
Semester Project:
Distributed FRANC Simulator

Aurélien Frossard (aurelien.frossard@epfl.ch)
Boris Danev (boris.danev@epfl.ch)

Winter semester 2003

Distributed Systems Laboratory (LSR)

David Cavin (david.cavin@epfl.ch), Supervisor
Yoav Sasson (yoav.sasson@epfl.ch), Advisor

ii

Abstract

Simulation and emulation are one of the powerful tools for evaluating
the correctness and testing the performance of wireless Mobile Ad-hoc Net-
works (MANETs). The need for simulators/emulators comes from the fact
that MANETs are highly dependent from the physical environment. This
particularity does not facilitate the research community into exploring and
improving the MANETs’ behavior. This paper presents a simulator de-
veloped specifically for FRANC1, a Java framework for development and
evaluation of wireless mobile ad hoc networks.

1FRamework for Ad-hoc Network Communication

iii CONTENTS

Contents

1 Introduction 1
1.1 The project . 1
1.2 MANETs and FRANC . 1
1.3 Paper organization and intended audience 2

2 Overview 3
2.1 Project objectives . 3

2.1.1 Assumptions . 3
2.1.2 Approach . 3
2.1.3 Tasks . 4

2.2 Personal objectives . 5
2.2.1 Teamwork . 5
2.2.2 Separation of work . 5
2.2.3 Technologies and tool integration 5

3 Architecture 7
3.1 Coordinator . 7
3.2 FRANC Simulation node . 8

4 Design and implementation 9
4.1 Coordinator . 9

4.1.1 Main . 9
4.1.2 Server . 10
4.1.3 Context . 10
4.1.4 Configurator . 11
4.1.5 Constructor . 11

4.2 Simulation node . 12
4.2.1 Simulation layer . 12
4.2.2 Controller . 13
4.2.3 Clock . 14

4.3 Simulation functionalities . 15
4.3.1 Mathematical model . 15
4.3.2 Simulation events . 15

4.4 Application components and directory structure 16
4.5 Coding Conventions . 17

5 Testing strategy 18
5.1 Overview . 18
5.2 Organization . 18

LIST OF FIGURES iv

5.3 Tests on individual components . 18
5.4 Testbench . 19
5.5 Coverage Analysis and Deadlock detection 19

6 Simulation guidelines 20
6.1 Configuration . 20

6.1.1 FRANC . 20
6.1.2 Mobility . 20
6.1.3 Simulator . 22
6.1.4 Log4j . 25

6.2 Logging . 25
6.3 Use cases . 26

6.3.1 Only one type of node . 26
6.3.2 Multiple types of node . 27

7 Limitations and Future development 28
7.1 Limitations . 28
7.2 Future Developments . 29

8 Lessons learned 30

9 Conclusion 31

List of Figures

1 Simulation Overview . 7
2 Simulator Architecture . 9
3 Simulation Node . 12
4 Simulation Layer Overview . 13

1 1 Introduction

1 Introduction

1.1 The project

The Distrubuted FRANC Simulator was a semester project supervised by David
Cavin and Yoav Sasson, PhD students at the Distributed Systems Laboratory
(LSR) at the School for Computer and Communication Sciences (IC) of the Swiss
Federal Institute of Technology in Lausanne (EPFL), under the direction of Pro-
fessor André Schiper.

The project was realized by Aurélien Frossard and Boris Danev, senior students in
the School of Computer Science.

The simulator allows to simulate an ad-hoc network topology of nodes based on
FRANC2, a Java based framework for development and evaluation of wireless ad-
hoc networks. The framework is currently under development and the idea to en-
able FRANC with simulation capabilities came naturally during the development
in order to be able to test new ideas, architectures, and possible optimizations or
simply implement applications. The Distributed FRANC simulator is supposed to
respond to the needs just mentioned.

1.2 MANETs and FRANC

MANET stands for Mobile Adhoc NETwork. It is a wireless network where mem-
bers do not depend on any wired infrastructure to communicate with each other,
nor are they required to stay at a predefined position. The topology of such a
network is not fixed, it changes over time.

FRANC stands for FRamework for Ad-hoc Network Communication. It was de-
signed by the Distributed Systems Laboratory (LSR) at EPFL. Its purpose is to
facilitate the development and evaluation of wireless mobile ad hoc networks.

For more details on FRANC, please refer to two excellent papers on the subject:

[1] FRANC: A lightweight Java Framework for Wireless Multihop Communica-
tion
[2] Semester Project: MANET Framework

2FRamework for Ad-hoc Network Communication

1.3 Paper organization and intended audience 2

1.3 Paper organization and intended audience

The paper is organized in eight chapters which we briefly discuss below:

• Section 1 is what you have just read. It provides general information about
the project, its premises, authors and supervisors. It also briefly discusses
FRANC, a Java framework for development of wireless ad-hoc networks.

• Section 2 is an overview of the project itself and describes different assump-
tions, approaches and personal objectives.

• Section 3 is dedicated to the architecture of the simulator.

• Section 4 goes in depth in the different design and implementation decisions
involved in the construction of the simulator’s components.

• Section 5 provides information about the testing strategy used in proving
the correct behavior of the simulator.

• Section 6 describes how to start a simulation process (network configuration,
logging, etc). It also provides a simple example of simulation process.

• Section 7 gives an insight of current limitations and future developments.

• Section 8 discusses some of the lessons learned during development.

• Section 9 provides a final conclusion.

The paper is intended for people who want to simulate network behavior based on
FRANC, as well as for those who want to get a grasp of the problems and design
in building a distributed network simulator.

3 2 Overview

2 Overview

The project presented two major groups of objectives. The first group was tied to
the challenge of designing and building a distributed simulator in Java, with all
the vicissitudes of the thread management and real-time behavior of this language.
The second group was the purely personal challenge of working in a team, finding
the best tools for development and improving our experience through building a
complex multi-threaded Java application.

