Broadcast option 68
6.2.3 DTD of a Reliable Broadcast option 69

6.3 An example 70

6.4 Discussion: Reliable Broadcast and APEX 73
6.4.1 The targetHop attribute 73
6.4.2 The mustUnderstand attribute 73
6.4.3 APEX Report Service 74
6.4.4 hold4Endpoint option 74

 viii

7 APEX Report Service 75

7.1 Implementing the APEX Report Service 75
7.1.1 handleMessage method 75
7.1.2 handleOption method 75
7.1.3 handleSent / handleDiscarded methods 76
7.1.4 getStatusRequestOption method 77

7.2 A Status Request testing example 77

8 Conclusion 81

9 Acknowledgements 83

A APEX applications – a short tutorial 85

A.1 An APEX endpoint process 85
A.1.1 The APEX endpoint manager 85
A.1.2 Attach as an endpoint 85
A.1.3 Send a data operation 86
A.1.4 Receiving a data operation 88
A.1.5 A complete APEX endpoint 88
A.1.6 An APEXStatus example 91

A.2 An APEX relay process 93
A.2.1 The APEX relay manager 93
A.2.2 A complete APEX relay 94

A.3 An APEX service 95
A.3.1 Setting up an APEX service 95
A.3.2 Integration of the service 97

B Bibliography 99

C Index of Figures, Tables and Listings 101

C.1 List of Figures 101

C.2 List of Tables 101

C.3 List of Listings 102

 ix

 x

 1

1 Introduction

Ever since the Internet and computer networking has existed, engineers and

developers designed protocols to standardize data exchanges of applications. Hence,

numerous application protocols have been drawn up and reached Request For Comment

(RFC) status authorized by the Internet Engineering Task Force (IETF). Many of these

protocols solve about the same problems but everyone adds or leaves out one or another

feature and has its own principles for data transfer or encryption, which means that they

often are not compatible.

In order to solve these problems in a general and efficient way, the Blocks Extensible

Exchange Protocol (BEEP) has been designed. BEEP provides a common framework for

application protocol designers and relieves them of basic connection management, message

encoding and decoding, authentication or encryption, on creation of a new protocol. Thus,

designers can fully devote themselves to the important part placed on top of BEEP: the

development of an own application protocol which then is registered as a so called "profile"

in the BEEP context.

One of these profiles reached RFC status in 2001, the Application Exchange (APEX)

protocol, a best effort datagram relaying service on application level. The APEX provides,

supported by the underlying BEEP, service discovery, application-layer addressing, pre-

sence information, and permission management. The APEX allows an application to

exchange arbitrary MIME and XML messages by using a mesh of interconnected relays

which transport these messages to the appropriate endpoints. These endpoints may either

be applications or services; the latter allow the APEX even to support a complete client-

server model.

As the APEX model is option driven, it is flexible and extensible for use in many

kinds of data transfer or communication domains. Since the payload of its messages is

arbitrary, the field of application is endless: APEX can for instance be applied in instant

messaging, video streaming or to locate and transfer a file in a peer-to-peer mechanism.

The basic interest of this project is to explore the APEX standard in order to find out

if it supports any mechanisms for group communications, basically unicast, multicast, and

reliable broadcast messaging. It principally targets on finding or writing an implementation

to be used in various distributed applications which evades programming directly onto

sockets but to work with a comfortable interface.

 2

1.1 Task Specification

The goal of this project is to explore the Internet Engineering Task Force (IETF)

standard Application Exchange (APEX) protocol, to find an implementation and to use this

implementation in a small application within the scope of grou p communications.

The main problems I aim to solve are

• exploring the APEX standard and explaining its mechanism

• finding an implementation of APEX or writing a new one

• designing an application using the implementation in context of reliable broad-

cast

• write a tutorial for a simple integration in existing applications

First of all it is a matter of giving an overview of the APEX protocol by presenting

brief background information on its origin and detailed analyze of the mechanisms it

provides.

While keeping a group communications perspective in mind, the purpose of the first

phase is to focus on the specifications of the protocol. While doing so, it is a question of

examining APEX concerning its architecture and semantic, as well as considering the

interface to the underlying protocol BEEP. At the same time I am going to analyze and

draw up schematically the so called operations of APEX such as channel establishment,

profile identification and initialization, and message exchange, in the two modes of

operation provided in the standard. Some important APEX options and APEX services

which offer functionalities like access policies, presence service and data timing take

another part of the theoretical presentation.

In a second phase of this project, it is about to find existing proof of concept

implementations of the APEX protocol. I will study and compare these implementations to

be able to pick out the best of them and to judge it in more details. If there are not any

implementations we could use for this project, the goal of this phase is to write a new one

by keeping the basic APEX core behavior while adding mechanisms for the use in a group

communications context. With it, I am going to give in my report a detailed account of the

installation or implementation as well as a toolkit description of its properties compared

with the ones the specification gives. The outcome of this phase, supported by the

 3

experiences gained while building an APEX environment, is to draw up a simple

installation and implementation tutorial which enables programmers to quickly integrate

APEX in their programs.

The third phase consists of writing a small messaging program which uses the APEX

implementation chosen or written in the second phase. My experiences and descriptions are

supposed to serve as a reference for practical applications in future projects in this

environment. The program may show apart unicast and broadcast messages, a reliable

broadcast messaging model running on several machines.

In addition to the four main problems specified above, I also try to answer the

following questions and problems in the course of the project:

• How does the APEX protocol work and what useful tools does it provide?

• Which of these tools gives preference to APEX in a group communications

application?

• How can reliable broadcast be used or integrated in APEX?

• Has the chosen or designed implementation any limitations?

Road map

October 20, 2003 start of project

November 13, 2003 examined BEEP and APEX specifications and set up a

summary of the structure and essential operations

November 20, 2003 searched the Internet for APEX implementations,

decided, based on the result, to design a implementation of the

APEX core service

December 10, 2003 set up the basic implementation: structure / interfaces, connec -

tion management, MIME / XML parsing, mid-term presentation

December 18, 2003 implemented relaying and exception management

January 8, 2004 integrated the configuration model; designed and tested the

APEXReportService and APEXReliableBroadcastService

January 15, 2004 completed javadoc documentation, report and the tutorial

January 22, 2004 finished and tested the implementation and applications

 4

1.2 Overview

At the outset, I take a look at the Blocks Extensible Exchange Protocol (BEEP) and

its basic mechanism to give a historical background and some notions of its architecture,

syntax and mechanisms.

In Chapter 3, I analyze the Application Exchange (APEX) protocol by describing the

general architecture, its operations and service model. At the end of the chapter, I discuss

how APEX can be used in terms of group communication.

The results of my search for existing APEX implementation and its conclusion are

discussed in Chapter 4.

Chapter 5 covers the implementation details, beginning with BEEP session establish-

ment, package dependencies and interface description. In this chapter I also describe the

internal architecture and some problems I solved in the course of the project as well as

some assumptions made during implementation.

The design issues and integration of the Reliable Broadcast are discussed in Chapter

6 while the APEX Report Service integration is described in Chapter 7.

In Chapter 8 finally, the conclusion of my semester project can be found.

A tutorial, describing how to use the APEX implementation designed in this project

in applications, and how to set up new APEX services, is presented in Appendix A.

 5

2 Blocks Extensible Exchange Protocol (BEEP)

In this chapter, I would like to give an overview of the Blocks Extensible Exchange

Protocol (BEEP) framework which brings along important features for APEX. I first start

with an introductive part indicating the reason why BEEP has been created and what it is

used for. Then I briefly explain the architecture of the protocol and in order to give a notion

of the syntax, I give an example of a BEEP session in Section 2.3. Finally, I show an

example where BEEP is used nowadays.

2.1 BEEP Specification

During the last twenty years, lots of protocols have been designed for data exchange

between applications. Many of these protocols were solving the same problems like

negotiating encryption, authenticating, transferring data, reporting errors, and so on.

Simultaneously, programmers had to deal with new security aspects and an increasing

complexity of networks, caused by firewalls, network address translation, and dynamic IP

address assignment.

In 1998, Dr. MARSHALL T. ROSE and CARL MALAMUD, both highly experienced

creators of several network protocols, united to make application protocol design more

efficient and simple. The resulting Blocks Extensible Exchange Protocol (BEEP, former

BXXP) has been standardized by the Internet Engineering Task Force in March 2001

mainly in the following two RFCs:

• RFC 3080 The Blocks Extensible Exchange Protocol Core. [1]

This is the main document and describes the basic structure such as Session

Establishment and Release, Channel Management, Message Syntax and Peer-

to-Peer Behaviour.

• RFC 3081 Mapping the BEEP Core onto TCP. [2]

This documents describes how BEEP sessions are mapped on TCP (Transport

Control Protocol)

The BEEP core is a generic application protocol kernel for connection-oriented

asynchronous interactions on networks. It is a peer-to-peer protocol that permits

simultaneous and independent exchanges of messages between the endpoints on push and

pull mode. These messages are arbitrary Multipurpose Internet Mail Extensions (MIME)

content, but they are usually structured textual using a special Document Type Definition

 6

(DTD) of XML, indicated by Content-Type: application/beep+xml. The use of MIME

allows in addition the possibility to transport arbitrary MIME content as BEEP payload by

using a MIME multipart message. BEEP is directly mapped onto the underlying transport

service, e.g. on TCP as it is described in RFC 3081 [2].

To set up a BEEP connection, one process first is in listening mode while another

process acts as a connection initiator. At the moment a BEEP session is established, the

two of the processes are entirely symmetric in their use of the session proper ties. Each peer

continuous by advertising the profiles it supports by exchanging the <greeting> message.

A profile defines syntax and semantics of the messages exchanged on the specific channel,

this enables for instance to use encrypted channels and authentication channels (e.g. SASL)

at the same time in the same session.

Either peer can initiate new channels for the session by indicating the profiles it

associates to that channel. The other one may accept the channel or decline its creation.

Either peer can as well close any channel as well as closing the session at every moment.

The use of profiles for defining the syntax on a channel specifies a reusable solution

for network programming. A programmer of a new application does not need to concern

himself with handling connection establishment, encryption, or authentication, but simply

can use the framework and define his own profile for the data exchange required by the

application.

As mentioned above, transporting data with BEEP can be very useful as the network

complexity increases: while normal HTTP requires a 3-way-handshake for every new

connection, a BEEP connection remains preserved over a long time and does not need to be

reinitiated.

 7

2.2 BEEP Syntax and Architecture

To give a general notion of how BEEP works, I show and comment some exchanges

during the establishment of a session including the creation of a channel. In order to

understand the following example I briefly explain the frame syntax and its structure.

Every BEEP message begins with a so called frame header which consists of a three-

character keyword followed by several parameters. These main keywords are:

• MSG start of a new message and with a unique message number

• RPY system reply to a message identified with the message number, such

as a confirmation for a channel creation as well as decline of one

• ANS answer to a message in the associated channel

• ERR error message, e.g. if a requested profile does not exist

• NUL an empty message

The supplied parameters, each separated by a single space character, are structured

in a special order as follows:

• channel channel number for this frame

• msgno number of the corresponding message sequence

• more takes either * or . which indicates if at least one frame follows or

the frame completes the message

• seqno sequence number of the message which corresponds to the first Byte

of the payload for the associated channel

• size number of Bytes in the payload

• ansno answer number to a message (only used in a ANS frame)

 8

The payload of a BEEP message is structured according to the rules of the MIME

standard and ends with frame trailer END followed by a CRLF pair. As mentioned above, the

semantics of the message is specific to the profile associated to a channel – however, the

specification says that a profile must define:

• initialization messages exchanged during channel creation if necessary

• messages exchanged in the payload

• semantics of these messages

 9

2.3 Example: initiating a BEEP session

In order to illustrate some important operation in context of a BEEP session, I go

straight through a normal establishment of a session and the creation of an APEX channel.

To initiate a new session, one process acts as a listener (L) while the initiator (I)

opens a connection. The listener then takes the role of a server and, when the connection is

established, advertises the profiles it supports. The initiator accepts the profile he is willing

to use by an empty greeting tag.

 L/S: <wait for incoming connection>
 I/C: <open connection>
 S: RPY 0 0 . 0 111
 S: Content-Type: application/beep+xml
 S:
 S: <greeting>
 S: <profile uri='http://iana.org/beep/APEX' />
 S: </greeting>
 S: END
 C: RPY 0 0 . 0 52
 C: Content-Type: application/beep+xml
 C:
 C: <greeting />
 C: END

Listing 1 Initiation of a BEEP Session

Now the initiator starts a new channel and sends a request containing a unique

channel number and the profile he wants to associate to this channel. The listener accepts

the channel and confirms. Note that the first number after the three-character keyword

indicates the channel number. Channel number zero is used for channel management.

 C: MSG 0 1 . 52 116
 C: Content-Type: application/beep+xml
 C:
 C: <start number='1'>
 C: <profile uri='http://iana.org/beep/APEX' />
 C: </start>
 C: END
 S: RPY 0 1 . 111 93
 S: Content-Type: application/beep+xml
 S:
 S: <profile uri='http://iana.org/beep/APEX' />
 S: END

Listing 2 Initiation of an APEX channel

 10

Now that a channel is opened, profile-specific messages are sent over this channel

(e.g. APEX attach or data messages).

To terminate a channel, again, a channel management message is sent over channel

zero which contains the channel number to close and a reply code.

 C: MSG 0 2 . 235 71
 C: Content-Type: application/beep+xml
 C:
 C: <close number='1' code='200' />
 C: END
 S: RPY 0 2 . 392 46
 S: Content-Type: application/beep+xml
 S:
 S: <ok />
 S: END

Listing 3 Termination of channel '1'

Finally, the client closes the whole session (even if some channels could still be open),

the server confirms with an <ok /> reply and every peer closes its connection.

 C: MSG 0 1 . 52 60
 C: Content-Type: application/beep+xml
 C:
 C: <close code='200' />
 C: END
 S: RPY 0 1 . 264 46
 S: Content-Type: application/beep+xml
 S:
 S: <ok />
 S: END
 I: <close connection>
 L: <close connection>
 L: <wait for next connection>

Listing 4 Termination of a BEEP session

 11

2.4 BEEP Applications

The BEEP framework, due to its enormous advantages for application protocol setup

and large field of application, is well established and used today. In the following para-

graphs, I present some examples.

2.4.1 Apple's Xgrid

On January 6, 2004, Apple introduced Xgrid [3]. Xgrid allows to run a program on

various machines in order to get the requested result faster. There are three different

entities in an Xgrid calculation cluster:

• the client which wants to initiate a calculation,

• the controller which actually initiates the calculation, and

• a set of agents which perform the calculation.

Xgrid is designed for computations that take very long time. It provides the basic

infrastructure for communication between computers: run commands remotely and obtain

their results. Typical applications that may profit from Xgrid are Monte Carlo calculations,

3D rendering, or computations which can be split up in subunits to be treated separately.

In an Xgrid cluster, BEEP provides the underlying protocol between agent, controller,

and clients for data and command transmission. More details to Xgrid can be found on [4].

2.4.2 Profile Development Training at Clipcode Knowledge Services

Clipcode Knowledge Services [5], a consulting and training service with headquarters

in Ireland, offer several training courses in containing BEEP profile development as well

work on BEEP profile specialist projects.

2.4.3 Intrusion Detection Working Group of the IETF

The Intrusion Detection Working Group (IDWG) of the Internet Engineering Task

Force (IETF) uses BEEP as the protocol framework for exchanging intrusion detection

messages between different systems. To do so, the Intrusion Detection Exchange Protocol [6]

(IDXP) is specified as a BEEP profile and a Tunnel profile [7] is provided for different

systems to exchange messages through firewalls.

 12

 13

3 Application Exchange Protocol (APEX)

In this chapter, I introduce the APEX protocol by discussing all tools it provides.

First, I start with a brief introduction about the status of the protocol and its creators, then,

I discuss the general architecture. In Section 3.3, I explain the profile’s semantics by giving

samples of messages exchanged in an APEX channel. The next section describes a set of

options to alter the semantics of the relaying service and to expand its mechanisms. Finally

I present useful services defined in the specification to complete the theoretical part.

3.1 APEX Specification

The Application Exchange Protocol (APEX) protocol is an extensible best effort

datagram relaying service which transports each datagram over a mesh of relays from an

originator endpoint to one or more recipient endpoints. Each of these so called endpoints is

an application layer process dynamically attached to the relaying mesh. As APEX is a

profile of BEEP, it profits of the full service provisioning (e.g. connection establishment,

authentication) of BEEP. To complete BEEP to an entire messaging system, APEX provides

additional services on top of the relaying mesh such as access control and report service.

APEX, like BEEP, has also been defined by MARSHALL T. ROSE together with DAVID

CROCKER (who defined the e-mail formats in 1982) and GRAHAM KLYNE (a pioneer in use of

e-mail to interface to telephone services). Its specifications are described in four RFCs:

• RFC 3340 The Application Exchange Core. [8]

This is the main document and describes the architecture and basic operations

and options including the correspondent algorithms such as data processing in

relays and endpoints, status requests and initialisation.

• RFC 3341 The Application Exchange (APEX) Access Service. [9]

This document describes the use and management of access restrictions.

• RFC 3342 The Application Exchange (APEX) Option Party Pack, Part

Deux! [10]

This RFC defines several options for advanced mechanisms such as improved

report services, endpoint holding and data timing.

• RFC 3343 The Application Exchange (APEX) Presence Service [11]

This document illustrates the presence service and related operations

 14

3.2 APEX Architecture

As mentioned a several times, APEX is a profile of BEEP and is initiated when

starting a channel. On top of the APEX core an APEX process – either a relay or an

endpoint – handles the incoming and outgoing traffic. An endpoint may be an application

that uses APEX for network communication. APEX services are also logically defined as

endpoints but they do not need necessarily to be a single physical endpoint, instead they

may for instance be co-resident with a relay within an administrative domain to provide

services in this domain.

APEX can be used in two modes:

3.2.1 Endpoint-Relay mode: APEX edge connection

In endpoint-relay mode, a so called edge connection, an application (endpoint) initia-

tes a BEEP connection to a relay. Endpoints are always initiators while relays are always

listener in the BEEP context. Once an endpoint opened a BEEP connection to a relay it may

attach as one or more endpoint, send data to other endpoints, receive data from other end-

points, or terminate any of its attachments. A relay may deliver data from other endpoints,

terminate attachments, or indicate delivery status of data sent early by the endpoint.

3.2.2 Relay-Relay mode: APEX mesh connection

In a mesh connection, applications bind as relays to others relay which may be in

different administrative domains. Once the BEEP connection is established, either relay

may bind as one or more administrative domains, send data over the channel, receive data

to deliver, or terminate any bindings.

