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“Die Gesellschaft besteht nicht aus menschlichen Korpern und Gehirnen.
Sie ist ein Netzwerk von Kommunikation.”
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A statistical physics perspective of complex networks:

from the architecture of the Internet and the brain
to the spreading of an epidemic

Statistical physics has revealed itself as the ideal framework to describe large
networks appearing in a variety of disciplines such as sociology, communication
technology or neuroscience. Despite the diversity of these systems, they appear
to exhibit a similar topological complexity such as the presence of small-world
or scale-free patterns. The former property refers to a high global and local in-
terconnectedness, whereas the latter means that the frequencies of the number
of connections per node, i.e. the degrees, are distributed according to a decaying
power law. This ubiquity at the topological level raises several questions. First of
all, it should be verified whether the observed topology obtained through the mea-
suring process corresponds to the real one. It is also important to understand the
influence of topology on dynamic processes running on a network. Furthermore,
we wish to explain how specific factors shape network topology.

By implementing the measuring process as a treelike exploration, we demon-
strated for scale-free network models that the exponent of the degree distribution
of the explored network is smaller than the original one. This means that the low-
degree nodes are underrepresented. Since such an exploration in principle mimics
the discovery of the Internet map, the corresponding exponents should not be
taken at face value.

As mentioned above, topology plays a crucial role in different dynamic pro-
cesses taking place on complex networks. An example of paramount importance
is the spread of an epidemic. In such a context, it does not come as a surprise
that a virus spreads more easily on a network in which global distances are small.
This topological property is one of the conditions that allows one to ignore dy-
namical correlations and to describe the process in the framework of a mean-field
approximation. This description, which we derived at different levels, uncovers
the role of the degree. However, the influence of the local interconnectedness on
the spreading behaviour remains elusive. By systematically exploiting spatial and
temporal correlations that govern the spreading dynamics, we further elaborated
two methods which quantitatively describe how local substructures influence the
spreading behaviour.

In the simplest model for a small-world network, a high global interconnect-
edness originates from the addition of long-range connections to a regular lattice.
In a situation where a cost is associated with the lengths of the links, it is inter-
esting to explore whether the emergence of small-world topology conflicts with a
minimisation of the wiring costs. We found that, if the lengths of the additional
links are distributed according to a decaying power law, small-world networks
can be constructed in a very economical way. As further intriguing consequences,
an increase of the exponent of the length distribution optimises the distribution



of flows of traffic over the links while making the networks less vulnerable with
respect to random failures of connections.

Overall, this study has led to a series of results related to the topology of com-
plex networks. More precisely, we have investigated how the topology is obtained,
what its role in dynamic processes is and what factors shape it.
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Une approche des réseaux complexes
inspirée par la physique statistique:
de ’architecture de ’'Internet et du cerveau
a la diffusion d’une épidémie

La physique statistique s’est rélévée étre un cadre idéal afin de décrire de
grands réseaux qui apparaissent dans une multitude de disciplines telles que la
sociologie, les technologies de communication et les neurosciences. Malgré la di-
versité de ces systemes, ils sont presque identiques si 'on regarde a un niveau
statistique la manieére dont les noeuds sont connectés les uns avec les autres.
Cette similitude topologique se manifeste par la propriété ‘petit monde’ et par
I'invariance d’échelle. La premiere de ces propriétés signifie une haute intercon-
nexion au niveau global et local, tandis que la seconde se réfere au nombre de
connexions par nceud, c’est-a-dire au degré. L’invariance d’échelle implique que
les degrés sont distribués selon une loi de puissance décroissante. Cette ubig-
uité topologique souléve plusieurs questions. Tout d’abord, il s’agit de vérifier si
la topologie obtenue par un processus de mesure correspond a celle du réseau en
question. Il est également important de comprendre I'influence de la topologie sur
des processus dynamiques se déroulant sur un réseau. En outre, nous souhaitons
connaitre comment certains facteurs déterminent la topologie d’un réseau.

En implémentant le processus de mesure mentionné ci-dessus comme une ex-
ploration arborescente, nous avons démontré pour des modeles de réseaux invari-
ants d’échelle que 'exposant de la distribution des degrés du réseau exploré est
plus petit que celui du réseau de départ. Cela veut dire que les nceuds de degré
bas sont sous-représentés. Comme une telle exploration imite la découverte de
I’atlas de I'Internet, les exposants correspondants doivent étre interprétés avec
prudence.

La topologie joue également un role crucial dans plusieurs processus dy-
namiques pour lesquels le réseau représente la “trame”. Un exemple d’une impor-
tance primordiale est la diffusion d’une épidémie. Dans un tel contexte, il est peu
surprenant qu'un virus se propage plus facilement sur un réseau caractérisé par
des distances globales courtes. Cette propriété topologique a également pour effet
que les corrélations dynamiques sont faibles ce qui permet de décrire le processus
dans le cadre de l'approximation du champ moyen. Cette description que nous
avons dérivée sur plusieurs niveaux fournit une interprétation du role du degré
dans la dynamique de diffusion. Pourtant, I’influence de I'interconnexion locale sur
le comportement de diffusion reste largement incomprise. Par une investigation
systématique des corrélations temporelles et spatiales qui accompagnent la dy-
namique de ’épidémie, nous avons développé deux méthodes qui décrivent d’une
facon quantitative comment des structures d’interconnexion locales déterminent
le comportement de diffusion.

Dans le modele le plus simple d’un réseau petit monde, la haute intercon-
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nexion globale est reproduite en ajoutant de longs liens sur un réseau régulier.
Dans le cas ol un cotut est associé aux longueurs des connexions, il est intéressant
d’examiner la condition pour qu’une topologie petit monde apparaisse si l'on
désire minimiser le colt de cablage. Nous avons démontré que des réseaux petit
monde peuvent étre créés d'une fagon tres économique si les longueurs des con-
nexions sont distribuées selon une loi de puissance décroissante. Comme autre
conséquence intéressante, nous avons trouvé qu'une augmentation de l'exposant
de la distribution des longueurs optimise la répartition des flux de données sur
les connexions. En méme temps, une telle augmentation rend les réseaux moins
vulnérables par rapport a des défaillances aléatoires au niveau des connexions.

Dans 'ensemble, cette étude a mené a une série de résultats concernant la
topologie des réseaux complexes. Plus précisément, nous avons examiné comment
la topologie est obtenue, quel role elle joue dans des processus dynamiques et quels
facteurs la déterminent.
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Komplexe Netzwerke
mit den Augen des Statistischen Physikers betrachtet:

Von der Architektur des Internets und des Gehirns
zur Ausbreitung einer Epidemie

Die statistische Physik erwies sich als idealer Rahmen zur Beschreibung
grosser Netzwerke, wie sie in verschiedensten Disziplinen - so etwa in der Soziolo-
gie, der Kommunikationstechnologie oder den Neurowissenschaften - auftreten.
Obwohl diese Systeme von der Natur her sehr verschiedenartig sind, besitzen
sie eine ahnliche topologische Komplexitat. Diese ist typischerweise charak-
terisiert durch die Présenz von ‘small-world’-artigen oder skalenfreien Vernet-
zungsmustern. Wahrend small-world fiir eine hohe globale und lokale Vernetzung
steht, bedeutet Skalenfreiheit, dass die Verteilung der Grade - d.h. die Verteilung
der Anzahl Verbindungen pro Knoten - einem abfallenden Potenzgesetz folgt.
Diese Allgegenwartigkeit auf topologischer Ebene wirft verschiedene Fragen auf.
Zuallererst sollte sichergestellt werden, ob die durch den Messprozess erhaltene
der tatsichlichen Topologie entspricht. Weiter ist es dusserst wichtig, die Rolle
der Topologie in sich auf Netzwerken abspielenden dynamischen Prozessen zu ver-
stehen. Zudem wollen wir begreifen, wie spezifische Faktoren die Topologie eines
Netzwerkes bestimmen.

Indem wir den oben erwahnten Messprozess als baumartige Erkundung im-
plementierten, zeigten wir fiir skalenfreie Netzwerkmodelle, dass der Exponent
der Gradverteilung des erkundeten Netzwerkes kleiner ist als derjenige des ur-
spriinglichen Netzwerkes. Dies weist darauf hin, dass die Knoten mit kleinem
Grad unterreprésentiert sind. Da eine derartige Erkundung an sich der Ermittlung
des Atlas des Internets gleichkommt, sollten die entsprechenden Exponenten mit
Vorsicht interpretiert werden.

Die Topologie spielt auch eine entscheidende Rolle in verschiedenen dynamis-
chen Prozessen, die sich in einem Netzwerk abspielen konnen. Ein besonders rel-
evantes Beispiel hierfiir ist die Ausbreitung einer Epidemie. In einem derartigen
Kontext erstaunt es wenig, dass sich ein Virus in einem Netzwerk mit kurzen
globalen Distanzen leicht ausbreitet. Diese topologische Eigenschaft bedingt auch,
dass dynamische Korrelationen schwach sind und der Prozess daher im Rahmen
der mittleren Feldapproximation beschrieben werden kann. Diese Beschreibung,
welche wir auf verschiedenen Ebenen herleiteten, liefert eine Interpretation der
Rolle des Grades in der Ausbreitungsdynamik. Auf welche Art die lokale Vernet-
zung das dynamische Verhalten beinflusst, bleibt jedoch schwer fassbar. Mittels
einer systematischen Untersuchung der zeitlichen und raumlichen Korrelationen,
welche die Dynamik der Epidemie begleiten, entwickelten wir zwei Methoden, die
quantitativ beschreiben wie lokale Vernetzungsstrukturen das Ausbreitungsver-
halten bestimmen.

Im einfachsten Modell fiir ein small-world Netzwerk wird die hohe globale
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Vernetzung durch hinzufiigen langer Verbindungen auf ein regelméssiges Gitter
erreicht. Falls nun aber die Liange einer Verbindung mit Kosten verkniipft ist,
stellt sich die Frage, ob die small-world Eigenschaft auch dann resultiert, wenn
zugleich die Vernetzungskosten minimiert werden sollen. Wir wiesen nach, dass
small-world Netzwerke auf eine sehr sparsame Art erzeugt werden konnen, indem
die Verbindungslangen geméss einem abfallenden Potenzgesetz verteilt werden.
Zudem fanden wir, dass eine Erhéhung des Exponenten der Langenverteilung die
Netzwerke hinsichtlich zufélliger Ausfélle von Verbindungen weniger verwundbar
macht und die Verteilung von Datenfliissen durch die Verbindungen optimiert.

Insgesamt fiihrte diese Studie zu einer Reihe von Erkenntnissen betreffend der
Topologie von komplexen Netzwerken. So untersuchten wir, wie man die Topolo-
gie erhalt, welche Rolle sie in dynamischen Prozessen spielt und durch welche
Faktoren sie bestimmt wird.
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Chapter 1

Introduction

1.1 Statistical physics and graph theory

Thermodynamics deals with processes associated to heat, such as the melting
of ice or the evaporation of water. In the first case, the added heat is used to trans-
form the water initially present as ice into the liquid phase, and in the second,
we have a transition from the liquid to the gaseous phase, hence the name phase
transition. At a microscopic level, water is composed of a huge number of H,O
molecules, and it is the way these are arranged that determines the phase. While
their positions are constrained in the solid phase, they move around rather freely
in the liquid. Therefore, the existence of different possible phases is not related
to the nature of a single HoO molecule, rather, its roots lie in the collectivity.
Statistical physics now deduces the macroscopic behaviour from the microscopic
laws according to which the HoO molecules interact and from the statistical dis-
tributions of their positions and velocities [1]. Thus it builds the bridge between
the molecular world and that visible to the naked eye.

And there was graph theory [2] which is the study of abstract mathematical
objects composed of a set of vertices that are connected through edges which can
be directed or not. The vertices are also referred to as nodes or points; and links,
lines or connections are synonyms for edges. Henceforth, these notions are used in
an interchangeable way. The applicability of graph theory was already recognised
in the 18th century by the Swiss mathematician Leonhard Euler [3]. The puzzle
he considered concerned the Prussian town Koénigsberg, which is divided into 4
parts by the river Pregel (see Fig. 1.1). He wondered if it is possible to take a walk,
starting in any part of the town, such that every bridge is crossed exactly once.
Euler realised that the shape or size of the town parts do not matter and that
this problem is thus best solved by representing the town parts as the nodes and
the bridges as the links of a graph. More precisely, the resulting representation
is a multigraph since C is connected to both A and B by more than one edge.
This representation clearly shows that any town part can be reached by an odd
number of bridges, which implies that the desired walk is impossible. At the time,
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A A
B B

Figure 1.1: A simplified view of the town of Konigsberg (left) and its graph
representation (right). The nodes A, B, C and D represent the respective town
parts the edges are the bridges between them [4].

the study of graph theory remained a branch of discrete mathematics dealing with
such problems, mostly because there was only little data about real networks or
graphs.

More recently however, connectivity data about numerous real-world networks
ranging from the Internet to biological networks has increasingly become avail-
able. These networks, which will be described in more detail in the next section,
are also very large - sometimes containing millions of nodes. It has thus become
more interesting to analyse the topology at a statistical level - from local to global,
large-scale properties - rather than to look at specific nodes and investigate to
what other nodes they are connected. This statistical characterisation also called
for explanations of the observed properties, and this is where the framework of
statistical physics comes in: “microscopic” models able to reproduce some large-
scale, i.e. “macroscopic”, properties were proposed. As many real networks are
growing objects, the dynamic aspect has been a major ingredient in this renewed
interest in graph theory. The concept of phase transition also enters as in some
network models, a parameter allows to tune between different topological regimes
or phases. Moreover, as the spread of viruses often displays a wave-like behaviour,
the tools of statistical physics are also useful when it comes to dynamic processes
taking place on networks.

In the remaining part of this chapter, the real-world networks of interest will
be introduced. We then describe a set of topological measures - at the statistical
level - and discuss them for the given examples. The following section highlights
the importance of topology and what factors shape it in various contexts, finishing
with an overview of the problems investigated in this thesis.
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1.2 Examples of complex networks

The networks for which data has increasingly become available in recent
years stem from disciplines as diverse as communication technology, sociology
and neuroscience. Despite the apparent diversity of these systems, they exhibit a
very similar topological complexity at a statistical level, hence the name complex
networks. While these topological aspects are addressed in the following sections,
we here describe these networks, focusing on the examples relevant to our study.

The first example we shall introduce is the Internet [5], this network being
relevant to all parts of this thesis. For a majority of people, the word “Internet”
means access to an e-mail account and the ability to mine data through one of the
most popular public web search engines. The Internet is in fact much more than
that, and here we refer to it as a network of computers and other telecommu-
nication devices, i.e. routers, connected through physical links such as cables or
wireless connections. The topology of this technological communication network
can also be studied at a coarse-grained level, that is at the interdomain (also
referred to as autonomous systems) level: each domain - composed of hundreds
of routers - is represented by a single node, and an edge is drawn between two
domains if there is at least one route that connects them. Fig. 1.2 shows the
Internet at the router level (left) and at the autonomous systems level (right).
The former was obtained by probing the Internet form a single source whereas
so-called skitter traces (a mapping technology involving multiple sources) were

Figure 1.2: Left: Two-dimensional image of a router level Internet map collected
by H. Burch and B. Cheswick [6]. Right: Two-dimensional image depicting the
Internet’s connectivity at the interdomain level, reconstructed from skitter traces

[7].
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used to construct the latter. We comment on the statistical topology of the Inter-
net at these two levels in the next section while the reliability of these Internet
maps is the content of Chapter 3.

The Internet should not be confused with the World Wide Web. The latter is a
directed network whose nodes are the html-documents (web pages) and the edges
are the hyperlinks. It can be regarded as a virtual network, the Internet providing
the stage. As hyperlinks are visible, it is much easier to analyse its topology, and
the size of the World Wide Web for which information is available is much larger
than for the Internet. The statistical analysis for the Internet by Govindan and
Tangmunarunkit [8] was for example based on 150’000 routers whereas Broder et.
al [9] investigated a fraction of the Web containing 2 x 10® web pages. Moreover,
the World Wide Web is not a purely communication technological network: as it
is used by cyber communities to exchange ideas and by increasingly more people
to purchase goods, social and economic factors, among others, shape its topology.

In a technological context, we shall mention two more networks. The first
is the power grid in which generators, transformers and substations play the
role of the nodes and the edges represent high-voltage transmission lines. The
second example is at a much smaller spatial scale, namely electronic circuits. In
this case, nodes correspond to electronic components (e.g. logic gates in digital
circuits, resistors, capacitors and diodes) and edges are wires in a broad sense.
These are two examples where the links correspond to physical wires to which a
cost is associated. This cost which is essentially the total length of all the links,
appears to be subject to minimisation constraints. In this respect, these cases
are relevant to the investigations reported in Chapter 5.

A major part of this thesis concerns the spread of an epidemic for which the
Internet - in the case of a computer virus - or a social contact network - for
human infectious diseases - represent the underlying arenas. It is therefore worth
briefly discussing social networks. While in a social context, the nodes represent
individuals, the notion of a link is much more vague. In order to circumvent this
ambiguity, one usually focuses on a specific type of social interaction or requires
a well-defined condition for two individuals to be connected. Examples of the
former strategy include the web of human sexual contacts, scientific - or movie
actor collaboration networks while “knowing each other on a first name basis”
exemplifies the latter. Sexually transmitted diseases clearly spread on the web
of human sexual contacts where any two individuals are connected if they had
a sexual contact in a given time window. An example of such a network was
obtained from a Swedish survey of sexual behaviour [10]. The other examples
of social networks mentioned above are not necessarily playgrounds for viruses,
but it is still worth commenting on them. Actors who have played together in
the same movie or scientists who have written a paper together clearly know

4
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Figure 1.3: Representation of a social group of people in Canberra, Australia, and
how they are socially linked to one another. The radii of the spheres (individuals)
are proportional to the respective number of connections, by A. Klovdahl [11].

each other well!, giving rise to interesting social networks. Fig. 1.3 visualises the
acquaintances of a large group of people where the “first name” criterion lies at
its basis.

The last category of examples we shall introduce are neural networks at several
levels. While artificial neural networks have attracted the scientific community for
quite a long time, see e.g. [12], connectivity data about real neuronal networks has
become available only rather recently, and as we will see, they are characterised
by a similar topological complexity as the social and communication technolog-
ical examples. The building blocks of a neural network are the neurons and the
synapses. Every neuron consists of numerous dendrites (input part), a soma (cen-
tral and processing part) and an axon (output part). The dendrites and axon of
a neuron are also referred to as its projections or neurites. In simple terms, the
soma releases an action potential or spike through the axon depending on the
input signals received through the dendrites. At a synapse, two neurons meet;
more precisely, the axon of the presynaptic neuron ends and a dendrite of the
postsynaptic neuron begins. Such a neuronal network is mapped to a (directed)
graph by representing the neurons as nodes and the synapses as edges. Examples
are the neural network of the nematode worm C. elegans or in-vitro grown neu-
ronal networks (Fig. 1.4). The topology of such networks can also be analysed

1With the exception of experimental high-energy physics where collaborations sometimes
involve hundreds of researchers
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Figure 1.4: Electron micrograph of a neuronal network being maintained in cul-
ture. The two large blobs are the cell bodies (somas) best conserved, and the flat
structures correspond to somas of pyramidal cells. Concerning the projections, the
thicker “wires” are axons and the thinner ones correspond to dendrites. Courtesy
by J. Berger, B. Gotze and M. Kiebler (Max Planck Institute for Developmental
Biology, Tiibingen, Germany).

at a more coarse-grained level. The mammalian neocortex can for example be
regarded as a network of cortical areas linked through numerous fibre bundles.
Clearly, these graphs do not tell us anything about brain function. Yet, brain func-
tional networks are obtained through the following mapping: the brain is divided
into areas, i.e. voxels of cubic shape, which represent the nodes and any two nodes
are connected if the activities of the two corresponding voxels are correlated, that
is, if the correlation coeflicient associated to the dynamic activity is higher than a
certain threshold [13]. The above mentioned anatomical examples are believed to
have evolved so as to use a minimum amount of wiring resources [14]. Therefore,
they are relevant to the investigations in Chapter 5. The functional example was
mentioned for completeness.