2.1 Project objectives

2.1.1 Assumptions

The whole simulation process is based on the assumption that each simulation
node is implemented using the FRANC multi-layer framework.

We decided to implement the simulator using the latest stable Java specification
version 1.4.2, in order to benefit from its better performance, security and improved
network, reflection and thread management.

We decided to use a distributed architecture in order to allow the simulation pro-
cess to be deployed in a cluster of machines for best scalability, precision and
performance. However, the simulation process could be run on a single machine
but the network topology in this case should be of limited size depending on the
quality of the machine. On the other hand, if the simulation process is deployed
in a distributed environment, we assume good clock synchronization (1 - 10 ms)
based for example on NTP3. The Distributed System Laboratory has a cluster of
16 machines which fulfill the requirements mentioned above.

We decided not to bind the simulator to any particular technology for distribu-
tion of the simulation information during startup. Thus, any user should evaluate
its available environment and write the according scripts needed to deploy the
simulation.

2.1.2 Approach

In terms of approach of development, we adopted the standard for Java, Object-
Oriented development approach which includes the following phases:

Phase 1 Analysis (OOA) includes defining the needs of the application, create

3Network Time protocol [11]

2.1 Project objectives 4

possible use cases, identify the actors and the system operations, and elabo-
rate the project scope.

Phase 2 Design (OOD) includes brain-storming to extract the different applica-
tion modules, their interaction and dependencies.

Phase 3 Programming (OOP) includes all the implementation issues.

Phase 4 Testing Object-Oriented Software (TOOS) includes the testing strategy
adopted and proves the correct behavior of the application.

Phase 5 Documentation.

2.1.3 Tasks

The main task for the project was to enhance FRANC with simulation capabilities.
Given this general idea, we identified the following list of tasks:

- Brain-storm and define the desired functionalities of the simulator. This task
was to be done with the collaboration of David Cavin and Yoav Sasson, who
had specific needs depending on their research work. We decided also to look
at some already developed ad-hoc simulators/emulators in order to get ideas
about interesting and useful functionalities.

- Evaluate and define the type of simulation: real-time or discrete. We needed
to look at these two possible simulation techniques, evaluate them according
to the programming language limitations and take the best suited one for us.

- Evaluate and define a type of architecture: local or distributed. This task
involved testing the number of FRANC nodes that could be run on one
machine, and evaluate the advantage of using a distributed architecture.

- Discuss and design a modular architecture with possible extension points in
order to give the possibility to customize or completely change important
features. Thus, design a kind of simulation framework and implement one
possible solution.

- Research and evaluate different possible solutions for logging the information
generated by the simulation process. Identify what to log, where and how.

- Define and use a testing strategy which allows individual and composite
module testing. Test the correct behavior of the implemented solution.

- Prepare a demo simulation process which shows clearly the functional behav-
ior of the simulator and its performance.

5 2.2 Personal objectives

2.2 Personal objectives

The project proposal gave the possibility to work in a group, which allowed us to
experience a real software development process. Thus, we had to show an excellent
cohesion and good teamwork, and prove that working in a team is a very nice
experience for our future work as computer scientists. Given the advantage to
work in a team, we wanted to experiment new development techniques, explore
and integrate new tools which would enrich our computer science background.

2.2.1 Teamwork

Why being two on a semester project first of all? Well, we simply think it brings
more fun to the task, more motivation to both the participants and better quality
to the final product.

However we do not think teamwork means extreme programming or code review.
Finding a solution or coming up with ideas is a result of an individual thinking
process. Finding the best one comes through confrontation and exchange between
people: one can never find alone all the solutions to a problem, or sometimes the
flaws of its solution, but others usually can. That is why we always questioned each
other whether an idea is good, bad and to what extent. We accomplished most of
the work separately and met only when critical tasks, problems or decisions had
to be addressed. In other words, we designed most of the software together, but
implemented each part alone.

2.2.2 Separation of work

Boris was responsible for the main simulator module, the communication be-
tween coordinator and simulation nodes, and the clock/controller architecture, the
configuration of the simulation process, and the Log4j and JDom integration.

Aurélien worked on the communication between nodes, the integration of NS2’s
mobility patterns, the event system and the first version of their logging mecha-
nism. He also contributed on the integration of Eclipse as our development tool.

Together with David Cavin and Yoav Sasson, we discussed and approved all im-
portant conceptual, design and implementation decisions.

2.2.3 Technologies and tool integration

During the development process, we tried to explore and integrate in the project
different tools which purpose was to facilitate our development process. Three of
them were of particular importance in terms of efficiency:

2.2 Personal objectives 6

• [8]JDOM A Java Document Model package with a fully object-oriented view
of XML.

• [9]Log4j A powerful logging package, currently the de facto standard.

• [10]Eclipse Java Integrated Development Environment.

7 3 Architecture

FRANC
node 0

FRANC
node 1

FRANC
node 2

COORDINATOR
TCP channel

TC
P c

ha
nn

el

TCP channel

Figure 1: Simulation Overview

3 Architecture

The architecture of the simulator can be defined as a distributed decentralized ar-
chitecture with a lightweight coordinator. The nodes communicate freely between
themselves as if there was no simulation. The coordinator just controls the start
and end of the simulation and collects the logs from the nodes. The network topol-
ogy simulation is implemented directly as a layer for the nodes. Figure 1 reflects
this architecture.

3.1 Coordinator

The Coordinator is limited to some well defined tasks, which do not make it a
bottleneck for the simulation. Those tasks are:

- Extract the simulation information from an XML configuration file for each
node in the network topology.

- Wait for incoming connections from the nodes and sends the simulation in-
formation to each one of them.