APEX process

APEX

BEEP

TCP

…

APEX core

APEX
appli-
cation

APEX
report
service

…

APEX
access
service

Fig. 1 The APEX stack

 15

3.2.3 Well-Known TCP port numbers

For each of the two modes, a well-known TCP port number has been assigned by the

Internet Assigned Number Association (IANA) [12].

• 912 (tcp/udp) relay-relay mode, registered apex-mesh

• 913 (tcp/udp) endpoint-relay mode, register ed as apex-edge

3.2.4 Naming conventions

Each relay is identified by a unique domain name. Domains can either be a fully

qualified domain name (FQDN) or a domain-literal, e.g. "epfl.ch" or "[10.0.0.1]". Endpoint

addresses, apart from the domain name, consist of a local-part formed by an address and

zero or more sub addresses separated with a slash (/); an endpoint address has the form

local@domain. Every administrative domain may provide a set of well-known endpoints

(WKE) which stands for APEX services within this domain. These endpoints are addressed

by using the prefix apex=.

Some examples show the correct use of the naming conventions:

• user1@lsrwww.epfl.ch user1 is an endpoint within the

administrative domain 'lsrwww.epfl.ch'

• apex=report@lsrwww.epfl.ch APEX Report Service (WKE) for the

administrative domain 'lsrwww.epfl.ch'

• user1/appl=gc@lsrwww.epfl.ch sub address (endpoint application) of

the endpoint 'user1@lsrwww.epfl.ch'

endpoint

APEX

relay

APEX APEX

relay endpoint

APEX

APEX relaying mesh

administrative domain #1 administrative domain #2

application application

Fig. 2 The APEX entities

 16

3.3 Message Semantics

In this part I am dealing with the message syntax within an APEX channel to give an

idea of how messages exchanged in an APEX channel are formed.

As mentioned in the description of BEEP, all messages in a session consist of an XML

document and possibly an arbitrary MIME content. Thus, APEX uses the same conventions

and offers advantage that the messages are easily readable.

3.3.1 Channel creation (BEEP)

During the APEX channel creation, the profile must be identified as

http://iana.org/beep/APEX.

 RPY 0 0 . 0 111
 Content-Type: application/beep+xml

 <start number='1'>
 <profile uri='http://iana.org/beep/APEX' />
 </start>
 END

Listing 5 Start of an APEX channel

3.3.2 Attach operation

After the creation of an APEX channel, an application may attach as an endpoint to

the relaying mesh. To do so, it sends the attach element specifying an endpoint address

that the application wants to attach as, the transaction identifier for this operation, and

zero or more options. The relay replies either with an ok element upon success or an error

element.

 A: <attach endpoint='user@lsrwww.epfl.ch' transID='1' />
 R: <ok />

Listing 6 Attachment of 'user@lsrwww.epfl.ch'

To improve the legibility, I abandon BEEP frame header and trailer as well as MIME definitions in listings.

application relay

attach transID=1

ok

BEEP Channel

Fig. 3 An attach operation

 17

3.3.3 Bind operation

A relay which wants to connect to another relay sends a bind element specifying the

relay administrative domain on whose the application wants to serve, the transaction

identifier for this operation, and zero or more options. Again, the second relay confirms or

declines the operation with the corresponding element.

 R1: <bind relay='lsrwww.epfl.ch' transID='1' />
 R2: <ok />

Listing 7 Binding of relay 'lsrwww.epfl.ch'

3.3.4 Terminate operation

To release an attachment or a binding to the mesh, an application or a relay sends a

terminate element specifying the transaction identifier associated to this operation.

Optional, this element may contain textual content and specify a three-digit reply code for

diagnostic.

 A: <terminate transID='1' />
 R: <ok />

Listing 8 Termination of transaction 1

relay 2

bind transID=1

ok

BEEP Channel relay 1

Fig. 4 A bind operation

application relay

terminate transID=1

ok

BEEP Channel

Fig. 5 A terminate operation

 18

3.3.5 Data operation

To transmit data over the relaying mesh, an application and a relay respectively send

a data element specifying the originator endpoint address, one or more recipients, and zero

or more options. The content of the data is indicated as a URI-reference in the same MIME

context.

The following example shows data operation which contains XML content.

 A: Content-Type: application/beep+xml
 A:
 A: <data content='#Content'>
 A: <originator identity='user1@lsrwww.epfl.ch' />
 A: <recipient identity='user2@ltiwww.epfl.ch' />
 A: <data-content Name='Content'>
 A: <reply code='250' />
 A: </data-content>
 A: </data>
 R: <ok />

Listing 9 A data operation with XML content

The same content might as well be transported in a MIME Multipart structured data

operation. Then, the content is linked by the "content" attribute of the data element.

 A: Content-Type: multipart/related; boundary="boundary";
 A: start="<1@lsrwww.epfl.ch>";
 A: type="application/beep+xml"
 A:
 A: --boundary
 A: Content-Type: application/beep+xml
 A: Content-ID: <1@lsrwww.epfl.ch>
 A:
 A: <data content='cid:2@example.com'>
 A: <originator identity='user1@lsrwww.epfl.ch' />
 A: <recipient identity='user2@ltiwww.epfl.ch' />
 A: </data>
 A:
 A: --boundary
 A: Content-Type: image/gif
 A: Content-Transfer-Encoding: binary
 A: Content-ID: <2@lsrwww.epfl.ch>
 A:
 A: ...
 A: --boundary—-
 R: <ok />

Listing 10 A data operation with MIME Multipart structured content

application relay

data transID=1

ok

BEEP Channel

Fig. 6 A data operation

 19

3.4 Operation processing

RFC 3380 [8] specifies a set of rules of how relays and applications should process

each operation. On behalf of treating every one individually, I prefer to take a closer look at

the most important action: the process of a data element in a relay. In fact this processing

algorithm covers most rules concerning every operation and gives a good notion of how they

work. In Fig. 7 and Fig. 8, the steps of the algorithm are indicated in Arabic and Roman

numerals respectively.

1. When a relay receives a data element (1 / I) it first verifies that the sending

BEEP peer is authorized to originate or relay data according to the APEX

access policies, otherwise an error element is returned.

2. Per-data options are processed, if they are present.

3. An ok (2 / II) element is returned.

4. Per-originator options are processed.

5. For each recipient, the relay performs the following step:

6. Per-recipient options are processed.

a. If the recipient is not in the same administrative domain as the

relay, an APEX channel is established to a relay that accepts data

for the recipient’s administrative domain – a new data element

containing the respective recipient and content-content

element is sent over this channel (III). If the correspondent relay

returns an ok element (IV), the transmission for this recipient is

successfully processed.

b. If the recipient and the relay are in the same administrative

domain, the relay verifies in the access entries that the originator is

allowed to communicate with the recipient endpoint and that the

recipient endpoint is currently attached – then, a new data element

is sent to the corresponding endpoint (3 / V). Again, if it returns an

ok element (4 / VI), the current recipient is successfully processed.

 20

Notes to the algorithm

There are a few aspects that one has to be aware when using the data operation.

First of all, it is obvious that there is an authorisation control and only authorized

messages reach the recipients endpoint. Every relay on the trajectory of a message has to

verify if it is allowed to pass to the next station and therefore – for a successful delivery –

all relays must permit the transmission.

Another important point is that in the basic specification (without any option) no

mechanism guarantees to the originator (or reports him) that the message successfully

reached at least one of the specified recipients. An ok element is returned as soon as in the

application 1

relay

relay

relay

application 2

3

4

1

2

Fig. 7 Two APEX endpoints in the same administrative domain

application 1

relay

relay

application 2

II

I

VI

V

IV
III

Fig. 8 Two APEX endpoints in different administrative domains

 21

first two steps of the algorithm no error is produced, say no access restrictions are violated

and per -data options are successfully processed. No acknowledgement in the sense of TCP

is returned on a successful transmission of the message – such replies can be force using

the status report option statusRequest though.

If a relay receives a message for an endpoint which is not attached to the mesh at the

moment, it discards the message without any notification to its originator; as well as if a

relay cannot establish a connection to another relay or is not able to successfully send a

message (due to access restrictions), the message is silently dropped.

If the originator and the recipient are not in the same administrative domain, a

direct connection between their two relays is established in order to send the message.

The standard does not prescribe if a relay must or must not optimize its behaviour by

grouping multiple recipients in the same administrative domain in a single message to a

single data element that is subsequently transmitted. Therefore it depends on the

implementation if such an optimization is applied.

 22

3.5 APEX Options

The APEX model is option -driven, and therefore allows flexible control structures and

extensible services. The APEX specification comes up with a large set of options to improve

the behaviour of the basic algorithm to an efficient data transmission mechanism. The

default mode of APEX is immediate delivery and best-effort relaying, but this behaviour

can be modified by options to obtain for instance reliable or time-sensitive delivery.

I would like to give a brief overview of options provided in the standard and to

present the most interesting ones.

• statusRequest invokes a status report in applicable relays

• attachOverride allows an endpoint to override a previously attached

endpoint (terminates former attachments)

• dataTiming provides a set of attributes ("noLaterThan", "returnTrip",

"reportAfter") which alter the best-effort behaviour of the

APEX relaying mesh to control queuing delays

• hold4Endpoint forces relays to queue data if a receipients endpoint is not

attached

• dataHopping detects misconfigurations caused by forwarding loops

similar to the TTL mechanism of IP

3.5.1 Option element

An option element may be contained within a data, originator, recipient, or

an attach element. It has several attributes which influence the processing of the element

in a relay or an endpoint. The most important are:

The internal or external attribute defines the name of the option. While an "internal"

option signifies a predefined IANA-registered option, an "external" option has the value of

an URI for an additional option.

The targetHop attribute specifies the applicable relay(s) on a message’s trajectory

which should process the option. Possible values are "this" (the processed option must be

removed before transmitting the containing element), "final" (only the relay that transmits

the element containing the option to the final recipient is affected), and "all" (every relay

must process the option and retain it for the next).

 23

The mustUnderstand attribute indicates if whether the relay may ignore the option if

it is not registered. This attribute has only effect provided that the processing relay is

applicable according to the "targetHop" attribute.

3.5.2 The dataTiming option

The default behaviour of the APEX relaying mesh is that all relays and endpoints are

expected to be able to process and transfer data without any delay. If no processing options

are present and a relay or an endpoint is unavailable or ready to accept transfer due to

queuing or a slow connection, the message is discarded without any report to its originator.

The dataTiming option contains a dataTiming element which allows the originator

to specify three attributes:

The noLaterThan attribute hold a positive non-zero integer value which indicates an

amount of time in milliseconds after that a message is discarded if not delivered. Each

intermediate relay adjusts the amount according to its processing time. If the value beco-

mes less or equal to zero, the message is discarded and if the "reportErrors" attribute is

true, the APEX Report Service is invoked to send a timing error report. As well, if the relay

does not receive an ok element after sending the element within the amount of time, an

error has occurred.

 <data content='cid:2@example.com'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 <option internal='dataTiming' targetHop='all'
 mustUnderstand='true' transID='86'>
 <dataTiming noLaterThan='60000' reportErrors='true' />
 </option>
 </data>

Listing 11 A data operation containing a dataTiming element with a "noLaterThan" attribute

The reportAfter attribute allows the originator to invoke a notification if the message

is not delivered after a specified time. Again, each intermediate relay adjusts this amount

according to its processing time. If the value becomes less or equal to zero, the report ser-

vice is invoked to send a transient timing report – however, the message continues its path.

 <data content='cid:2@example.com'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 <option internal='dataTiming' targetHop='all'
 mustUnderstand='true' transID='86'>
 <dataTiming reportAfter='60000' />
 </option>
 </data>

Listing 12 A data operation containing a dataTiming element with a "reportAfter" attribute

 24

The returnTrip attribute sets an upper limit on the time for a "statusResponse"

delivery, after which the originator supposes the message to be lost. If the "returnTrip"

attribute is present, a "statusResponse" message containing a dataTiming option is

generated. The value of the "noLaterThan" attribute is set to the value of the "returnTrip"

attribute.

Listing 13 shows a final hop report: the "noLaterThan" bounds have not affected the

transmission of the message, so the final relay R2 invokes the APEX Report Service.

 R1: <data content='cid:2@example.com'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 <option internal='dataTiming' targetHop='all'
 mustUnderstand='true' transID='1'>
 <dataTiming noLaterThan='10000' returnTrip='20000' />
 </option>
 </data>
 R2: <ok />

 R2: <data content='#Content'>
 <originator identity='apex=report@ltiwww.epfl.ch' />
 <recipient identity='user1@lsrwww.epfl.ch' />
 <option internal='dataTiming' targetHop='all'
 mustUnderstand='true' transID='2'>
 <dataTiming noLaterThan='20000' />
 </option>
 <data-content Name='Content'>
 <statusResponse transID='1'>
 <destination identity='user2@ltiwww.epfl.ch'>
 <reply code='250' />
 </destination>
 </statusResponse>
 </data-content>
 </data>
 R1: <ok />

Listing 13 The "noLaterThan" bounds have not affected the transmission

3.5.3 The hold4Endpoint option

In absence of processing options, a relay silently drops a message if the recipient

endpoint currently is not attached. The hold4Endpoint options alters this behaviour in

order to queue the message either for a specified amount of time provided by the

dataTiming option or until the recipients endpoint attaches to the APEX relaying mesh. In

the absence of upper bounds on delivery, the data will be queued indefinitely.

The following example shows the transmission of a data element to 'user2@lti-

www.epfl.ch' which is not currently attached to the relay in his administrative domain. As

the hold4Endpoint option is set, the message is queued in the relay until the second

endpoint attaches to it.

 25

 R1: <data content='cid:1@example.com'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 <option internal='hold4Endpoint' />
 <option internal='dataTiming' targetHop='all'
 mustUnderstand='true' transID='10'>
 <dataTiming noLaterThan='60000' />
 </option>
 </data>
 R2: <ok />

Some time later, the requested endpoint attaches at the APEX mesh.

 A2: <attach endpoint='user2@ltiwww.epfl.ch' transID='2'>
 </attach>
 R2: <ok />

 R2: <data content='cid:1@example.com'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 <option internal='hold4Endpoint' />
 <option internal='dataTiming' targetHop='all'
 mustUnderstand='true' transID='10'>
 <dataTiming noLaterThan='18000' />
 </option>
 </data>
 A2: <ok />

Listing 14 'user2@ltiwww.epfl.ch' receives the message due to the hold4Endpoint option

 26

3.6 APEX Services

The APEX specification provides three default services on which processes fall back

during message exchanges:

• Report Service sends statusResponse messages which indicate the

originator the transmission status of a message

• Access Service determines access policies, e.g. attachment to the

mesh or message transmission

• Presence Service manages presence information for endpoints

As shown in Fig. 1, the services are placed in every administrative domain as

separated endpoints, the so called well-known endpoints (WKE). An application addresses

for instance the APEX access service by using "apex=access" for the local part in his

administrative domain, e.g. 'apex=access@lsrwww.epfl.ch'; the APEX Report Service

identifies with the WKE "apex=report".

In this section I would like to give a notion of these services. I will only expand on the

APEX Report Service which will be important in view of an implementation in this project,

while the other service may be implemented in a second phase.

3.6.1 APEX Report Service

The APEX Report Service is responsible for sending status reports in order to

indicate transmission success or processing errors. If a relay processes a statusRequest

option in a message, it invokes the report service which generates a statusResponse

message. As well, if a processing error occurs, say an option is not registered and the

"mustUnderstand" attribute is set to "true" as well as the status report is demanded, the

report service handles the notification of the originator.

A statusResponse message is a data element which contains an originator element

(e.g. "apex=report@lsrwww.epfl.ch"), a recipient element, zero or more option elements,

and a statusResponse element as its content. The statusResponse element itself

contains one or more destination elements, depending if the initial message has been

addressed to one or multiple recipients. For each of the recipients' endpoints which are

reported, a reply element indicates a three-digit reply code for the current recipient.

In the sample message of Listing 15, the APEX Report Service of 'ltiwww.epfl.ch'

notifies the endpoint 'user1@lsrwww.epfl.ch' that 'user3' is an unknown within its domain.

 27

 <data content='#Content'>
 <originator identity='apex=report@ltiwww.epfl.ch' />
 <recipient identity='user1@lsrwww.epfl.ch' />
 <data-content Name='Content'>
 <statusResponse transID='10'>
 <destination identity='user3@ltiwww.epfl.ch'>
 <reply code='550'>unknown endpoint identity</reply>
 </destination>
 </statusResponse>
 </data-content>
 </data>

Listing 15 Status response: 'user3' is unknown in 'ltiwww.epfl.ch'

The following example illustrates a status request contained in a data element with

originator 'user1@lsrwww.epfl.ch' (appl. 1) to the recipient 'user2@ltiwww.epfl.ch' (appl. 2)

over two intermediate relays for each administrative dom ain. Note that since the value of

the "targetHop" attribute is "final", the option is only processed in relay 2 (r2) which sends

the status response message as soon as it knows the status of the relayed message.

1 A1: <data content='cid:2@lsrwww.epfl.ch'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 <option internal='statusRequest' targetHop='final'
 mustUnderstand='true' transID='2' />
 </data>
2 R1: <ok />
3 R1: <data content='cid:2@lsrwww.epfl.ch'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 <option internal='statusRequest' targetHop='final'
 mustUnderstand='true' transID='2' />
 </data>
4 R2: <ok />
5 R1: <data content='cid:2@lsrwww.epfl.ch'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@ltiwww.epfl.ch' />
 </data>
6 A2: <ok />
7 R2: <data content='#Content'>
 <originator identity='apex=report@ltiwww.epfl.ch' />
 <recipient identity='user1@lsrwww.epfl.ch' />
 <data-content Name='Content'>
 <statusResponse transID='2'>
 <destination identity='user2@ltiwww.epfl.ch'>
 <reply code='250' />
 </destination>
 </statusResponse>
 </data-content>
 </data>
8 R1: <ok />

Listing 16 Delivery of a message containing a final "statusRequest" option

appl. 1 r 1 appl. 2 r 2

1 data 3 data

7 resp. 4 9 resp. 2

5 data 8

 6

 10

Fig. 9 Sequence of a final "statusRequest"

 28

3.6.2 APEX Access Service

The APEX Access Service is a control mechanism for the relaying mesh as well as for

APEX services. In every administrative domain, the well-known endpoint "apex=access"

maintains "access entries" for each of its endpoints and services. These entries are

consulted before the processing of a message continues.