Introduction Topological measures

1.3 Topological measures

In this section we introduce several quantities which will help us discussing
the topology of the above examples thereafter.

The first set of measures we shall introduce concerns the global interconnect-
edness of a network, that is how far any two nodes are away from each other.
More precisely, by computing the shortest path between all pairs of nodes, one
obtains a distribution of their lengths, the length being the number of links con-
tained in the shortest path, also referred to as the distance [15]. The maximum
of this distribution is called diameter and the mean value is referred to as the
mean distance, the latter being used more often in this study. This is a reasonable
way to characterise global interconnectedness only for a connected network. That
is, for a graph composed of several isolated clusters, the diameter and the mean
distance would be infinite since for all pairs of nodes where one node is in another
cluster than the other node, no path exists. A way to overcome this inconvenience
is simply to exclude all these pairs. However this does not properly capture this
topological property as fragmented networks clearly are poorly interconnected at
a global level. A more elaborate strategy is to pass to the global efficiency [16]
which is the average of the reciprocals of the shortest path lengths

1 1

N(N —1) &= d;’ -

Egion =
i#]
N being the total number of nodes, and d;; is the distance between node ¢ and
j. The contribution of pairs of nodes between which no path exists is thus 0,
and despite its simplicity, Eq. (1.1) is a much more sophisticated way to quantify
global interconnectedness as it allows for example to compare fragmented and
fully connected graphs in a reasonable way. For directed networks, Fgq, also
characterises reasonably the global interconnectedness if each pair is considered
in both directions.

The local interconnectedness of a network is of equal importance and it can
for example be quantified in terms of the clustering coefficient [17] which is the
probability that two nodes are connected, given that they share a nearest neigh-
bour. Focusing on a specific node i which is connected to k; other nodes, the local

clustering coefficient is
E; 2F;
Ci=——= - (1.2)
2 kl X L ?
(2) ki(ks — 1)

that is the number of edges E; between the neighbours of node ¢ divided by

the value this quantity can maximally take on, ensuring 0 < C; < 1. The total
clustering coeflicient (that of the entire network in question) is then obtained
through

1 1 2F;
C:WZQ:—Z;%. (1.3)
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The (total) clustering coefficient is related to the density of triangles in that large
C indicates a high density whereas small C' implies a predominantly treelike
topology. In analogy to Eq. (1.1), a local efficiency measure can be obtained by
applying this equation to the subgraph composed of the neighbours of node ¢ and
their interconnections, leading to a quantity similar to the local clustering coef-
ficient [16]. Certainly, it would be unsound to equate a high clustering with high
local interconnectedness. For example, the square lattice is highly interconnected
at a local level, but has C' = 0. Therefore, longer loops need to be considered as
well. In Chapter 4, we systematically classify, among other things, loops of length
4. For directed networks, local interconnectedness is usually analysed in terms
of densities of subgraphs or motifs [18]. In the case of triangles for example, the
presence of a direction gives rise to several, topologically distinguishable types of
such substructures.

As we will describe in the next section, many real networks are highly
interconnected, both locally and globally. We call systems exhibiting these
two topological features small-world networks [17], although this concept is
sometimes used when referring to a small diameter only. In fact, its origin dates
back to the 1960’s when Milgram used the United States’ postal service to
probe the structure of the American society, finding that any two people are on
average separated by just six acquaintances [19]. Hence, in earlier times (and also
nowadays as far as its common use is concerned), a small world predominantly
referred to a social context and to global interconnectedness. In order to estimate
whether a given network shows small-world features in our sense, its clustering
coefficient C' and mean distance (d) are compared with a random graph having
the same number of vertices and edges. Random graphs [20, 21] which will be
introduced in detail in the next chapter, are poorly clustered and exhibit small
path lengths. A given network thus exhibits small-world patterns if C' > Ci.nq
and (d) ~ (dyana)-

There is another important fact when it comes to characterising the topology
of a complex network: not all nodes have the same number of edges. The corre-
sponding measure is the degree distribution P(k) which gives the probability that
a randomly chosen node has degree k, that is k edges. According to the degree dis-
tribution P(k), real networks fall into three major classes: (i) scale-free networks
characterised by P(k) ~ k=7, with y-values often between 2 and 3, (ii) broad-scale
networks with a degree distribution that has a power-law regime followed by a
sharp cut-off and (iii) single-scale networks whose P(k) has a fast (most likely of
an exponential type) decaying tail [22]. In all three cases, the degree distribution
is a decreasing function of k, and we will see that the nature of this decay is in
many respects crucial. For all these classes, there are only a few high-degree nodes
(i.e. hubs), however there are many more of them in a scale-free network than in
a single-scale graph. In the former example, the hubs sew together the network
whereas in the latter, there are too few of them so that they are usually not even
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referred to as hubs. We again point out how the situation changes if one considers
directed graphs. In that case, there are two degree distributions, namely one for
the in-degree and another one for the out-degree, each link contributing to both
of them.

The degree distribution is only a first way to characterise the degree-related
topology of a complex network. It is for example interesting to ask what degree
a node most likely has, given that it is connected to a node of degree k. A way
to measure these topological degree correlations is to take the average degree of
the nearest neighbours of all nodes of degree k, i.e. ky,(k). When categorising
networks according to the degree correlations, three cases are imaginable [23]:
(1) dknn(k)/dk > 0 implies that high-degree nodes are more likely connected to
other high-degree nodes, and vertices with few links are connected to other low-
degree nodes. Networks of this type are said to exhibit assortative mizing. (ii)
dkan(k)/dk < 0 means that it is more probable for hubs to be connected to low-
degree nodes, this property being referred to as disassortative mixing. Finally (iii)
dkun(k)/dk = 0 indicates that such topological degree correlations are absent. A
more refined way to quantify this type of topological correlations is by means of
P(K'|k), i.e. the probability that a node has degree k’, given that it is connected
to one of degree k. This is elaborated in more detail in Chapter 4 and relates to
the average nearest neighbour degree through k,, = [ K’P(k'|k)dk’. Moreover, it
is straightforward to generalise these measures to directed networks.

Especially in the context of heterogeneous networks that are highly clustered,
it is interesting to see which nodes account for this high density of triangles.
It therefore seems useful to plot the clustering coeflicient C' versus the degree
k [24]. If C(k) decreases with k, the low-degree nodes are mostly involved in
the formation of triangles giving rise to densely interconnected clusters and the
hubs, which contribute to C'(k) in a negligible way, sew together the clusters.
If this decay takes the form of a power law, the many densely interconnected
clusters combine to form larger, but less cohesive groups, which combine again
to form even larger and even less interconnected clusters. This self-similarity
indicates the presence of a nested modularity or of a hierarchical organisation. In
the case C'(k) =~ const., all nodes contribute equally to the density of triangles,
and this behaviour thus characterises a non-hierarchical network. In principle,
dC(k)/dk > 0 could also be imagined, but the topological interpretation of this
behaviour is elusive.

In certain situations, it is desirable to rank the nodes of a given graph ac-
cording to their importance, leading to an ordered list starting with the vertices
which are most “central” in a sense to be defined. At first sight, one might think
that the degree reasonably characterises centrality, but as Fig. 1.5 shows, the
node which builds the bridge between the left and the right parts (C) is in some
sense more central as its removal would entail a fragmentation of this network
into two isolated clusters. On the contrary, if the node with the highest degree
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Figure 1.5: A network composed of two clusters joined by vertex C. Depending on
how centrality is defined, different nodes play the role of the most central ones.

(A) were cut out, the vertices above B would remain connected to the right part
of the graph. Clearly, the degree merely contains local information and the extent
to which a vertex is central, is influenced by the global structure of the graph.
Possible measures include the closeness centrality [25]

1
N 3
Zj:l dij

d;; being the distance between node ¢ and j, and graph centrality [26]

Ce(i) =

1

max d;;
1<j<N

Coli) = (1.4)

With the second definition, we obtain Cg(A) =1/5, Cg(B) = Ce(D) = 1/4 and
Cs(C) = 1/3, implying that the vertex C is the most central if such a distance
criterion is used. When it comes to robustness, i.e. the behaviour of a network
with respect to vertex removal, it is important to identify the nodes through
which most of the shortest paths go. This goes beyond graph centrality and the
corresponding measure is the betweenness centrality [27] defined by

Cofi) =3 ") (15)

L

nji being the number of shortest paths going from node j to k, and n;;(4) con-
tains only those going through vertex 7. As the name suggests, C'z(i) quantifies to
what extent the vertex ¢ lies between others. At a statistical level, it is interesting
to study Cg as a function of the degree k, giving again clues concerning the hier-
archical organisation of a network. Moreover, the above measures can be adapted
such that they apply to edges which will be done in Chapter 5 for Eq. (1.5).

10



Introduction The topology of real networks

1.4 The topology of real networks

Equipped with a number of topological measures to characterise complex
networks, we now discuss in this respect the examples relevant to the present
study.

We again start with the Internet due to its particular relevance for this thesis.
At the router level, it was observed to be highly interconnected globally while
being characterised by the degree distribution P (k) ~ k~7. Faloutsos et al. studied
a subset composed of 3888 nodes, finding an average degree (k) = 2.57, a mean
distance (d) = 12.15, that of a corresponding random graph being of the same
order of magnitude ((dana) = 8.75), and v = 2.48 for the exponent of the degree
distribution [28]. Based on a larger subset (N = 150000), (k) = 2.66, (d) =11 ~
{drang) = 12.8 and the degree distribution shown in Fig. 1.6a characterised by
~ = 2.4 resulted [8]. In fact, the router map also exhibits a much larger clustering
coefficient than that of a corresponding random graph [29], making it a network
with small-world features. Beyond this simple characterisation, the absence of
both degree correlations and hierarchy was noted [24, 29]. It was further found
that the betweenness distribution follows a truncated power law reflecting that
the degree of any router is subject to an upper bound [29]. At the interdomain
(or autonomous systems) level, the small-world property appears to be conserved
[29, 30, 31], and the degrees are distributed according to P(k) ~ k™7 with v ~ 2.2
[28, 30] as shown in Fig. 1.6b. In contrast to the router level, the Internet displays
degree correlations, namely disagsortative mixing, and a hierarchical structure at
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Figure 1.6: (a) Degree distribution of the Internet at the router level [33]. (b) The
cumulated degree distribution for the 1997, 1998 and 1999 snapshots of the In-
ternet at the autonomous system level. The power-law behaviour is characterised
by a slope -1.2, which yields an exponent v = 2.2 [30].
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the autonomous system level [23, 24, 31, 32]. It was further observed that the
vertex betweenness centrality is proportional to the vertex degree for the network
at the interdomain level.

The interconnectedness of the power grid of the Western United States,
whose graph is composed of 4941 nodes and 6596 edges, is characterised by
(d) = 18.7 ~ {dyana) = 124 and C = 0.080 > Ciang = 0.005 [17], i.e. it falls
into the class of small-world networks. Its degree distribution exhibits an expo-
nential tail [33] which was also observed for the electric power grid of Southern
California [22]. Furthermore, all nodes contribute equally to the clustering coef-
ficient [24], indicating the lack of a hierarchical structure.

The topology of both analogical and digital circuits is very similar to that of
the power grid, despite the spatial extension orders of magnitudes smaller. That
is, integrated circuits show small-world patterns along with a single-scale degree
distribution, i.e. P(k) is characterised by a sharp cut-off [34].

Although rather different in their nature, social networks are characterised by
a similar topological complexity as the above technological examples. Real data
is available for the movie actor and scientific collaboration networks spanning
several disciplines. The former is characterised by a mean distance (d) ~ (dyanq),
a clustering coefficient C' ~ 100 - Cianq [17], and its degree distribution is
described by P(k) ~ k=7 with v = 2.3+ 0.1 for large k [35], it thus is a scale-free
small-world network. Moreover, assortative mixing patterns were observed in
this network [23]. Interestingly, scientific collaboration networks have an almost
identical topology - at the statistical level - i.e. they are also assortatively mixed
scale-free small-world networks [36, 37, 38|. In fact, the assortative mixing
property, i.e. people working with many others tend to collaborate with other
“hubs”, appears to be a characteristic property of such social networks [23].
When it comes to sexual networks, real data is much harder to obtain, making
it difficult to compute network properties beyond the degree distribution,
such as clustering coefficients or path lengths. The Swedish survey on sexual
behaviour mentioned in the previous section led to the result that the frequency
distribution of the total number of partners is described by P(k) ~ k=7, for large
k, with Yiemale = 3.5 £ 0.2 and Ypae = 3.3 £ 0.2 respectively [39]. However, it is
believed that the mean distance of sexual networks is rather short as contacts
over long distances are quite common, see e.g. [40]. At the same time, clustering
clearly is zero in a heterosexual network. Moreover, the density of loops of length
4 is low since people watch each other and prior partnerships, making it for
example unlikely that a woman W; who has had a sexual relationship with a
man M4 will start one with a man Mp after W5 has been a sexual partner of My
and Mp [41]. For these reasons, sexual networks are not small worlds in our sense.

Finally, the topologies of the neural networks introduced above are as follows.
Both the neural network of the worm C. elegans and in-vitro grown neuronal

12
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networks fall into the class of single-scale small-world networks [17, 22, 42]. At
a more coarse-grained level, several mammalian cortices (namely the macaque
visual cortex, the macaque cortex and the cat cortex) were analysed, finding that
the cortical areas are highly interconnected, both at a local and global level [43].
As there is currently very little empirical information on the number of connec-
tions per unit at the level of small cortical populations, it remains elusive whether
the cortex is a single-scale or a scale-free network. As addressed in the next sec-
tion, scale-free networks are particularly robust with respect to random removal of
nodes; and by adopting such an indirect reasoning, Martin et al. conjectured the
cortex to be a scale-free network [44]. More information about brain connectiv-
ity can be obtained at the functional level, i.e. through the dynamic correlations
between brain areas as explained above. The resulting graphs were found to be-
long to the class of scale-free small-world networks [45]. Furthermore, the positive
slopes of the curves corresponding to C(k) and ky, (k) for these networks question
the frequently assumed hierarchical structure of the brain.

1.5 On the role and the origin of topology

We have now given empirical evidence that networked systems from a wide
range of disciplines are characterised by a similar topological complexity. This is
interesting and immediately raises several questions. Are small-world or scale-free
patterns crucial for the functioning of certain systems such as the brain, or do
they lie at the roots when it comes to understanding processes such as the spread
of diseases? Conversely, one can wonder whether the observed topology of these
systems is the result of some common organising principles. Let us comment on
these quests with a few examples.

Until a few years ago, it was a long-standing problem why computer viruses
are so persistent [46]. The problem resided in the inaccurate modelling of the
spreading process: very often, the topology of the connection patterns was not
taken into account at all - or improperly, for example by using a square lattice.
The topological aspect was simply beyond question. Yet, since we are now aware
that the Internet - the place where computer viruses spread - is a scale-free
network, this ingredient can be taken into account, finding that there will be a
finite number of infected computers for any positive infection rate [47]. In other
words, the threshold of the infection rate below which the epidemic dies out, is
zero. This behaviour is due to the hubs whose presence causes the entire network
to be invaded by a virus. The lesson topology teaches us does not stop at this
point; but rather, it also gives clues regarding the immunisation of the network.
That is, only if high-degree nodes are more likely to be immunised, the epidemic
threshold becomes non-zero [48]. This example shows that topology is in many
respects a crucial factor.

13
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It is also the scale-free architecture of the Internet which makes it resilient to
random failures, yet very fragile with respect to intentional attacks [49, 50, 51, 52].
In simple terms, if a randomly chosen small fraction of nodes is cut out, these
nodes most likely have only a few connections, resulting in no major change in
the network structure. On the other hand, if high-degree nodes are removed with
preference, the network fragments into several isolated parts. For a single-scale
network where most nodes have the same degree and P(k) ~ exp(—Fk/ko) for large
k, an intentional attack is less dramatic than for a scale-free network whereas it
turns out to be more vulnerable with respect to random failures. This can be
understood by applying the same reasoning as above.

The importance of topology was also noted in a neural context. Regarding
associative memory tasks, a fully connected network composed of N neurons
stores the information in the N2/2 bonds. Although such a connectivity displays
a good performance, computer time and memory generally grow with N2, and it
is unlikely that biological evolution has led to such a topology. In fact, a much
sparser connectivity, i.e. a scale-free network, also leads to a good associative
memory where computer memory and time are proportional to N [53]. Another
example concerns the response of a neural network to sensory input. When an
odour is presented to an insect, the approximately 800 neurons of the olfactory
antennal lobe develop coherent oscillations after a very short period of time
[54]. A fast system response is a characteristic feature of a system with a small
diameter whereas coherent oscillations are typically exhibited by locally highly
interconnected topologies, such as regular lattices. A small-world connectiv-
ity combines these two properties, thus the topology again plays a crucial role [55].

The above examples illustrate the crucial role played by network topology
in several contexts. But as the reasoning related to the robustness of scale-free
networks equally applies to biological networks [e.g. for a metabolic network in
which metabolites (chemical substances) are connected through chemical reac-
tions|, this example could suggest that natural evolution has applied a selective
pressure to the development of an optimal topology, given the environmental con-
straints. In other situations, an optimisation of topology can result from design
or self-organisation. Other factors that shape the topology of complex networks
are spatial constraints. That is, in the case where (i) the positions of the nodes
can no longer be ignored and (ii) a cost is associated to the lengths of the links,
the fact that the network is embedded in a geographical space constrains the
resulting topology [56].

14
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1.6 Overview

In the previous section, we generally exposed the type of questions arising
in the field of complex networks. If we again take the problem concerning the
walk over the Konigsberg bridges, we see that the relevant questions can be
divided into the following parts. First, the original system has to be transformed
into a graphical representation (town parts become nodes and bridges turn
into edges). It follows the analysis of the topology of the resulting graph
(all nodes have an odd number of edges) which permits to draw conclusions
regarding a dynamic process taking place on the graph (impossibility of an
Euler walk, i.e. a walk so as every bridge is crossed exactly once). In addition,
it is in many cases important to understand the origin of the observed graph
topology (why were the bridges built that way?) [4]. We shall now give an
overview of the content of this thesis, and we will see that every selected chapter
falls into one of the above mentioned parts of a typical graph-theoretical problem.

In previous sections we have introduced topological measures at a statistical
level and analysed several real-world examples in terms of them. Although the
described systems were very diverse in nature, they are characterised by a similar
topological complexity (e.g. by small-world or scale-free patterns). In Chapter
2, we introduce several models which are able to reproduce selected statistical
properties of complex networks. We will see that the concept of growth or the
interpolation between randomness and regularity are major ingredients in these
models. Some models can be regarded as explanations of the observed properties
as they demonstrate how simple organising principles give rise to complex large-
scale topologies. In most cases however, these “organising principles” are merely
effective mechanisms of no particular profundity which allow to reproduce certain
topological features. The advantages of these models are that they depend only on
a few parameters. It therefore becomes more convenient to work with these models
rather than with the raw datasets, especially when it comes to studying the
influence of a selected topological property - this property being well controlled
by an appropriate model - e.g. in network performance. Hence, this chapter serves
as a basis for subsequent investigations.