3.2 FRANC Simulation node 8

- Announce the start time of the simulation process.

- Check periodically during the simulation process if the behavior is correct.

- Announce the end of the simulation process.

- Request the logging information of each node and store it for later use.

- Terminate each node and ends the simulation process.

3.2 FRANC Simulation node

Each simulation node has a completely autonomous behavior based on the pre-
configured information sent by the Coordinator. All the logic for receiving and
interpreting this information is stored inside the node. The upper layers of a
FRANC simulation node are unaware if the node is running in real or simulation
mode. This is one of the advantages of simulation capabilities we implemented.
The node’s tasks can be summarized as follows:

- Connect to the Coordinator.

- Receive its configuration information.

- Interpret and store the information in its context.

- Start its own simulation behavior at the start time indicated by the Coordi-
nator.

- Send and receive messages to other nodes and logs its actions.

- End its simulation behavior.

- Wait for the Coordinator to announce the end of the simulation process.

- Check if the process has been successfully finished.

- Send its logging information.

- Terminate itself.

9 4 Design and implementation

Coordinator

Configurator

Context

Controller

XML

Logging

Figure 2: Simulator Architecture

4 Design and implementation

In the following section we discuss in more details the design and implementa-
tion issues encountered during the programming phase of the simulator using a
top-down approach. We finish by enumerating the different packages we used to
encapsulate the code and a summary of the coding conventions we used.

4.1 Coordinator

The Coordinator contains five different components. The idea behind these compo-
nents is to minimize the coupling between multiple components, and thus provide
a good modular design with minimum interaction between them.

4.1.1 Main

Description
This component contains the Coordinator main method. The component re-

quires two command line parameters, each one in a XML format. The first one
should contain the configuration of the simulation process and the second is a Log4j
XML configuration file, according to the data type definition of Log4j[8].

The main method configures the simulation environment, initializes its own mod-
ules (server, context and constructor) and waits for incoming connections. Once

4.1 Coordinator 10

the entire network has been connected, the component checks periodically the
state of the simulation according to its context and the state of the connections to
different nodes in the predefined topology.

Implementation details
Here is the place to make a small reminder about the fact that the main method

does not distribute and start the simulation nodes. The reasons for this are two:

1. Including this feature in the coordinator component would have coupled the
application to a particular operating system, because of the usage of the Java
Runtime.exec() method.

2. During testing of the Runtime.exec() method, we encountered weired be-
havior. The processes, launched using this method, were not executed until
the main method had returned. Given the notes for this class described in
the Java 1.4.2 API Specification, the user has no guarantee that the method
starts correctly a process.

4.1.2 Server

Description
The role of the server component is to wait for connections from all simulation

nodes, connect them, signal this to the Coordinator, and provide methods to the
Coordinator to check if all connections behave in correct a way during the whole
simulation process and to terminate the open connections upon signaling from the
Coordinator.

Implementation details
This component has been implemented using the Singleton design pattern. The

reason for this is that it represents inherently a unique object in the application.
The server maintains TCP channels to all simulation nodes.

4.1.3 Context

Description
The role of the context is to provide a nice repository for storing the simulation

information parsed by the Configurator. The repository is global for the Coordi-
nator, thus any other component can access it.

Implementation details
In terms of implementation, the Context has been implemented using the Sin-

gleton design pattern. We consider it as inherently unique in the application. Its

11 4.1 Coordinator

internal structure is a HashTable, wrapped in a way to provide type checking func-
tionality.

In order to insert an element in the Context, the developer should create a cor-
responding ContextKey and an object which extends the abstract class Abstract-
Config.

4.1.4 Configurator

Description
This component is used to parse the XML configuration file for the simulation

process. When an element is parsed, it is stored in the Context for later use by
the application. For more information about how to create an XML simulation
process, please refer to Section 6 on page 20.

Implementation details
The implementation of the Configurator uses JDom[9] as XML parsing technol-

ogy. JDOM is considered to be the next Java standard for object-oriented XML
parsing and it is likely to be included in the next Java API Specification (1.5).

4.1.5 Constructor

Description
The Constructor is a fairly simple component which takes the simulation in-

formation for a node and constructs an initialization event understood by the
simulation node. This event is then sent to the simulation node by the Server.

Implementation details
The component is also implemented using the Singleton design pattern, because

it is inherently unique to the application.

4.2 Simulation node 12

Application

Routing

IP Gateway

Simulation Layer

FRANC
node

XML

Figure 3: Simulation Node

4.2 Simulation node

A node in FRANC is composed of layers arranged as a stack. Two layers are
mandatory: the data-link layer and the routing layer. The data-link layer is always
the lowest since it is responsible for sending and receiving messages to and from
the network. A simulation node is simply a FRANC node whose datalink layer has
been replaced by a simulation layer (see figure 3). Since the simulation layer offers
the same services to its upper layer as any other datalink layer, nothing has to be
modified in upper layers to run a simulation. This was one of the requirements of
the simulator.

4.2.1 Simulation layer

Description
The simulation layer’s purpose is to emulate a wireless ad-hoc network. It re-

places the data-link layer of a FRANC node and acts like a firewall. It must
filter incoming and outgoing messages according to its current state (active or not,
transmission quality, range and position) and add headers reflecting its position
and range to outgoing messages. Its other task is the logging of events: schedule,
position, range and quality updates and network traffic, of course.

Implementation details
The communication between the nodes uses UDP multicast, thus every node

13 4.2 Simulation node

Simulation Layer ClockController

Events

TCP channelUpper layersUpper layers

Network

Figure 4: Simulation Layer Overview

receives every message. The simulation layer appends its range and its current po-
sition to every message it sends. When receiving a message it uses those appended
parameters to determine if the message has to be dropped or not: it computes
the distance between itself and the sender and compares it to the sender’s range.
Additionally it uses its transmission quality variable (a probability) and a random
number to emulate transmission hazards.