An access entry is empty but has four attributes: the "owner" attribute specifies the

address of the endpoint associated with the entry, the "actor" attribute specifies the address

of a entity or a group of entities affected by this entry, the "actions" attribute indicates the

permissions or restrictions for the actor(s) to the owner, and the "lastUpdate" attribute

specifies the date and time of the last modification of the access entry.

The following two sample entries allow

1. all users within the 'lsrwww.epfl.ch' administrative domain to use all services

and all operations in the context of 'user1@lsrwww.epfl.ch', and

2. all users in the APEX relaying mesh to use the data operation of the APEX core

in the context of 'user1@lsrwww.epfl.ch'

 <access owner='user1@lsrwww.epfl.ch'
 actor='*@lsrwww.epfl.ch'
 actions='all:all'
 lastUpdate='2003-11-11T11:11:00+01:00' />

 <access owner='user1@lsrwww.epfl.ch'
 actor='*@*'
 actions='core:data'
 lastUpdate='2003-11-11T11:11:00+01:00' />

Listing 17 Access enties

3.6.3 APEX Presence Service

The APEX Presence Service provides presence information for attached endpoints.

Applications communicate with this service over the well-known endpoint "apex=presence"

in the respective administration domain. The APEX Presence Service maintains

information about presence entries for every so called publisher.

To publish or modify presence information, an application sends a publish operation

to the service, specifying a publisher address, one or more tuples (entity). Every tuple has a

destination address (URI) and a time stamp which indicates the validity of the entry, e.g.

the latest time the capable of receiving messages. In addition an attribute may specify the

kinds of content the entity is capable to receive.

 29

When another application wants to receive presence information associated to

another endpoint, it sends a subscribe operation to the service, specifying the address of the

target endpoint and a duration for the subscription. If the access entries agree, the service

immediately responds with the current presence information of the endpoint and sends

further publish operations, whenever the presence entries for the endpoint change.

To receive notices about endpoints that are subscribed, an application sends a watch

operation, specifying his address and duration for the operation. For every modification of

presence information (e.g. a new subscriber) in the APEX Presence Service entries, the

watcher receives a notification if the respective access entries admit.

The following publish operation updates the presence information for the endpoint

'user1@lsrwww.epfl.ch' within its administrative domain:

 A1: <data content='#Content'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='apex=presence@lsrwww.epfl.ch' />
 <data-content Name='Content'>
 <publish publisher='user1@lsrwww.epfl.ch' transID='1'
 timeStamp='2003-11-11T11:11:00-01:00'>
 <presence publisher='user1@lsrwww.epfl.ch'
 lastUpdate='2003-11-11T11:00:00-01:00'
 publisherInfo='http://lsrwww.epfl.ch/~user1/'>
 <tuple destination='user1/appl=gc@lsrwww.epfl.ch'
 availableUntil='2003-11-11T11:21:00-01:00' />
 <tuple destination='mailto:user1@epfl.ch'
 availableUntil='2011-11-11T23:59:59-01:00' />
 </presence>
 </publish>
 </data-content>
 </data>
 R1: <ok />

Listing 18 Presence publication (publish operation) of 'user1@lsrwww.epfl.ch'

 30

3.7 Auxiliary elements

In addition to the operations presented before, I would like to address to five

definitions which I ignored completely up to now, but they will be important in this project

as well: first the transaction -identifier, and then the ok element, the error element, the

reply element and their reply codes.

3.7.1 Transaction identifiers

For every new transaction over a channel, a transaction identifier is necessary. The

transaction identifier must be a unique integer number greater than zero for an originator

endpoint address.

3.7.2 The ok element

The ok element is the positive reply on an APEX message. It indicates the correct

receipt and per-data processing of the message. An ok element is empty and has no

attributes.

 <ok />

Listing 19 An ok element

3.7.3 The error element

The error element is the negative reply on an APEX message. It is sent as soon as

an error occurs while an endpoint attaches to the mesh, a relay binds, a process verifies

access policies, and so on. An error element has a "code" attribute which specifies a three-

digit reply code meaningful to the recipient. In addition, it may contain arbitrary textual

content as a diagnostic which is meaningful to implementers, perhaps administrators or

even users and an optional "xml:lang" attribute which specifies the language that the

textual content is written in.

 <error code='537'>access denied</error>

Listing 20 An error element

 31

3.7.4 The reply element

Many APEX services use the reply element for responses and acknowledgements in

their responses. The APEX Access Service for instance uses the reply element to confirm

or decline a set operation which updates the access entries, the APEX Report Service

handles error and status messages using the reply element.

The reply element has a "code" attribute which again specifies a three-digit reply

code and an "transID" attribute in the containing element which specifies the transaction-

identifier corresponding to this reply.

 <data content='#Content'>
 <originator identity='apex=presence@example.com' />
 <recipient identity='wilma@example.com' />
 <data-content Name='Content'>
 <reply code='250' transID='100' />
 </data-content>
 </data>

Listing 21 A reply element in a successful transaction

 <data-content Name='Content'>
 <statusResponse transID='86'>
 <destination identity='barney@example.com'>
 <reply code='537'>action not authorized
 for user</reply>
 </destination>
 </statusResponse>
 </data-content>

Listing 22 An access violiation indicated by an reply element

 32

3.7.5 APEX reply codes

In Table 1, the default reply codes and their correspondent meanings are listed.

These reply codes base on the common reply code model used as well in HTTP or FTP.

 250 transaction successful
 421 service not available
 450 requested action not taken

 451 requested action aborted
 454 temporary authentication failure
 500 general syntax error (e.g., poorly-formed XML)
 501 syntax error in parameters (e.g., non-valid XML)

 504 parameter not implemented
 530 authentication required
 534 authentication mechanism insufficient
 535 authentication failure
 537 action not authorized for user

 538 authentication mechanism requires encryption
 550 requested action not taken
 553 parameter invalid
 554 transaction failed (e.g., policy violation)

 555 transaction already in progress

 Table 1 Default reply codes

 33

3.8 APEX and group communications

In this section, I take a closer look at the APEX protocol in order to use it in context

of group communications. Hence, I discuss three communication models: unicast, multicast,

and reliable broadcast messaging.

3.8.1 Unicast messaging

As it is specified in Paragraph 3.3.5 and RFC3340 [8], a data element, which stands

for a data operation, contains at least one recipient element, specifying a recipient

endpoint address. Thus, every message containing exactly one recipient element can be

considered as a unicast message and is transported over the APEX mesh to the appropriate

endpoint.

Unicast messaging is provided by APEX.

3.8.2 Multicast messaging

As seen above, multiple recipient elements are also allowed within a data

element; such a message can be considered as a multicast message. For every specified

recipient, a relay creates a new message and sends it to the address.

Multicast messaging is provided by APEX.

3.8.3 Reliable broadcast messaging

Reliable broadcast messaging is a model to send messages so much that if one

recipient in a sequence of others receives a message, it guarantees that every one after him

in the sequence receives the message as well – this mechanism is modelled by resending the

message to all following recipients if it has not done that yet.

The reliable broadcast mechanism is not provided by the APEX and a way must be

found to implement it. In my opinion, the most common way to do this is to design a new

service which is invoked by an option specifying some information. This information may for

instance be the sequence of endpoints to be supplied. The service could even be optimized in

order to avoid redundant messages sent between relays and endpoints: since every relay

knows what its attached endpoints receive, it may directly filter out messages already

transported and take on the entire task in reliable broadcast messaging (c.f. Section 6.4).

 34

 35

4 Existing APEX implementations

When searching on the Internet for existing APEX implementation it turned out that

at the moment only two implementations are available. In this chapter, I briefly summarize

the results of my investigation on APEX and in Section 4.4 I present its conclusion.

4.1 APEX Implementation of the IMPP

The first APEX implementation found is the one of MICHAEL J. RIGGIO [13], Temple

University NetLab, who has been working at the development of an APEX implementation

of the IMPP (Instant Messaging and Presence Protocol), described in RFC 2779. The idea of

this independent study was to write the APEX implementation using Java BEEP Core

package provided by the official BEEP dev elopers.

When analyzing and testing Mr. RIGGIO 's code, I realized that it is incompatible with

the standard and only implements the presence service in addition to the basic APEX core

service which for this project is useless. I also tried to get in touch with Mr. RIGGIO to

discuss some sections in his code and to find out if there are other limitations for his

implementation yet. Unfortunately, Mr. RIGGIO did not answer my mails, and I finally gave

up working on this implementation.

4.2 RRAPEX, an APEX implementation for the RoadRunner toolkit

The second implementation found is the master thesis work of JON HOLLSTRÖM and

PER NORDLINDER [14], two students at the Umeå University, Sweden. It bases on the

RoadRunner toolkit, an implementation of BEEP, which is written in object oriented C at

Codefactory AB, Sweden.

This implementation has as well some limitations which principally impede this

project in sending broadcast and reliable broadcast messages: it does not support multiple

recipients in a single message. In addition the RRAPEX is not able to handle options as

required by the specification, for instance an option specifying the attribute

mustUnderstand='true' should be refused to be processes if it is not implemented. This

mechanism is absolutely necessary for the principal aim of this project, the Reliable

Broadcast Service, since all applicable entities have to know the options to reliably process

these messages or to reject them if the service is not registered (c.f. Paragraph 6.2.1).

 36

4.3 APEX working group newsgroup

When looking for further implementations, I found the APEX working group mailing

list [15] which is not active anymore, and the APEX working group newsgroup [16] which

can be accessed on http://news.gmane.org/gmane.ietf.apex. I was surprised when I realized

that the last entry dated of the 18 April, 2003, say over half a year no one has shown any

interest in this newsgroup. Nevertheless I began to browse through the entries and found a

question by JENS ALFKE of 17 February, 2003 which pointed the way to the future:

[…] Is there actually real activity going on with APEX? Is it feasible for me to start

designing a higher-level protocol that will use it, or will I have to wait a long time (or

forever) for a real working APEX implementation? […]

MARSHALL T. ROSE responded the other day:

[…] (as a co-author of apex,) i think it's got a clean design and represents a very

powerful evolution to store-and-forward semantics at the application layer. however, about a

year ago it became clear to me that the only "killer app" on the horizon for apex was going to

be instant messaging, and that field is regrettably too cluttered to support another entry […]

add stuff to jabber so that it could do everything apex could do is much smaller than

the amount of energy required to: implement/deploy apex to the level that jabber is […]

if apex had come out 3 years earlier, or if there was no jabber, then i'd certainly be

busy working on a couple of apex implementations […]

Note: Jabber is another set of protocols similar to APEX which enables two entities to exchange information over the

Internet and is up to now principally used some instant messaging applications [17].

4.4 Conclusion

When reporting these results to my advisor, we decided to modify the task

specification in order to add another task: design a basic APEX implementation in

Java. We chose Java since there exists a stable and good integrated implementation of the

underlying BEEP and it is portable to all usual platforms.

The idea is, after the design of the implementation, to integrate a service which

handles reliable broadcast messages .

 37

5 APEX Implementation

The principal goal of this chapter is to show how the Java APEX implementation, the

ch.epfl.lsr.apex package, designed in the course of this project is structured, which the

steps I performed were, and how it can be used and extended by other programmers in

order to fit their own needs with specific services.

At the outset I give a notion of my first experiences and tests with the

implementation of the BEEP implementation in Java, the BEEP Core. Then I show the

basic structure of the API and class hierarchy I worked out according to the specification as

well as the structure intended to integrate custom services later. At the same time, I

indicate the package dependency and problems I had while choosing the packages. In

Section 5.5, I present a brief the implementation details while in Section 5.6, I describe a

relay example to show how the implementation works. Then, after configuration file

definitions, I discuss some problems arisen during the implementation. Finally I conclude

this chapter with some assumptions, a testing application and limitations the resulting

implementation brings along.

5.1 Using the Blocks Extensible Exchange Protocol in Java

Since APEX is mapped on the Blocks Extensible Exchange Protocol it is necessary to

find an implementation of this protocol which is considered as standard and proven. The

choice of this implementation is not very difficult since on the official website of the BEEP

standard the official Java package [18] is offered. When I started my project I worked on

the two recent Java implementations of the BEEP Core:

• beepcore-0.9.06, 2001-07-11 which is simple to handle and offers a quick start

without any other dependencies

• beepcore-0.9.07, 2002-09-21 needs two further packages to be installed in the

class path (both packages are provided in the distribution available on the

official BEEP website):

• the jakarta-log4j which is responsible for logging,

• the edu.oswego.cs.dl.util.concurrent package whose PooledExecutor class is

basically used for the thread management

In the course of the project another version of the BEEP Core was published, the

 38

• beepcore-0.9.08, 2003-11-19 which as well depends on other packages (these are

once more provided in the basic distribution):

• the org.apache.commons.logging package replaces the former logging package,

• the edu.oswego.cs.dl.util.concurrent package is reused

Further information about the package dependency of the APEX implementation is

listed in Section 5.4.

5.2 A first BEEP example

To set up my first BEEP messaging application, I started with beepcore-0.9.06 and

followed the basic instructions of the provided notes to establish a message exchange over

BEEP. This simple structure consists in a client and a server application which work on the

same BEEP profile MyProfile identified by the URI

http://lsrwww.epfl.ch/APEX/beepExample.

The source of the applications is available within the distribution.

First, on the server side, as the application is started, a listener thread is initiated.

Then, on the client side, one can start the application specifying a server address and a

textual message to send. Now, the client establishes a connection (session) to the server

specifying address, listener port and the profiles it supports,

 session = AutomatedTCPSessionCreator.initiate(host, port, profileRegistry);

then, it starts a channel indicating the URI of the associated profile

 channel = session.startChannel(MyProfile.URI);

and on success, it is able to send the message while specifying a reply listener.

 channel.sendMSG(new StringDataStream(message),reply);

The Reply objects offers a mechanism that allows waiting for a reply by calling the

blocking method hasNext of the corresponding reply instance until there is no reply left:

 while (reply.hasNext()) {
 messageRPY = reply.getNextReply();
 ...
 }

Now it can close the channel and the session and terminate the application.

 39

The following listing shows the sequence of outputs of the two applications:

java beepExample.Server
----- working on beepcore-0.9.06 -----

Listening on port 7777

java beepExample.Client 10.0.0.1 hello world
----- working on beepcore-0.9.06 -----

initiating session ... session initiated
starting channel ... channel started

sending "hello world" ...
new message: hello world
Listening on port 7777

message sent
waiting for reply ...

sending reply: you sent [hello world]
reply received: "you sent [hello world]"

closing channel ... channel closed
closing session ... session closed

Listing 23 Sequence of outputs of two simple BEEP applications: Server.java and Client.java

 40

5.3 Application Programming Interface (API)

As mentioned in Section 3.2, APEX is mapped on top of the Blocks Extensible

Exchange Protocol. Moreover, it has to offer an interface to applications which use the

APEX protocol. In this project the APEX is registered as a profile in the BEEP context and

must be able to handle all incoming messages from the underlying layer. As it is intended

by the model of the Java BEEP Core, so called handler classes exist for each profile

(implementing the interfaces Profile, StartChannelListener, RequestHandler)

which has among others a call-back methods receiveMSG. This method is called, as soon

as a new message is received on a channel.

The intention of this project is to provide an API which offers a simple integration in

either a relay or an endpoint application. Therefore it is necessary that neither connection

(session) nor channel management must be done beyond the interface.

The APEX managers and APEX processes

Basically three functionalities must be offered to a programmer when using APEX in

an APEX relay process:

• initiating the relay and specifying details (such as administrative domains it

serves, corresponding mesh and edge ports, routing tables)

• send a message

• terminate bindings and attachments on this relay

APEXRelayProcess

APEXRelayManager

BEEP

APEXEndpointProcess

APEXEndpointManager

BEEP

APEXProcess

APEX

BEEP

(a) (b) (c)

Fig. 10 Model of the APIs between the layers in (a) general,
(b) a relay, and (c) an endpoint process

 41

On the other hand, a relay process must have a method for notifications, e.g. if an

endpoint attaches, a relay binds or an error occurs.

The interface to an APEX endpoint process is similar to the one of the APEX relay:

• attach with an arbitrary endpoint address

• send a message

• terminate an attachment

However, an endpoint process needs to handle an incoming data message as well as

notifications on terminations or errors.

Since there are these two different behaviours it was evident to set up two interfaces

for each an APEX relay process (APEXRelayProcess) and an APEX endpoint process

(APEXEndpointProcess) which have the general property of a common APEX process

(APEXProcess) which is an abstract class.

On the other hand, the interface to the programmer implies that there are also two

APEXProcess

APEXManager

APEXConnectionListener

BEEP

APEXProfile

APEXConnection

APEXConnectionThread

APEXService

Fig. 11 Simplified structure of the class dependency within the APEX layer

 42

managers which offer the functionalities for a relay (APEXRelayManager) and for a

endpoint (APEXEndpointManager) – both extending the common class APEX which defines

the main syntax of the APEX profile.

To use APEX, a relay process instantiates a new APEXRelayManager specifying the

call-back class for notifications, an XML relay configuration file, and an optional Boolean

for debugging. From now on, the APEXRelayManager parses the configuration file and

opens the specified ports– the relay process only needs to wait for notification.

An endpoint process on the other hand instantiates an APEXEndpointManager

specifying at least the class accepting call-backs. Henceforth, it is able to call the

attachAs, sendMessage, and terminate method at every moment. For every incoming

data message received at the endpoint manager, the call-back method receiveData is

called which is free to handle the message as it deserves. Since the receiveData method is

called from an manager independent thread, the endpoint process cannot slow down the

performance of the endpoint manager by blocking or generating an exception.

 43

5.4 Package dependency

The BEEP implementation used for this project is as mentioned the beepcore-0.9.08

[18] which has been published on Novermber 19, 2003. It has been written by the Invisible

Worlds Inc. and its content is subject to the Blocks Public License which can be found on

[19]. When using the APEX implementation, the only package of beepcore-0.9.08 necessary

to put in the class path is actually the core.jar which contains the main mechanisms of

BEEP such as Session, Channel, Message, TCPSession (Transport) and Profile

classes. These classes are the basic utilities to write an application using a BEEP

connection.

Now, some of these classes depend as well on two other packages, as well provided in

the standard distribution:

• edu.oswego.cs.dl.util.concurrent (concurrent.jar) is used for a pooled thread

management of the call-back queue in the ThreadedMessageListener

• org.apache.commons.logging (commons-logging.jar) is used to log events in a

connection, principally needed on exceptions

Since APEX messages can be based on the RFC822 MIME standard, it is necessary to

parse them in an appropriate way. There were several packages I analyzed in order to find

the one that fits best the needs for this implementation:

• the com.jscape.inet.mime package of the JSCAPE iNet Factory 5.2 [20] was the

first package I used but I encountered lots of problems when building and

parsing MIME multipart messages, principally when transferring a message

containing binary encoded contents, the MIME implementations throws a

NullPointerException. This can be avoided by using Base64 or

UUEncoding in all messages but this restriction can not be applied because

«BEEP provides an 8bit-wide path, a "transformative" Content-Transfer -

Encoding (e.g., "base64" or "quoted-printable") should not be used» [8]. Thus,

another package which it capable parsing correctly binary encoded contents

was needed.