While transforming the town of Koénigsberg into a graphical representation is
relatively straightforward, this becomes much more difficult for large networks.
In the case of the Internet (at the router level), this task is complicated further
as the topology has to be probed by sending data packets from a selected number
of routers to given targets. In Chapter 3, we investigate for scale-free network
models whether an exploration of this type leads to reliable connectivity data
and discuss the implications of our findings.

When it comes to dynamic processes taking place on graphs, the spread of
an epidemic is a much more intricate process than an Euler walk. We already
noted above that a scale-free architecture fundamentally influences the spread-
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ing behaviour of an epidemic. This result was obtained by modelling the system
at the mean-field level [47]. In Chapter 4, we investigate the assumptions which
underly the mean-field description and derive different levels of this type of ap-
proximation. Another challenging quest regards how the spreading behaviour is
influenced by the presence of (short) loops in the underlying network. Clearly,
the local topology partly determines the number of paths along which a virus can
propagate and has thus an effect on the spreading behaviour. Different strategies
in order to gain insights about the role of the loop structure have been proposed.
An interpretation of how clustering, i.e. a high density of triangles, influences the
stationary spreading behaviour was obtained by mapping the epidemic process
onto bond percolation [57]. Another approach is to abandon the mean-field level
and take into account spatial correlations which govern the epidemic dynamics.
Matsuda et al. first used the ordinary pair approximation in order to study a
population dynamical problem [58]. This approximation, as its name anticipates,
accounts for pair correlations and lies at the basis of improved pair models [59, 60]
which uncover the role of the loop structure in a rather indirect way: clustering
enters by making a number of assumptions about the open (£) and closed (A)
triple correlations. In the remaining part of Chapter 4, we present two methods
that take into account the presence of loops. The first systematically exploits
temporal correlations while a systematic description of spatial correlations lies at
the basis of the second.

We also looked into a problem corresponding to “why were the bridges built
that way?” While it does not come as a big surprise that the small-world property
makes it easy for a virus to spread, it is a challenging problem to explain whether
the very same topological property emerges when it comes to the economical
construction of a network with physical links whose costs grow with their
lengths. This is an interesting question because a high global interconnectedness
essentially relies on long edges connecting far away nodes, as it will be explained
in the next chapter. In most small-world models, the lengths of these long links
are distributed uniformly. Yet, power-law decaying distributions were measured
for systems created through self-organization, design and evolution and for which
the wiring costs are a key factor in their formation, namely for the Internet [61],
integrated circuits [62] and the human cortex [63]. Some modelling effort taking
into account the constraint of wiring minimisation has been made for systems
where the connection lengths are [64] or are not distributed according to a power
law [65, 66, 67, 68], and such length distributions emerge quite naturally when
wiring costs along with shortest path lengths are minimised [69]. In Chapter 5,
we re-analyse the small-world phenomenon from a wiring cost perspective and
discuss the distribution of traffic over the links and the robustness for networks
whose connection lengths are distributed according to a decaying power law.

The major conclusions are drawn in Chapter 6 along with a number of sug-
gestions for further investigations.
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Chapter 2

Preliminaries

The increased availability of network-topological data has fostered the elabo-
ration of models, their purpose being severalfold. On the one hand, it is important
to have simple “recipes” that allow to reproduce the measured properties of these
complex interwoven systems. On the other hand, when it comes to the study of
dynamic processes taking place in a network, it is often preferable to work with
simple models depending on a few parameters than with the raw connectivity
data. In this chapter, the network models used throughout this thesis are briefly
sketched, focusing on the ingredients and the properties relevant to our study.

2.1 Random Graphs

Up to almost a decade ago, when there was only little quantitative knowledge
about real networks, these structures were believed to be essentially random and
therefore modeled as so-called random graphs [2, 20, 21]. Such a graph is con-
structed as follows: Starting with NV isolated nodes (e.g. laid out on a circle), any
pair is connected with probability p. Variation of the parameter p thus allows to
tune the connectedness of this type of graph (Fig. 2.1).

Let us now discuss the statistical properties of this model. The average degree
is easily obtained since the E = pN (NN — 1)/2 edges are shared by the N nodes,

thus for large N, we have

2F
(k) = ~ =PV

The simplicity of this model also allows for an analytical derivation of the degree
distribution. The probability that k edges are attached to an arbitrarily chosen
node reads

P(k) = (Nk_ 1)1?’“(1 -p)"

where the two appearing exponents sum up to N — 1 accounting for the absence
of self-loops. In the limit N > 1 and p < 1, such that pN = (k), this distribution
becomes
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Figure 2.1: Schematic representation of the random graph model: starting from
a set of disconnected vertices (left), each pair of vertices is connected with a
probability p. Middle and right: two realisations with a small p and a larger value
of this parameter (right).

thus strongly decaying as k£ — oco. We further mentioned in the previous chapter
that real networks exhibit a strong degree of local interconnectedness. In a random
graph, the presence of an edge between nodes A and B obviously does not depend
on whether these two vertices are connected via a node C. As a consequence, the
clustering coefficient is

k

C=p= <—N>
If random graphs characterised by the same mean degree and different sizes are
compared, we see that C decreases with N. These networks therefore mostly
exhibit a treelike topology although long loops are present. In fact, the latter
statement can be understood through the following reasoning. In analogy to the
clustering coefficient, the density of loops of length I (denoted by @;) corresponds
to the probability of finding a chain of [ — 2 connected edges given that the two
end vertices are connected via another node A. As long as [ < N, we have

N =3\ ;. 1—3 1o (k)2
Q, = ~ N = - 2.1
! < {—3 )p p N ( )

the binomial factor accounting for the number of possible sets of length [ — 3
corresponding to the inner vertices of the chain. For (k) > 1, we see that the
density of loops increases with their length. Finally, let us look at the global
interconnectedness, in terms of the average distance between any two nodes. If p
is chosen too small, the random graph consists of several isolated clusters, and
only these pairs of nodes between which a path exists are considered in this case.
For p sufficiently large and by assuming a treelike topology, we can argue that
the number of nodes N at a distance (d) from an arbitrarily chosen one obeys

N ~ (k)9 implying
In N

@)~ oy

This scaling is much slower than that of a D-dimensional regular lattice where

(d) ~ NP and expresses the small-world phenomenon.
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In summary, random graphs are characterised by a Poisson degree distribu-
tion and tend not to be clustered - two properties rarely seen in real networks.
On the other hand, their random nature reproduces a high degree of global in-
terconnectedness. This insight is used in the Sec. 2.3.

2.2 Random networks with a given P(k)

In some situations, it is desirable to compare a complex network characterised
by a certain degree distribution P(k) with its random counterpart, that is, with
a network entirely random except that the degrees of its nodes are distributed
according to the distribution P(k) [70]. Such a graph of size N is constructed as
follows [71, 72]:

1. To each of the N vertices, attach k ends of edges, k being a random integer
drawn according to the distribution P(k).

2. Connect the free ends of links randomly.

Step 2 is often performed such that multiple connections and self-loops are
avoided. This constraint can give rise to correlations such that the resulting net-
work no longer falls into the desired class. However for large N this effect can be
neglected. Fig. 2.2 illustrates this procedure for a bimodal network characterised
by the degree distribution P(k) = (g2 + Ors3)/2.

Figure 2.2: Construction of a bimodal random network of size N = 16 where half
the nodes have degree 2 and the other half degree 3. After the nodes are assigned
the aforementioned numbers of ends of edges, they are connected at random, not
allowing for multiple connections and self-loops.
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The statistical properties not related to the degrees are essentially inherited
from the random graph model: the random networks considered in this section
are poorly clustered, and their mean distance increases only logarithmically with
the system size.

2.3 Watts and Strogatz’ seminal idea

As already pointed out earlier, real-world networks are usually highly inter-
connected both locally and globally. High local interconnectedness is a typical
property of a regular lattice while the global analogue regards random graphs.
Watts and Strogatz combined these two insights and proposed a model that inter-
polates between a regular lattice and a random graph, thus capturing both a rich

Regular Srnall-world Random
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Figure 2.3: Upper panel: the number of re-wirings parametrised by the probability
p allows to interpolate between a regular lattice and a random graph [17]. Lower
panel: the degree of local and global interconnectedness expressed by the mean
distance and the clustering coefficient as a function of the rewiring probability p.
The figure shows the nonlinear effect on (d) and that C is significantly reduced
only for large values of p.
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Figure 2.4: Rewiring procedure not affecting the degree distribution: the end
vertices of two arbitrarily chosen links are exchanged.

loop structure and small distances between any pair of nodes [17]. In the original
formulation, the interpolation is done as follows: starting from a regular lattice
(e.g. a ring where nodes two units apart are also directly connected), every edge
is rewired with a probability p, that is, the existing link connecting nodes A and
B is removed and replaced by a new one between nodes A and C, C being chosen
randomly (upper panel of Fig. 2.3). This corresponds to establishing a long-range
connection or shortcut between nodes A and C. Interestingly, even for low values
of the parameter p, the mean distance is already reduced dramatically with re-
spect to the original lattice while the clustering coefficient is almost unaltered, as
the lower panel of Fig. 2.3 shows. It is therefore the simplest imaginable model
that effectively reproduces the two properties in question.

The emergence of the small-world property depends neither on the chosen reg-
ular lattice (corresponding to p = 0) nor on the details of the rewiring procedure.
Clearly, the mechanism described above affects the degree distribution. If this is
an undesirable side-effect, one can perform the rewiring as illustrated in Fig. 2.4

[73]:

e Choose randomly two links (link 1 connecting node A; with B; and con-
nection 2 linking vertex A, with Bs) that do not share a common node.

e Remove these two links and establish two new connections between A; and
B, as well as A, and B;.

This ensures the degrees of all nodes to be unchanged. This mechanism is partic-
ularly useful when it comes to constructing “homogeneous” small-world networks
which differ in the precise loop structure. Here the concept of homogeneity is not
used in the strict sense that identical connectivity patterns are “seen” from every
node, but rather that the degrees are distributed according to the distribution
P(k) = 01k, K being the constant degree. In the case K = 4, the application
of this rewiring procedure to a square lattice (Fig. 2.5a), to a Kagomé lattice
(Fig. 2.5b) or to a topology shown on the left in Fig. 2.3 leads to small-world
networks with only loops of length 4, only triangles, or a combination of them
- if loops consisting of more than 4 edges are not considered. In Sec. 4.4, we
use exactly these types of disordered networks in order to illustrate a method
which gives a quantitative interpretation of the loop structure in a spreading
phenomenon.
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(a) (b)

Figure 2.5: Other regular lattices which may be used as point of departure to
build small-world networks. In a corresponding context such as the spreading of
an epidemic, the square lattice (a) allows to study the effect of loops of length
4 whereas the Kagomé lattice (b) - usually used in condensed matter physics as
this geometry represents one of the most frustrated anti-ferromagnetic systems -
has only triangles.

The above described rewiring procedures could lead to a fragmentation of the
network into several clusters which makes an analytical investigation of this model
difficult [74]. Instead, the addition of long-range connections (e.g. emanation of
a shortcut at every node with probability p) without removing existing edges
essentially leads to the same behaviour of the mean distance, and the network
remains fully connected even for p = 1.

The precise statistical-physical nature of the onset of small-world behaviour
has been a matter of debate. While Watts and Strogatz only discussed this ques-
tion for a fixed system size IV, this onset was later conjectured to be a crossover
phenomenon [75]: in 1 dimension and for N < N* ~ p~!  the scaling of the
mean distance is that of a regular lattice ((d) ~ N) and also referred to as a
large world, whereas for N > N*, we have the behaviour observed in random
graphs ((d) ~ In N, small world). Based on more rigorous arguments and for
general dimension D, the present system was shown to exhibit a critical point at
p = 0 [74]. It has to be pointed out further that the various rewiring procedures
described above all give rise to uniform shortcut-length distributions. In Chapter
5 we discuss, among other things, the nature of this transition for systems where
this distribution is a decaying power-law.

In summary, the interpolation between a regular lattice and a random graph
reproduces well the high degree of local and global interconnectedness seen in real-
world networks. When it comes to the degree distribution, the graphs constructed
with this model fall into the category of single-scale networks [22], that is, P(k)
is essentially Poissonian for the first rewiring mechanism and if the shortcuts
are only added; and P(k) equals that of the initial network for the rewiring
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procedure illustrated in Fig. 2.4. This behaviour differs from a number of real-
world networks, i.e. those characterised by a scale-free degree distribution. In the
two remaining sections of this chapter, two prototype models reproducing such
degree distributions are introduced.

2.4 Growth and preferential attachment

In the models discussed so far, the total number of nodes has always been a
fixed quantity. This is in contrast to many real-world examples, such as the World
Wide Web: a large number of websites are being created every day, connecting
themselves to existing sites through hyperlinks. Thereby not all sites already
present in the Web are equally likely to acquire a new incoming connection. Yet,
if the number of hyperlinks pointing to a given website is used as an indicator of
its popularity, a newly created website might preferentially establish a link to a
popular one rather than to a site to which only few others point - the “rich get
richer” phenomenon. Barabdsi and Albert used these two ingredients in order to
formulate a model which indeed reproduces a power-law degree distribution as is
shown below [35]: starting with a set of myg vertices and Ey edges between them,
a new node with m < mq edges is added at every time step (growth). The nodes
to which the new edges attach are thereby chosen with probability

ki
Zj ]“Cj7

k; corresponding to the degree of vertex j. This is the rule of preferential at-

II(k;) = (2.2)

tachment. Several approaches were proposed in order to solve this model, namely
continuum theory [35, 76], a master-equation approach [77] and a rate-equation
approach [78], here we describe the first. The properties of the network after a
very long period of growth do not depend on the details of the initial core, the
latter are therefore ignored. At time ¢, the network then consists of N = ¢t/At
nodes, and the preferential attachment rule (2.2) translates into

SV k) Bilt) + " omt ] At

j=1

since the sum of all degrees is twice the number of edges, that is 2mt/At if the
initial core is ignored. In the continuum limit (At — 0), Eq. (2.3) becomes
dk;(t)  ki(t)

- 2.4
dt 2t ' (2:4)

and with the initial condition k;(7;) = m, 7; corresponding to the “birth time” of

node ¢, it has the solution
t\1/2
i(t) = m(—> . (2.5)

T

Eq. (2.5) indicates that, in a doubly logarithmic representation, the degrees of all
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Figure 2.6: Numerical simulations of network evolution according to the Barabdsi-
Albert model (At = 1): (a) Degree distribution, with N = mg + ¢ = 300000 and
several values of m =mg (o: m=mp=1,0: m =mg =3, 0: m =mg =5 and
A:m = my = 7). The slope of the dashed line is v = 2.9, providing the best fit
to the data. The inset shows the rescaled distribution P(k)/2m? [motivated by
Eq. (2.8)] for the same values of m, the slope of the dashed line being v = 3. (b)
P(k) for mg = m = 5 and various system sizes (o: N = 100000, O: N = 150000
and ¢: N = 200000). The inset shows the time evolution for the degree of two
vertices, added to the system at ¢; = 5 and t5 = 95. Here m = my = 5 and the
dashed line has slope 0.5, as predicted by Eq. (2.5) [76].

nodes grow as straight lines with slope 1/2, the only difference being the intercept
which corresponds to the respective time of birth (inset of Fig. 2.6b). Eq. (2.5)
further tells us that nodes can be classified according to their degree or age since
these two quantities stand in a monotonic relation to each other. More precisely,

the probability that a node has a degree k;(¢) smaller than k, P[k;(t) < k|, is
given by

mt
pm@<mzp@>?§) (2.6)
Since the nodes enter into the network at a constant rate, the birth times 7; are
uniformly distributed, that is,

P(rl <m)~—, (2.7)
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Figure 2.7: A scale-free network of 130 nodes, grown according to the preferential
attachment model. The five biggest nodes are shown in red, and they are in
contact with 60% of the nodes (green) [79].

the latter approximation holding in the long-term limit. Introducing Eq. (2.7)

into Eq. (2.6) leads to
2 2

m-t m

and for the degree distribution, we finally obtain
P(k) = OPlki(t) < k] _ om2k™, (2.8)

Ok
that is a power law with exponent v = 3 independent from m. Fig. 2.6 shows
that this result is in agreement with corresponding numerical simulations, and
Fig. 2.7 visualises a realisation of this model. In the following chapter we will use
the above reasoning when looking at the exploration of such a network during
the growth process.

Other values of the exponent 7 can be obtained if the attachment kernel (2.2)
is generalised. If the attachment rate (2.2) remains asymptotically linear in k,
degree distributions P(k) ~ k™7 with 2 < v < oo result, the precise value of v
depending on the preasymptotic behaviour [78, 80]. Sub-linear attachment kernels
(IT(k;) ~ k&, @ < 1) lead to stretched exponential distributions while super-linear
forms (II(k;) ~ kf, « > 1) have as outcome a gelation process where there is a
node connected to almost every other node of the graph.

The degree distribution is only a first way to characterise the degree-related
topology. It is also important to see if high-degree nodes are more likely con-
nected to other high-degree nodes, to those with few connections or if there is
no preference. These degree correlations can for example be expressed by means
of the average nearest neighbour degree k,,, as introduced in Chapter 1 and in
the case of the model by Barabési and Albert, this quantity does not depend on
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k, expressing the absence of such degree correlations [5]. This fact will also be
exploited in the next chapter.

Other properties of this model are more difficult to compute analytically. The
average distance was shown to scale with the system size as [81]

In N
D~
and numerical simulations indicate that the clustering coefficient depends on N
as [33]
C~ N7,

This scaling is slower than that predicted by the random graph model, but it is
still too fast to explain the behaviour of real graphs.

To summarise, the above described dynamic perspective along with the idea
of preferential attachment provide us with a model able to reproduce a power-
law degree distribution. In some situations, e.g. in the case of protein interaction
networks, it was argued that such an attachment rule results from the laws govern-
ing their evolution [82, 83]. These networks grow by copying (replicating) existing
nodes (proteins) borrowing some of their links and adding some new others. But
the preferential attachment rule requires that the newly entering node knows the
degrees of all the nodes already present in the system. In several contexts, this is
certainly not a reasonable assumption. In the next section, we discuss how scale-
free networks may emerge when no growth is involved, but in a situation where
links between nodes are established according to a deeper organising principle.

2.5 The intrinsic vertex fitness model

Caldarelli et al. explored an alternative mechanism in a situation where the
total number of nodes N is fixed, giving rise to scale-free networks [84]. The
underlying idea is that the nodes are not merely indistinguishable elements, but
to every node a real variable quantifying its fitness is assigned. In a social context,
this intrinsic property measures the authoritativeness or the social success and
the values are drawn from a given probability distribution p(x). Pairs of nodes
are then connected with probability f(z;,z;), f being a symmetric function of
its arguments, and z; and z; correspond to the respective fitness values. This is
an elementary implementation of a link formation process giving rise to a mutual
benefit between the two elements involved.

In the following, we describe how the degree distribution can be computed
from the above ingredients and then give examples of combinations of p and f
that reproduce scale-free networks.

If the fitness values are assumed to lie within the interval 0 < z < oo, i.e.
I3 p(z)dz = 1, the mean degree of a node with fitness z is

bz) = N / " Fe.y)ply)dy = NF(2). (2.9)
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In analogy to the previous section, the probability that a node with fitness = has
a degree less than k reads

k F
Plk(x) <K = Plr < F7' ()] = / o) da.
N 0
One therefore obtains for the degree distribution

OP[k(x) < k] kN1 d ik
Py = PO <H (Y DBy
(k) e p ~ ) (2.10)
which holds exactly in the N — oo limit [85].