4.2.2 Controller

Description
The Controller component was designed to control the simulation behavior of the

node. It connects to the Simulator (TCP Channel in figure 4), gets the simulation
information for the node it is managing and controls the behavior of the Simulation
Layer described above according to this information.

Implementation details
In terms of implementation, the Controller always starts as a separate thread and

blocks the whole node until it has successfully connected the node to the Simulator
and received the configuration information. Then it starts the simulation process
and unblocks at the same time the Simulation Layer. The Simulation Layer and
the Controller represent the Observer design pattern. The Controller and the Clock
also represent the Observer design pattern. Figure 4 gives a visual representation
of these relationships.

4.2 Simulation node 14

4.2.3 Clock

Description
The Clock component was to provide a tick after a given interval of time. This

is actually the speed of the simulation. Its default value is 1000 milliseconds. It
can be changed in the XML configuration file of the simulation process. However,
trying to increase a lot the simulation speed can have unpredictable results given
the fact that the clock is implemented as a Java thread. All our tests were done
at the default speed, and they showed an extremely stable precision.

Implementation details
To ensure a high level of accuracy, it gets the current time when it starts running,

then issues a tick every 1000 milliseconds that pass, even if the notification does not
occur every 1000 milliseconds exactly. Thus the notification that a time period has
passed will perhaps not be very accurate, but the notification that some number
of time periods have passed will be. In other words, the clock is accurate over long
stretches. Given the vicissitudes of thread management, this is about the best that
can be expected. All our tests show an excellent precision when running at speed
1000 milliseconds.

15 4.3 Simulation functionalities

4.3 Simulation functionalities

As mentioned in subsection 4.2.1 on page 12, the emulation of an ad-hoc net-
work topology is the role of the simulation layer. Let’s have a closer look at the
implementation of this feature.

4.3.1 Mathematical model

Description
We used the Unit Disk Graph model or UDG. Briefly, it means that a node A

can communicate with a node B if and only if the distance between A and B is
less than the transmission range R. In other words, each node has a circle of radius
R and communication is possible only with nodes that fall within this circle. The
physical behavior of radio waves is not taken into account, i.e. the transmission
quality is not a function of the square of the distance. Since such a realism was not
needed and neither wanted by our supervisors, UDG was an appropriate choice.
However we completed the model by adding two other parameters. A probability
for modeling some unreliability of the network and boolean variable to model the
state of the node (active or inactive).

Implementation details
The model is implemented using five variables: x and y coordinates, transmission

range, transmission quality and state (named schedule from now on). The position
and schedule variables are updated using the event based mechanism described
below, each time the controller’s clock ticks.

4.3.2 Simulation events

Events can have two roles: be logged, update the node’s state or both. The log-
gable events are those that carry useful information for the user from simulation
point of view. This way we can control in a unified manner how that information is
structured and presented to the user. Some of those events update the Simulation-
Layer’s state and others do not. For example a new position event will clearly have
an impact the layer’s state, but an incoming message will not. The non-loggable
events are mainly or internal use, for example checking the coordinator-controller
connection.

4.4 Application components and directory structure 16

4.4 Application components and directory structure

The application’s implementation is divided in different modules which we call
components. They are all encapsulated in packages. Most of the components are
loose coupled in order to allow a nice overall modular design. Here are all the
packages and their brief description:

ch.epfl.lsr.adhoc.simulator is the root of all the packages

.config contains the static context of the application. The context is a Java class
representation of the simulation XML configuration file.

.controller contains the controller/clock implementation of the simulation layer
component.

.events contains all different events used in the application, such as StartSimu-
lationEvent, EndSimulationEvent, InitEvent, StopEvent, etc.

.layer contains the implementation of the Simulation layer conforming to the
FRANC data-link layer convention [2].

.mobility contains the implementation of the functionalities of the simulator,
such as node mobility, node time schedule, range and quality.

.modules contains the main simulator’s components such as server, simulator
context and constructor of simulation nodes from the context.

.testing contains most of our testing efforts on individual components.

.util contains different utility packages for XML handling, logging, NS2 and Java
nested exceptions.

root/simulator/testbench contains two different simulation configuration ex-
amples, each one illustrating one particular functionality of the simulator.
The first illustrates a time schedule behavior and the second one a node
mobility pattern.

17 4.5 Coding Conventions

4.5 Coding Conventions

During the coding phase of the project we tried to comply to the Java coding
standards used at CERN4 and defined in [12]. Among all the conventions defined
in this document we were particularly respectful of the following ones:

• Line length: usually not longer than 80 characters.

• Prefixes: members are prefixed with m_, parameters with p_ and local vari-
ables are not prefixed.

• Documentation: classes, methods and members are thoroughly documented
with Javadoc comments /** */ whether they are public or private. This al-
lows users of IDEs like Eclipse to see all the documentation online at all
times, which saves time when editing the sources.

• Comments: // line comments are restricted to local variables (or task tags
during development). We favor /* */ block comments when documenting
parts of the code.

• File name prefixes: abstract classes are prefixed Abstract and interfaces
are prefixed with the single capital letter I.

• Interfaces: when the implementation is subject to future improvements or
changes or when modularity is required, use interfaces to reduce coupling
between classes.

• Visibility: members are private. Basically all methods are private. Their
visibility is only augmented when they should provide a service to other
classes (default or protected) or other packages (public).

• Packages: classes working together to provide a service, are grouped in a
package. Classes providing different kinds of service are in different packages.