• the second package I used was the netscape.messaging.mime from the Netscape

Messaging SDK 3.51 [21] which actually fitted pretty well the requirements for

the task. There was only one drawback which I could not solve: When building

a MIME multipart message in APEX, for each body part a so called Content-ID

header must be set as well as in the Content-Type header of the envelop a

 44

start="starting Content-ID" attribute must be specified (c.f. Paragraph 3.3.5).

Now, when parsing a well formed APEX multipart message with the net-

scape.messaging.mime package, everything works well except that when

addressing the getContentTypeParams method of the MIMEBodyPart class,

an empty String is return and thus the "start" attribute is lost.

• finally I found an implementation which fitted my needs at best. The javamail-

1.3.1 [22] (JavaMail™ API 1.3.1 release), an official distribution to build, parse,

send and receive E-Mail messages for Sun protocol providers. A complete

description for this distribution can be found on the Sun's Java website,

http://java.sun.com/products/javamail. The main classes needed of the javamail

distribution are located in the javax.mail.internet package (mailapi.jar),

principally MimeMessage, MimeBodyPart and MimeMultipart. The only

drawback I realized when using this package is that it also depends on a

further package, the activation framework. I downloaded and tested

successfully with the JavaBeans™ Activation Framework 1.0.2 Release [23]

(jaf-1.0.2 / activation.jar) which can be found as well on the Sun's Java website,

http://java.sun.com/products/javabeans/jaf. Both packages run under the Sun

Microsystems, Inc. Binary Code License Agreement

So summarizing briefly the jar-files needed to be accessed within the class path for

using the APEX implementation:

• for BEEP: beepcore.jar, concurrent.jar, and commons-logging.jar

• for APEX: mailapi.jar and activation.jar

For XML message parsing, the org.xml package's document builder is used together

with the org.w3c.dom package which offers all necessary elements. Both packages are

available in recent Java SE (J2SE).

 45

5.5 Implementation details

In this part I introduce some of the main classes of this APEX implementation in

order to illustrate how the implementation works and on which ideas it bases. I begin at the

upper part of the APEX layer, close to the interface to the APEX process, and dive more and

more into the layer until the interface to the BEEP package.

The description of the classes is not intended to be a complete reference but to give a

notion of the ideas and reasons of introducing several methods and variables or even

classes. For a complete reference, please refer to the usual javadoc API documentation.

5.5.1 APEXProcess, APEXEndpointProcess, APEXRelayProcess

As mentioned above, an APEXProcess defines a general interface for a call-back and

handler class in the context of this implementation. It has two methods to be redefined ba a

programmer:

• notification takes two arguments, an integer code and an Object specifica-

tion: on every event, e.g. attachment, binding or termination, the notification

method is called and a report about the event (specified by the three-digit code)

and a detailed information is given, e.g. if an endpoint attaches at a relay,

APEX.NOTIFICATION_ATTACH and an APEXEndpointAddress object of the

attaching endpoint is passed to a relay manager, as well in the endpoint

manager almost the same happens for this event (c.f. Paragraph A.2.1).

• debug can be used by a programmer to receive detailed debug messages

generated by all internal classes. The method above all useful when testing

new services or changes in service priorities.

An APEXEndpointProcess needs a third method to be redefined for endpoints:

• receiveData is called if a data operation is incident in the endpoint manager,

a APEXDataMessage is passed to the process.

5.5.2 APEX

As mentioned above, the APEX class defines the main syntax of the APEX core. The

class contains all elements defined in the APEX core DTD as static final variables as well

as the common error codes.

 46

5.5.3 APEXManager, APEXRelayManager, APEXEndpointManager

The APEXManager class, which defines a general manager, principally provides a

hash table for all classes which are called in a static way and need to save data for later

events. This is principally the case for APEX services. In addition to this, it contains a

transaction table and associated methods to manage incoming and outgoing transaction for

each channel.

The relay and endpoint manager need to redefine principally three methods:

• handleIncomingMessage is called when a new message arrives: the relay

and endpoint manager first find out the type of the message (attach, bind,

terminate, or data) and then process it.

• messageSent is called when a message is sent to an entity as well as a reply is

received; some services may need this information, e.g. the report service.

• messageDiscarded is called when a message could not be sent to an entity

after several attempts.

Further information concerning relaying algorithms can be found in Section 3.4.

Both, the APEXRelayManager and APEXEndpointManager, work independent from

its applications, e.g. if they realize a disconnection, they first try to reconnect and authen-

ticate; if they do not succeed despite several attempts, they finally inform their application.

5.5.4 APEXConnection, APEXEdgeConnection, APEXMeshConnection

As specified by the RFC3340, there exist two similar types of connections, one

between an endpoint and a relay, the APEX edge connection, and one between two relays,

the APEX mesh connection. Now it is obvious to implement these two types again with two

subclasses of a general class for any connection which defines common properties in

methods and variables. This class, the APEXConnection, is a thread which actually

supervises the general state of the connection, accepts commands, and returns status

messages. The two subclasses, called APEXEdgeConnection and APEXMeshConnection

respectively, implement the behaviour of an edge or mesh connection, each by having there

own state machine.

To guarantee that always the same connections for an endpoint or relay is used, the

construction of an APEX connection object as well as calls to its methods are managed by a

factory within the APEXEdgeConnection and APEXMeshConnection respectively.

 47

5.5.5 APEXConnectionThread

The real BEEP connection is managed by the APEXConnectionThread which calls

back the blocking method getMessage in its owner class to obtain a new message to be

sent. Therefore the APEXConnection and its two subclasses, which own an

APEXConnectionThread, can be considered as a sort of buffer where the managers add

messages and the corresponding connection thread fetches its tasks. Now as the basic

connection establishment of both, the edge and the mesh connection, is the same, the

APEXConnectionThread and its state machine can be used by the two of them. The main

states are "session establishment", "channel establishment", "wait for messages", "message

transfer", "wait for reply", where the last three cycle after the channel establishment. If an

error occurs during processing one of the states, an appropriate handler in the

APEXConnection is called which decides what is to do, e.g. report if no connection can be

established, adjust the general state of the connection if disconnected, etc.

5.5.6 APEXMessage

Each message object passed to the different handlers is an instance of APEXMessage.

This class defines the general type of message for the four APEX core operations "data",

"attach", "bind", and "terminate". An incoming BEEP message is first translated in an

APEXMessage by the APEXMessageParser class where it is important to distinguish the

type and content of the message. Of course it is pretty easy to recognize and to parse an

attach, bind or terminate operation since there is generally only a single XML element to be

analyzed, but the data operation has two different models: on the one hand it may be a

single XML document, on the other hand a data operation can as well be nested in a MIME

structured message. Therefore it first has to be verified if the message is a single body part

or a multipart message – if the latter is the case the XML part (defined by the "start"

attribute) first must be extracted and parsed, while the data content must be stored.

APEXConnection

APEXEdgeConnection APEXMeshConnection

APEXConnectionThread

APEXMessage getMessage()

Fig. 12 The connection thread retrieves all messages
from the connection it belongs to

 48

Since for every kind of APEX message common structures such as an XML string or a

byte array of its content are needed, the abstract APEXMessage class offers these

mechanisms with

• getXMLMessage abstract method which returns the XML part of an operation

in a String

• getDataStream returns a fully generated operation (including the complete

MIME structure) as a org.beepcore.beep.core.OutputDataStream which is used

for the payload of a BEEP message

A exact redefinition of these methods is made by the subclasses APEXDataMessage,

APEXAttachMessage, APEXBindMessage, and APEXTerminateMessage respectively. It

is important to know that each of these classes has its own class variables dependent on

their content and assignment. A more detailed description of the mechanisms of the most

important operation, the APEXDataMessage, is given in the application part in this report

in Paragraph A.1.3.

5.5.7 APEXProfile

The APEXProfile can be considered as the interface to the BEEP layer since it

specifies the call-back function for incoming messages as well as for channel tasks. As

mentioned in the BEEP example in Section 5.2, the APEXProfile associated to an APEX

channel implements three interfaces:

• org.beepcore.beep.profile.Profile is used to be able to register as a valid

profile implementation for a BEEP channel

• org.beepcore.beep.core.StartChannelListener defines basic methods used

for channel management (advertiseProfile, startChannel, closeChan

nel)

• org.beepcore.beep.core.MessageListener provides the permission to

register as a message listener of a channel (receiveMessage)

The task of the APEXProfile consists of two parts: on its instantiation, it has to

parse the service configuration file (specified in Paragraph 5.7.2) in order to register the

known services, and, as soon as it is registered with a BEEP channel it has to accept BEEP

messages, parse them by means of the APEXMessageParser, and pass the resulting

APEXMessage to the manager. If an error in parsing occurs, the APEXProfile catches it

and introduces appropriate action, say respond immediately with an error reply.

 49

5.5.8 APEXService

The APEXService interface defines the main methods to implement for APEX

services. The model provided by the standard and the algorithms 4.4.4.1 and 4.4.4.2 of

RFC3340 demand that the options invoking services are parsed before sending a message

but to act as well after (for instance in report service). In addition, messages can explicitly

be sent to services by addressing its well-known endpoint address, say "apex=wke".

Therefore it is necessary to offer three different types of methods for a complete processing

of an option element:

• handleMessage handles an incoming message destined explicitly for a service.

• handleOption handles an APEXOption for all applicable endpoints, e.g. all

recipients if "targetHop" attribute of an option is "all" or "this", final recipients

if the "targetHop" attribute is "final".

• handleSent / handleDiscarded is called by the manager if either a message

as been sent to an entity, say a reply is received, or if a message has been

discarded after several attempts to send it.

With this given structure it should be simple to write own APEX services each by

implementing the APEXService interface and redefining the three abstract methods above.

A complete example for setting up an APEX service is given in the appendix in Section A.3.

5.5.9 APEXStatus

To every transaction and operation an APEXStatus can be associated. This object

acts as a status listener, call-back initiator and can be blocking at the same time. This

means that, to obtain the status of a transaction or operation, a programmer either can:

• call the blocking methods getStatusCode or getStatusReason,

• set an ActionListener for the APEXStatus, or

• redefine the receivedStatus method within the APEXStatus.

 50

5.6 In a relay: example of fully processing a data operation

In this section we are going to take a closer look at how a data operation actually is

processed in a relay, from the moment it is fetched in a BEEP connection until it is removed

of the message table and therefore considered as processed. While studying this order, it is

useful to have a brief overview of how the classes are related to each other.

On the instantiation of an APEXRelayManager, automatically the configuration file

of this relay is parsed and the relay is initiated. That means that according to the

configuration a set of APEXConnectionListeners is instantiated as well as some

APEXRoutingPoints are defined which result in the routing table of the relay. When the

connection listeners are instantiated, they are registered with the APEXProfile as their

message listener. Now, the relay is set up and ready to receive messages.

To illustrate which the path of an operation within a relay, we assume that the

considered relay has been initialized with the following configuration file:

 <config>
 <defaultPort port='912' />
 <relay mesh='912' edge='913' />
 <administrativeDomain identity='lsrwww.epfl.ch' />
 <routingPoint identity='ltiwww.epfl.ch' gateway='lcawww.epfl.ch' />
 </config>

Listing 24 Relay configuration file

The relay therefore acts in the administrative domain 'lsrwww.epfl.ch'; a mesh

connection listener is initiated on port 912 and an edge connection listener on port 913. The

routing table's entry says that every message addressed to 'ltiwww.epfl.ch' is routed to

'lcawww.epfl.ch' on (default) mesh port 912.

We assume as well that two endpoints 'user1@lsrwww.epfl.ch' and

'user2@lsrwww.epfl.ch' are already attached at the relay and the relays in the

administrative domains 'ltiwww.epfl.ch' and 'lcawww.epfl.ch' are set up. Finally we assume

that an endpoint 'user4@ltiwww.epfl.ch' is attached at its relay.

Now, 'user1@lsrwww.epfl.ch' has sent the following message:

 <data content='#Content'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@lsrwww.epfl.ch' />
 <recipient identity='user3@lsrwww.epfl.ch' />
 <recipient identity='user4@ltiwww.epfl.ch' />
 <option internal='statusRequest' targetHop='final' mustUnderstand='true'
 transID='5'/>
 <data-content Name='Content'>hello world</data-content>
 </data>

Listing 25 Message sent by 'user1@lsrwww.epfl.ch'

 51

1. As soon as the BEEP peer receives the first message segment, it calls the

receiveMessage method in the profile registered for the appropriate channel,

in this case the APEXProfile, and passes a BEEP MessageMSG.

2. As discussed in the class overview section, this method parses the message and

if no error occurs, passes the resulting APEXMessage to the manager by using

the method handleIncomingMessage.

The syntax of the XML code of the sample operation is correct, so the

APEXMessage can be parsed without an exception.

3. It is the task of the handleIncomingMessage to separate the four operation

types of an APEX message and either to pass on the message to

attachEndpoint for an attach operation, to bindRelay for a bind operation,

terminate for a terminate operation, or finally, as it is the case of this

example, processData for a data operation.

4. The processData method actually performs the first four steps of the "4.4.4.1

Relay Processing of Data" algorithm of RFC3340 although skipping the first

point as we are not using access policies. What it in fact does is first to look up

APEXRelayProcess

APEXRelayManager

APEXConnectionListener

BEEP

APEXProfile

APEXConnection

mesh or edge

APEXConnectionThread

APEXService

(1)

(2)

(3)
(4)

(5)

(6)

Fig. 13 Processing of a data operation in a relay

 52

which options are known. If there is an option which is unknown, say not

registered in the service table, and the "mustUnderstand" attribute has "true"

as its value, a so called error in processing occurred, an error reply is generated

and the message is discarded. The next step the method performs is to sort the

options according to the service priorities specified in the service configuration

file and to process the options element. To do so, for every known option, the

handleOption method of the appropriate service is called. At this moment, it

has to be known as well for which endpoints the option is applicable (specified

by the "targetHop" attribute). Finally, if all options are parsed correctly, an ok

element is sent as reply to the sending hop and the message is passed to the

method sendMessage.

In the case of the example, since we consider the relay 'lsrwww.epfl.ch' and the

attribute of the status report option is set to "final", all endpoints within the

domain 'lsrwww.epfl.ch' are applicable and are passed to the APEXReport-

Service. The service remembers these two endpoints (user2 and user3) and

stores them in the main hash table of the APEXRelayManager. Since the XML

code is well-formed and the option is known, no error occurred during

processing and an ok element is returned to 'user1@lsrwww.epfl.ch'.

5. The task of the sendMessage method is the most complex: first of all it has to

determine which recipients are in the same administrative domain as the relay

itself and which are in other domains. Then it has to regroup recipients by

administrative domain to avoid sending multiple messages to the same relay

consecutively but to optimize the behaviour. What follows is that first the

messages to the endpoints within the same administrative domain as the relay

are processed, which means to look up if they really are attached, to generate a

new data operation and to add it to the message file in the appropriate

APEXEdgeConnection. If the endpoint is not attached, the discardMessage

method is called for this message. Then the regrouped endpoints in other

administrative domains are processed, first by translating the domain

according to the routing table and then by passing the generated message to

the APEXMeshConnection obtained by calling the connection factory. The

factory either returns an existing connection or instantiates a new one.

Two of the sample recipients are in the same administrative domain as the

relay. Since 'user2' has already opened a connection to the relay, the connection

factory for edge connections returns a non-null connection and the message can

 53

be passed to the obtained APEXEdgeConnection. Please note that now the

APEXEdgeConnection must verify if 'user2' is really attached (which is the

case). The message generated for 'user2' is added to the message file within the

APEXEdgeConnection for 'user2'.

'user3' in contrast has not an entry in the connection table of the factory which

directly means that it is not attached – the message is passed to the

discardMessage method which itself passes the message in this case to the

handleDiscardedMessage method in the APEXReportService (the first

endpoint status for reporting is defined and stored).

Last but not least, the regrouped endpoints of the administrative domain

'ltiwww.epfl.ch' are processed (containing 'user4@ltiwww.epfl.ch'). Now as the

routing table defines the gateway of this administrative domain to be

'lcawww.epfl.ch', the edge connection factory is polled with the translated

domain and the generated message is added to the message file of the resulting

connection. Please note that an APEXMeshConnection automatically sends

bind operations if a relay is not yet bound at the other relay.

6. As the APEXConnectionThread continuously calls the blocking method

getMessage of either the mesh or the edge connection, every message in the

message file authorized to be sent (if and only if the endpoint is attached / the

relay is bound) is transferred to the so called launching pad. As soon as the

message is sent to the BEEP channel, a message status immediately indicates

if either the message is sent or it is not. If it has been sent successfully, a new

reply listener thread APEXReplyListener is instantiated to wait for the reply

generated by the next hop. This reply listener calls back to APEXConnection's

method handleReply to report the fetched reply. If the message is not sent,

say the hop is not responding or doesn't accept the message, the resend policies

are activated which have different behaviours for mesh and edge connections.

If the message must be discarded after several attempts to send it, again, the

discardMessage method of the manager is called.

For this example the message to 'user2' is sent over an existent APEXEdge-

Connection, so the message is added to the message file. Now the

APEXConnectionThread calls the getMessage method or is blocked in its

wait and finally released – however, it receives this message to send. Since the

connection is established and everything works well, the message can be sent

successfully to the endpoint as well as the reply arrives in the

 54

APEXReplyListener. Therefore the handleReply method in the

APEXEdgeConnection is called which itself calls the messageSent method in

the manager. At this moment, the second endpoint for the status report is

defined and only the last one (user4) still misses.

Since we assume that no other error occurs during the transferring of the

message to the relay in 'lcawww.epfl.ch', the APEXReportService is invoked

for the last time by the messageSent method. It finally can finish the status

report by generating a message addressed to 'user1' and again call the

sendMessage method of the manager with transfers the message to the

appropriate connection for user1.