Let us now consider the link formation function f(z;, z;) = (z;z;)/z3; where
xp is the largest value of = in the network, the denominator ensuring f(z;, z;) <
1. Eq. (2.9) then leads to

Flz) = T/Omyp@: :

Ty Ty

and with Eq. (2.10), the degree distribution becomes

2 2
Y Ty

P = ~0? <N(x> k)

(2.11)

The choice of this functional form of f thus allows the degrees to be distributed
essentially in the same way as the fitnesses. In particular, scale-free networks
subject to P(k) ~ k™7 can be obtained by distributing the fitnesses according
to p(z) ~ z~7. This choice can be justified by arguing that power laws appear
rather generically in many contexts when one ranks, for example, people ac-
cording to their incomes or cities according their populations, etc. This is the
so-called Zipf law which establishes that the rank R(z) ~ =% in a quite uni-
versal fashion [86]. Although the mechanism “power law in - power law out” is
hardly surprising, it still provides a new path to construct scale-free networks
and exploits the widespread occurrence of Zipf’s law in society. In order to ex-
plore this model further, we shall choose an exponential distribution for the fit-

?. and links between vertices are established with probability

nesses, i.e. p(z) = e~
f(zi,z;) = 0lz; + x; — 2(IN)] where () is the usual Heaviside step function. In
other words, the sum of the two fitnesses in question has to be larger than the
value z(NN) for a connection to be formed. This is inspired by the formation of
protein interaction networks. The free energies (fitnesses) obey a Boltzmann dis-
tribution (i.e. an exponential distribution) and any two proteins bind, thus form-
ing a protein complex and corresponding to a link, if the sum of the free energies
in question is larger than a given threshold. As above, by applying Eq. (2.9) to
this combination of p and f, the mean degree of a node with fitness x is obtained.

The degree distribution is then computed according to

P = + /0 ek — h(2)]da
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Figure 2.8: Average neighbour degree k,,, and clustering coefficient as functions of
k as well as degree distribution (inset) for networks generated with the threshold
rule and an exponential fitness distribution [84].

rather than by using Eq. (2.10), the latter applying to smooth functions only. For
this choice of p and f, scale-free networks indeed emerge, more precisely

P(k) = k72e*™§(k — N). (2.12)

The d-function with the exponential amplitude arises from the fact that nodes
with fitness x; > z(NN) are connected to all other nodes, but this is irrelevant
for large enough z and N. The inset of Fig. 2.8 numerically confirms Eq. (2.12),
and the main figure further shows that this model yields non-trivial behaviours of
the degree-dependent clustering coeflicient and average nearest-neighbour degree
- unlike the preferential attachment model.

The just described choice allows to generate scale-free networks obeying
P(k) ~ k™2 only. More generally, it was found that, given a fitness distribu-
tion density p(z), there always exists a symmetric linking probability function
f(z,y) such that the resulting random network is scale-free with a given real
exponent [87]. In the following chapter, scale-free networks generated according
to the fitness model are explored.

In summary, the “good get richer” mechanism described in this section also
gives rise to scale-free networks. The model involves a fitness probability dis-
tribution and a linking probability function whose appropriate choices permit
the decay exponent to take on a given real value. As far as topological proper-
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ties beyond the degree distribution are concerned, a non-trivial behaviour of the
degree-dependent clustering coeflicient, among other things, results. With respect
to the model proposed by Barabdsi and Albert, it successfully reproduces some
properties observed in real-world scale-free networks.

29






Chapter 3

Exploration of scale-free networks

In the elaboration of the network models described in the previous chapter
which aim to reproduce some of the measured properties, little attention was paid
to the quality of the connectivity data. At an initial stage, it was thus hardly
doubted that the measured topology could differ from the real one. In the case of
the Internet, the degree distribution is P(k) ~ k=7, with v = 2.15 £ 0.05 at the
domain level [28] and 7 ~ 2.45 at the router level [8, 28]. These values clearly lie
below the prediction of the original version of the preferential attachment model
(v = 3). The preferential attachment rule was experimentally tested, finding that
the attachment rate is linear for nodes of degree £ 2 10 [88] and if the attachment
probability is assumed to be linear in k£ only asymptotically, exponents in the
range 2 < 7 < 3 indeed result [80] - as already mentioned in Sec. 2.4.

Another explanation of the discrepancy between the measured y-values and
the prediction of the Barabési-Albert model might be that the measuring process
“distorts” the real topology of the Internet. It is therefore useful to describe here
how one obtains the map of the Internet from which the statistical properties are
derived. The most popular method is a tree-like exploration implemented through
the recursive use of the traceroute command: traceroute finds a path (usually
a short, but not necessarily the shortest one) from the node where the command
is executed to another given node. By repeating the procedure asking traceroute
to find paths to all other possible nodes (addressed by their IP number), the
outcome is a representation of the Internet showing a rather small number of
loops. This is due to the fact that traceroute usually uses the same paths: if
a node D can be reached from A through both B and C, traceroute mostly
detects only one of them. Yet, more than one path is uncovered if traffic over an
already discovered one is so high that it becomes more convenient to switch to a
different path. Data collection with this technique yielded the ~-values reported
above.

In this chapter, we first describe how we mimicked this tree-like exploration
and then present numerical results for the Barabasi-Albert and the fitness model
introduced in the previous chapter. For the former, the outcome is supported by
an analytical argument. The main finding is that such an exploration indeed re-
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1+2

1+2

Figure 3.1: Three sequential steps (i — 1 — 4,4 — i+ 1,71+ 1 — i + 2) of the
exploration algorithm. Arriving at a specific node, the network is further explored
by following [p - n] of the n possible paths leading to vertices that have not been
visited yet. “Seen” vertices are filled circles whereas empty circles correspond to
unexplored nodes. The dashed line symbolizes the exclusion from the exploration
as it leads to an already visited node, enforcing the “measured” network to be
treelike although cycles can be present in the original graph.

duces the exponent of the degree distribution. Finally, we discuss the implications
and mention the research activity that this work has stimulated.

3.1 The exploration algorithm

The mapping of the Internet by means of the traceroute tool was modelled by
exploring the scale-free network in question according to the following algorithm
(Fig. 3.1):

1. Starting at one of the nodes with the highest connectivity &,,.., one chooses
a number of links emanating from that node, namely [p - kyq.] at random
where [z] denotes the integer part of x. The parameter p, 0 < p < 1, allows
to tune the exploration.

2. The just chosen links lead to an equal number of vertices. At each of these
vertices, count the number of nearest neighbours that have not been visited
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yet, and let us denote it by n. From the n possible paths, randomly chose
[p - n| of them in order to continue the exploration.

3. Repeat step 2 until no more nodes can be visited.

Before proceeding with the results, a few remarks are in order: (i) By exploring
a network according to the above rules, loops are fully lost whereas with the
traceroute technique, they are detected, though rarely. (ii) If one started at a
node with a few connections only, then there are two possibilities. Either none
of the explored links leads to a hub, thus missing the part of the network which
accounts for the scale-free topology. If, on the other hand, a hub is reached, then
essentially the same network is “seen” as if one started at that hub. We therefore
chose the algorithm as it is described above. (iii) In the analytical treatment
below, links leading to nodes which have not been visited yet are explored with
probability p. But we checked that this formulation is equivalent to the above in
that both versions produce the same numerical results.

If the above algorithm is applied to a network, a graph with less nodes and less
links results, since at every node only a fraction p of the available links is followed.
The intuitive result would be that every node sees just a fraction of its edges, so
that all degrees should be reduced by a factor p, the original degree distribution
P(k) becoming P(k) = P(p-k). Yet, as is shown in the next section for scale-free
networks, the effect of this probabilistic pruning is much more dramatic.

3.2 Barabasi-Albert networks

The simulations of the exploration of networks grown according to Barabdsi-
Albert model (Fig. 3.2) show that the measured exponent -, differs from the
value of the original network (y = 3). This represents a situation where the
newly entering node establishes just m = 1 new connection to an already existing
node with probability (2.2), and the exploration is parametrised by p = 0.5,
giving rise to vy, ~ 2.5. We can wonder if this is a finite-size effect and the correct
exponent is recovered for very large networks or whether the exploration induces
this change.

A simple analytical argument can be formulated using the lack of degree
correlations in the preferential attachment model. Recalling that the degree of
node ¢ evolves in time according to

dk(t) _ ki(t)

== -1
dt 2t (3:1)

implies that the ages of neighbouring nodes are uncorrelated. This allows us to
look at the exploration during the growth process. That is, we label the initial
node as reachable; with probability p, a new node is said to be reachable if it
connects to at least one reachable node. In a specific realisation at any time ¢, the
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Figure 3.2: Degree distribution of a Barabési-Albert network grown with m = 1.
Circles: original network; stars: explored network with p = 0.5. The best fit to the
original network is with v ~ 3, and to the explored network with v ~ 2.5. Inset:
rescaled degree distribution k*P(k), such that the data for the original network
are constant, and the residual power-law behaviour of the explored network is
more evident. Here each of the 10 realisations of networks of size N = 10° was
explored 10 times.

rate of change of the number of reachable nodes dN(t)/dt is 0 if the new node
will be unreachable and 1 otherwise (here dt = 1 without loss of generality). By
averaging over many realisations, this rate can be interpreted as the probability
that the new node is reachable, and it obeys the iterative equation

%f) —1- [1 —p/o d]:lfgl)qt(t’)dt’]m (3.2)

where ¢;(t')dt’ is the probability that the new node attaches to one who entered
the network during the time interval [¢/, ¢ +d¢’]. Through the solution of Eq. (3.1),
that is k;(t) = m(t/7;)"/?, 7; being the birth time of node 4, the rule of prefer-
ential attachment translates into ¢,(t') = a(¢')~%/? and with the normalisation
fot ¢:(t)dt’ = 1, we obtain ¢,(t') = 1/(2v/tt'). In other words, the factor ¢ (¢
gives the older nodes, i.e. those with a higher degree, a larger weight. The in-
tegral in Eq. (3.2) then corresponds to the probability that the targeted node
is reachable, and the full right hand side implements the condition that at least
one of the m targets will be part of the explored network. Since N(t) can grow
at most linearly, we make the assumption that dN/dt ~ t* with « expected

to be negative. With ¢,(t') as derived above, the integral in Eq. (3.2) becomes
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t*/(2cc + 1). In the limit ¢*p/(2a + 1) < 1, the right hand side of Eq. (3.2) can
be linearised, leading to one term proportional to t®. A comparison with the left

hand side results in
mp—1

2
Therefore, as long as mp < 1, the temporal density of reachable nodes decreases

(3.3)

o =

in time. In order to derive the degree distribution, we here use a shorter approach
than in Sec. 2.4. The equivalence of degree and age is reflected in the corre-
sponding density distributions as Py, (k)dk = p(7)dr, implying that the degree
distribution of the explored network is obtained through

dk

Pu(k) = —. 3.4
(k) = p(r) " (3.4)
From the solution of Eq. (3.1), that is k ~ 772, we have 7 ~ k72 and as a
consequence dr/dk ~ k3. The growth rate of the explored network therefore
becomes p(7) = dN(7)/dr ~ 7% ~ k72* Eq. (3.4) thus reads Pp(k) ~ k™=

where v, = 2a + 3 and with Eq. (3.3), we obtain
Ym = mp + 2. (3.5)

For the case depicted in Fig. 3.2 (m = 1, p = 0.5), we find ~,, ~ 2.5 which is in
very good agreement with the numerical result. We therefore expect that, as long
as mp < 1, the exponent characterising the explored network differs from that
corresponding to the original graph.

3.3 Other scale-free networks

In order to check whether the distortion of the degree distribution is intimately
related to the growth and preferential attachment, we applied our exploration
algorithm to scale-free networks generated with the fitness model introduced in
Sec. 2.5. Let us briefly recall its ingredients: to every node a random variable x,
drawn from a density distribution p(z), is assigned and any pair of nodes (z,y)
is connected with probability f(z,y), f being symmetric in its arguments. The
choice f(z,y) = xy permits to map the fitness distribution p(x) onto the degree
distribution. For example, distributing the fitnesses according to p(z) ~ z7°
generates networks characterised by P(k) ~ k3. But this model also allows for
the generation of scale-free networks in a less trivial way: the combination of
p(x) ~ e~* with a threshold-type connection probability f(z,y) = 0(z +y — ¢)
results in graphs whose degrees are distributed as P(k) ~ k2. More generally,
given the distribution of the fitnesses, it is always possible to find a symmetric
linking probability function such that scale-free networks with a given exponent
emerge.

Fig. 3.3 shows that the “power law in - power law out” as well as the threshold-
type network also exhibit the distortion effect observed for the Barabdsi-Albert
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Figure 3.3: Degree distributions of the original and explored networks for the
fitness model. Upper panel: p(x) ~ 273 and f(z,y) = xy. Lower panel: Combina-
tion of exponentially distributed fitnesses and threshold-type linking probability
function. The distortion effect is best seen in the insets where the values are
rescaled such that the data corresponding to the original networks are flat. These
results were obtained for 10 different realisations of networks composed of 10°

nodes, each exploring 10 times.

model. In the former, v = 3 leads to v, =~ 2.7 and for the latter, the explorer
“sees” v, =~ 1.5 with respect to the original value v = 2. We do not have an
analytical understanding for the reduction of the degree-distribution exponent
for this model. As a matter of fact, the presence of degree correlations and the
lack of an explicit time evolution hinder the formulation of an equation similar
to (3.2).

3.4 Discussion

We have analysed whether the tree-like exploration of scale-free networks can
give rise to systematic errors reflected in a change of the degree-distribution ex-
ponent. Interestingly, in all cases the measured exponent v, is smaller than -,
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an indication that the exploration process penalises nodes with small degree with
respect to nodes with large degree. This is reasonable, since a node with few con-
nections has fewer paths reaching it (and some bottlenecks, since all these paths
have ultimately to flow through its few connections) than a high degree node.
The ultimate result is therefore that high degree nodes are fairly well represented
in the final distribution, whereas the number of nodes with few connections is
underestimated!. This intuitive picture rationalises our numerical and analytical
finding that the measured exponent is smaller than the real one.

Obviously, the exploration of scale-free networks can be extended for example
by using multiple sources instead of a single one [90]. From every source, the
traceroute command is then executed to every other node, leading to a more
complete representation of the underlying network. Clauset and Moore found
that in order to obtain a good estimate of v, it is necessary to use a number of
sources which grows linearly with the average degree of the underlying graph [91].
Moreover, it is even possible that a scale-free topology is “seen” when exploring a
random graph [92]. This effect is very pronounced when using a small number of
sources and it is related to the fact that the degrees of nodes far from the source
are strongly underestimated. This numerical observation was put on a firmer
ground, finding that an explored random graph is characterised by P(k) ~ k™!
for k below the average degree [93].

Overall, the conclusion of this investigation remains that the data obtained
by the recursive execution of the traceroute command should not be taken at
face value.

1The sensitivity of low-degree nodes further leads to significantly inaccurate estimates of ~
for graphs having many more edges than nodes [89]
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Chapter 4
Epidemic spreading

The content of the previous chapter can be interpreted as dealing with a
process on a complex network aiming to measure its large-scale topology. In the
following, we shall investigate the spreading of an epidemic which can be regarded
as a dynamic process taking place on a network: a computer virus spreads on the
Internet, and HIV (as a biological example) propagates on top of the web of
human sexual contacts. As already mentioned in Chapter 1, we focus on the
elaboration of methods which lead to an understanding of distinct topological
properties - mostly at a statistical level - in the spreading behaviour.

We first describe in detail how the contact process is modelled, along with the
chosen connectivity patterns. A set of mean-field-type approximations involving
several assumptions is then developed, leading to non-trivial correlations in the
time evolution of the fraction of infected nodes with a given degree. Describing
the dynamics of the system at an exact level, we first rigorously derive the major
mean-field equation and then use this description in order to develop two methods
which give an understanding of the local topology in the spreading behaviour.
The first consists in taking into account temporal correlations and the second is
a systematic exploration of spatial correlations based on the choice of a cluster
whose size determines the range up to which such correlations are taken into
account. This latter method is - in principle - similar to the cluster variation
method of statistical physics [94]. Finally, these methods are critically discussed,
especially in view that they can be improved systematically.

4.1 The contact process

The dynamic laws that describe the spreading of an infectious disease are
determined by the contact structure which underlies the population. We therefore
model the epidemic as a dynamic process on top of a given network that does
not change in time. The nodes of the network represent individuals, and the links
correspond to relationships between individuals along which an infective agent
can propagate.
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Epidemic spreading The contact process

Since the aim of this chapter is the investigation of the role of specific topolog-
ical properties, especially the local interconnectedness, we adopt a rather simple
epidemiological model where the individuals can be only in two possible states,
namely infected (I) or susceptible (S). Because the nodes repeatedly run through
the cycle susceptible — infected — susceptible, it is called SIS model. In the
physics community, it has recently been formulated as follows [47]: A node sus-
ceptible to the disease gets infected with probability v At if it is connected to at
least one infected nearest neighbour. On the other hand, infected nodes recover
spontaneously with probability dA¢. Under certain circumstances, this version
of the SIS model is formally advantageous with respect to its conventional for-
mulation, where infected nodes can infect neighbouring susceptible vertices with
probability At [95]. In the latter case, susceptible nodes become infected with
probability 1 — (1 —vAt)knt k¢ being the number of infected nearest neighbours.
The former version shall be referred to as the simplified SIS model. By rescaling
the time unit, we can reduce the number of parameters to one: the time evolution
is determined by the effective spreading rate A = v/, and the recovery rate is set
to 1. The quantitative details of the behaviour of the system still depend on the
choice of At. In particular, the method described in Sec. 4.4 gives a quantitative
interpretation of the effect of short loops by performing two time-steps exactly.
This effect is of higher order in At, such that their influence is not seen in the
continuous-time limit (At — 0). As long as At > 0, we set this quantity to 1 with-
out lack of generality and formulate it for the simplified SIS model. The discrete
version of the simplified SIS model is also adopted in the two following sections
where the bases for the two-step description are elaborated. The methodology
discussed in Sec. 4.5 explores spatial correlations and can be formulated both in
discrete and continuous time. We describe it for the continuous-time version of
the conventional SIS model.

The other model constituent concerns the underlying network. We shall not
attempt to examine the combined effect of the degree distribution, degree corre-
lations and the loop structure. But since the various sections of this chapter aim
to come to an understanding of these different topological properties in epidemic
spreading, appropriate network models are used. In Sec. 4.2, a rigorous mean-field
approximation is derived, that is a description which ignores spatiotemporal cor-
relations. As will be shown, the only topological property entering at this level is
the number of nearest neighbours of any node. We illustrate this approximation
for homogeneous and random bimodal networks, the latter being introduced in
Sec. 2.2 and representing a case with a simple degree-correlation structure. The
methods beyond the mean-field level described in Secs. 4.4 and 4.5 unravel the
role of short loops in the spreading process. The former applies to homogeneous
networks as well as to its disordered versions explained in Sec. 2.3 while the latter
provides a way to investigate spreading phenomena in the extremal cases only, i.e.
either for an entirely regular or random homogeneous network. A random homo-
geneous network is thereby constructed analogous to a random bimodal network,
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that is according to the algorithm given in Sec. 2.2.