4European Organization for Nuclear Research

5 Testing strategy 18

5 Testing strategy

5.1 Overview

Given the fact that the simulator’s architecture has a modular design with an
excellent loose coupling of the components, we proceeded in testing separately
each component. This allowed us to ensure the wanted behavior before make full
scale tests. After having tested all the components and their individual behavior,
we proceeded in testing the simulator as a whole thanks to two different test
configurations.

5.2 Organization

The following section presents the organization of our testing strategy.

- The package ch.epfl.lsr.adhoc.simulator.testing contains all tests on individ-
ual components

- The folder testbench contains the configuration of an entire simulation process

5.3 Tests on individual components

The following tests can be found in the package testing of our simulator:

SimpleTestLayer is a simple implementation of a FRANC Application layer
which we used to evaluate and debug our own SimulationLayer. SimpleTest-
Layer is also used by the testbench in order to test the whole simulation
process.

TestController tests the correct behavior of the SimulationLayer, Simulation-
Controller, and SimulationClock at the same time. In this test we wanted to
make sure that the three components interacts well with each other.

TestFileTransfer tests the file transfer mechanism used to transfer logging in-
formation from simulation node to main simulator.

TestMobility tests the correct behavior of the data structures located in the
.mobility package5. Dumps the content of the data structures for manual
verification and prints for each node its position, every seconds from 0 to
1000.

TestMobilityParser tests the correct behavior of the NS2 parser component. It
makes a dump of the mobility pattern for comparison.

5see section 4.4 on page 16 for a brief package description.

19 5.4 Testbench

TestSimConfigurator tests the XML configuration of the simulator. It makes
a dump of the simulation context after parsing and allows to compare it with
the configuration file.

TestSimulatorControllerCom tests the communication between the Simulator
and the simulation node. The communication is managed from the Simula-
torServer and the SimulationController of the simulation node.

TestTCPServer tests a typical TPC server implementation (TCP queue, accept
timeout, socket timeout, etc.)

5.4 Testbench

The testbench is a directory structure, a collection of configuration files and a
script for automating the process of testing the simulator as a whole. It contains
simple tests easy to understand and verify which were used to validate the final
product.

There are currently two types of tests which enable us to ensure that the sim-
ulator behaves correctly. The first one tests the ability of a node to switch on and
off at given times. Two nodes try to communicate but they are too far from each
other to do so, thus they need a third node that works as a bridge. The on/off
behavior is tested on the bridge and observed on the two other nodes (if their
messages are delivered or not).

The second type is similar, but the accent is on the mobility. Our third node,
which serves as a bridge between nodes 1 and 2, is always active, but travels be-
tween nodes 1 and 2. If it is too far away the two other nodes cannot communicate.

5.5 Coverage Analysis and Deadlock detection

Given the fact that our application is fully multi-threaded with a lot of shared
variables between executing threads and particular meeting points of some threads,
the need for a coverage analysis is completely justified in order to detect any
possible deadlock and ensure that an important percentage of the code has been
executed. Unfortunately we had no time to realize this idea, and hope addressing
it during the second phase of the project, next semester.

6 Simulation guidelines 20

6 Simulation guidelines

This section is intended to be a short manual for users of the simulator. It is not
a developer’s manual.

6.1 Configuration

6.1.1 FRANC

There’s nothing particular to do for the simulator here. Just configure a FRANC
node as described in [2]. We will refer to the corresponding configuration file as
franc.xml.

6.1.2 Mobility

Mobility patterns must follow the format used for the NS2 simulator6. Such pat-
terns can be written manually or generated automatically using the setdest7 utility
provided with NS2. Rather than giving the complete grammar of NS2’s mobility
patterns we prefer giving an explained example of the format accepted by our
parser.

First of all a mobility file can contain as many comments as ones wishes. Of
course, comments are ignored by our parser, as well as empty lines.

#A comment starts with # and stops at the end of the line

The file must begin with node definitions. A node definition defines the node’s
initial position along X, Y and Z axes, but the value on Z is always null. Three
lines must be used, one for each axe. Here is an example of a file defining three
nodes.
Note that the node IDs are in increasing order starting from zero.
One cannot define a node ID equal to one, if there is no node with ID equal to zero.

$node_(0) set X_ 380.825962687796

$node_(0) set Y_ 376.809106063166

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 961.976277430324

$node_(1) set Y_ 842.259984507709

$node_(1) set Z_ 0.000000000000

6see [3]
7in NS2’s distribution 2.26, it is located under indep-utils/cmu-scen-gen/setdest

21 6.1 Configuration

$node_(2) set X_ 781.539181377774

$node_(2) set Y_ 715.421886604222

$node_(2) set Z_ 0.000000000000

Mobility patterns follow, as an ordered sequence of orders.

$ns_ at 2.0000 "$node_(0) setdest 376.8583 552.9234 7.9263"

$ns_ at 2.0000 "$node_(1) setdest 135.0701 119.8773 7.1105"

$ns_ at 2.0000 "$node_(2) setdest 48.5678 128.8905 4.4397"

$ns_ at 24.2244 "$node_(0) setdest 376.8583 552.9234 0.0"

$ns_ at 26.2244 "$node_(0) setdest 465.0890 118.74282 0.0670"

$ns_ at 156.41959 "$node_(1) setdest 135.07012 119.8773 0.0"

$ns_ at 158.41959 "$node_(1) setdest 542.8177 303.2304 6.02286"

$ns_ at 213.44505 "$node_(2) setdest 48.5678 128.8905 0.0"

$ns_ at 215.44505 "$node_(2) setdest 129.0663 136.3148 9.6791"

Each line represents an order for a node. The first number represents the time at
which the new order occurs. The number following $node naturally indicates the
concerned node and the last three numbers indicate the new destination (as a two
dimensional point) and the new speed. The lines are sorted by increasing order of
their time field.