 <data content='#Content'>
 <originator identity='apex=report@lsrwww.epfl.ch' />
 <recipient identity='user1@lsrwww.epfl.ch' />
 <data-content Name='Content'>
 <statusResponse transID='2'>
 <destination identity='user2@lsrwww.epfl.ch'>
 <reply code='250' />
 </destination>
 <destination identity='user3@lsrwww.epfl.ch'>
 <reply code='550'>unknown endpoint identity</reply>
 </destination>
 <destination identity='user4@ltiwww.epfl.ch'>
 <reply code='250' />
 </destination>
 </statusResponse>
 </data-content>
 </data>

Listing 26 The statusResponse message generated by the report service of 'lsrwww.epfl.ch'

 55

5.7 Configuration Files

There are two configuration files necessary to initiate an APEX relay and one for an

APEX endpoint. The main configuration file specifies the services which are provided and

should be used in the APEX profile. The configuration file for the APEX relay specifies its

environment, administrative domains and optional routing points.

5.7.1 Service configuration DTD

A service configuration file specifies the APEXServices to be registered in the APEX

profile as well as their priority in service processing. Therefore it is necessary, to indicate

for each service its unique priority in relation with all other services used. If no service

configuration file is indicated or the service configuration cannot be accessed on runtime, no

service is registered a priori.

<!—- DTD for the APEX service configuration -->

 <!ELEMENT config ((apexservice)*)>

 <!ELEMENT apexservice EMPTY>
 <!ATTLIST apexservice
 name CDATA #REQUIRED
 class CDATA #REQUIRED
 priority UNIQUEID #REQUIRED
 >

<!—-
 DTD data types

 Name of APEX Service
 NAME CDATA APEX Report Service

 Class name of the APEX Service
 CLASSNAME CDATA pcapex.services.APEXReportService

 Unique-identifier for priorities
 UNIQID 0..2147483647 1
-->

Listing 27 Service configuration DTD

5.7.2 Relay configuration DTD

In order to configure an APEXRelayManager, a relay configuration file must be

explicitly indicated. It is necessary in order to instantiate a relay – if no file or an invalid

file is indicated, an APEXException or APEXParsingException respectively is thrown.

The file contains the following specifications:

 56

• a default mesh port number, say the port number on which the relay tries to

connect when binding to other relays – if no port is specified, the IANA well

known port number for APEX mesh connections (912) is set as default port

• relay types, for which it instantiates a connection listener on the specified

port, either a mesh-connection listener with mesh port or a edge-connection

listener with edge port – if no relay type is specified, no port is opened and

connection listener initiated

• administrativeDomains to which it serves and which may contain proper

routing points (which override general routing points) – if no administrative

domain is specified, the relay cannot be instantiated

• some general routingPoints in the sense of a routing table specifying an

identity address to be routed over a gateway and an optional mesh port

<!—- DTD for the APEX relay configuration -->

 <!ELEMENT config ((defaultPort)?
 (relay)+
 (administrativeDomain)+
 (routingPoint)*)>

 <!ELEMENT defaultPort EMPTY>
 <!ATTLIST defaultPort
 mesh PORTNB #REQUIRED
 >

 <!ELEMENT relay EMPTY>
 <!ATTLIST relay
 edge PORTNB ""
 mesh PORTNB ""
 >

 <!ELEMENT administrativeDomain ((routingPoint)*>
 <!ATTLIST administrativeDomain
 identity ADMDOM #REQUIRED
 >

 <!ELEMENT routingPoint EMPTY>
 <!ATTLIST routingPoint
 identity ADMDOM #REQUIRED
 gateway ADMDOM #REQUIRED
 mesh PORTNB #REQUIRED
 >

<!—-
 DTD data types

 Administrative domain
 ADMDOM CDATA lsrwww.epfl.ch
 10.3.3.33

 Port number
 PORTNB 1..65535 912
-->

Listing 28 Relay configuration DTD

 57

5.8 Selected problems arisen on implementation

While designing and writing the implementation described above, I faced some of

essential questions and problems in implementation, e.g. MIME parsing (already described

in Section 5.4), XML parsing, or connection management.

In this section, I do not want to give a complete list of all problems I encountered and

how I solved them, but I would like to pick out three main difficulties to manage: first I

explain how the connection control within a manager works, and then I take a look at

notification call-backs. Finally I present how I treat with transaction identifiers.

5.8.1 Connection control

An important problem to solve was the connection control for each the mesh and the

edge connection. The main question was: what happens on a channel if the opposite entity

closes the connection – and how can this be detected. Now, if we consider the connection

thread which is the most time blocked in the getMessage method waiting for a new

message to be sent, and returns as soon as it fetches on e, the next it has to do is to verify

that the connection is still alive. When reading the documentation of the BEEP Session and

Channel and their related classes, I did not find any method receive a connection status –

the only thing which appears is that an exception is generated if a message is sent on a yet

closed connection. The main problem was that this exception cannot be caught since it is an

internal one and is displayed directly in the console. The next step to solve this problem

was to analyze the Session class in order to find out how one can find out the status without

sending a message.

The only solution, which actually is someway odd, I found, was to get a String

expression of the connection before sending a new message. If the connection is down, a

NullPointerException is thrown which can be caught and correspondent connection

management initiated. The following listing gives an incomplete example of how one can

prevent sending a message on a close connection:

 try {

 channel.getSession().toString();
 MessageStatus ms = channel.sendMSG(ods, reply);

 } catch (BEEPException e) {
 connection.messageNotSent(currentMessage);
 } catch (NullPointerException e) {
 connection.messageNotSent(currentMessage);
 }

Listing 29 Mechanism to verify the status of a connection

 58

A second approach to this problem was to verify regularly if the connection is still up,

since with the procedure sketched above, the APEXConnection (and thus the manager and

the process) discern a disconnection only if a message is sent. This implies that if no

message is sent over a long period, the other peer could have closed the connection but the

APEXConnection is not informed.

In order to solve this problem I introduced a polling mechanism which works on the

APEXConnection layer. Remember that as well an APEXConnection is a thread which

manages the behaviour of the APEXConnectionThread. Now, as soon as the connection is

established, the APEXConnection verifies the status of the connection in intervals, the

same way as described above: obtaining a String and handle the possible exception.

5.8.2 APEXStatus notification

When sending an attach operation for instance, an endpoint process normally wants

to know the resulting status of this attachment, say if the relay could have been contacted

and what he responded. The basic problem I encountered is that on the one hand, an

endpoint programmer desires to wait until the status becomes available, but on the other

hand, during this waiting time, the process should not be blocked and work on something

else.

Therefore I introduced three different models for the APEXStatus notification; a

blocking one and two thread independent:

• a programmer, which wants to wait and block its process until a status

becomes available, calls the blocking method getStatusCode or

getStatusReason (for a textual reply) to wait. These two methods, verifying

when they are called that no status code or reason has yet been set, wait for a

notify call. If a status code or reason is already set, they immediately return it.

Of course, one can also start a new listening thread for the status but this

solution is not very sensible in my opinion.

• a common solution for the second, non blocking model I used, is that the

programmer may redefine the actionPerformed method of an Action-

Listener and to register it in the status object. Within this method, which

returns him the APEXStatus as action source, he can now call the non blocking

getStatusCode or getStatusReason as well as call-back to the main

process. The status object offers particularly the possibility to add an object

which can be retrieved later to work with.

 59

• the last model offered to a programmer is that he can redefine the internal

receiveStatus method of the APEXStatus object he instantiated to execute

the code he would like to. In this case, he simply adds the new method in

braces right behind the newly instantiated status object for redefinition. Again,

using this model, it can be useful to add an object to the status for a later reuse.

A complete example for each model is presented in the appendix in Paragraph A.1.6

Now let us take a look behind the APEXStatus and see what happens when the

setStatus method is called from an internal mechanism, say the status is updated. The

first thing to be done is to set the internal status code and textual status reason. Then it

checks if an action listener is set and if necessary it calls its actionPerformed method. At

next, the internal (probably redefined) receiveStatus method which executes its code (by

default this method is empty). Finally the waiting elements are woken up by a notifyAll

call.

5.8.3 Transaction identifiers

As it is specified by RFC3340 [8], every transaction on a channel is identified by a

unique transaction identifier. Thus, for each incoming operation with an associated

transaction identifier, the manager has to verify that it does not exist yet and afterwards

has to store it. The main problem I encountered for this operation was to link the channel

on which a message was incident with messages sent earlier, e.g. if the manager attaches

as an endpoint and at a given moment, the relay terminates this attachment. This does

actually not seem difficult but when a user creates a message or attaches, it happens that a

unique transaction identifier must be known before the channel is initiated. Therefore, I

had to introduce a channelID which is unique within the APEX manager and can be

known before a channel exists.

In order to manage the transaction identifiers, the APEXManager class offers some

methods which add, verify, and remove transactions for each channelID and which also

completely remove channelID from the internal transaction table.

 60

5.9 Assumptions

In the course of implementing the APEX protocol two assumption s concerning the

underlying BEEP implementation and structure of BEEP messages have been made.

5.9.1 Sequence of incoming message segments

The beepcore-0.9.08 provides the class MessageMSG which stands for an incoming

BEEP message. In order to retrieve the payload of the message, the BEEP API

documentation offers the method getDataStream which returns an InputDataStream.

Following the documentation, to retrieve the final byte content, on e has to use the methods

getNextBufferSegment or waitForNextBufferSegment (blocking) until the Input

DataStream is complete. The question now is, if the returned BufferSegments are in

succession or if segments arrived out of order are returned before others. This behaviour is

actually not important if we use BEEP on top of a TCP connection (which is the case for

this project) but the goal is to use the APEX implementation also on top of another

transport layer which may not reorder segments on their arriving, if they are out of order.

Unfortunately this demand is neither described in the BufferSegment nor in the

InputDataStream documentation. Analyzing the methods offered by the BufferSegment

class, I realized that there is a method called getOffset without any description what

kind of offset actually is meant (e.g. offset of the segment or offset in the byte array). While

running several tests on the getOffset method, I realize that despite the message is sent

in segments over the network, the returned offset is always zero – and obviously is not

affected by the segmentation.

My assumption for this problem therefore is that, when retrieving the byte content of

a message payload from the underlying BEEP implementation (TCP, UDP, …), it returns

the segments in order and blocks until the required segment is received at the peer.

5.9.2 MIME Multipart messages

As it is not specified particularly in the BEEP specification [1], a MIME Multipart

structured message may contain more than the basic two body parts. Now, if a URI within

the actual content (in XML part or another MIMEBodyPart) points on another part of the

Multipart message, the content of the URI must be extracted separately, c.f. 5.11.3.

Thus, I recommend structuring the content as a multipart message and this one as a

MIMEBodyPart. For details, please refer to the documentation of the JavaMail™ API [22].

 61

5.10 Testing the APEX implementation

Despite testing continuously each new integrated mechanism during designing the

APEX implementation, a realistic environment to test the APEX implementation and its

services was needed. Thus, I have written a primitive application called EndpointGUI and

on the other hand, I used the relay developed in Paragraph A.2.2, the relay application part

of this project. These tools allow a user to attach as different endpoints on arbitrary relays

as well to send XML and MIME structured messages.

To guarantee a good overview in the MDI window, as one is attached as many

endpoints though, incoming and outgoing messages are represented within an internal

frame in a tree as shown in Fig. 14 on the left. As soon as a user is attached as an endpoint,

he may initiate messages specifying for each message the recipient or multiple recipients,

the XML content or a file and its content-type, and optionally some options. The options

integrated in the EndpointGUI are the APEX Report Service (Chapter 7) once in "final" and

once in "all" targetHop mode and the APEX Reliable Broadcast Service (Chapter 6) which is

always used in "final" targetHop mode.

For presentation purposes, I additionally wrote a RelayGUI indicating all events in a

console frame. Both applications are placed in the ch.epfl.lsr.apex.gui package.

I tested the EndpointGUI and the RelayGUI on Microsoft Windows XP, SunOS 5.8

(UNIX), Red Hat Linux 9, and Debian Linux, as well as mutually, to ensure the capability

of an environment independent package.

Fig. 14 The EndpointGUI (left) attached the

RelayGUI (right) as two endpoints

 62

5.11 Limitations

Since time of this project is limited and the task specification aims chiefly on the

APEX core and the Reliable Broadcast Service, some parts of the complete APEX specifica-

tion are not implemented in the implementation described above.

5.11.1 Additional APEX services

As mentioned above, the main focus of this project was the APEX protocol in context

of group communications, thus only the APEX core and the general service model of the

APEX specification is implemented. On the other hand, all mechanisms are prepared to

integrate easily the remaining and new services, for instance:

• APEX Access Service (RFC3341), the mechanisms and structure for a simple

integration is given (it only has to be accessed in an if-clause) but the source

must be recompiled.

• APEX Presence Service (RFC3343), the structure is given by the APEXService

interface which has to be implemented by the APEXPresenceService class.

• APEX Options according to RFC3342 (attachOverride, dataTiming, …), the

structure as well allows a simple integration by using the APEXService

interface and the main hash table of the APEXManager.

5.11.2 Option processing

Another thing, which is left for an advanced implementation, is the processing of

options nested within other elements than the data element. RFC3340 specifies that

options may also be per -originator and per-recipient, as well as they are allowed to be

present in attach, bind and terminate elements. Although the integration of these

features would not be too hard, it takes a lot of work to write the needed code.

5.11.3 MIME Multipart messages

When an endpoint receives a MIME multipart message, it is recommended to access

its content by calling the method getMimeContent of the APEXDataMessage object. The

obtained MimeBodyPart object is the content specified within the "content" attribute of the

 63

data element in the XML part of the message. Now it is also possible that the multipart

message contains other related contents – at least it is not prohibited by the BEEP

specification [1]. So if a URI points on another disposition within the same Multipart, it can

be obtained by calling the getMultipartContent of the APEXDataMessage, c.f.

Paragraph 5.9.2.

5.11.4 XML content in messages

As described in Section 5.4, I use the org.xml's document builder to parse an

incoming operation and to obtain its elements. I specified the document builder to validate

the XML structure, so it throws an exception if there are invalid elements or the document

is not complete. Therefore it is necessary that even in the payload, nested in the data-

content element, the XML structure is valid. If nonconformity is detected, the document

builder aborts and the processing relay or endpoint returns an error reply specifying code

500 which stands for general syntax error. Now, when someone needs to transmit an invalid

or even a complete XML document (containing processing instructions, start elements or

inlaid document type definitions, DTD), it is recommended either to send it in a MIME

Multipart message or to encapsulate the content with <![CDATA[…]]>; thus it is not

decoded.

 64

 65

6 Reliable Broadcast Service

The second goal of this project is to integrate a reliable broadcast mechanism in the

APEX implementation of Chapter 5. As it is obvious, the simplest way in connection with

the APEX protocol to integrate such a mechanism is to register a new service, the so called

Reliable Broadcast Service, and to set up a correspondent option.

In the first section, I show how the model of the reliable broadcast is defined and

works. In Section 6.2, I explain how I built the corresponding service and its corresponding

option. In order to illustrate the designed Reliable Broadcast Service, an example of

messages exchanged with a reliable broadcast option is presented in Section 6.3. Finally, I

discuss the designed Reliable Broadcast Service in context of the APEX protocol and other

services.

6.1 Reliable broadcast

The following definitions originate from the PhD thesis of my advisor, Dr. MATTHIAS

WIESMANN [24]:

Reliable broadcast is a primitive that ensures that all processes in a set get a

message even in the case of failure. Reliable broadcast defines two primitives R-

broadcast(m) and R-deliver(m), specified as follows:

Validity If a process R-delivers m then it was R-broadcast by some

process.

Uniform Agreement If a non-red process R-delivers a message m, then all non-

red processes eventually R-deliver m.

Uniform Integrity For every message m, every process R-delivers m at most

once, and only if it was previously R-broadcast by

sender(m).

Note: In this context, a non-red process is defined as a process which does not crash during the period of

observation.

 66

The basic behaviour of the reliable broadcast guarantees that if one process received

a reliable broadcast message, it has to assure that all other affected processes receive this

message as well.

One implementation of the model uses some sort of a sequence table which indicates

the order of delivering the messages to the individual processes. This means that a process

which received a message, sends this message to all processes after him in the sequence,

say on a lower order. If one of the processes fails or crashes, the message is still sent to

processes after him by processes located before the crashed process in the sequence table.

As represented in Fig. 15, although process 2 crashes and the initial message to

process 3 gets lost, process 3 and process 4 receive the message at least once.

initiator

process 1

process 2

process 3

process 4

Fig. 15 A reliable broadcast message sent to multiple

recipients

 67

6.2 Implementing the Reliable Broadcast Service

In this section, I give an overview of the ideas how I introduced the notion of reliable

broadcast in context of APEX. The first part shows the algorithm and functionalities I

implemented in the ch.epfl.lsr.apex.services.APEXReliableBroadcastService

while the second part defines the option invoking the service.

6.2.1 The basic behaviour

In Paragraph 3.8.3, I decided that the best way to integrate the reliable broadcast

mechanism in APEX is to design a service. To do so, I defined the following properties:

• an endpoint adds a reliable broadcast option indicating the applicable end-

points and their correspondent sequence. The "targetHop" attribute must be set

to "final" – so only the delivering relay is applicable.

• an applicable relay (the message contains at least one recipient endpoint in the

relay's domain) processing a reliable broadcast option extracts all endpoints of

its administrative domain. According to these endpoints, it defines its position

in the sequence, generates and sends messages to the endpoints of other

administrative domains in a later position in the sequence by removing all

endpoints before the first attached endpoint in the sequence. Finally, the relay

sends the message to the attached recipient endpoints and on success, say an

relay 2

relay 3 relay 1

endpoint 3

endpoint 1

endpoint 4

endpoint 5

(1)

(2)

(4)

(5)

(6)

Fig. 16 Sequence of messages sent to the entities if a
reliable broadcast option is present

endpoint 2

(3)

 68

ok operation is returned from all attached endpoints, considers the transaction

as successfully processed.

• A relay processing a reliable broadcast option whose transaction is (already)

successfully processed, silently discards the message while returning an ok

element to the sender.

This way to set up the Reliable Broadcast Service benefits form the fact that only the

relays exchange messages and each endpoint rec eives the message only once; hence, re-

dundant messages between relays and endpoints are avoided (see Paragraph 3.8.3 as well).

A transaction in context of the reliable broadcast option is identified by a unique

APEX transaction identifier defined in Paragraph 3.7.1.

In order to optimize the behaviour of the mechanism, the Reliable Broadcast Service

picks out all endpoints attached at the processing relay, even if in the sequence they are

placed after the first applicable endpoint. All endpoints in this administrative domain are

added to the message as recipients and therefore they receive it instantly. This algorithm

offers two main advantages, c.f. Fig. 16:

• the number of messages sent between relays is reduced since all endpoints of a

domain are treated at once, and

• all services or options are directly informed about all recipients to manage, e.g.

the APEX Report Service must generate only one statusResponse message for

all applicable recipients.

Please note that to entirely profit from this functionality, the reliable broadcast

option must be one of the first options to be processed and thus it is recommended to adjust

the service configuration file specified in Paragraph 5.7.2 correctly.