4.2 Mean-field approximation

A first approach to describe the spreading dynamics consists in ignoring spatial
correlations. In other words, the probability of finding a pair of two infected
neighbouring sites A and B is assumed to be the probability that site A is infected
times the probability that B is infected. At this level of approximation, the system
is described by assigning to all the N nodes of the network a probability P} that
node 7 is infected at time £. As a consequence, its probability to be susceptible is
1 — P! since there are only two possible states. The simplified discrete-time SIS

1
model then translates into

Pt =1 -Ph1-[Ja- P (4.1)
jnni

where the product in Eq. (4.1) runs over all the nearest neighbours j of node
7, and the factor in the square bracket gives the probability that at least one
neighbour of node i is infected at time . As infected nodes recover spontaneously
with probability 1, there is no term corresponding to this transition. Eq. (4.1)
shall be referred to as the site approximation. In order to obtain an equation
which permits to study the spreading phenomenon on a topology of which we
merely know some statistical properties rather than its full connectivity patterns,
we transform Eq. (4.1) into the degree-space. By applying 1/Ny - Zf\;l Orikl]s
N, = Ei\;l Ok, being the number of nodes of degree %, the site approximation
reads

Pt =Xk Z P(K'|k) (P}i/\k - PZ,k/)- (4.2)

o
This equation describes how the fraction of infected nodes of degree k at time
b+l N t+1
p}fjl _ Zi:l Onu
Ny,
is determined by the topological degree correlation factor P(k’|k), by the proba-
bility that a node of degree £’ is infected at time ¢, given that it is connected to
a node of degree k
b ity Ok 2 i Ok P
Prik = N

and by the probability to find a connected pair of infected nodes, one having
degree k and the other degree &’/

N t t
Zi:l 6kszZ zjnni 5kjk/Pj
Nkk’

o
Prk! =

Thus the latter quantity is not simply prpr, but rather a heterogeneous topol-
ogy induces correlations although pair correlations are being ignored. The only
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approximation involved in Eq. (4.2) is J[,,,,(1 — Pj) =1 =3, , P; holding in
the vicinity of the epidemic threshold A. below which all the P;’s vanish. The
quantity P(k’|k) more precisely is the probability that an arbitrarily chosen node
has degree k' given that it is connected to one of degree k. From the total number
of links connecting two nodes one of which having degree k& and the other £/, i.e.
Ny = sz\il Skl 2 joni Ok = Nk 1 this degree-correlation factor is obtained
through

P(K|k) =

and satisfies the normalisation ) ,, P(k/|k) = 1. This quantity further fulfills the
detailed balance condition [96]

kP(K k)P (k) = K P(k|K)P(K') = (k) P(k, k)
where P(k) = N;/N is the degree distribution, (k) the mean degree and

Nkk/
> N

is the joint probability that two nodes of degrees k and £’ are connected. We shall

Nips

(2 — O )P (K, k') = (2 — Spr) TN

now perform a series of approximations in order to simplify Eq. (4.2). Assuming

Prkr = Piv P (4.3)

the temporal evolution of p; is dictated by

o = k(1 = ) S PR IF)pl (4.4)
k/
and with
Prote = P (4.5)
it reduces to
o = N1 — o) S PR ). (4.6)
k/

The effect of the assumptions (4.3) and (4.5) is studied below for random bimodal
networks. While the Eqgs. (4.2) and (4.4) involve different densities or fields, i.e. py,
Pk and pr s, Eq. (4.6) expresses the time evolution of p; fully by itself. Clearly,
the field is still of a vectorial nature, that is, there is not a single equation for
p, ie. Y, P(k)pg, but rather, the various p;’s are coupled into the system of
Egs. (4.6). This system shall therefore be referred to as the degree-dependent
mean-field equation. From the stationary-state solution of Eq. (4.6), one obtains
the epidemic threshold [96]?

Ac=1/A (4.7)

'In the case k = &/, Ny, gives twice the number of links connecting two nodes both of which
having degree k.
2In this reference, Eq. (4.6) is derived in a more heuristic way.
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where A is the largest eigenvalue of the connectivity matrix defined by Chyp =
kP(K'|k). As could already have been anticipated from Egs. (4.1) and (4.2), for
example, topological properties beyond the degree such as the presence of loops,
do not enter within the site approximation. In order to come to such an under-
standing, we will have to abandon the assumption described at the beginning of
this section.

In the case of an uncorrelated network, which obeys P(k'|k) = k' P(k")/{k),
Eq. (4.7) becomes [96]

(k)
Ae = W (4.8)

This means that if the average degree is finite, the larger the degree fluctuations
the smaller the epidemic threshold. For a scale-free network with P(k) ~ k77,
with 2 < v < 3, (k*) — oo and A, becomes even 0, hence for any infection
probability A > 0, a finite number of number of individuals is infected in the
stationary state [47]. Since the Internet belongs to this class of networks, this
result solved the long-standing problem of the long persistence of computer viruses
[46]. For such a degree distribution, the presence of degree correlations does not
modify the result A\, =0 [97].

4.2.1 Random bimodal networks

We shall now illustrate to what extent the various levels of site approximations
introduced above are able to reproduce the observed behaviour for the example
of a SIS-type process on a random network where half the nodes have degree 3
and the other half has 6 nearest neighbours, in short P(k) = (dx3 + dxs)/2

Fig. 4.1 reports the prevalence, that is the average number of infected individ-
uals, in the stationary state versus the effective spreading probability at the level
of simulation, if the state of every node is modelled by a probability [Eq. (4.1)] and
if the evolution were subject to the degree-dependent mean-field equation (4.6).
Both site approximations underestimate the observed threshold, that is, the nu-
merical steady-state solution of Eq. (4.1) suggests A. =~ 0.195 and Eq. (4.8) - the
analytical solution of Eq. (4.6) for an uncorrelated network - results in A\, = 0.2.
This indicates that this shift is rooted in the approximations (4.3) and (4.5).
Fig. 4.2 shows the quantities py/r, pr and pp where k, k' € {3,6} as measured
from the numerical solution of Eq. (4.1). Panel (a) illustrates that the approxi-
mation (4.5) does not hold exactly; and when it comes to py x, the approximation
Pk; = PrkpPr overestimates the original values for £ = 3 [panel (b)] and corrects
the curve downwards for £ = 6 [panel (d)]. The second approximation (pgx = px)
shifts the curves back in the opposite direction. In the case k # k' [panel (c)],
assuming pprr = ppkpr lowers the corresponding slope whereas pr/p = pir does
not bring about a further correction.

In order to find a threshold value which lies closer to the prediction by the site
approximation (4.1), we shall solve Eq. (4.4). Inspired from Fig. 4.2a, we make
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Figure 4.1: Fraction of infected individuals in the stationary state for a SIS-
type process on a random bimodal network. Both the site approximation (dashed
line) and the degree-dependent mean-field equation (solid line) underestimate
the epidemic threshold obtained by the simulation result (stars). For the latter,
averages over 10 realisations of networks of size N = 10* were taken where the
system was relaxed into equilibrium from 10 different starting configurations for
each realisation.

the ansatz ppp = (1 4 cpr)pr Wwith cz3 = —0.18, ¢35 = 0.07, cg3 = —0.08 and
ces = 0.05 where the numerical values of ¢ are obtained from the slopes of py;.
Since P(3|3) = P(3|6) = 1/3 and P(6|3) = P(6/6) = 2/3, the stationary state of
Eq. (4.4) reads

ps = A1 = p3)[(1 + ca3)ps + 2(1 + ca3) ps]
pe = 2A(1 — pg)[(1 + c36)p3 + 2(1 + co6)pe]-

In the vicinity of the epidemic threshold, ps, ps < 1 and the above pair of equa-
tions can be linearised and written in the following matrix form

(S ) (2)

Setting the determinant to 0 leads to a quadratic equation for A, the solution of
interest being \. ~ 0.195 which is in good agreement with the numerical finding.

It is further worth noting that the difference of the threshold values as obtained
from Egs. (4.1) and (4.7) is larger for networks with richer degree distributions,
i.e. if more degrees are present in the underlying network, as long as (k?) is not
extremely large.
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Figure 4.2: Validation of the approximations (4.3) and (4.5). Panel (a) reports
the (conditional) fraction of infected individuals in the vicinity of the epidemic
threshold, and the panels (b)-(d) illustrate how pg s changes upon performing
the approximations mentioned above. The curves corresponding to the site ap-
proximations (solid lines) result from averaging the stationary state solutions of
Eq. (4.1) over all nodes and over 10 realisations of networks of size N = 10%.

4.2.2 Homogeneous networks

In a network where every node has K nearest neighbours, i.e. in a homogeneous
network, the above considerations simplify considerably. Although Eq. (4.1) in
its form still holds, we can take into account the homogeneity by saying that an
arbitrarily chosen node is infected at time ¢ with probability P!, thus omitting
the index ¢. This equation then reads

P =1 - PY[1 - (1 - PH¥] (4.9)
which is a mean-field approximation in its original sense since it involves only one
field, namely P?. From its linearised version

P = \K(1 - PH)P', (4.10)
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Figure 4.3: Epidemic spreading on homogeneous networks of degree 4. The av-
erage number of infected individuals p as a function of the effective spreading
probability A in the steady state is shown. The simulation result for the square
lattice (squares) was obtained by relaxing the system (of size N = 10*) into equi-
librium for 10 different initial configurations. In the case of the random network
(stars), we further averaged over 10 realizations of networks consisting of N = 10°
nodes. This figure shows that the simulations exhibit higher epidemic thresholds
with respect to the mean-field approximation.

we easily extract the threshold value
Ae = —. (4.11)

This is in agreement with Eq. (4.8) since (k) = K and (k?) = K?. It has to
be stressed further that P! can directly be interpreted as a density of infected
individuals p' (= pt = pl}(‘ ), due to the underlying topological homogeneity.
Along these lines, Eq. (4.10) is the homogeneous analogue of each of the Egs. (4.2),
(4.4) and (4.6). Eq. (4.9) therefore also results in A. given by Eq. (4.11), i.e. the
threshold value is not shifted as observed for inhomogeneous topologies.

Fig. 4.3 contrasts the mean-field prediction with simulation results for two
types of networks of constant degree K = 4, namely a random homogeneous
network and a square lattice. The random network exhibits a smaller epidemic
threshold and it lies closer to the prediction A, = 1/4. Both of these observations
are rather intuitive: (i) In a random network, global distances are small, making it
easy for a virus to spread, thus even for a small effective spreading probability, a
non-zero fraction of individuals is infected in the stationary state. (ii) The mean-
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field approximation is also known as the homogeneous mixing hypothesis meaning
that every individual is equally likely to transmit the virus to any other individual.
This is just another way of saying that spatial correlations are not taken into
account and also corresponds to ignore any underlying spatial structure. Since
the random network comes closer to this assumption than the square lattice, the
corresponding simulation result is in better agreement with that predicted by
Eq. (4.11).

4.3 Exact formulation

In this section, we introduce the formalism that will serve as point of departure
for deriving the methods described in Secs. 4.4 and 4.5. For completeness, it is also
shown how the mean-field approximation (4.9), which was heuristically obtained
in the previous section, is recovered.

On an exact level, we shall describe the epidemic dynamics by assigning a
probability P;(x) to each configuration x at every instant of time ¢. The vector
x contains the states x; of all the nodes ¢ of the network, x; being either 0
(susceptible) or 1 (infected). The system probabilities satisfy at any time ¢

> Pux) =1.

and evolve in time according to

Pia(x) = > Wy Puy). (4.12)

The transition matrix of the system Wy_ is obtained from the matrix szz—wz

which shall denote the probability that the state of the arbitrary site [ changes
from y; to z;, through

N
_ l
Wyx = [ [ Wi -y
=1

N being the total number of nodes in the network. The matrix elements rep-
resenting the probabilities for the possible events at the site [ are given by the
simplified version of the SIS model, namely

jnnl
jnnl

or in a more compact form

Wl =1 =z + A2z — 1)(1—y) [1 ~TJe- yj)].

jnnl
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The products in the above expressions have to be taken over all the nearest
neighbours j of node I. The factor 1 — [, (1 —y;) is 1 if at least one y; = 1 and
0 otherwise.

Before deriving our methods which give insight into the role of the loop struc-
ture, we show how the mean-field approximation (4.9) is retrieved through this
formalism. At that level, the sites are considered independently from each other,
and we write for the system probability

Pix) = [ [ Plan), (4.13)

i.e. the system is described by the single variable P;(1) [the probability of being
susceptible is P,(0) = 1 — P,(1)]. Here the index 7 is again omitted since the
underlying network is supposed to be homogeneous. Its dynamics is obtained
from Eq. (4.12) by summing it over all possible configurations x, xy held fixed

Y. Pea® =) _Pily) D, Wy (4.14)

{&;}j0

0
Wyo—wo

where the node 0 can be chosen in an arbitrary way. The left hand side of the
above equation corresponds to the probability that node 0 is in state xy at time
t + 1. With the ansatz (4.13), the time evolution is

Pra(1) = AP (O)[1 - P(0)"].

which is equivalent to Eq. (4.9) since P;(1) = P, and P,(0) =1 — P,.

4.4 Two-step description

A strategy that serves to incorporate local ordering properties - i.e. the loop
structure - is to take into account temporal correlations. Thus, departing from
Eq. (4.12) and performing two time-steps exactly, we expect that the way the
second neighbours are arranged, enters very naturally into the description. For
example, the cases where two nearest neighbours of an arbitrary node are also
directly connected (presence of a triangle), where they are linked via a second
neighbour (giving rise to a loop of length 4) or where the only path goes through
the original node (treelike structure), lead to different results. We now derive the
general equation, special cases are then looked at within the following subsections.

As outlined above, we iterate Eq. (4.12) once

Pt+1 (X) = Z |:Wy_>x Z Wz—»ypt—l (Z) .

Yy
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We now again pass to a site approximation. By summing the above equation over
all possible configurations x, g held fixed, we get

Piiq(zg) = Z [777:_1(Z> Z (Wyo_.xo H sz_%)] , (4.15)
z {vi}i=o1,....x =0

0 again being an arbitrarily chosen node. The system probability P;_;(z) is given
by Eq. (4.13), and the nodes 1,2, .., K denote the nearest neighbours of the arbi-
trarily chosen node 0. If the set comprising the node 0, its nearest (nodes 1,2,...,K)
and second neighbours is denoted by A2, Eq. (4.15) can be written as

Pii1(zo) = Z H Py Zs Z [H Pi1(z) Z (Wyoﬁonsz—»yj
iw}’”i”z SEN? {zulyenz vEN? {wihi=o1,...x §=0

v

1

since in the W-factors, only z-states associated to nodes belonging to /2 appear.
A tour de force calculation then leads to

(Fardims = A (Z Z falfaztﬁz (fofarhir)

1 a1=1 as=a1+1 a1=1

K K K
Z <fa1fa2fa3>t—1+ Z Z <f0fa1fa2>t—1> +

a1+1 ag=as+1 a1=1 as=a1+1
K

K(i S Y e fadis

ar=1l as=a1+1l ag=ag_1+1

K

K K
+z_:1 _ZH... > <fofa1fa2...fa,<_1>t_1>} (4.16)

g 1=ag-2+1

]~

Palt) = A

+>\3<§:

a1=1 a2

Q
S
Il

]~

Thereby we introduced the variable

fa=(1-z)[1- [T -2

anne

1 if z, =0 and at least one z, =1,
0 otherwise

and the expectation value of a function of {zj }renz,

(szhen)) = 3 [ TI Pegl{zmbmen?) (4.17)

{Zk}keNZ l€N2

for notational convenience. In the following, an expectation value of a product of
n f-factors will be referred to as a term of n-th order although it is proportional
to A+ A" As is illustrated in detail in the following subsection, every term of
Eq. (4.16) corresponds to a subgraph of the graph composed of the nodes N?
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and whose links are according to the network under investigation. It can already
be anticipated that the first term accounts for the degree (distribution) only,
whereas the contributions of higher order will give insight about the role of the
loop structure.

4.4.1 Networks of degree four

In this subsection, we elaborate the implications of our two-step description
for topologies where every node has 4 nearest neighbours, the analysis being re-
stricted to the stationary state. In the left panel of Fig. 4.4, we show the simulation

0.4 7
_|||| Trrrrrrrrprrrrrrrrry rrrrrTTTT |||||||Im T 1 1 T l T 1 1 T /:‘:
: |
0.3:_ _: 0.1
a 02F 4 =
C ] 0051
0.1f = X
L ] i
0 0.3 0.4 0.5 0.6 0.7 825
A A

Figure 4.4: Equilibrium prevalences for the epidemic process on top of different
networks characterized by P(k) = dp4. Left: Simulation results for the homoge-
neous random graph (x), the Kagomé lattice (A), the square lattice () and the
ring-type network (o). These results were obtained by averaging over 10 different
initial configurations for networks composed of N = 10* nodes. For the Molloy-
Reed graph, we additionally averaged over 10 realisations of networks. Right: The
ordinary mean-field approximation (thin solid) ignores (local) ordering properties
and yields A\, = 0.25 for any homogeneous network of degree 4. For the Molloy-
Reed network (dotted), the Kagomé lattice (solid), the square lattice (dashed)
and the ring (dotted-dashed), different steady-state prevalences are obtained at
the two-step level.
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results for the random homogeneous network as well as the regular graphs intro-
duced in section 2.3. The ring-type network exhibits the largest epidemic thresh-
old. For both the square and Kagomé lattices, the critical value is A. ~ 0.34. We
therefore anticipate that either four plaquettes or two triangles (per node) lead
to the same effect in the regime of low prevalences. Finally, the lowest epidemic
threshold is found if the population is arranged on a homogeneous random net-
work (of degree 4). The last result is very intuitive since in such a graph, global
distances are small, making it more easy for a virus to spread. Therefore, even if
the effective spreading rate is rather low, a finite fraction of the population will
be infected in the stationary state, hence the small value for the location of the
onset of the epidemic. In summary, these results indicate that the poorer the loop
structure, the lower the corresponding epidemic threshold.

In the right part of Fig. 4.4, the one-step (ordinary mean-field) and two-step
site approximations are reported. The former corresponds to the steady-state
solution of Eq. (4.9) for which p = 0 at A\, = 1/4 according to Eq. (4.11). All the
networks in question are therefore treated identically, the loop structure being
ignored at this level of description. Yet, the two-step solutions [Eq. (4.15)] are
diverse for the different graphs. Going from right to left, the curves correspond to
the ring, the square lattice, the Kagomé lattice and the Molloy-Reed network, that
is they appear in the same sequence as at the level of simulation. Furthermore, the
curves corresponding to the Kagomé and square lattice also meet the z-axis at the
same value of A. It has to be noted that the two-step estimates for the threshold
values are still considerably inaccurate especially for the ring and lattices, but this
just highlights the presence of higher-order spatiotemporal correlations. However,
the important point is that the degeneracy associated to the one-step description
disappears at the two-step level.

On the basis of Eq. (4.16), we shall now analytically study the effect of lo-
cal ordering properties upon the epidemic spreading, leading to a quantitative
understanding of the threshold value.