When generating a mobility file with NS2’s setdest utility, a special node god

may appear:

$god_ set-dist 1 2 1

$ns_ at 47.3787 "$god_ set-dist 0 1 2"

Such lines are ignored by our parser.

Important notice when writing a mobility file by hand
Pauses must be explicit: when a node reaches its destination, it must have an

order that tells him to go elsewhere or to stay at his current location. Due to the
structure of NS2’s mobility patterns, it is hard for the parser to know for certain if
there is an implicit pause or not. NS2’s setdest only generates explicit pauses. You
can find below the pattern for writing pauses. The writer of the file must compute
himself the value of someTimeT2: someTimeT2 = time value when the node reaches
its destination (someX,someY).

$ns_ at someTimeT1 "$node_(0) setdest someX someY someSpeed"

...

$ns_ at someTimeT2 "$node_(0) setdest someX someY 0.0"

6.1 Configuration 22

6.1.3 Simulator

Outline
The simulator’s XML configuration file is divided in sections, each of them con-

cerning a different group of options: SimulationConfig, SimulationLayer and Sim-
ulationNetwork, which itself contains the two subsections global-config and custom-
config. Here is an outline of the file:

<Simulator>

<SimulationConfig> ... </SimulationConfig>

<SimulationLayer> ... </SimulationLayer>

<SimulationNetwork ...>

<global-config> ... </global-config>

<custom-config>

<node id="1" ...> ... </node>

<node id="2" ...> ... </node>

<node id="3" ...> ... </node>

</custom-config>

</SimulationNetwork>

</Simulator>

SimulationConfig
It contains some global parameters for the simulation and its distributedness.

The first parameters concerns the server component of the main coordinator. These
parameters allow to personalize the server TCP connection socket options. The ip
and port fields indicate the port and ip of the listening server, the timeout speci-
fies the connection timeout in milliseconds for each client trying to connect to the
server and queue field indicates the number pending connections the server should
queue. The clock parameter indicates the clock speed of the simulation process
also in milliseconds. The duration field indicates the end time of simulation in
milliseconds and the output-dir field gives the possibility to customize the output
directory for storing all files generated by the simulator.

Example:

<SimulationConfig>

<server ip="127.0.0.1" port="7666" timeout="20000" queue="20"/>

23 6.1 Configuration

<clock>1000</clock>

<duration>30000</duration>

<output-dir>logs</output-dir>

</SimulationConfig>

SimulationLayer
This section only specifies the SimulationLayer Java class. It is used to re-

place the data-link layer of a FRANC node. The corresponding DataLinkLayer
parameters in franc.xml are replaced by the ones provided here. Unless multiple
implementations for this class are provided, there’s nothing worth modifying here.

Example:

<SimulationLayer>

<name>SimulationLayer</name>

<class>ch.epfl.lsr.adhoc.simulator.layer.SimulationLayer</class>

</SimulationLayer>

SimulationNetwork
The size of the network should be indicated in the field size.The second field

allows you to specify the mode to be used by the simulator:

auto In this mode, you do not need to specify the network topology in custom-
config. The simulator uses only the information defined in the global-config.
This means that it will create a default network with size nodes and each
node will inherit the configuration by the default specified in global-config.

manual In this mode, the user should specify the custom-config flag and for each
node which should be different from a default node, specify the particular
behavior.

Example:

<SimulationNetwork size="3" mode="manual">

<global-config> ... </global-config>

<custom-config>

<node id="1" ...> ... </node>

<node id="2" ...> ... </node>

<node id="3" ...> ... </node>

</custom-config>

</SimulationNetwork>

6.1 Configuration 24

global-config
This field allows the user to provide default information for the network nodes:

node-ConfigIn User provides the default configuration file for a FRANC node
according to the specification of FRANC.

node-ConfigOut The simulator modifies the file specified in the node-configIn field
and creates a new file with the name provided in this field. Actually, this is
the file used to start the node in simulation mode

node-errorLog User provides the name of the file that should be used to log error
messages for a simulation node.

node-simulationLog User provides the name of the file which should be used to
store simulation relevant information. Actually, this is the file to consider
during the data processing of a given simulation process.

node-transmissionDefaults User should provide the default transmission range and
transmission quality of a simulation node. The unit of the range could be
anything, but it should be interpreted according to the units in the mobility
pattern. If the speed of a node is in meters per second, the range should be
considered in meters.

mobility-pattern User provides the mobility file (generated by NS2 tool setdest)
and specifies the time scale to be used when interpreting the mobility pattern.
This is needed because setdest specifies no units. The time scale has to be
expressed in milliseconds. When time values are read from the mobility file,
they are multiplied by the time scale. Thus a value of 1000 should be used
when dealing with a mobility file expressed in seconds.

Example:

<global-config>

<node-configIn>franc.xml</node-configIn>

<node-configOut>franc_ready.xml</node-configOut>

<node-errorLog>error.log</node-errorLog>

<node-simulationLog>simulation.log</node-simulationLog>

<node-transmissionDefaults range="100" quality="1"/>

<mobility-pattern timeUnit="1000">mobility.txt</mobility-pattern>

</global-config>

25 6.2 Logging

custom-config
Thanks to this parameter the user could override the default behavior specified

in the global-config. If some of the fields are not specified, they take automatically
the default values in global-config. In the custom-config, the user could also specify
an on/off schedule for a given node. The schedule unit is milliseconds and the field
scaleBy saves you time when writing the milliseconds.