6.2.2 The Reliable Broadcast option

An APEX option contains either an internal or an external identifier. In the case of

the reliable broadcast option, the identifier is external because it is not a part of the IANA

authorized specification in the RFCs. I defined the identifier to be an URI of the Distributed

Systems Laboratory at EPFL:

http://lsrwww.epfl.ch/APEX/ReliableBroadcast

As mentioned before, the "targetHop" attribute must be set to "final" because only the

delivering relay must process the option in order to guarantee a minimum of messages

 69

exchanged over the APEX mesh. The "mustUnderstand" attribute is also defined to be

"true" to assure that all applicable relays are able to interpret the option.

The reliable broadcast option contains a number of endpoint elements which indi-

cate the endpoints to be registered in the Reliable Broadcast Service as well their position

in the sequence. The first position in the sequence takes zero and all subsequent recipients

take higher numbers which should be regularly ascending. If two or more endpoints have

the same number, the processing service considers the sequence as the elements are nested

within the option element as second criteria of order.

In order to obtain a reliable broadcast option, the getReliableBroadcastOption

method can be used. It returns a well-formed APEXOption if the following parameters are

correctly processed:

• APEXEndpointManager, the manager where a unique transaction identifier

can be obtained, and

• APEXEndpointAddress[], an array of destinations for the reliable broadcast

(the index of the endpoints in the array is significant for the order)

If either the manager is not defined or the destinations array is empty, an APEX-

OptionException is thrown.

6.2.3 DTD of a Reliable Broadcast option

<!—- DTD for the APEX relay configuration -->

 <!ELEMENT option ((endpoint)+)>
 <!ATTLIST option
 external "http://lsrwww.epfl.ch/APEX/ReliableBroadcast"
 #REQUIRED
 targetHop "final" #REQUIRED
 mustUnderstand "true" #REQUIRED
 transID INTNB #REQUIRED
 >

 <!ELEMENT endpoint EMPTY>
 <!ATTLIST endpoint
 identity ENDPOINT #REQUIRED
 order INTNB #REQUIRED
 >
<!—-
 DTD data types

 Endpoint address
 ENDPOINT entity user1@lsrwww.epfl.ch

 Integer number
 INTNB 1..2147483647 5
-->

Listing 30 DTD of a Reliable Broadcast option

 70

6.3 An example

The most effective way to illustrate the behaviour described above, is to go along a

simple example. Consider 'user1@lsrwww.epfl.ch' wants to send a reliable broadcast

message to 'user2@lsrwww.epfl.ch', 'user3@ltiwww.epfl.ch', and 'user4@icawww.epfl.ch'.

Therefore he instantiates a new APEXDataMessage, adds the option built by APEXRe-

liableBroadcastService, and finally sends the message.

Fig. 16 may illustrate the example assuming "endpoint 1" to be 'user1' and "endpoint

2" to be 'user2', both attached at "relay 1" alias 'lsrwww.epfl.ch'; "endpoint 3" to be 'user3'

attached at "relay 2" alias 'ltiwww.epfl.ch'; and "endpoint 5" to be 'user4' attached at "relay

3" alias 'icawww.epfl.ch'.

The (hard coded) source code for this operation would look like this (where the

APEXManager is already instantiated and the originator is considered as attached):

 APEXEndpointAddress[] recipients = new APEXEndpointAddress[3];
 recipients[0] = new APEXEndpointAddress("user2@lsrwww.epfl.ch");
 recipients[1] = new APEXEndpointAddress("user3@ltiwww.epfl.ch");
 recipients[2] = new APEXEndpointAddress("user4@icawww.epfl.ch");

 APEXDataMessage message = new APEXDataMessage(originator,
 recipients,
 content);

 APEXOption reliableBroadcastOption =
 APEXReliableBroadcastService.getReliableBroadcastOption(apexManager,
 recipients);

 message.addActiveOption(reliableBroadcastOption);

 APEXStatus status = new APEXStatus();

 apexManager.sendAPEXDataMessage(message, status);

Listing 31 Adding a Reliable Broadcast option for multiple recipients to a data message

Assuming that the content is XML, the resulting message sent to the relay, is:

 <data content='#Content'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@lsrwww.epfl.ch' />
 <recipient identity='user3@ltiwww.epfl.ch' />
 <recipient identity='user4@icawww.epfl.ch' />
 <option external='http://lsrwww.epfl.ch/APEX/ReliableBroadcast'
 targetHop='final' mustUnderstand='true' transID='2'>
 <endpoint identity='user2@lsrwww.epfl.ch' order='0' />
 <endpoint identity='user3@ltiwww.epfl.ch' order='1' />
 <endpoint identity='user4@icawww.epfl.ch' order='2' />
 </option>
 <data-content Name='Content'>...</data-content>
 </data>

Listing 32 A message containing a reliable broadcast option

 71

Now, incoming in relay 'lsrwww.epfl.ch', the message is analyzed and the options are

processed:

• since the APEXReliableBroadcastService knows from its transaction table

that it has not yet processed this option, it immediately sends a new message to

all endpoints in the sequence list (sorted by ascending order) which are not in

the same administrative domain (and removes them from the initial message) –

a new option with a new sequence list is generated for each message and only

relevant endpoint elements are added.

One message is sent to relay 'ltiwww.epfl.ch' addressed at 'user3@ltiwww.epfl.

ch'. It contains a reliable broadcast option which includes only the endpoints the

Reliable Broadcast Service on the next applicable relay has to treat.

 <data content='#Content'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user3@ltiwww.epfl.ch' />
 <option external='http://lsrwww.epfl.ch/APEX/ReliableBroadcast'
 targetHop='final' mustUnderstand='true' transID='2'>
 <endpoint identity='user3@ltiwww.epfl.ch' order='0' />
 <endpoint identity='user4@icawww.epfl.ch' order='1' />
 </option>
 <data-content Name='Content'>...</data-content>
 </data>

Listing 33 The message sent to 'user3@ltiwww.epfl.ch'

Since 'user4@icawww.epfl.ch' is the last endpoint in the sequence, it is the only

endpoint to be processed by the Reliable Broadcast Service on relay 'icawww.

epfl.ch'. However, this relay receives this message twice and discards it once; the

second is sent by the Reliable Broadcast Service of relay 'ltiwww.epfl.ch'.

 <data content='#Content'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user4@icawww.epfl.ch' />
 <option external='http://lsrwww.epfl.ch/APEX/ReliableBroadcast'
 targetHop='final' mustUnderstand='true' transID='2'>
 <endpoint identity='user4@icawww.epfl.ch' order='0' />
 </option>
 <data-content Name='Content'>...</data-content>
 </data>

Listing 34 The message sent to 'user4@icawww.epfl.ch'

• back to relay 'lsrwww.epfl.ch': the initial message containing the remaining

endpoints as recipients (endpoints in the administrative domain and endpoints

which are not in the sequence list) is passed to the sendMessage method and

sent as well.

 72

The message directly addressed at the attached endpoint of the 'lsrwww.epfl.ch'

relay, 'user2@lsrwww.epfl.ch', is sent over the correspondent edge connection.

 <data content='#Content'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@lsrwww.epfl.ch' />
 <data-content Name='Content'>...</data-content>
 </data>

Listing 35 The message finally delivered to each recipient

 73

6.4 Discussion: Reliable Broadcast and APEX

The Reliable Broadcast Service in APEX brings along some restrictions to guarantee

an optimal behaviour but offers on the other hand a intermediate mesh configuration

independent reliable messaging mechanism. In this section, I discuss these restrictions and

their effects if they are not kept.

6.4.1 The targetHop attribute

As mentioned in Paragraph 6.2.2, the "targetHop" attribute's value of the reliable

broadcast option must be "final". This property, on the one hand, effects that only relays

which are delivering the message directly to one or more attached endpoints, process the

option. If the "targetHop" attribute's value is "all", all intermediate relays on the messages'

trajectory and all endpoints process the option and initiate new messages. By setting the

value to "final", the number of messages sent between the relays is thus reduced to a

minimum

On the other hand, this restriction offers an enormous advantage: the Reliable

Broadcast Service needs only to be registered on delivering relays at the edge of the APEX

mesh, whereas intermediate relays are not forced not to know it to guarantee the mecha-

nism. Hence, a reliable broadcast message can be sent over an arbitrary APEX mesh where

the Reliable Broadcast Service may not be registered on intermediate relays.

6.4.2 The mustUnderstand attribute

As mentioned as well in Paragraph 6.2.2, the "mustUnderstand" attribute's value of

the reliable broadcast option must be "true". This is necessary to guarantee that the

mechanism is entirely working. However, if on one applicable relay the Reliable Broadcast

Service is not registered and the "mustUnderstand" attribute's value is "false", the relay

silently ignores the option and sends the message only to the present message recipients –

not to all recipients indicated in the sequence table, though, since the reliable broadcast

option is not processed: reliable messaging is not guaranteed.

If the attribute's value is "true" on the other hand, it rejects the processing of the

message and returns an error reply.

 74

6.4.3 APEX Report Service

By default, the APEX protocol does not return status responses on successful delive-

ring or discarding a message. As presented in Paragraph 3.6.1, if a statusRequest option is

present in message, the APEX Report Service invoked. In the case of the Reliable Broadcast

Service, when a statusRequest option is processed, the resulting statusResponse message is

not sent until the status of the messages to all attached recipient endpoints is known.

Status of messages to other relays are not reported as long as to error in sending occurs.

The Reliable Broadcast Service combined with the APEX Report Service results in a

reliable messaging service with reports on delivery of all messages to correspondent reci-

pient endpoints.

6.4.4 hold4Endpoint option

The hold4Endpoint option, which is not implemented in the APEX core implemen-

tation of Chapter 5 but presented in Paragraph 3.5.3, transforms the Reliable Broadcast

Service into an entirely reliable service. By default, if a message is addressed to an end-

point which is not attached at the APEX mesh, the message is discarded – if the

statusRequest option is present in addition, a negative statusResponse reply is sent. If the

hold4Endpoint option is present as well, the message is queued and sent as soon as the

demanded recipient endpoint attaches.

Combining the reliable broadcast and the hold4Endpoint option ensures that the

message is received at each specified endpoint at some time.

 75

7 APEX Report Service

In the course of the implementation, I developed the ch.epfl.lsr.apex.servi-

ces.APEXReportService, an implementation of the APEX Report Service specified in

RFC3340 and presented in Paragraph 3.6.1. This service is basically needed for status

responses; say to obtain information if an initiated message is received by its destination

endpoint(s). In Section 7.1, I describe the way I implemented the APEX Report Service and

the most important algorithm I developed. Section 7.2 gives a brief application example of

this service.

7.1 Implementing the APEX Report Service

In order to implement the APEX Report Service, like seen for the Reliable Broadcast

Service, one needs to create a new class extending the general APEXService class. The

next step to be determined is how the main abstract methods handleMessage,

handleOption, handleSent and handleDiscarded should be redefined.

As RFC3340 already specifies the name and type of the option, I refer to Paragraph

3.6.1 for more details.

7.1.1 handleMessage method

The handleMessage method is actually the easiest method to be solve, since the

standard specifies that no message should be addressed at the APEX Report Service – this

method can be left empty.

7.1.2 handleOption method

As specified in Paragraph 5.5.8, if an APEX Report Service option is processed in a

relay, the handleOption method is called. This method must now extract all applicable

endpoints for which it has to gather the message status and report in the statusResponse

message. As it turns out of the processing algorithm discussed in Section 3.4, the option is

processed before the messages are sent and their status is known. Therefore the Report

Service uses the hash table of its manager to store the information about the endpoints to

be treated and adds for each applicable endpoint an empty status. If a message addressed

 76

to an endpoint is successfully sent or if it is discarded, this status must be updated.

It is important to note that if the service is run on an endpoint, it can immediately

respond with a statusResponse message since the message has been captured successfully

and does not need to be relayed to another entity within the APEX mesh.

7.1.3 handleSent / handleDiscarded methods

The handleSent as well as the handleDiscarded method are called if the status of

a message is known; either the next hop returned an ok operation or an error in sending the

message arose – therefore these two methods are only relevant on a relay. Now, the status

of the addressed endpoint or endpoints (if it is a multicast message) in the above mentioned

hash table can be updated according to the event. After the updates of this "status table",

the service needs to check if at the moments all states are defined and if this is true, it can

send the requested statusRespond message. If some states still remain unresolved, the

"status table" is stored for further processing.

While the handleSent message is straight forward, the handleDiscarded method

is a bit more delicate. Considering for instance the event that a relay cannot send a

message to another relay after several attempts and the message contains a reliable

broadcast option having a "targetHop" attribute's value "final". It turns out at this moment

that, since this attribute is present, the option may not have been processed but

nevertheless, the report service has to respond with an error message. Therefore the

algorithm of updating the status elements can be described like the following:

1. if the option has applicable endpoints for the option

a. if the discarded message is addressed to at least one of these, the status the

endpoint(s) must be updated

b. if the destination endpoint is an not applicable, a new status object is

instantiated and sent to the originator

2. if the option has no applicable endpoints (the case of a discarded message in an

immediate relay and "final" valued "targetHop" attribute), status objects for all

destinations are instantiated and returned to the originator.

Please note that this algorithm need not to be integrated in the handleSent method

since no reporting is needed if the message is sent successfully and the endpoint is not

applicable on this relay.

 77

7.1.4 getStatusRequestOption method

In order to facilitate the instantiation of an APEX status request option for

programmers of endpoint application, the APEXReportService class offers some static

methods getStatusRequestOption which return an APEXOption object for given

arguments.

7.2 A Status Request testing example

Consider in this example 'user1@lsrwww.epfl.ch' would like to send a message to

multiple recipients. At the same time, he would like to know if the message has been

received correctly. Therefore he adds a statusRequest APEXOption, generated by the static

method getStatusRequestOption, to this message – naturally he could also instantiate a

new APEXOption specifying all arguments himself.

The hard coded instructions to instantiate and send this message would look like the

following listing:

 APEXDataMessage adm = new APEXDataMessage (this.endpointAddress,
 recipients,
 content);

 APEXOption request = APEXReportService.getStatusRequestOption(
 apexManager,
 this.endpointAddress,
 APEX.TARGETHOP_FINAL);

 adm.addOption(request);
 apexManager.sendMessage(adm, status);

Listing 36 Adding a final statusRequest option to a data message

Now for this example assuming the following setup for the specified recipients:

• 'user2@lsrww.epfl.ch' is attached at its relay

• 'user3@lsrwww.epfl.ch' is not set up or attached at its relay

• 'user4@ltiwww.epfl.ch' is set up and works correctly

• 'user5@lcawww.epfl.ch' no relay is even working on its domain

 78

The message sent by 'user1@lsrwww.epfl.ch' to its relay looks like:

 <data content='#Content'>
 <originator identity='user1@lsrwww.epfl.ch' />
 <recipient identity='user2@lsrwww.epfl.ch' />
 <recipient identity='user3@lsrwww.epfl.ch' />
 <recipient identity='user4@ltiwww.epfl.ch' />
 <recipient identity='user5@lcawww.epfl.ch' />
 <option internal='statusRequest'
 targetHop='final'
 mustUnderstand='false'
 transID='2' />
 <data-content Name='Content'>hello world</data-content>
 </data>

Listing 37 A message containing a final statusRequest option

The endpoint receives the following messages generated by the APEReportService

on the respective relays:

• lsrwww.epfl.ch reports that the message has been sent successfully to

'user2@lsrwww.epfl.ch' but the 'user3@lsrwww.epfl.ch' is not known

 <data content='#Content'>
 <originator identity='apex=report@lsrwww.epfl.ch' />
 <recipient identity='user1@lsrwww.epfl.ch' />
 <data-content Name='Content'>
 <statusResponse transID='2'>
 <destination identity='user2@lsrwww.epfl.ch'>
 <reply code='250' />
 </destination>
 <destination identity='user3@lsrwww.epfl.ch'>
 <reply code='550'>unknown endpoint identity</reply>
 </destination>
 </statusResponse>
 </data-content>
 </data>

Listing 38 A statusRespose message for final recipients from 'lsrwww.epfl.ch'

• some time later, 'lsrwww.epfl.ch' reports as well that it was not able to transfer

the message addressed for 'user5@lcawww.epfl.ch' to relay 'lcawww.epfl.ch'

after several attempts and therefore has been discarded

 <data content='#Content'>
 <originator identity='apex=report@lsrwww.epfl.ch' />
 <recipient identity='user1@lsrwww.epfl.ch' />
 <data-content Name='Content'>
 <statusResponse transID='2'>
 <destination identity='user5@lcawww.epfl.ch'>
 <reply code='450'>an intermediate relay does not respond</reply>
 </destination>
 </statusResponse>
 </data-content>
 </data>

Listing 39 A statusRespose message for recpients not delivered to the next hop

 79

• finally, 'ltiwww.epfl.ch' reports upon the successful relaying operation to

'user4@ltiww.epfl.ch'

 <data content='#Content'>
 <originator identity='apex=report@ltiwww.epfl.ch' />
 <recipient identity='user1@lsrwww.epfl.ch' />
 <data-content Name='Content'>
 <statusResponse transID='2'>
 <destination identity='user4@ltiwww.epfl.ch'>
 <reply code='250' />
 </destination>
 </statusResponse>
 </data-content>
 </data>

Listing 40 A statusRespose message for final recipients from 'ltiwww.epfl.ch'

 80

 81

8 Conclusion

While analyzing and implementing the APEX core, for the first time I met the task of

implementing a recent standard that up to now is known only by a few people. In the course

of implementation, there were a lot of things to be determined and interpreted out of the

specification. In many cases, I had to search on the Internet for detailed information

concerning the underlying BEEP, which I basically found in the official newsgroups of

BEEP and APEX. During the coding phase, I also experienced how important it is to first

blue-print a general structure, and then to proceed on and on deeper into details while

documenting every step. Hence, I kept track when modifying parts or writing the final

documentation presented in this report as well as when completing the javadoc comments

in the end of the project.

The BEEP in my opinion is a very powerful messaging framework to design robust

application protocols, in the BEEP context called channels, and ease enormously the

designer from basic socket programming or encryption. I think I really profited to get to

know this protocol and to intensively work with it; I am sure to cross it some day later

again.

As well the APEX, as far as I can judge the protocol, is a very clean and well

structured protocol and due to its flexibility can be used in many domains. In my opinion, it

is a real pity that APEX has not persuaded and has not overcome the resistance every new

protocol has to fight against. I hope, by providing the Java implementation of this project,

APEX can be at least used in context of group communications.