Random network

We shall now evaluate all the terms of Eq. (4.16) for a locally treelike topology.
Fig. 4.5 shows the subgraphs representing the terms in Eq. (4.16), in increasing
order. Thereby the correspondence is as follows: Given the term (f, fg), the nodes
a and 3 are represented by filled circles whereas their nearest neighbours are
drawn by empty circles. The links which enter at the level of the subgraph in
question, are represented by solid lines whereas the ignored ones are dashed. If
we denote the second neighbours of the central vertex 0 by (1,12,[3 forl = 1,2, 3,4
and follow Eq. (4.17), the first order contribution for a; = 1 (subgraph in Fig.
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__________

(a) (b) (c) (d)

Figure 4.5: Pictorial representation of the terms of Eq. (4.16) for a treelike topol-
ogy. The order of a specific subgraph is given by the number of filled circles, (a)
corresponding to (f1), (b) to (fife) and (fof1), and so forth. In this vein, the
indices of the f-factors appearing in the expectation values correspond to filled
circles whereas empty circles represent their nearest neighbours. The dashed lines
are the links of the complete graph which are not contained in a specific subgraph.

4.5a) is

ZZ Z { 20)P(211) P(212) P(213)

21 Z0 Z11..213

x (1= 21— (1= 20)(1 = )1 = 21)(1 = 219)] }

n

= 4P + O(P?)

where the sum over the z-variables to which no circles are associated, has been
carried out trivially. Furthermore, we again have set P = P(1) in the third line
(this is also done below), and the time index was omitted since we are only
interested in the steady state. This term appears with multiplicity 4 (due to
Zfl:l), giving the contribution 16P to first order in P.

Fig. 4.5b shows the subgraphs representing (fifo) (upper part) and (fof1)
(lower part). Their contributions are

G =X 28 3 3 {PlaPe)Pe

Z2  Z11.-213 221..-223

X P(le)P(Zm)P(le)P(Zzl)P(222>P(Z23)f1f2}
= P+ O(P?),
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Figure 4.6: Loops of length 4 in a network. Primary quadrilaterals (left) are two
adjacent triangles and therefore involve only nearest neighbours (solid empty cir-
cles) of the central node (filled circle). A secondary quadrilateral (right) involves
a second neighbour (dotted empty circle) as well.

occurring (;1) = 6 times and

ot =3 DD 3 { PP P(22) Pz3) Pl20)

20 Z1 Z2..%4 Z11.-213

X P(zll)P(zlg)P(Zw)fofl}
= 9P% + O(P?),

thus not giving a contribution to first order in P. As a consequence, the second-
order term (that is the one proportional to A - A?) is 6P.

As the procedure should now be clear, we only give the results for the re-
maining orders. The upper subgraph of Fig. 4.5¢ represents the term (f; fof3). Its
contribution is P + O(P?). The lower subgraph corresponds to (fy f1 f2), vielding
18P3 + O(P*). As the former term has multiplicity (g) = 4, the total third-order
contribution is 4P.

As far as the fourth order is concerned (Fig. 4.5d), the subgraph involving
node 0 as filled circle neither gives a contribution whereas the term (fi fof3fs)
having multiplicity 1 also gives P + O(P?), thus totally yielding A - A\*P.

Collecting these results, we obtain the following condition that determines the
epidemic threshold for a treelike topology

1= A(16X — 627 +4X% — A1), (4.18)

which is satisfied by A, ~ 0.2609. This is the value that we found numerically
(second curve from the left in the right panel of Fig. 4.4).

Graphs with loops

It is easy to imagine that the preceding analysis yields different results when
triangles and loops of length 4 are present. Caldarelli et al. [32] have classified
loops of length 4 in a complex network into primary and secondary quadrilaterals
(Fig. 4.6). In the former case, the external vertices, which the loop is composed of,
are all nearest neighbours whereas secondary quadrilaterals are plaquettes, the ex-
ternal nodes being two nearest and one second neighbour. With these topological
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[E Q1 Q]

square lattice || 0 0 4
Kagomé lattice | 2 0 0
ring 3 2 2

Table 4.1: Loop properties for our regular non-treelike networks.

measures, the loop structure of a strictly homogeneous graph can quantitatively
be characterised as follows: By choosing an arbitrary node, the number of edges
between its nearest neighbours is denoted by E. (1 and ()> shall refer to the
number of primary and secondary quadrilaterals. For the networks in question,
we report the corresponding values in Table 4.1.

Let us now look at the subgraph development for the square lattice whereby
we focus on the important changes with respect to the treelike case. The full
development is given in the appendix (Table A.1). We have already noticed that
the first-order term is fully determined by the degree distribution, therefore the
A - A coefficient is 16, as in the treelike case. At order 2, the term (f;fo) (upper
subgraph of Fig. 4.5b) splits into two subgraphs in the presence of plaquettes (Fig.
4.7). The right subgraph is the same as in the treelike case, yet the left yields a
contribution 2P 4+ O(P?). Their multiplicities are 4 (left) and 2 (right) summing
up to (;1) = 6. The resulting X - \? coefficient is therefore -10. Although different
subgraphs enter into the development also at the orders > 3, the coeflicients
appearing in the equation determining the epidemic threshold do not change.

The second-order subgraphs for the Kagomé lattice are depicted in Fig. 4.8.
Both contributions are P + O(P?). The one involving a triangle appears 6 times
whereas the right subgraph has multiplicity 4. We therefore obtain the same
second-order coeflicient as for the square lattice. An analysis for the higher-order
subgraphs yields no difference with respect to the square lattice. These two cases

______________

0]
___.()___-___ [
0]

___________________

______________

Figure 4.7: Second-order subgraphs not involving the central node as filled circle
for the square lattice. To first order in P, the left subgraph yields the contribution
2P, the right one P. For further explanations, see Fig. 4.5.
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Figure 4.8: Subgraphs of second order for the Kagomé lattice, both contribute
with P + O(P?). See Fig. 4.5 for details regarding line- and circle styles.

are therefore equivalent at the two-step level for P < 1. In Table 4.2, we sum-
marise the coefficients for these two lattices as well as for the ring, the full elab-
orations being given in the appendix (Tables A.2 and A.3).

Of course the idea is now to extend Eq. (4.18) such that it holds for all the
investigated graphs. Our findings suggest that the local ordering properties enter
in the following way into the equation determining the epidemic threshold:

1= A|16)— (6+ 2B + Q1 + Q2)A% + (4+ QU)X° — 1], (4.19)

However this is not the full story. What about loops of length 57 Let us argue
why they do not enter in the framework of a two-step description. Although there
exist such loops involving only first and second neighbours (Figs. 4.9a and b), the
loop may be closed only between two second neighbours (Fig. 4.9¢).

Obviously such a connection is ignored at the two-step level. In the language
of graph theory [15] (p. 154), the latter case corresponds to a fundamental loop
whereas the former examples can be reduced to loops of length 3 and 4. At the
2-step level, only loops up to length 4 enter into the description for the following
reason: if the central node is infected at time ¢, it can causally affect only vertices
two links away, corresponding to a chain of 4 links. Obviously, it matters whether
the first and the last node of this chain are identical. In this case, we have a loop
of length 4. Otherwise it cannot be distinguished whether the topology is fully

A+ A" coeff. anl n=2 n=3 n=4

square lattice 16 -10 4 -1
Kagomé lattice 16 -10 4 -1
ring 16 -16 6 -1

Table 4.2: Coeflicients of the two-step threshold equation for our networks having
in common P(k) = x4, but differing in the loop pattern.

%)



Epidemic spreading Two-step description

(a) (b) (c)

Figure 4.9: Loops of length 5 involving different hierarchies of nearest neighbours.
Connections emanating from the central node (filled circle) are drawn as a solid
line, links going from nearest neighbours (empty solid circles) to other nearest
neighbours or second neighbours (empty dotted circles) are dashed, and second
neighbours are connected by a dotted line. The pentalateral (a) involves nearest
neighbours only, in (b) the loop traverses a second neighbour and in the one in
(c) lacking in internal connections, a link between two second neighbours serves
to close it.

treelike or if loops of length greater than 4 are present. Along these lines, it has to
be expected that loops up to length 2n enter within an n-time-step description.
In contrast, the presence of higher-order quadrilaterals modifies the coefficients of
Eq. (4.19). Fig. 4.10a shows what we shall call a tertiary quadrilateral: the three
nearest neighbours of the central node are all connected to another common node.
Evidently, the presence of a tertiary quadrilateral implies )5 = (g) = 3 secondary
quadrilaterals. In a fourth-order quadrilateral (Fig. 4.10b), 4 nodes share two

common vertices as nearest neighbours, implying the presence of Q)3 = (i) =4
4
2

of degree K > 4, quadrilaterals up to order K can in principle be found.

tertiary quadrilaterals and @ = ( ) = 6 secondary quadrilaterals. In a network

-'o.i DA
N RS
LN . ~
! ~
1 ~ i 7 AY ~
- ~
H . . \ N
. / \ N
1 4 ~
. ’ \ ~

1 .7 ’ \ ~

. i . ..

(a) (b)

Figure 4.10: Quadrilaterals of orders 3 and 4. The n (a: n = 3, b: n = 4) nearest
neighbours (empty solid circles) of the central node (filled circle) share another
vertex (dotted empty circle) as nearest neighbour.

o6



Epidemic spreading Two-step description

Figure 4.11: This figure visualises how the nearest (empty solid circles, vertices
{-3,-1,1,3}) and second neighbours (empty dotted circles) of an arbitrarily chosen
node (filled circle, node 0) are arranged in a one-dimensional lattice with addi-
tional connections between sites 3 units apart. The sets {0,{-1,1,3},2} as well as
{0,{-3,-1,1},-2} are forming tertiary quadrilaterals.

A one-dimensional lattice with additional connections between the nodes 4
and i+ 3 for all 7 (instead of ¢ 4 2 as in the ring investigated up to now) possesses
the neighbourhood structure shown in Fig. 4.11, i.e. it is characterized by E =
1 =0,02=8,Q3 =2 and Q4 = 0. By applying our formalism to this case and
to a network that has fourth-order quadrilaterals, Eq. (4.19) generalises to

L= A|16A — (6 + 2E + Q1 + Q2)\?

(4.20)
+ 4+ Q1+ Q)N — (1+ QN

the coefficients of order 3 and 4 being modified only.

Introducing disorder

The networks considered up to now lack in the small world property charac-
terising social networks on which the epidemic process is occurring. By starting
with a ring-like network where nodes two units apart are also directly connected
and repeating the second rewiring procedure described in section 2.3 a certain
number of times, we obtain graphs of fixed degree K = 4 that are simultaneously
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Figure 4.12: Steady-state prevalence for the ring-type network having undergone
different degrees of randomisation (N = 10%, 10 different initial configurations, 10
realisations for the cases involving randomness). Left: Simulation result for the
original network (o), its partially rewired version (A) and the entirely random
network (x). Right: The conventional mean-field approximation (thin solid) treats
all the networks in question identically whereas at the two-step level, the Molloy
Reed network (dotted), the partially randomized ring (solid) and the fully ordered
ring (dashed) appear in the same sequence as in the left panel.

highly clustered, and in which the average distance between pairs of nodes is
small [17].

The left part of Fig. 4.12 reports the simulation result for the equilibrium
prevalence of the epidemic process on the disordered ring. Systems of size N =
10* were used, and the rewiring procedure was repeated n = 100 times. For
completeness, the two limiting cases (fully ordered ring and random network)
are also depicted. This panel shows the considerable effect on the steady-state
spreading behaviour of the rather small number of re-wirings.

The right panel of this figure depicts the ordinary mean-field approximation
(predicting A, = 0.25 for all cases) and the numerical solutions of the two-step
description (4.15). It has to be noted that for the partially rewired ring lacking in
strict homogeneity, Eq. (4.15) was solved at every node, therefore involving the
set Py(z;), 1= 1,2,..., N, the resulting prevalence being given by 1/N Zfil Pi(1).
Again at the double-step level, the networks in question are treated differently,
as it could already be observed in Fig. 4.4. Here the curve corresponding to
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the partially randomised ring lies closer to the original network in proportion to
the simulation result. This is due to the small world property which can have
a considerable effect on the location of the onset of the epidemic. Obviously,
the simulation result uncovers the real effect of this global topological property
whereas at the two-step level, it is the slightly poorer loop structure that accounts
for the corresponding shift in the epidemic threshold.

Of course the quantities F, ()1, (2, 3 and ()4 are no longer reasonable for a
partially randomised network due to the lack of strict homogeneity, but rather
its local ordering properties can be quantified by averaging these values over
all the nodes of the network. The emerging topological parameters £ and Q;
(i =1,2,3,4) are essentially the clustering- (up to the factor K(K — 1)/2 = 6)
and grid-coefficients, i.e. the densities of triangles and loops of length 4 [17, 32].
We may therefore replace E and the number of quadrilaterals (of the different
orders) in Eq. (4.20) by its mean-values, yielding the following estimate for the
epidemic threshold condition

1= A|16)A— (6 +2E 4+ Q1 + Q)N

~ ~ ~ (4.21)

+ (4 + Q1+ Q)N — (1 + QoA
For our partially randomised ring, we have E = 2.883,Q; = 1.886, Q> = 1.958
and Q3 = Q4 = 0, leading to A\, ~ 0.2892. This value corresponds approximately
to where the corresponding curve in the right part of Fig. 4.12 meets the r-axis.

4.4.2 Arbitrary degree

The implications of our two-step description have been illustrated for homo-
geneous networks of degree 4 in the previous subsection. This was a convenient
choice as there exists a number of familiar simple graphs obeying P(k) = 04,
differently ordered. Of course our formalism enables us to generalise the obtained
threshold condition (4.20) to an arbitrary degree K, which is the subject of this
subsection.

Let us again look at a fully treelike network, using Eqs. (4.16) and (4.18) as
guidelines. The A%-coefficient 16 incorporating the degree distribution is simply
4 -4 since {f,) = 4P + O(P?) and « runs from 1 to 4. The remaining coefficients
-6, 4 and -1 correspond to the binomial coefficients —(4), (4) and —(i). Indeed

2/>\3
the threshold equation for a treelike network of degree K derived by Eq. (4.16) is

1:>\[>\K2—i>\“<f)} (4.22)

Repeating the graph developments for homogeneous networks characterised
by different values of K and varying loop structures reveals that the very same
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correction terms enter into Eq. (4.22), yielding
1= A{@(K — 1)K

_O(K - 2)[<§> LB+ Q +Q2]>\2

rot - 3)[( ) + @i+ @] ¥ 2

. é@([( — K) [(f) + QR} (—/\)"“}

where E is again the number of connections between the nearest neighbours of
an arbitrarily chosen node, ), denotes the number of quadrilaterals of order n
and ©(x) is the step-function defined by

@(x>:{1 if >0

0 otherwise.

The equation that describes the role of local ordering in a disordered network
subject to P(k) = dy k is again obtained simply by replacing the corresponding
quantities by their mean-values (E — E, Q; — Q;) in Eq. (4.23), providing an
improved estimate for the epidemic threshold.

4.5 Cluster approximations

Performing two steps exactly in the epidemic dynamics - as it was done in
the previous section - is only one way to learn about the role of topological prop-
erties beyond the degree in the spreading behaviour. Another approach consists
in taking into account spatial correlations, that is within this section, we shall
abandon the assumption that the states of two connected nodes evolve in time
independently from one another. The method is illustrated for the conventional
SIS model, and we give the results for the continuous-time limit. The fact that
much attention has been given to this limit of this model mainly led to this
choice, thus allowing for a comparison with existing approaches. While the ef-
fective spreading probability A (= AAt since At = 1) was the central parameter
in the above discrete-time considerations, this role is now played by the effec-
tive spreading rate A which corresponds to a probability per unit time: infected
nodes infect neighbouring susceptible nodes with probability AA¢ (At — 0). By
modelling the spreading dynamics in terms of rates, the mean-field approxima-
tion can be derived in a somewhat different way than that described in Sec. 4.2.
With this rate-based heuristic approach, one can obtain a pair approximation,
that is a description which takes into account pair correlations. Up to this level of
correlations, this is indeed a reasonable strategy. But if one wants to keep track
of higher-order correlations (e.g. the density of plaquettes of four infected nodes

60



Epidemic spreading Cluster approximations

in the case of the square lattice), a more general starting point reveals itself as
advantageous.

4.5.1 Revisiting the mean-field and pair approximations

In this subsection, we first sketch the rate-based heuristic approach and then
derive the mean-field and pair approximations by using an exact description,
which was introduced in Sec. 4.3, formulated for the conventional SIS model. The
various higher-order approximations are elaborated in the following subsection.

Conventional approach

The rate of change of an average quantity f (such as the fraction of sites in a
particular state) is described as

F=Y)" rlea)(fe. = 1), (4.24)

reX ez €E,

where X is the set of all sites, and F, represents the set of all events that can
occur at z. A particular event e, changes the average from f to f., and occurs
at rate r(e;) [59].

At the mean-field level, the dynamics is described in terms of the density of
infected individuals pq, and the fraction of susceptible nodes obeys po = 1—py. If
we interpret p; as the probability that an arbitrarily chosen node is infected, p;
can be altered either through recovery or infection. A recovery changes p; to 0 and
occurs at rate 1 while an infection changes p; to 1 and occurs at rate AK p; since

any infected node can infect neighbouring nodes at a rate A\. As a consequence,
Eq. (4.24) reads

p1=1(0—p1) + AKp1(1 — p1) = —p1 + AK popr. (4.25)

At this level of description, pair correlations are thus fully ignored.

In the framework of the standard pair approximation [58], the dynamics is
described in terms of the doublet densities p,, (z,y € {0, 1}), this quantity cor-
responds to the probability that a randomly chosen pair is in configuration (xy).
They are related to the global densities p, and local densities (conditional prob-
abilities) paiy BY: poy = Pyz = PaPyls = PyPaly- The global and local densities
satisfy

1 1
sz =1 and pr‘y =1 forany ye{0,1}
z=0 =0

Eq. (4.24) tells that the density of infected individuals and the doublet density
p11 evolve in time according to

pr = —p1+ AKpoj1p1

. (4.26)
P = —2pu + 2Ap10 + 2M(K — D)pyjorpao-

61



Epidemic spreading Cluster approximations
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Figure 4.13: An arbitrarily chosen link and its nearest neighbourhood within a
homogeneous network characterized by the degree distribution P(k) = 4. The
dashed lines indicate the connections which are present in the case of a square
lattice.

The first of Eqs. (4.26) can also be regarded as the result of substituting po
by popr in Eq. (4.25), i.e. the susceptible node that becomes infected has to be
a nearest neighbour of the vertex which will transmit the infective agent. The
second of Egs. (4.26) consists of a recovery term and two transmission terms.
More precisely, the first term describes the destruction of (11)-pairs which are
being transformed into either (10)- or (01)-pairs. Both transitions occur at rate 1
(i.e. the recovery rate), hence the factor 2. The two remaining terms correspond
to the creation of (11)-pairs. The factor 2 in these terms is needed because we
do not assume any asymmetry between sites, which means p19 = po1. A (11)-pair
can be created from a (10)-pair either if the infective agent proceeds along the
connection within that pair (second term) or if the susceptible node is infected
by one of the other K — 1 nearest neighbours of it (third term, see also Fig. 4.13).
This path involves the conditional probability pqjo1 [i.e. the probability of finding
an infected node adjacent to a (01)-pair] which is approximated by pqjo as in the
ordinary pair approximation, only nearest-neighbour correlations are taken into
account. In order to solve the Egs. (4.26), the system has to be closed. The set
p1; p1y1 is a suitable choice, but pi1, p1o works equally well.