Example:

<custom-config>

<node id="1" range="100" quality="1">

<node-configIn>config/nodes/in/simpleFranc.xml</node-configIn>

<node-configOut>config/nodes/out/00.xml</node-configOut>

<node-schedule scaleBy="1000"> - scale by 1000 to get seconds

<on atTime="0"/> - at time 0 seconds

<off atTime="10"/> - at time 10 seconds

<on atTime="20"/> - at time 20 seconds

</node-schedule>

</node>

<node id="2" ...> ... </node>

<node id="3" ...> ... </node>

</custom-config>

6.1.4 Log4j

The simulator provides two types of logging. The first one is only for the main
simulator and can be freely configured through an XML file which has to be pro-
vided as a command line argument. This type of logging is used only inside the
coordinator component of the simulator in order to log any error messages during
the whole simulation process. Remember that the simulation process is supervised
by the coordinator. The user is not supposed to modify this file, thus no documen-
tation is provided here.8 Just use the provided file. The second type of logging is
inherent to the simulator and is stored in a special Java class. It should never be
changed without carefully exploring the logging process of the simulator.

6.2 Logging

A simulation node logs two types of events: error and simulation events. The
user could provide the storage files for these events in the global-config using fields

8if you are interested in Log4j, please refer to [7] and [8]

6.3 Use cases 26

node-errorLog and node-simulationLog. Simulation events are logged in a unified
manner using XML. A log entry begins with a header that contains the class name
of the event and the simulation and system time at which the event occurred. The
header is followed by the parameters specific to the event. Here is an example of
a log entry:

<SimulationEvent

name="ch.epfl.lsr.adhoc.simulator.events.NewLocationEvent"

simTime="0"

systemTime="Tue Feb 03 16:51:03 CET 2004">

<param name=x>100.0</param>

<param name=y>60.0</param>

</SimulationEvent>

6.3 Use cases

For those who did not bother reading the previous pages, here is a brief summary
of what to do for running a simulation. If at any point you are lost, it is probably
time for you to consider reading section 6 from the beginning, that is from page
20.

6.3.1 Only one type of node

Fairly easy! Let myFranc.xml be the configuration file of the nodes you want to
simulate, let myMobility.txt be the mobility file you want to use, let N be the
number of nodes you want to simulate, let RANGE be their transmission range
and let T be the duration of the simulation (in milliseconds). Edit the simulator’s
configuration file as follows (only modified parameters are shown):

<Simulator>

<SimulationConfig>

<server ip="YOUR_IP_GOES_HERE" ... />

<duration>T_VALUE_GOES_HERE</duration>

</SimulationConfig>

<SimulationNetwork size="N_VALUE_GOES_HERE" mode="auto">

<global-config>

<node-configIn>myFranc.xml</node-configIn>

<node-configOut>myFranc_ready.xml</node-configOut>

<node-errorLog>error.log</node-errorLog>

<node-simulationLog>simulation.log</node-simulationLog>

27 6.3 Use cases

<node-transmissionDefaults

range="RANGE_VALUE_GOES_HERE" quality="1"/>

<mobility-pattern timeUnit="1000">

myMobility.txt

</mobility-pattern>

</global-config>

</SimulationNetwork>

</Simulator>

This configuration of simulation process will create a network of N nodes obeying
the mobility pattern myMobility.txt. Each one of them uses default FRANC
configuration myFranc.xml, logs error events in error.log and simulation events
in simulation.log. They have all a default range of transmission RANGE and
perfect quality of 1.

6.3.2 Multiple types of node

Not that difficult! Begin by doing the same as described above, then continue edit-
ing the configuration file with some more assumptions: all nodes are configured
using the default values except nodes 23, 45 and 12 which have their own config-
uration files, transmission ranges and qualities. For example let’s say that node
23 has a transmission range of 432, a transmission quality of 50%, uses mySpe-
cialFranc.xml instead of the default myFranc.xml and is only active for 3 minutes.
Here’s what the configuration file would look like:

<SimulationNetwork ... mode="manual">

<global-config> ... </global-config>

<custom-config>

<node id="23" range="432" quality="0.5">

<node-configIn>mySpecialFranc.xml</node-configIn>

<node-configOut>mySpecialFranc_ready.xml</node-configOut>

<node-schedule scaleBy="1000">

<on atTime="0"/>

<off atTime="180"/>

</node-schedule>

</node>

<node id="45" ...> ... </node>

<node id="12" ...> ... </node>

</custom-config>

7 Limitations and Future development 28

7 Limitations and Future development

In the following section we give an insight of the limitations of our application and
enumerate some possible improvements. Here is the place to remind that some
of the limitations would be addressed next semester after careful discussion with
David Cavin and Yoav Sasson.

7.1 Limitations

Node’s application behavior
Currently the simulator is able to simulate a network where each node has a

different application behavior. However the actual architecture does not distinguish
the application behavior of the nodes. When a node connects to the simulator,
the simulator could not distinguish between a Router node and a Chat application
node and distribute the mobility patterns accordingly. It could be done by starting
each node sequentially which is not user friendly. We will address this limitation
next semester and enhance the simulator with manual mapping between NS2 node
numbers and FRANC node numbers.

FRANC based applications
The simulator was designed for FRANC based implementations of nodes, thus

our application is not able to simulate other implementations.

Speed of simulation
The speed of the simulation clock is configurable in the XML configuration file.

Its default value is fixed to 1000 milliseconds, and our tests show an excellent
behavior of the simulator at this speed on a single machine. However a huge
number of nodes running on a single machine is likely to penalize this behavior
and alter the simulation results because of the vicissitudes of the current Java
thread management implementation. We remind that one simulation node is run
in a separate Java Virtual Machine. Our advice is to keep the simulation speed
reasonable.

Clock synchronization in a distributed environment
If the simulation process is deployed in a cluster of machines, the user should

check the clock synchronization between the machines. The simulator assumes a
good clock synchronization based for example on NTP[11].

Limited functionalities
Currently the simulator could simulate nodes with NS2[3] mobility pattern. It

29 7.2 Future Developments

could also simulate nodes which switch on and off their transmission during the time
of simulation. It could simulate different transmission range for each node as well
as different trasmission quality. However the quality of the link is only implemented
with a probability of transmission, the physical model of the propagation of waves
is not taken into consideration.