For my part, I enjoyed working on the APEX and its implementation, although it took

me a large amount of time to design and write the implementation, the services and

correspondent applications. However, I gained enormous knowledge in Java, especially in

synchrony and parsing issues, and of course some models of group communications,

basically the mechanism of reliable broadcast.

 82

 83

9 Acknowledgements

I would like to thank the following persons and institutions which helped me on my

work in this project, principally developing the APEX implementation:

• Dr. MATTHIAS WIESMANN

my project advisor, he was always there when I needed him and helped me on

every problem I had.

• Prof. ANDRÉ SCHIPER and the EPFL-LSR

for offering this project in which I experienced work on protocol analysis and

implementation.

• PATRIK BLESS AND MARTIN RUBLI

for some Java advices and testing on Debian Linux.

• Invisible Inc.: beepcore-java

for providing the Java BEEP implementation which is for the most part very

well documented.

• IBM Corp.: The Eclipse Platform

for developing this powerful programming tool – I really love it!

• JAMES GOSLING, Java Technology inventor, and related developers

for giving rise to this marvellous technology.

 84

 85

A APEX applications – a short tutorial

In this chapter we are going to set up two tiny processes in order to illustrate how to

use the APEX implementation introduced in Chapter 5. In the first section we present an

APEX endpoint process. This endpoint will work together with the APEX relay set up in the

second section. The complete source code of each process is given in the last parapgraph of

each section.

The third section of this chapter gives a notion of how an APEX service should be

designed by giving a simple example.

A.1 An APEX endpoint process

To initiate an APEX endpoint, it is necessary to define a class which is able to receive

call-backs from the APEX endpoint manager, e.g. to receive incoming data messages. This

call-back class must implement the APEXEndpointProcess interface and define its

abstract methods receiveData, notification and debug (c.f. Paragraph A.2.1).

A.1.1 The APEX endpoint manager

The next thing to be done is to instantiate the APEXEndpointManager which, from

now on, is the drop-in centre for all tasks to be accomplished. Basically the APEXEnd-

pointManager needs to know the call-back class (APEXEndpointProcess) and the service

configuration file defined in Paragraph 5.7.1. In addition, the default edge port number for

connections to relays can be modified by passing an integer port number as argument.

A.1.2 Attach as an endpoint

Now the endpoint is set up and the first operations can be started: the first thing we

need to do is to attach as an endpoint to be able to send messages. To do so, the

APEXEndpointManager offers the attachAs method which takes an APEXEndpoint-

Address and an APEXStatus. It is not recommended to pass a null value as status in

order to handle an exception on attaching (say if the relay refuses to attach the endpoint or

even the relay cannot be contacted). Since the APEXStatus offers a blocking method

getStatusCode which returns a three-digit status code (250 for a successful transaction,

 86

c.f. Paragraph 3.7.5) and a textual reason with getStatusReason, one can either wait for

the status code in the current thread. For simplicity, we use in the example the

getStatusCode method directly which blocks the process. For a more flexible solution,

please refer to Paragraph A.1.6, which presents examples for thread independent models.

A.1.3 Send a data operation

Now the process is attached as at least one endpoint at a relay, and therefore it is

able to send an APEXDataMessage which may have several properties and different forms.

A programmer using the APEX implementation is mostly dealing with the APEXData-

Message since he needs to instantiate it in order to use the sendDataMessage method as

well as he needs to extract incoming data in the receiveData call-back method. We now

take a closer look at this class. In addition to this intro it has to be mentioned that the

APEXEndpointManager offers four different sendMessage methods which allows a

programmer to by-pass the instantiation of an APEXDataMessage by directly passing the

relevant arguments to one of these methods.

APEXDataMessage

To build an APEXDataMessage basically three parameters must be given: the

originator, the destination, and what kind of data should be sent. There are two different

types of the data content, textual content (e.g. XML code) or binary content (e.g. an image

file). In addition, to modify the basic behaviour of the APEX model, one needs also to

initialize some options. Please note that for multiple recipients, a HashSet or an array

containing the APEXEndpointAddresses of the recipients is required.

In order to send a simple textual (or XML) content data operation, the following

example shows how to use the APEXDataMessage class (note that manager is the

APEXEndpointManager and the originator has already sent an attach operation and the

getStatusCode method is blocking until the message has left the endpoint). Please refer

to Paragraph 5.11.4 for limitations in context with XML content.

 APEXEndpointAddress originator = new APEXEndpointAddress("user1@lsrwww.epfl.ch");
 APEXEndpointAddress recipient = new APEXEndpointAddress("user2@lsrwww.epfl.ch");

 String content = "hello";

 APEXDataMessage message = new APEXDataMessage(originator, recipient, content);

 APEXStatus status = new APEXStatus();
 manager.sendAPEXDataMessage(message, status);
 int statusCode = status.getStatusCode();

Listing 41 Instantiating and sending an data message with XML content

 87

To send a more complex MIME content data operation to multiple recipients

(multicast), one needs on the one hand to add the recipients to a HashSet and, on the other

hand, instantiate a MIMEBodyPart (javax.mail.internet.MimeBodyPart) object containing

the content. The javamail distribution [22] is well documented and therefore thus not

discussed here.

We assume that an image "image.gif" should be the content of the data operation,

encoded as binary.

 APEXEndpointAddress originator =
 new APEXEndpointAddress("user1@lsrwww.epfl.ch");

 HashSet recipients = new HashSet();
 recipients.add(new APEXEndpointAddress("user2@lsrwww.epfl.ch"));
 recipients.add(new APEXEndpointAddress("user3@ltiwww.epfl.ch"));

 InputStream is = new FileInputStream("image.gif");
 byte[] byteContent = getBytes(is);

 InternetHeaders headers = new InternetHeaders();
 MimeBodyPart bodyPart = new MimeBodyPart(headers, byteContent);

 bodyPart.addHeader(APEXMessage.FILENAME,entry);
 ContentType ct = new ContentType();
 ct.setPrimaryType("image");
 ct.setSubType("gif");

 bodyPart.addHeader(APEXMessage.CONTENTTYPE,ct.toString());
 bodyPart.addHeader(APEXMessage.CONTENTTRANSFERENCODING,
 APEXMessage.ENC_BINARY);

 APEXDataMessage message = new APEXDataMessage(originator,
 recipient, content);

 APEXStatus status = new APEXStatus();

 apexManager.sendAPEXDataMessage(message, status);

Listing 42 Instantiating and sending an data message with MIME Multipart structured content

This code will generate a MIMEBodyPart object which contains the following content:

Content-Type: image/gif
Content-Transfer-Encoding: binary
Filename: image.gif

GIF89a...

Listing 43 The content of MIMEBodyPart bodyPart in Listing 42

One could as well work with "base64" or "quoted-printable" but needs to encode it by

the auxiliary encoder classes provided by the javamail distribution [22], namely for

instance the BASE64EncoderStream of the com.sun.mail.util package in mailapi.jar (for

complemented information concerning encoding, please refer to Section 5.4 and Section 4.1

Use of MIME and XML in RFC3340 [8]).

 88

A.1.4 Receiving a data operation

As mentioned above, a call-back method called receiveData is required to be

redefined in when implementing the APEXEndpointProcess interface. The following

instructions briefly show how the received APEXDataMessage is analyzed and the content

is correctly extracted.

First of all, it must be found out if the data message received at the peer contains

MIME or XML content. To do so, APEXDataMessage offers the method getContentType

which returns an integer. This integer can be compared to two final constant values

• APEXDataMessage.MIMECONTENT for MIME content, or

• APEXDataMessage.XMLCONTENT for XML content.

Once the content type is determined either the getMimeContent or the getXML-

Content method can be called in order to retrieve a MimeBodyPart or an Element

(org.w3c.dom.Element) respectively. The MimeBodyPart represents the whole MIME part

of the multipart identified by the content URI attribute of the XML part while the Element

represents the data-content element containing the XML elements of the content. In

order to treat MIME Multipart structured messages please, refer also to Paragraph 5.9.2

and Paragraph 5.11.3 which indicates possible limitations.

It may be important to know that the receiveData method is called from a manager

independent thread, thus the endpoint process cannot affect or slow down the performance

of the endpoint manager blocking while processing.

A.1.5 A complete APEX endpoint

The following listing is a complete APEX endpoint capable to attach with a single

endpoint address passed as the first argument, to send XML content to multiple users, and

to receive and display XML and MIME content messages. The source of "Endpoint.java" is

available in the ch.epfl.lsr. apex.example package of the distribution.

public class Endpoint implements APEXEndpointProcess {

 APEXEndpointAddress endpointAddress;
 APEXEndpointManager apexManager;

 public static void main(String[] args) {
 if (args.length > 0)
 try {
 String svcCfgFile = "";
 int port = 0;
 if (args.length > 1) {
 try {

 89

 port = Integer.parseInt(args[1]);
 }
 catch (NullPointerException e) {
 svcCfgFile = args[1];
 }
 }
 if (args.length > 2)
 port = Integer.parseInt(args[2]);
 new Endpoint(new APEXEndpointAddress(args[0]),svcCfgFile,port);
 } catch (Exception e) {
 System.out.println("Error: "+e.getMessage());
 System.exit(1);
 }
 else
 System.out.println("Usage: java Endpoint endpointAddress [svcCfg] [port]");
 }

 public Endpoint(APEXEndpointAddress aea, String svcCfg, int port) throws Exception {
 this.endpointAddress = aea;
 if (port == 0)
 this.apexManager = new APEXEndpointManager(this, svcCfg);
 else
 this.apexManager = new APEXEndpointManager(this, svcCfg, port);

 System.out.print("\nAttaching as "+aea.getEndpointAddress()+" ... ");
 APEXStatus attachStatus = new APEXStatus();
 apexManager.attachAs(aea, attachStatus);
 int attachStatusCode = attachStatus.getStatusCode();
 String attachReason = attachStatus.getStatusReason();
 if (attachStatusCode == APEX.STATUS_TRANSACTION_SUCCESSFUL)
 System.out.println("ok! ("+attachReason+")");
 else {
 System.out.println("Error: "+attachReason+" (code "+attachStatusCode+")");
 throw new Exception("could not attach!");
 }

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 String entry = null;
 String content = "";
 boolean run = true;
 HashSet recipients = new HashSet();
 int state = 0;
 do {
 switch(state) {
 case 0:
 System.out.print("\nEnter recipient address: ");
 state = 1;
 break;
 case 1:
 try {
 APEXEndpointAddress r = new APEXEndpointAddress(entry);
 recipients.add(r);
 System.out.print("Add another recipient (y or n): ");
 state = 2;
 } catch (APEXParsingException e) {
 System.out.println("Error: "+e.getMessage());
 System.out.print("\nEnter recipient address: ");
 state = 1;
 }
 break;
 case 2:
 if (entry.equalsIgnoreCase("y")) {
 System.out.print("\nEnter recipient address: ");
 state = 1;
 }
 else if (entry.equalsIgnoreCase("n")) {
 System.out.println("\nEnter XML content (terminate with .):");
 content = "";
 state = 3;
 }
 else System.out.print("Add another recipient (y or n): ");
 break;
 case 3:

 90

 content += "\r\n";
 if (!entry.equalsIgnoreCase(".")) {
 content += entry;
 break;
 }
 case 4:
 if (content.length() <= 2) {
 System.out.println("\nEnter XML content (terminate with .):");
 state = 3;
 }
 else {
 APEXStatus status = new APEXStatus();
 System.out.print("\nSending message to relay ... ");

 APEXDataMessage adm = new APEXDataMessage (this.endpointAddress,
 recipients,
 content);
 apexManager.sendMessage(adm, status);
 int statusCode = status.getStatusCode();
 String reason = status.getStatusReason();
 if (statusCode == APEX.STATUS_TRANSACTION_SUCCESSFUL)
 System.out.println("ok! ("+reason+")");
 else
 System.out.println(reason+" (code "+statusCode);
 recipients.clear();
 System.out.print("\nEnter recipient address: ");
 state = 1;
 }
 }
 do {
 try {
 entry = in.readLine();
 entry = entry.trim();
 } catch (NullPointerException e) {
 run = false;
 } catch (Exception e) {
 System.err.println("Reading error: " + e);
 }
 } while (entry.equals(""));
 } while (run);
 }

 public void receiveData(APEXDataMessage message) {
 System.out.println("\n-- Received data from " +
 message.getOriginator().getEndpointAddress() + ":");

 if (message.getContentType() == APEXMessage.MIMECONTENT) {
 MimeBodyPart mbp = message.getMimeContent();
 if (mbp != null) {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 try {
 mbp.writeTo(baos);
 String mimeContent = new String(baos.toByteArray());
 System.out.println("-- MIME content: \n"+mimeContent);
 } catch (Exception e) {
 System.out.println("Exception while reading MIME content");
 }
 }
 }
 else if (message.getContentType() == APEXMessage.XMLCONTENT) {
 System.out.println("-- XMLContent: \n"+message.getXMLContent());
 }
 System.out.println("-- end of data");
 }

 public void notification(int code, Object specification) {
 }

 public void debug(String debugMessage) {
 }
}

Listing 44 A complete endpoint application

 91

Using the application,

1. attaching as 'user1@lsrwww.epfl.ch'

2. sending a message to itself ('user1@lsrwww.epfl.ch')

3. receiving the same message

gives the following result:

Attaching as user1@lsrwww.epfl.ch ... ok! (transaction successful)

Enter recipient address: user1@lsrwww.epfl.ch
Add another recipient (y or n): n

Enter XML content (terminate with .):
hello world
.

Sending message to relay ... ok! (transaction successful)

-- received data from user1@lsrwww.epfl.ch: (XMLContent)
<data-content Name="Content">
hello world
</data-content>
-- end of data

Listing 45 Demonstration of the endpoint application of Listing 44

A.1.6 An APEXStatus example

As mentioned several times, it is not often the best solution to block the process when

waiting for a status code of an APEXStatus. As indicated in Paragraph 5.8.2, there are two

other possibilities which we present here in contrast to the blocking example.

In the following examples, we assume that we want to attach as an endpoint and give

a notification (in the console) on success or failure, and indicate a code and textual reason.

When using the blocking method of APEXStatus, getStatusCode, we simply can

wait until the status code becomes available, and display it:

 APEXEndpointAddress aea = new APEXEndpointAddress("user1@lsrwww.epfl.ch");

 APEXStatus attachStatus = new APEXStatus();
 apexManager.attachAs(aea, attachStatus);

 int attachStatusCode = attachStatus.getStatusCode();
 String attachReason = attachStatus.getStatusReason();
 if (attachStatusCode == APEX.STATUS_TRANSACTION_SUCCESSFUL)
 System.out.println("Attached as "+aea+" ("+attachStatusReason+")");
 else
 System.out.println("Not attached as "+aea+": "+attachStatusReason+
 " (code "+attachStatusCode+")");

Listing 46 Obtaining the status code by the blocking methods getStatusCode and getStatusReason

 92

In the case of the ActionListener we can either use a call-back method to update all

internal variables or directly update them within the actionPerformed method. Please

note that in following example we add the endpoint address as an object to the status, so we

can use it later:

 APEXStatus attachStatus = new APEXStatus();
 ActionListener attachListener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 APEXStatus status = (APEXStatus)e.getSource();
 int internalStatus = status.getStatusCode();
 APEXEndpointAddress aea = (APEXEndpointAddress)status.getObject();

 int attachStatusCode = internalStatus.getStatusCode();
 String attachStatusReason = internalStatus.getStatusReason();
 if (attachStatusCode == APEX.STATUS_TRANSACTION_SUCCESSFUL)
 System.out.println("Attached as "+aea+" ("+attachStatusReason+")");
 else
 System.out.println("Not attached as "+aea+": "+attachStatusReason+
 " (code "+attachStatusCode+")");
 }
 }
 attachStatus.setActionListener(attachListener);
 attachStatus.setObject(aea);
 apexManager.attachAs(aea, attachStatus);

Listing 47 Obtaining the status code by adding an ActionListener to the APEXStatus object

The last model, redefining the receivedStatus method within the new instance of

the APEXStatus object, is even easier to initialize:

 APEXStatus attachStatus = new APEXStatus() {
 public void receivedStatus(APEXStatus status) {
 int internalStatus = status.getStatusCode();
 APEXEndpointAddress aea = (APEXEndpointAddress)status.getObject();

 int attachStatusCode = internalStatus.getStatusCode();
 String attachStatusReason = internalStatus.getStatusReason();
 if (attachStatusCode == APEX.STATUS_TRANSACTION_SUCCESSFUL)
 System.out.println("Attached as "+aea+" ("+attachStatusReason+")");
 else
 System.out.println("Not attached as "+aea+": "+attachStatusReason+
 " (code "+attachStatusCode+")");
 }
 };
 attachStatus.setObject(aea);
 apexManager.attachAs(aea, attachStatus);

Listing 48 Obtaining the status code by redefining the receivedStatus method of the APEXStatus object

Note: since we normally instantiate the APEXStatus object within the main class, we

can easily call-back to its methods (e.g. attachedAs or notAttachedAs):

 if (attachStatusCode == APEX.STATUS_TRANSACTION_SUCCESSFUL)
 attachedAs(aea);
 else
 notAttachedAs(aea, attachStatusCode, attachStatusReason);

Listing 49 Accessing methods of the parent class from actionPerformed and receivedStatus

 93

A.2 An APEX relay process

Similar to the previous section, we are going to set up an APEX relay using the APEX

implementation. In contrast to the APEX endpoint, the APEX relay is ways easier set up

because actually no interaction on a terminal is required and the implementation, after its

initiation, works on its own.

There is only one thing a programmer of an APEX relay process has to define: a class

implementing the APEXRelayProcess interface which offers the call-back method for

possible notifications and debug functionalities.

A.2.1 The APEX relay manager

To initiate a set of relays on a machine working in an administrative domains, an

APEXRelayManager object has to be instantiated, passing at least the call-back class and

the relay configuration file name, and optionally a service configuration file name. The

details and the DTDs of both configuration files are given in Section 5.7.

Again, we must redefine two methods:

• in notification method we can show initialization issues, attachments,

bindings and so one, made by the endpoints and relays managers respectively.