Fig. 4.14 contrasts the solutions of Egs. (4.25) and (4.26) with the simulations
for two different homogeneous networks of degree K = 4, i.e. a square lattice and
a random network where 4 links are attached to every node®. The pair approxi-
mation provides a rather good description of the equilibrium dynamics on top of a

3This figure is the continuous-time analogue of Fig. 4.3 for the conventional SIS model, except
that the corresponding pair approximation was not shown in the earlier figure. The quantitative
differences can be seen by comparing the threshold values implied by the simulation results:
the thresholds of the rates are higher than those of the probabilities.
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Figure 4.14: Epidemic spreading on homogeneous networks of degree 4. The av-
erage number of infected individuals p (prevalence) as a function of the inverse
effective spreading rate 1/ in the steady state is shown. The simulation result for
the square lattice (squares) was obtained by relaxing the system (of size N = 10*)
into equilibrium for 10 different initial configurations, henceforth this shall be re-
ferred to as the number of iterations. In the case of the random network (circles),
we further averaged over 10 realisations of networks consisting of N = 10°® nodes.
The adopted time-step was At = 0.01 for both examples. This figure shows that
the simulations exhibit higher epidemic thresholds with respect to the approx-
imations. The mean-field description (dotted line) yields A, = 1/4 whereas the
pair approximation (dashed line) leads to A\, = 1/3 for the epidemic threshold.
The latter is also in better agreement with the simulation results for 1/A — 0.

random homogeneous network, whereas the deviation from the simulation result
is remarkable if the population is arranged on a square lattice whose topology is
characterized by the presence of many loops of short length.

We shall now adapt the formalism introduced in Sec. 4.3 to the conventional
SIS model. While this description enabled us to develop our two-step approxima-
tion, in this section it will serve as a starting point in order to investigate the role
of spatial correlations beyond the pair level.

The conventional SIS model at an exact level

With respect to the formulation developed in Sec. 4.3, it is merely the factor
Wé which changes since we are no longer using the simplified SIS model. We

therefore again describe the dynamics in terms of P;(x) which is the probability

1=
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that the system is in configuration x at time ¢ and evolves in time according to

Prear() = 3 Wy Puly). (427

This is a more general formulation than Eq. (4.12) which allows for the derivation
of the continuous-time limit At — 0 at a later stage. The transition matrix
appearing in Eq. (4.27) can be written as

N
Wy = [ [ W}\: (4.28)

=1
where the local transition matrix Wél_ml is given by the conventional SIS model.

Recalling that infected nodes recover spontaneously with rate 1 and infect neigh-
bouring susceptible nodes with rate A\, we have

jnnl
Wi, =1-At W, ,=1- H(1 — Y \AL),
jnnl

where the products have to taken over the nearest neighbours of site [. By using
the binary variable z; in addition to y;, the above expressions are summarised as

Wi =+ (1—2m) [ylAt +1-w[Ja- yjAAt)]. (4.29)
jnnl

The above set of equations will serve as starting point for various approximations,
be it in discrete or continuous time. In the latter case, only the terms up to order
1 in At have to be taken into account, but this limit shall be carried out later
on. As most of the existing methods are formulated in continuous time, we will
elaborate the approximations for this case in order to allow for a comparison.

Derivation of the mean-field and pair approximations

In the following, it is shown how the approximations (4.25) and (4.26) are
recovered from the exact description (4.27).

By repeating the procedure described in the second part of Sec. 4.3 with
wi given by Eq. (4.29), one finds for the probability that an arbitrarily chosen

Yi—xy

site is infected at time ¢ + At
Prini(1) =1 — AtP(1) — B (0)[1 — NAtR(1)])* (4.30)
whose continuous-time limit (At — 0) is
P(1) = —P(1) + AK P(0)P(1),
which is easily identified with Eq. (4.25) since P(1) = p; and P(0) = po.
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Let us now see how the pair approximation is obtained by using our formalism.
For this purpose, we sum Eq. (4.27) over all possible configurations, x4 and xp
held fixed, where A and B are the two sites of an arbitrarily chosen pair

Z Prrar(x) = ZPt(Y) Z Wy—x - (4.31)

{z:}igqa,B) {zi}iga,B)

A B
WyAHz:AWyBﬂzB

o

The left hand side of the above equation corresponds to the probability that the
pair AB is in state (za25) at time ¢+ At, which shall be denoted by Pyai(zaxp).
By adopting the enumeration introduced in Fig. 4.13, we obtain from Eq. (4.29)
for the transition probability (yays) — (zazs)

Wﬁ—»mwfea@ =747 + At(1 = 2x4)[ya — M1 —ya)(ys + 1 +y2 +¥3)|75

+ A1 —2z5)lys — M1 — ys)(Ya + Y1+ ¥s + Y6)| T4
(4.32)

where the linearisation in At has been carried out at this point due to technical
convenience and

T = Ti(xi:yi> =T+ (1 - 2331‘)(1 - ?Ji)v (4-33>

an abbreviation which will also be used below. Furthermore the expression (4.32)
only involves state variables y; where ¢ is either A, B or one of its nearest neigh-
bours. The sum over the remaining y; is therefore carried out trivially. Taking
into account correlations up to range 2 only, we write for the probability that the
pair AB and its nearest neighbours are in given states

Y1 Ya
Pily: va ys ys | = Pyays) - Pi(n1lya) P(yelya) Pys|ya) (4.34)
Y3  Ys '

X Py(yslys)Pe(yslys) P:(ys|ys)-

The conditional probabilities in the above ansatz are expressed as

P (yiyA)

P(yilya) = Plya)

where P(y4) = Zizo P(zya). Using this ansatz and performing the remaining
summations, the continuous-time limit of Eq. (4.31) leads to the system (for

general K)
P(00) = 2P(10) {1 — MK — 1)%}
P(10) = P(11) — P(10) 4+ AP(10) {2(}( — 1)% — K} (4.35)

P(11) = —2P(11) — 2AP(10) [<K - ”% - K} '
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By identifying the pair probabilities P(zy) with the doublet densities p,, and
since poo/po = 1 — p1o/po, the system of Eqgs. (4.35) corresponds to Eqs. (4.26).

In summary, in the conventional derivation of the mean-field and pair approx-
imations based on Eq. (4.24) - described at the beginning of this subsection - the
rate of change of an average density is directly expressed by all the different events
that can alter its value in a rather heuristic way [Egs. (4.25) and (4.26)]. As we
showed, this derivation of the approximations becomes an automatic procedure
involving

e an initial summation of the system probability Pyias(x) over almost all
possible states in order to obtain Pyya¢(x) or Peas(zazp) [Egs. (4.14) and
(4.31)],

e an ansatz corresponding to the approximation [Egs. (4.13) and (4.34)],
e and the continuous-time limit.

However, the last step is not really imperative. Our methodology works equally
well in discrete time. If At is set to 1, AAt = X then corresponds to a probability
rather than to a rate and higher-order terms in X appear in the equations*. As
an example, the discrete-time evolution at the mean-field level is governed by Eq.
(4.30). Obviously, the results quantitatively differ from the continuous-time limit
as was already pointed out in the context of Figs. 4.14 and 4.3. The full advantage
of this formalisation will become clear in the next subsection.

It is also important to note that topological properties beyond the degree
distribution do not enter at the level of the standard pair approximation. In the
case of the square lattice, the nodes 1 and 4 as well as 3 and 6 are connected
(in Fig. 4.13) whereas these links are missing in its random counterpart. Various
improvements upon the ordinary pair approximation have been proposed. Instead
of deriving the higher-order correlations from the dynamics of the system, these
pair models consist in making a number of biologically motivated assumptions
involving parameters that characterize the topology of the underlying network
[59, 60, 99]. We shall compare our approach with these improved pair models in
the next section.

4.5.2 Further Systematic Improvement

The difference between the simulation results and the pair approximation
in Fig. 4.14 is rooted in the negligence of correlations of range greater than 2.
Especially slightly above the onset of the epidemic, where a small fraction of
the nodes is infected, the pairs of sites should not be considered independently,
and higher-order dynamical correlations have to be taken into account. In other
words, the state z; of node ¢ at time ¢ + At is determined by all the states of its

4This approach was pursued for the simplified SIS model in the previous section.
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Figure 4.15: An arbitrary node (denoted by 0) with its corresponding star-like
fundamental cluster within a homogeneous random network of degree K = 4.

nearest neighbours, i.e. it is not the case that the states of the various nearest
neighbours at time ¢ contribute independently from each other to the state x; at
time ¢ + At.

We therefore want to incorporate the longer correlation range by extending
the fundamental cluster (site, pair) to a star or square, respecting the underlying
network’s topology. Different spatial patterns are thus embedded very naturally
by our method. The equations, to which the dynamics of the higher-order correla-
tions are subject to, are derived in a very straightforward way by our formalism.
The binary nature of these equations allows for a very efficient solution by the
computer. On the other hand, the equations can be simplified further by taking
into account the underlying symmetries. This procedure will be illustrated for the
triangular and square lattices. Performing this extension, we find an improved de-
scription of the steady state as well as the dynamics.

Alternatively, it is possible to derive the dynamics of triple correlations by
using Eq. (4.24) [98]. Although this approach has the advantage that no specific
cluster must be chosen, it is a rather difficult undertaking.

Homogeneous Random Network

As the local topology is fully treelike, we shall use a star as our fundamental
element. In contrast to regular lattices, this extension is a unique choice. Fig.
4.15 shows an arbitrarily chosen node in a homogeneous random network and
two hierarchies of its nearest neighbours, also introducing the notation which is
adopted below.
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Figure 4.16: Spreading behaviour for a population arranged on a random net-
work obeying P(k) = dx4. The left panel shows the simulation result (circles) and
different levels of approximations for the equilibrium dynamics. The former was
obtained by performing 10 iterations on 10 different realizations of networks of
size N = 10°, the transition probabilities being determined by At = 0.01. The
star approximation (solid line) is in excellent agreement with the simulation re-
sult, yielding also an accurate description of the critical region. The mean-field
(dotted line) and pair approximation (dashed line) have been plotted again for
comparison. The right part shows the invasion of an infective agent (infection rate
A = 3/7) on the same type of topology. At the mean-field level (dotted line), the
initial prevalence of 0.01 increases to its equilibrium value during 10 time units
only. The pair approximation (dashed line) provides a further improvement, and
the star approximation (solid line) is in remarkable agreement with the stochastic
simulation whose parameters N and At correspond to those already mentioned
above.

The probability that at time ¢, node 0 is in state xy and its nearest neighbours
1,2,3,4 are in the states {xy, 22, x3, 24} is denoted by

Polz zo x3

and obtained by summing 7P;(x) over all possible configurations,
{xg, 1,22, 23,24} held fixed. The probability that the nearest and second-
nearest neighbours of node 0 are in given states, is given by the ansatz

Y2 4
Pl{y;tien) =P [wn wo ws | [ Prvoyisvualuivo), (4.36)
Y4 =1
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where N represents the set of nodes depicted in Fig. 4.15 and the conditional
probabilities are
Yia
Bilus v v
Yo
Pi(yiyo)

The pair probability appearing in the above expression is extracted from the
corresponding star probabilities by

P (yzzylsyz4 ’ylyo) =

Yia
Py(y1yo) Z Z Z Polus w w
Y12=0 y13=0 y14=0 Yo

With these ingredients, Eq. (4.27) leads to the following continuous-time evolution
of the star probabilities

T 4

Pl 20 z3) = Z ( ({ystjen) H[ 1—2x)[y /\(1—yi>zyj]HTk]>
Zy4 {vidjen =0 joni ki

(4.37)

with P({y,};en) given by Eq. (4.36) and 7, according to Eq. (4.33). The binary
character of this system of 2% = 32 equations permits a very efficient numerical
implementation. On the other hand, if one takes into account the symmetries of
the problem, the degrees of freedom can be reduced to 10, this procedure will
be shown for the regular lattices. The left panel of Fig. 4.16 shows the striking
agreement of the star approximation with the simulation result, all along from a
high effective spreading rate to its threshold value, for the equilibrium situation.
Its right part opposes the various approximations to the stochastic simulation
for the case of the invasion of an infective agent, the initial prevalence being
set to 0.01. Whereas the steady state is reached rather quickly in the mean-field
description, the slope of the star approximation is in remarkable agreement with
the simulation. As correlations of a greater range are taken into account, it can
also be observed that the system equilibrates more gradually, that is j(¢ ~ 30)
for the star approximation is considerably smaller than (¢ ~ 10) for the curve
corresponding to the mean-field description.

Square Lattice

The presence of loops characterising the square lattice strongly affects the
epidemic dynamics as we have already seen above. In order to arrive at a level
of description beyond the pair approximation, we shall use the square as our
fundamental cluster. This seems to be a natural choice, although it is not unique
as discussed below. In analogy to the above considerations for the homogeneous
random network, the probability that the corners of the square ABCD are in the
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Figure 4.17: An arbitrarily chosen square within a 2-dimensional lattice and the
denotation of the nearest neighbours of its corners. The former serves as the
fundamental element within the square approximation.

states {za,zp,Zc,rp} at time ¢ is deduced from the system probability by

3(‘“ xB): S A

Tp Ic
{fi}ie{A,B,c,D}

If the nearest neighbours of the vertices A, B, C and D are enumerated according
to Fig. 4.17, we write for the probability that the nodes comprised within these
5 squares (i.e. the nearest neighbours of the central plaquette) are in given states

Pi({vi}ictaB,opaz,..8r) = P (yA yB) - Pi(v1y2|yays) Pe(ysyalysyp)

Yo Yc (4.38)

X Pi(ysys|lycyp) P (yrys|yayce)

Pt (yl y2)
Ya YB

P.(yays)

with

Pi(y1y2lyays) =

involving the pair probability

Py(yays) = i i b (ml IZ)

21=0 x2=0 Ya Ys

and analogously for the other factors appearing in (4.38). At this point, we could
again write down an equation of the type (4.37), but we shall explicitly make use

70



Epidemic spreading Cluster approximations

of the symmetries of the problem in order to reduce the computational load. The
2% = 16 plaquette probabilities are subject to

The exact description (4.27) leads to the following continuous-time dynamics for
these quantities

Go = 4q1 — 8XN11qo

= —q1 + 2%4 + q2c + A[—2¢1(1 + 2T + 1) + 2T o

G4 = —208 + 2g5 + A —4g2 + 2T (g0 + 3¢1) + 2Tn(q1 — ¢2)]

0§ = 245 + 245 + MN(—44§ + 4Tyq1 — 4T545)

Gs = —3¢s + qu + M2qu + 4¢5 — 4g3 — 2T (g0 + 2q1) + 2T (qy + 265 + 245)]
G = —dqs + A[8¢S + 165 — 8Th(q1 + ¢ + ¢<)]

(4.39)
where
t 4t
T =— an = 2
g > pf

involving the following triplet- and pair probabilities given by the square proba-
bilities through

0 0 01
t’f‘zP(l )qu+q§‘, tQCZP(l >=q§+q:a,

pit=P(00) = qo+2q + ¢  and pi=P(10)=q + ¢ + 45 + g
Since
Qo +4q +4g5 +2¢5 +4dgs +qu = 1,

the square approximation in the form (4.39) represents a dynamical system of 5
degrees of freedom, in contrast to 16 if the symmetries were not exploited.

The left part of Fig. 4.18 shows the systematic improvement brought about
by the square- and the bi-square approximations in dynamic equilibrium. The
latter is a description whose fundamental cluster is composed of two squares. Its
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Figure 4.18: Prevalences for the epidemic process on a square-lattice structured
population. The left side illustrates the result for the equilibrium state. The mean-
field (dotted line) and pair approximations (dashed line) are levels of description
at which topological properties beyond the degree distribution do not enter. The
approximations involving the square (solid line) and a rectangle composed of two
squares (dashed-dotted line) as fundamental units systematically approach the
steady-state behaviour, as predicted by the simulations (squares, for its details
see Fig. 4.14). The right panel reports on the dynamics for A = 0.5. By taking
into account correlations of a greater range, the slope during the transient time
decreases as a comparison of the mean-field (dotted line), pair (dashed line),
square (solid line) and bi-square approximations (dashed-dotted line) shows. The
difference between the simulation result (for N = 10%* A¢ = 0.01) and the bi-
square approximation remains significant during the invasion period due to the
considerable effect of random events at overall low prevalence.

prediction of the epidemic threshold (A. =~ 0.38) is still lower than the simulation
result (A, =~ 0.41): this highlights the crucial role of the higher-order spatial
correlations in lattice structured populations. However, the square approximation
describes the spreading behaviour very accurately for 1/\ < 2. The right panel
of Fig. 4.18 represents the improvements upon the dynamics. Note that from a
certain characteristic time the simulation lags behind all the approximations as
a direct consequence of the stochasticity which is particularly important at low
prevalences. However this characteristic time is shifted to the right as higher-order
correlations of a greater range are taken into account.

An improvement upon the standard pair approximation can also be obtained
as follows [59]. Instead of deriving the square probabilities from the dynamics of
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the system, one can write them as

P ( x) = P(2:)P(2a)P(2)P(2;)CiaCas Coy s Tias

T; Ty

involving the relative pair and square correlation factors C,, and Tmie,. For a
straight triple, it is supposed

P(ziz,xy) = P(x;)P(24) P(2)Cia CapT sigy-

By setting the relative correlation factors Thy.; and 1, to 1 and using the
fact that on the square lattice 1/3 of the triples are straight and 2/3 form part
of a square, one obtains an improvement for P(x;|z,23). In other words, the
conditional probability P(x;|z,2) is not simply set to P(z;|x,) as it is done in
the ordinary pair approximation, but rather the loop structure is incorporated
while still using pairs as building blocks.

Triangular Lattice

In its ordinary formulation, the fact that two sites can have neighbours in
common, is simply ignored by the pair approximation. By means of the triangular
lattice, we show how the method described in this section has to be applied, i.e.
what the next level of description beyond the pair approximation is.

The clue is to use the triangle as the basic element. In analogy to the previ-
ous cases, the probability that the vertices of a triangle ABC' are in the states
{z4,rp,zc} at time t is obtained through

Pt(WB) )

Io
{mi}ie{A,B,c}

Fig. 4.19 shows the neighbourhood of an arbitrarily chosen triangle within this
lattice. For the probability that the vertices depicted in this figure are in given
states, we suppose

YAYB

o > - Pi(y1|yays) P (yslysyce) Py |lycya)

P.({viticaBc,.0) = Pt(

X Py(ysyolya) Pi(y2yslys) Pr(ysys|yc)-

The conditional probabilities appearing in the above expression can be written
as fractions involving site- and pair probabilities. The latter are deduced from
the triangle probabilities in analogy to previous explanations. As the triangle
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Figure 4.19: An arbitrarily chosen triangle and its nearest neighbourhood. The
dashed lines indicate that the corresponding links are ignored.

correlations are subject to the symmetries

P, (OOO> =104
P (1()0) _p (001> _p (010) _—
Pt(l()l) _ Pt(110> _p <011) .
B (111) =134,

a further simplification can be performed, and finally the continuous-time triangle
dynamics is governed by the equations

to = 3[t1 — 2A\(A; + 4y)]
t:l = —t) + 2o + 2X(—2t; + 34; + 24, — 245 — Ay) (4.40)
to = —2ty +t3 + 2\(t1 — 3to — 3A; — Aoy + 4A3 + 2A,)
t3 = 3[—t3 + 2\(t, + 3ta + A} — 245 — A))].
where
it
50 po’ S0 a ;
depending on the pair probabilities p; = P(10) = ¢; + ¢, po = P(00) =ty + ¢,
and the site probability so = P(0) = to + 21 + ¢2. Because of the constraint

t tot
A=t g, 200 g PP d A,

o+ 3t + 3ty + 13 = 1,

we have three degrees of freedom in the triangle approximation (4.40).
As far as the equilibrium prediction is concerned, the triangle approximation
provides a very good description for 1/A < 3 (Fig. 4.20, left panel). The difference
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Figure 4.20: Results for the SIS model on a triangular lattice. Left: Steady-state
prevalence as predicted by various approximations and through computer simu-
lations (triangles) whose parameters are N = 10*, At = 0.01 and 10 iterations.
The mean-field description (dotted line) yields an epidemic threshold A. = 1/6.
With respect to the pair approximation (dashed line), the description based on
the triangle (solid line) provides a better approximation of the simulation result.
Right: Invasion dynamics for an effective spreading rate A = 1/3. The upper two
curves show the mean-field (dotted line) and pair dynamics (dashed line). The
improvement brought about by the triangle approximation (solid line) still lags
behind the simulation result due to the same reason as in the case of the square
lattice. The latter was obtained for N = 10* and At = 0.01 as well.

between its threshold prediction (1/A. =~ 4.5) and the simulation result (1/A, ~
3.9) is of the same order of magnitude as the plaquette approximation in the
case of the square lattice. Concerning the dynamics (Fig. 4.20, right panel), we
also observe a lag between the simulation and the approximations, and the slope
during the transient time is slightly improved as one goes from the pair to the
triangle approximation.