TCP connection failure
Currently the simulator would detect when a node TCP connection has died, and

signal this in its log file. However the node is not implemented to try to reconnect
to the server when it finds its connection dead.

7.2 Future Developments

Enhance the distributivity and functionalities
This improvement should make the whole distributed process user friendly and

allow a nice distinction between different nodes. The idea behind this is not to
connect the FRANC simulation node directly to the server of the simulator, but to
delegate this task to an external client on the remote machine. We hope addressing
this issue next semester.

Logging architecture
The logging architecture for simulation events should be reviewed, and a service

for automatically retrieving upper layers’ applications log files should be provided.
We hope addressing this issue next semester.

Coverage analysis
Use a coverage analysis tool in order to test each line of code. We hope address

this issue next semester.

Build a Graphical User Interface
Building a GUI for the simulator could be an interesting semester project for a

student in Computer Science or Communication Systems.

Logs interpretation
This might be also a very good semester project. Interpret the logs generated by

the simulator and generate different statistics in order to evaluate the performance
of applications or routing algorithms.

8 Lessons learned 30

8 Lessons learned

Development
During the development phase of the project we learned the following:

• The time spent at the beginning in order to make a nice, clear and modular
design for the application was definitely not lost. It reduced a lot our efforts
when putting all pieces of the application together.

• Even with a good starting design model, some important changes were made
when we started the implementation of the application. Some of them ended
in changing many times the behavior of some components.

• Never fear refactoring code was an excellent idea. It allowed us too improve
the design of the application during development and make it even more
modular then at the beginning. Many ideas came during implementation
and with careful refactoring we succeeded in implementing them.

• The use of an Integrated Development Tool was definitely a must. We do
not think we could have succeeded without it.

• Discussions in a team are very helpful and we all appreciated them.

Testing
During the quality testing of our application we learned some important lessons:

• The modular design provided the possibility to test each component sepa-
rately. This was of particular importance when testing the application at the
end. We think this approach saved us a lot of time when trying to put all
the components together.

• A multi-threaded application has some particular issues (mutual exclusion
of shared variables, synchronization and deadlock vulnerabilities). We en-
countered a lot of problems during our testing efforts on the testbench which
were not detected while testing the individual components, such as deadlocks.
This was particularly difficult to debug because of the complex behavior of
the simulator and the fact that a deadlock occurs not very often. We had
to draw deadlock graphs and look for a solution of the problem. Most of
solutions involved slight changes of the design.

• Testing is definitely not a trivial task. It is not easy for the developers of
an application to imagine crash scenarios. We think we were quite vigilant
on this. Being two on the project helped to save time when one of us had
problems.

31 9 Conclusion

• Testing is definitely not a passionate task. It takes a lot of time to imagine
what to test after having done some basic tests.

9 Conclusion

During the development process, together with our supervisors we kept the design
and implementation requirements high, not fearing the amount of time it would
take to realize them. We put more emphasis on designing and implementing a
good architecture than trying to finish everything by the end of the semester. We
think we successfully designed a robust, modular and maintainable simulator for
FRANC, integrated new tools and technologies, and did all this in a strong team
spirit.

REFERENCES 32

References

[1] FRANC: A lightweight Java Framework for Wireless Multihop Communication
AUTHOR: David Cavin, Yoav Sasson, André Schiper
http://lsrwww.epfl.ch/ip9

[2] Semester project: MANET Framework
AUTHOR: Javier Bonny, Urs Hunkeler
http://lsrwww.epfl.ch/ip9

[3] The Network Simulator NS-2
http://www.isi.edu/nsnam/ns/

[4] JEmu: A Real-Time Emulation System for Mobile Ad-Hoc Networks
AUTHOR: Juan Flynn, Hitesh Tewari, DOnald O’Manhony
http://www.cs.tcd.ie/omahony/jemu-iei.pdf

[5] Effective Java, Programming Language Guide
AUTHOR: Joshua Bloch

[6] Java Performance Tuning, Second edition
AUTHOR: Jack Shirazi

[7] The Log4j project
http://logging.apache.org/log4j/docs/

[8] The complete manual: Log4j
AUTHOR: Ceki Gülcü

[9] JDOM : a complete, Java-based solution for accessing, manipulating, and out-
putting XML data from Java code
http://www.jdom.org/

[10] Eclipse IDE
http://www.eclipse.org/

[11] Network Time Protocol (ntp)
http://www.ietf.org/rfc/rfc0958.txt

[12] Java Code Conventions for use in EDH
http://ais.cern.ch/apps/edh/CodingStandards

[13] The Not So Short Introduction to LATEX2ε
AUTHOR: Tobias Oetiker

	Introduction
	The project
	MANETs and FRANC
	Paper organization and intended audience

	Overview
	Project objectives
	Assumptions
	Approach
	Tasks

	Personal objectives
	Teamwork
	Separation of work
	Technologies and tool integration

	Architecture
	Coordinator
	FRANC Simulation node

	Design and implementation
	Coordinator
	Main
	Server
	Context
	Configurator
	Constructor

	Simulation node
	Simulation layer
	Controller
	Clock

	Simulation functionalities
	Mathematical model
	Simulation events

	Application components and directory structure
	Coding Conventions

	Testing strategy
	Overview
	Organization
	Tests on individual components
	Testbench
	Coverage Analysis and Deadlock detection

	Simulation guidelines
	Configuration
	FRANC
	Mobility
	Simulator
	Log4j

	Logging
	Use cases
	Only one type of node
	Multiple types of node

	Limitations and Future development
	Limitations
	Future Developments

	Lessons learned
	Conclusion