There are two parameters passed to the method: an integer code and an

Object. The integer code can be resolved by using static definitions placed in

the APEX class (e.g. APEX.NOTIFICATION_INIT or APEX.NOTIFICATION_

ATTACH) which are documented in the javadoc. For every code number, an

special object is associated, e.g. the attachment code number signifies that the

object is an APEXEndpointAddress which is attaching at the relay or (in an

endpoint process) has successfully attached at a relay, e.g:

 if (code == APEX.NOTIFICATION_ATTACH)
 System.out.println("[ATTACHMENT: "+specification+"]");

Listing 50 A notification method sample redefinition to indicate attachments

• the debug method we leave blank, although we could add the following line to

show detailed debug messages received from the APEXRelayManager, e.g.:

 if (debug) System.out.println("DEBUG: " + debugMessage);

Listing 51 A debug method sample redefinition

 94

A.2.2 A complete APEX relay

The following listing is completely sufficient to set up a working APEX relay,

configured by a relay configuration file and an optional service configuration file. The

source of "Relay.java" available in the ch.epfl.lsr.apex.example package of the distribution.

public class Relay implements APEXRelayProcess {

 public Relay(String relayCfgFile, String svcCfgFile) {
 try {
 new APEXRelayManager(this, relayCfgFile, svcCfgFile);
 } catch (APEXException e) {}
 }

 public static void main(String[] args) {
 if (args.length > 0) {
 String svcCfgFile = "";
 if (args.length > 1)
 svcCfgFile = args[1];
 new Relay(args[0],svcCfgFile);
 } else
 System.err.println(" Usage: java ch.epfl.lsr.apex.example.Relay"+
 " relayCfg [svcCfg]")
 }

 public void debug(String debugMessage) {}

 public void notification(int code, Object specification) {
 if (code == APEX.NOTIFICATION_INIT)
 System.out.println("[INITIALIZATION: "+specification+"]");
 if (code == APEX.NOTIFICATION_ATTACH)
 System.out.println("[ATTACHMENT: "+specification+"]");
 if (code == APEX.NOTIFICATION_REMOVEATTACHMENT)
 System.out.println("[REMOVING ATTACHMENT: "+specification+"]");
 if (code == APEX.NOTIFICATION_BIND)
 System.out.println("[NEW BINDING: from "+specification+"]");
 if (code == APEX.NOTIFICATION_BOUND)
 System.out.println("[RELAY BOUND: on "+specification+"]");
 if (code == APEX.NOTIFICATION_TERMINATE)
 System.out.println("[TERMINATION: "+specification+"]");
 }
}

Listing 52 A complete relay application

When using the relay application above, the result of arbitrary attachments and

bindings may look like this:

[INITIALIZATION: apex-mesh connection: listening on port 912]
[INITIALIZATION: apex-edge connection: listening on port 913]
[ATTACHMENT: user1@lsrwww.epfl.ch]
[ATTACHMENT: user2@lsrwww.epfl.ch]
[RELAY BOUND: on ltiwww.epfl.ch]
[NEW BINDING: from ltiwww.epfl.ch]
[TERMINATION: user1@lsrwww.epfl.ch]
[ATTACHMENT: user3@lsrwww.epfl.ch]

Listing 53 Demonstration of the relay application of Listing 52

 95

A.3 An APEX service

This section is thought to give a notion on how an APEX service can be designed in

order to integrate it easily in the discussed implementation. The general properties of the

APEXService class which defines an APEX service, are given in Paragraph 5.5.8.

In this application part we are going to set up a simple service which can be

considered as a Traceroute service, indicating all hops on the course of an operation.

A.3.1 Setting up an APEX service

First of all, we need to define an URI, e.g. http://lsrwww.epfl.ch/APEX/traceroute

Then, we can choose the behaviour of the option which, in this case, is very simple: if

a traceroute option is found and the hop is applicable, it returns a message to the originator

containing a traceroute element. This traceroute element, which of course we can

define ourselves, is empty but has a "transID" attribute and an "identity" attribute which

specifies the name of the entity:

 <traceroute transID='7' identity='lsrwww.epfl.ch' />

Listing 54 A sample traceroute element

So let us consider how we could implement this service: at the moment a traceroute

option is processed for the first time, a correspondent reply message must be generated.

Since the handleOption method is the first method called to process the option, we need to

focus on it. The other three methods (handleMessage, handleSuccessfullySent and

handleDiscarded) need not to be defined since no message should be addressed directly to

the service as well as no action has to be taken when a message containing a traceroute

option is sent or discarded. What finally remains, is to redefine the getOptions method to

indicate the option identifier s handled by this service (the URI defined above). That is done

easily by adding the URI as key of the handling object to a hash table and returning this.

To process the option, one needs to get the originator of the message containing the

option. Since we restrict that the option is only processed in an APEX data operation, we

can, after casting the general APEXMessage to a APEXDataMessage, access the originator

by calling the getOriginator method. Then we can set up the content of the reply

message by adding the transaction identifier of the initial option and the name of the

 96

processing hop. This name is accessible thanks to the argument (administrativeDomain)

passed to the handleOption method. The next thing to do is to generate the originator

address of the reply message, e.g.

• "appl=traceroute@lsrwww.epfl.ch" for a relay, or

• "user1/appl=traceroute@lsrwww.epfl.ch" for an endpoint handling the option.

Now, the parameters to instantiate and send a new data operation are ready and the

message can be sent! Please note in the following listing that for simplicity no imports are

specified as well as the try / catch clause is empty – this stems of the fact that we can be

sure that the endpoint address is well-formed and no exception is thrown. The source of

"TracerouteService.java" is available in the ch.epfl.lsr.apex.example package of the distri-

bution.

public class TracerouteService extends APEXService {

 public static final String SERVICEADDRESS = "appl=traceroute";
 public static final String TRACEROUTEURI = "http://lsrwww.epfl.ch/APEX/traceroute";
 public static final String TRACEROUTE = "traceroute";

 public TracerouteService() { }

 public Hashtable getOptions() {
 Hashtable options = new Hashtable();
 options.put(TRACEROUTEURI, this);
 return options;
 }

 public void handleMessage(APEXMessage message) { }

 public void handleOption(APEXOption option, APEXMessage message, String hopName)
 throws APEXOptionException {
 if (message instanceof APEXDataMessage) {
 APEXDataMessage adm = (APEXDataMessage)message;
 APEXEndpointAddress destination = adm.getOriginator();
 int transID = option.getTransID();
 String messageContent = "<"+TRACEROUTE+" " +
 APEX.TRANSID+"='"+transID+"' " +
 APEX.IDENTITY+"='"+hopName+"' />";
 try {
 APEXEndpointAddress originator = null;
 if (manager instanceof APEXEndpointManager) {
 originator = new APEXEndpointAddress(hopName);
 originator.setApplication(SERVICEADDRESS);
 }
 else
 originator = new APEXEndpointAddress(SERVICEADDRESS+"@"+hopName);
 APEXDataMessage reply = new APEXDataMessage(originator,
 destination,
 messageContent);
 manager.sendAPEXDataMessage(reply);
 } catch (APEXParsingException e) { }
 }
 }

 public void handleSuccessfullySent(APEXOption option, APEXMessage message,
 String administrativeDomain) { }

 public void handleDiscarded(APEXOption option, APEXMessage message, int code,
 reason, String administrativeDomain) { }
}

Listing 55 A complete APEX service: the APEX traceroute service

 97

A.3.2 Integration of the service

Putting the APEX relay, APEX endpoint and the Traceroute service together, means

to modify two parts. First, a service configuration file for the two processes must be

established and then the option must be added to the messages sent by the APEX endpoint.

The following service configuration file integrates the Traceroute service which is

placed in the ch.epfl.lsr.apex.example package:

 <config>
 <apexservice name='APEX Traceroute Service'
 class='ch.epfl.lsr.apex.example.TracerouteService'
 priority='0' />
 </config>

Listing 56 A sample service configuration file to integrate the APEX traceroute service

The following snippet adds to every data operation of the endpoint the traceroute

option; the targetHop attribute has the value "all", so every hop is applicable:

 APEXDataMessage adm = new APEXDataMessage (originator,
 recipients,
 content);

 adm.addActiveOption(new APEXOption(APEXOption.EXTERNAL,
 TracerouteService.TRACEROUTEURI,
 APEXOption.TARGETHOP_ALL,
 apexManager.getUniqueTransID(null)));

 apexManager.sendAPEXDataMessage(adm, status);

Listing 57 Adding a "allhop" traceroute option to a data message

When initializing the relay with the correspondent configuration file, it indicates that

it has loaded the Traceroute service:

[INITIALIZATION: loaded successfully service 'APEX Traceroute Service']

Listing 58 Initalization of a relay with the service configuration file o f Listing 56

 98

From the point of view of an APEX endpoint user, the result of these modifications

looks like this ("EndpointTraceroute.java" is as well available in the ch.epfl.lsr.apex.examp-

le package of the distribution):

Attaching as user1@lsrwww.epfl.ch ... ok! (transaction successful)

Enter recipient address: user1@lsrwww.epfl.ch
Add another recipient (y or n): n

Enter XML content (terminate with single .):
hello world
.

Sending message to relay ... ok! (transaction successful)

-- Received data from appl=traceroute@lsrwww.epfl.ch: (XMLContent)
<data-content Name="Content">
 <traceroute transID="2" identity="lsrwww.epfl.ch" />
</data-content>
-- end of data

-- Received data from user1@lsrwww.epfl.ch: (XMLContent)
<data-content Name="Content">
hello world
</data-content>
-- end of data

-- Received data from user1/appl=traceroute@lsrwww.epfl.ch: (XMLContent)
<data-content Name="Content">
 <traceroute transID="2" identity="user1@lsrwww.epfl.ch" />
</data-content>
-- end of data

Listing 59 Result of sending a message containing a traceroute option

One can clearly see the two hops the data message passed: the 'lsrwww.epfl.ch' relay

and the 'user1@lsrwww.epfl.ch' endpoint.

 99

B Bibliography

[1] RFC 3080 The Block Extensible Exchange Protocol Core

ROSE, M. T., 2001-03-30
http://www.ietf.org/rfc/rfc3080.txt

[2] RFC 3081 Mapping the BEEP Core onto TCP
ROSE, M. T., 2001-03-30

http://www.ietf.org/rfc/rfc3080.txt

[3] Apple Releases Xgrid 1.0 Technology Preview
Apple press release, 2004-01-06
http://www.apple.com/pr/library/2004/jan/06xgrid.html

[4] Simple: Xgrid
CÔTÉ, D., A weblog discussing computing tools in science.
http://unu.novajo.ca/simple/archives/000022.html

[5] Clipcode Knowledge Services
http://www.clipcode.biz

[6] The Intrusion Detection Exchange Protocol (IDXP)
FEINSTEIN, B. S., MATTHEWS, G. A., Internet-Draft, 2001-08-21
http://www.cs.hmc.edu/clinic/projects/2000/aerospace/internet-drafts/draft-ietf-
idwg-beep-idxp-01.html

[7] The Tunnel Profile Registration
NEW, D., Internet-Draft, 2001-02
http://www.cs.hmc.edu/clinic/projects/2000/aerospace/internet-drafts/draft-ietf-
idwg-beep-tunnel-01

[8] RFC 3340 The Application Exchange Core
ROSE, M.T., KLYNE, G., CROCKER, D., 2002-07-30
http://www.ietf.org/rfc/rfc3340.txt

[9] RFC 3341 The Application Exchange (APEX) Access Service

ROSE, M.T., KLYNE, G., CROCKER, D., 2002-07-30
http://www.ietf.org/rfc/rfc3341.txt

[10] RFC 3342 The Application Exchange (APEX) Option Party Pack, Part
Deux!
ROSE, M.T., KLYNE, G., CROCKER, D., 2002-07-30

http://www.ietf.org/rfc/rfc3342.txt

[11] RFC 3343 The Application Exchange (APEX) Presence Service
ROSE, M.T., KLYNE, G., CROCKER, D., 2003-04-29
http://www.ietf.org/rfc/rfc3343.txt

[12] IANA assigned port numbers, 2004-01-08
http://www.iana.org/assignments/port-numbers

 100

[13] APEX implementation of the IMPP

RIGGIO, M.J., Independent study at Netlab, Temple University, 2003-09-04
http://netlab.cis.temple.edu/apex/

[14] An APEX implementation for the RoadRunner toolkit
HOLLSTRÖM, J., NORDLINDER, P., Master Thesis at Department of Computing

Science, Umeå University, 2003-01-13
http://www.cs.umu.se/education/examina/Rapporter/437.pdf

[15] APEXwg – Mailing list for the IETF's APEX working group
Website: http://lists.beepcore.org/mailman/listinfo/apexwg/

APEXwg Archives are not on the server anymore

[16] APEX working group newsgroup
Website: http://news.gmane.org/gmane.ietf.apex

[17] Jabber Software Foundation

Official Website: http://www.jabber.org/

[18] beepcore-java 0.9 release
implementation of beep core RFC 3080 and beep mapping for TCP RFC 3081.
http://www.beepcore.org/

[19] The Blocks Public License

http://www.beepcore.org/beepcore/about_publiclicense.jsp

[20] JSCAPE iNet Factory 5.2
a robust suite of TCP/IP networking components for the Java platform
http://www.jscape.com/

[21] Netscape Messaging SDK 3.51
provides a set of Protocol Level APIs that the developer can use to write messaging
applications and extend applications with messaging services
Guide: http://developer.netscape.com/docs/manuals/messaging/msdkj/contents.htm

Download: http://developer.netscape.com/software/sdks/messaging/downloads.html

[22] JavaMail™ API 1.3.1 release
a platform-independent and protocol-independent framework to build mail and
messaging applications
http://java.sun.com/products/javamail/

[23] JavaBeans™ Activation Framework (JAF) 1.0.2 Release
standard extension to the Java platform, allows services to: determine the type of
an arbitrary piece of data; encapsulate access to it; discover the operations
available on it; and instantiate the appropriate bean to perform the operation(s)

http://java.sun.com/products/javabeans/jaf/index.jsp

[24] Group Communications and Database Replication: Techniques, Issues
and Performance.
WIESMANN, Dr. M., PhD thesis at Faculté informatique et communications, École

Polytechnique Fédérale de Lausanne, Switzerland, May 2002.
http://lsewww.epfl.ch/Documents/acrobat/Wie02.pdf

 101

C Index of Figures, Tables and Listings

C.1 List of Figures

Fig. 1 The APEX stack 14

Fig. 2 The APEX entities 15

Fig. 3 An attach operation 16

Fig. 4 A bind operation 17

Fig. 5 A terminate operation 17

Fig. 6 A data operation 18

Fig. 7 Two APEX endpoints in the same administrative domain 20

Fig. 8 Two APEX endpoints in different administrative domains 20

Fig. 9 Sequence of a final "statusRequest" 27

Fig. 10 Model of the APIs between the layers in (a) general, (b) a relay, and (c) an endpoint process 40

Fig. 11 Simplified structure of the class dependency within the APEX layer 41

Fig. 12 The connection thread retrieves all messages from the connection it belongs to 47

Fig. 13 Processing of a data operation in a relay 51

Fig. 14 The EndpointGUI (left) attached the RelayGUI (right) as two endpoints 61

Fig. 15 A reliable broadcast message sent to multiple recipients 66

Fig. 16 Sequence of messages sent to the entities if a reliable broadcast option is present 67

C.2 List of Tables

Table 1 Default reply codes 32

 102

C.3 List of Listings

Listing 1 Initiation of a BEEP Session 9

Listing 2 Initiation of an APEX channel 9

Listing 3 Termination of channel '1' 10

Listing 4 Termination of a BEEP session 10

Listing 5 Start of an APEX channel 16

Listing 6 Attachment of 'user@lsrwww.epfl.ch' 16

Listing 7 Binding of relay 'lsrwww.epfl.ch' 17

Listing 8 Termination of transaction 1 17

Listing 9 A data operation with XML content 18

Listing 10 A data operation with MIME Multipart structured content 18

Listing 11 A data operation containing a dataTiming element with a "noLaterThan" attribute 23

Listing 12 A data operation containing a dataTiming element with a "reportAfter" attribute 23

Listing 13 The "noLaterThan" bounds have not affected the transmission 24

Listing 14 'user2@ltiwww.epfl.ch' receives the message due to the hold4Endpoint option 25

Listing 15 Status response: 'user3' is unknown in 'ltiwww.epfl.ch' 27

Listing 16 Delivery of a message containing a final "statusRequest" option 27

Listing 17 Access enties 28

Listing 18 Presence publication (publish operation) of 'user1@lsrwww.epfl.ch' 29

Listing 19 An ok element 30

Listing 20 An error element 30

Listing 21 A reply element in a successful transaction 31

Listing 22 An access violiation indicated by an reply element 31

Listing 23 Sequence of outputs of two simple BEEP applications: Server.java and Client.java 39

Listing 24 Relay configuration file 50

Listing 25 Message sent by 'user1@lsrwww.epfl.ch' 50

Listing 26 The statusResponse message generated by the report service of 'lsrwww.epfl.ch' 54

Listing 27 Service configuration DTD 55

Listing 28 Relay configuration DTD 56

Listing 29 Mechanism to verify the status of a connection 57

Listing 30 DTD of a Reliable Broadcast option 69

Listing 31 Adding a Reliable Broadcast option for multiple recipients to a data message 70

Listing 32 A message containing a reliable broadcast option 70

Listing 33 The message sent to 'user3@ltiwww.epfl.ch' 71

Listing 34 The message sent to 'user4@icawww.epfl.ch' 71

 103

Listing 35 The message finally delivered to each recipient 72

Listing 36 Adding a final statusRequest option to a data message 77

Listing 37 A message containing a final statusRequest option 78

Listing 38 A statusRespose message for final recipients from 'lsrwww.epfl.ch' 78

Listing 39 A statusRespose message for recpients not delivered to the next hop 78

Listing 40 A statusRespose message for final recipients from 'ltiwww.epfl.ch' 79

Listing 41 Instantiating and sending an data message with XML content 86

Listing 42 Instantiating and sending an data message with MIME Multipart structured content 87

Listing 43 The content of MIMEBodyPart bodyPart in Listing 42 87

Listing 44 A complete endpoint application 90

Listing 45 Demonstration of the endpoint application of Listing 44 91

Listing 46 Obtaining the status code by the blocking methods getStatusCode and getStatusReason 91

Listing 47 Obtaining the status code by adding an ActionListener to the APEXStatus object 92

Listing 48 Obtaining the status code by redefining the receivedStatus method of the APEXStatus object 92

Listing 49 Accessing methods of the parent class from actionPerformed and receivedStatus 92

Listing 50 A notification method sample redefinition to indicate attachments 93

Listing 51 A debug method sample redefinition 93

Listing 52 A complete relay application 94

Listing 53 Demonstration of the relay application of Listing 52 94

Listing 54 A sample traceroute element 95

Listing 55 A complete APEX service: the APEX traceroute service 96

Listing 56 A sample service configuration file to integrate the APEX traceroute service 97

Listing 57 Adding a "allhop" traceroute option to a data message 97

Listing 58 Initalization of a relay with the service configuration file of Listing 56 97

Listing 59 Result of sending a message containing a traceroute option 98