The strategy outlined at the end of the last subsection can also be applied to
the triangular lattice [59]. In addition to the open triplet probability, the triangle
probability is written as

P( i ) = P(2,)P(22) P(2)CiaCapT niat-
ToTy

One then obtains an analogous correction for P(z;|x,xp) involving a parameter
@ denoting the fraction of triplets in closed form which is 2/5 in the triangular
lattice. Interestingly, the simplest elaboration of this approach (7aiw = T =
Tiap) Teproduces the invasive period reasonably accurate if 6 is chosen larger than
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its correct value (6 ~ 0.6). Keeling et al. [60] and Rand [99] also developed
improved pair models based on this approach.

4.6 Discussion

The spreading of an epidemic, be it the propagation of an infectious disease or
a computer virus, was modeled as a dynamic process on a networked structure.
We used two versions of the simple SIS model where nodes representing individ-
uals or computers are either susceptible or infected. In the first, infected nodes
recover with probability At, susceptible nodes become infected with probability
AAt if they are connected to at least one infected nearest neighbour, and At was
set to 1. In the second, more conventional version, the recovery of infected nodes
occurs with rate 1 while they infect neighbouring susceptible sites at a rate A.
In the methods discussed below, we also describe to which of these models they
apply. This choice is motivated below. As far as the connectivity patterns rep-
resenting the contact structure are concerned, we chose simple model networks
each of which enabling us to tune specific topological properties and thus allow-
ing to study its effect on the spreading behaviour. In particular, random bimodal
networks were used to learn about the role of degree correlations, and networks
with a fixed degree (regular lattices, homogeneous random networks and adequate
small-world networks) led to new insights about the role of short loops.

With the hypothesis that the state of any node is not felt by its nearest neigh-
bours, that is by ignoring spatial correlations, we rigorously derived a sequence of
mean-field equations involving various further approximations. The main conclu-
sion gained at this level of description is that the fraction of infected pairs, one
node having degree k the other k’, is not simply the fraction of infected nodes
of degree k times that of degree k’. In other words, the heterogeneous topology
induces correlations although the probability of finding an infected pair of nodes
is assumed to be the product of the two site probabilities in question. These
mean-field considerations presented in Sec. 4.2 were performed for the discrete-
time version of the simplified SIS model although the equally apply to the other
formulation of the SIS model mentioned above.

The remaining part of this chapter was devoted to the role of short loops in the
spreading process, and since we did not aim to come to an understanding of the
combined effect of the loop structure and degree-related topological properties,
homogeneous networks were used. Describing the epidemic dynamics of the entire
population as a Markovian process, we derived a two-step description that takes
into account temporal correlations. This approach revealed to be very prolific if
one wants to unravel the role of loops of short length in the contact network
regarding epidemic spreading. Indeed it leads to a subgraph development where
the complete graph involves the connectivity patterns of two hierarchies of nearest
neighbours (of an arbitrarily chosen node). Within this novel approach serving to
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tract a probabilistic system, the local topology, be it treelike or be loops of length
3 or 4 present, therefore enters very naturally. The analytically obtained condition
for the location of the onset of the epidemic then serves as a guiding equation
elucidating the role of clustering and grid-like ordering in epidemic spreading.

In principle it is possible to apply our two-step description to more complex
networks where different degrees are present, uncovering the effect of the degree-
dependent densities of triangles and quadrilaterals on the critical value. Likewise,
loops of length < 2n are expected to enter within an n-time-step description, also
providing a natural classification of them. However the major insight gained by
the strategy of exploring temporal correlations is best illustrated as it was done
in Sec. 4.4.

It is worth noting that this method only applies to a discrete-time formulation.
This is easily seen by looking at the threshold condition, e.g. Eq. (4.21) or (4.23):
A in fact stands for AA¢ and by performing the continuous-time limit (At — 0)
from a two-step equation, only terms proportional to At" with r < 2 are kept.
Loops would thus have a vanishing effect in this limit. However, describing the
epidemic dynamics in discrete time is not an unreasonable assumption: in order to
measure the transmission probability, an interval of time needs to be fixed and this
probability is then derived from the number of occurred transmissions between
two individuals, repeating the experiment many times. The two-step approach
could also be applied to the discrete-time version of the conventional SIS model.
However, the coefficients in the threshold condition are then expected to depend
on the number of triangles and quadrilaterals in a more complex manner, that is
the simplified SIS model is particularly illustrative in the context of this method.

In the remaining section, we explored spatial correlations in order to come to
an understanding of the role of the local topology in the spreading phenomenon.
The method we proposed in Sec. 4.5 consists in choosing a fundamental cluster
composed of a certain number of nodes as well as links connecting them. A definite
probability is assigned to each possible configuration of the basic element. The size
of the fundamental cluster represents the range up to which spatial correlations
are exactly taken into account. At a level beyond the pair approximation, the
choice of the basic element is guided by the underlying network’s topology. In
the case of the square lattice, clusters composed of at least one plaquette serve
as the fundamental element; for random networks the local treelike structure
is incorporated by using the star as the basic cluster. Spatial patterns beyond
the degree distribution are therefore embedded in a very natural way by this
method. By adopting the same point of departure as for the two-step approach,
that is describing the epidemic dynamics of the entire population as a discrete-
time Markovian process, the appearing probabilities (probability that a cluster
and its nearest neighbourhood is in a given configuration) are expressed in terms
of the fundamental cluster probabilities. The continuous-time dynamics emerges
as a limiting case (At — 0).

With respect to the ordinary (rather heuristic) derivation of the mean-field
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and pair approximation, these descriptions are derived with the help of our for-
malism by using the site or the pair respectively as fundamental clusters in a
very automatic way. Independently of the specific choice of the cluster, the bi-
nary character of the resulting equations allows for a very efficient solution by
the computer. Likewise, a further simplification can be reached if the symmetries
which the fundamental cluster probabilities are subject to, are taken into account.
As soon as correlations of range greater than 2 are not ignored, our method yields
improved estimates for the location of the onset of the epidemic. In the case of the
random network, the star approximation already leads to an excellent descrip-
tion of the steady state and the transient dynamics. In the regular counterpart,
many squares have to be included within the corresponding fundamental unit in
order to attain the same level of accuracy. This is due to the presence of stronger
correlations caused by the high local ordering. The method was also illustrated
for a triangular lattice and contrasted to approaches that make a certain number
of agsumptions about the higher-order correlations which lead to improved pair
models.

We have focused on homogeneous networks, since in this case a fundamen-
tal cluster is identified most easily. The homogeneity lies indeed at the basis of
our cluster approximations since it must be possible to express the probability
appearing on the right of our master equations [see e.g. Eq. (4.37)] entirely in
terms of the fundamental cluster probabilities, such as in Eqs. (4.36) and (4.38).
In principle, our method can be extended to slightly heterogeneous systems, for
example to a random network where two different degrees are present. The dy-
namics is then described in terms of two different star-like clusters (according to
the occurring degrees), this hybridisation involving the constraint that the pair
probabilities derived from the two clusters must coincide.

However the novelty of this method lies in the formalism which essentially
consists in a more general starting point and its associated systematic improv-
ability rather than the specific results for the selected epidemiological model and
geometrical examples.

In summary, the mean-field description led to a non-trivial relationship be-
tween degree correlations and the time evolution of the fraction of infected pairs
connecting nodes with given degrees; and the methods presented in Secs. 4.4 and
4.5 provide ways to study the role of the local topology in a dynamic probabilis-
tic system. The two-step approach has the advantage that it unravels the role of
short loops for networks with an arbitrary degree of disorder, but this effect is
only seen if the dynamics is modelled in discrete time. On the other hand, cluster
approximations apply to both discrete- and continuous-time dynamics, but they
rely on the fact that the process takes place either on a fully regular or entirely
random topology.
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Chapter 5

Spatial small-world networks

The problems investigated up to now were related to networks which did not
“live” in a (geographical) space, i.e. a space in which a metric is defined. All what
mattered, for example in the previous chapter, was: who is connected to whom,
i.e. which individual/computer can possibly transmit the virus to whom. Thus
the positions where the nodes were drawn were of a minor importance. In that
sense, all the networks depicted in Fig. 5.1 are identical. That is, if we label the
nodes and establish a matrix A with A;; =1 if ¢ is connected to j and A;; =0
otherwise (i.e. the adjacency matrix), there exists a way of labeling the nodes for
the Figs. 5.1a-f such that the resulting matrix A is always the same. Clearly, in
the case of Watts and Strogatz’ model, we started with a lattice that “lives” in a
D-dimensional space, but the reason for that was merely to borrow from it a high
local interconnectedness - that is a property of regular lattices. In other words,
the Euclidean distance between nodes has not been a quantity of interest.

The following networks indeed do not “live” in a geographic space: the World
Wide Web, social networks to some extent! and any type of virtual network,
e.g. the protein folding network where nodes are protein configurations and a
(directed) link between any two nodes is established if there exists a corresponding
transition between the two nodes [100] - or generally, any network where the
links have no real or physical correspondence. Yet, networks like the Internet,
the human brain at the anatomical level or integrated electronic circuits clearly
“live” in a Euclidean space, and the locations of the nodes are essential when
it comes to describing these systems. In fact, it is believed that the brain has
evolved so as to minimise the wiring costs related to the lengths of the axons and
dendrites [101, 102, 103], computer chips were designed such that a low amount of
wire is used and also for computer networks such as the Internet, long physical?
connections are more costly. More importantly, these spatial constraints have
shaped these networks, and it is essential to understand how topology is affected
by these constraints.

ndirectly, geography matters in a social context in that people usually have most of their
friends in the same neighbourhood, village or town and some who live elsewhere.
2For obvious reasons, satellite or wireless connections are not subject to that constraint.
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Figure 5.1: Six different ways of laying out the same network. (a) nodes arranged
around a circle; (b) nodes arranged along a line; (¢) nodes arranged across the
page according to distance from a particular node; (d) 2D layout with network
and spatial distances as close as possible; (e) planar layout; (f) 3D layout [104].

When we think of network topology, one point immediately comes to mind:
is it possible to construct small-world networks in which the wiring costs are
somehow minimised? At first sight, we hardly think that this question could be
answered in an affirmative way since the small-world phenomenon is rooted in
the presence of shortcuts, i.e. long-range connections, which are costly. However,
the length distribution of the shortcuts ¢(I) appears to be crucial. While the ma-
jority of the modelling effort has been done for uniform distributions, decaying
power laws were reported for the above systems [61, 62, 63]. A length distribu-
tion ¢(I) ~ I~ implies the absence of a characteristic connection length, i.e. the
presence of multiple length scales. It was even conjectured that the fundamental
mechanism behind the small-world phenomenon is neither disorder nor random-
ness as described in Sec. 2.3, but rather the scale-free length distribution [105].
Moreover, the navigability in a small world with such a connection-length dis-
tribution depends on the corresponding decay exponent [106], and the nature of
random walks over the network is also affected [107].

In this chapter, we re-analyse the small-world phenomenon for systems where
q(l) ~ 1= and investigate how the topology relates to the wiring costs. We
complement the picture in that we also study the distribution of flows over the
links and the robustness related to random failures and overload of connections,
finishing with concluding remarks.
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5.1 Topology

As already mentioned in Sec. 2.3, the behaviour of the mean distance char-
acterising the small-world (SW) phenomenon essentially depends neither on the
chosen regular lattice (as point of departure) nor on the details of the rewiring
procedure, that is, it does not matter whether local connections are replaced by
shortcuts or if the latter are simply added. Here, we supplement a D-dimensional
lattice (D = 1,2) of linear size L - thus consisting of N = L” nodes - subject to
periodic boundary conditions, with p/N additional connections whose lengths are
distributed according to the probability density ¢(1) ~ {~®. Due to the boundary
conditions, it is most convenient to allow for lengths 2 < [ < L/2 which also
determines the normalisation of ¢(1). More precisely, any such additional connec-
tion is established by first choosing its length according to ¢(1); it is then put on
the lattice by randomly choosing one endpoint and the other at distance [ (with
no preference to a particular direction), such that no pair of sites is connected
by more than one additional connection. It thus depends on the value of [ that is
being drawn whether the corresponding additional link is a real shortcut implying
that it connects far away nodes.

For small values of p, this formulation of the SW model corresponds to the case
where at every site, a link is added with probability p - the other endpoint being
chosen as above, but it has the advantage that p can be greater than 1 which allows
us to look beyond the simple probabilistic version. Clearly, a certain amount of
real shortcuts - that is, long additional connections - is required for SW topology
to emerge. A first picture is obtained by plotting the mean distance versus p for
different values of , namely 0, 0.5, 1, ..., 3 and a fixed system size (Fig. 5.2), the
lowest curve (o = 0) corresponding to (d)(p) in Fig. 2.3. At a fixed value of p, (d)
increases with a. Conversely, in order to have a given mean distance, the value
of p that must be chosen increases with . By looking at the region p > 2, the
points corresponding to o < 1.5 lie much below the three uppermost curves. This
may be the signature of a topological transition. However, in order to investigate
its precise nature, the N-dependence of (d) needs to be considered as well, as we
pointed out in Sec. 2.3, and this is done in the following. The above reasoning
suggests that SW features are present if the length-distribution exponent « is
smaller than a critical value «.. In order to find this critical exponent, we look at
the probability that an arbitrarily chosen additional link is a real shortcut, that
is,

L/2
RE= [ g (1)
(1—c)L/2
¢ being small but finite, and require the presence of the order of one such con-
nection:
P.(L)p*(L)LP ~ 1 (5.2)
where p*(L)L” is the desired number of additional connections. The interpreta-
tion of p*(L) is as follows: for a given L (and «), the presence of many more
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Figure 5.2: Relative mean distance versus p for 1-dimensional lattices (N = 10%).
The curves correspond to the following length-distribution exponents: o = 0 (o),
a=0.5(0), a =1 (A pointing upwards), a = 1.5 (A pointing leftwards), o = 2
(A pointing downwards, o = 2.5 (A pointing rightwards) and o = 3 (x). These
results were obtained by averaging over 10 realisations of networks.

additional links than the desired number [pL” >> p*(L)L”] implies SW topology,
that is the mean distance scales as in a random network ({(d) ~In N = DIn L). On
the contrary, if pL? < p*(L)L”, one essentially observes a regular lattice char-
acterised by (d) ~ L also referred to as a large world (LW). Evaluating Eq. (5.1)
gives

—(1=¢)t= if «a<l,
P(L)~< —In(l—¢)/InL if a=1, (5.3)
L1 —¢)t= — 1] if o> 1.

and with Eq. (5.2), we find for the critical fraction of additional links

Lr if a<l,
p"(L) ~ < In(L)/LP if a=1, (5.4)
Lo—b-1 if a>1.

where the c-dependence has been ignored since we are only interested in the
scaling with L. Eq. (5.4) can also be interpreted differently if p rather than L is
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Figure 5.3: Mean distance versus linear system size, both of these quantities being
rescaled by L% (p), for p = 0.001 (o), p = 0.002 (O), p = 0.004 (A), p = 0.008 (¢)
and p = 0.016 (V). The exponent « ranges from 0 to 3.5 as indicated. The data
collapses confirm Eqgs. (5.4) and (5.6) also for o > «.. (lower right panel). These
results were obtained by averaging over 100 realisations of networks (of different
sizes) and in each case, the mean distance was computed by constructing the
minimum spanning tree from a number of randomly chosen “root” nodes, this
number being chosen such that an accurate estimate could be obtained.

fixed: there exists a critical length L*(p) such that L > L*(p) corresponds to SW
topology and L < L*(p) characterises a large world. This is easily seen by raising
these inequalities to the power of D and multiplying them with p since then,
again numbers of additional connections are contrasted and the above picture
holds. Mathematically, we replace p* by p and L by L*, leading to

e~ 1P it as<l, (5.5)
1 .
pe-—Db-1 if a>1.

with some sort of logarithmic correction of minor importance for a« = 1. For the
special case o = 0, this result was previously derived by other means [74, 108, 109].
We further see that L*(p) — oo as @« — (D + 1)~. This suggests . = D + 1 and
implies that SW topology only emerges for o < «.. Before contrasting this result
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with the findings of other authors, we shall provide a unified SW-LW picture and
verify it numerically. The mean distance can be expressed as

()= I'Fa(£2), 5.6

the scaling function obeying [74, 75, 108]

if < 1,
Falz)~ T S (5.7)
Inx if r>1

where the second line of Eq. (5.7) may also read [In(x)]*®), s(a) > 0. Fig. 5.3
shows the rescaled mean distances as a function of the rescaled linear system
size for different values of o and p = 0.001,0.002, ...,0.016 in each set for the
case D = 2. The observed data collapses for all the length-distribution exponents
confirm Eq. (5.5) obtained by our simple argument as well as Eq. (5.6). We
numerically verified Eq. (5.7), especially in the limit L/L* < 1, the logarithmic
tail of F, further being exhibited best for small «.

Some attention was previously given to this type of problem. Sen et al.’s results
suggest o, = D41 in agreement with our finding although they oddly defined the
SW behaviour via the scaling of the clustering coefficient rather than by means of
the scaling of distances [110]. Our argument can also be formulated for a model
where a link is added at any site x with probability p, the other endpoint (y)
being chosen with probability ~ |x — y|~® [111], to which we will refer as the
variation of our model. This indeed differs from adding p/N links whose lengths
are distributed according to ~ [~ for any value of p because of the following
reason. In the version treated in this section, for any link to be added, we first
choose its length according to the probability density distribution

l—(}i
="
then randomly choose one endpoint and the other at the drawn distance [ with no
preference of a specific direction. Hence the length distribution of the additional
links does not depend on the dimensionality of the lattice as the lengths are
chosen first. Yet, in the version where a link is added at any site with probability
p, the other endpoint being chosen with probability ~ |x — y|™®, the resulting
link lengths are influenced by the dimension of the lattice in that the emerging

distribution is
lD—l—a

[f/? [p=1-aq]

in essence simply because the length is chosen after the site in question “sees”
the dimensionality of the lattice, which changes the normalisation accordingly.
For this version, ¢(I) in Eq. (5.1) has to be replaced by [dQ [P~¢(l), and the
subsequent steps result in o, = 2D. In Ref. [111] this critical exponent is derived

%(Z) =
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through the following rescaling argument. The lattice is divided into blocks of
linear size b such that 1 < b < L, one block thus containing b” nodes. Any
two blocks are connected if there is at least one additional link from one node
in the first block to another in the second. From the number of additional links
at this coarse-grained level, a corresponding p can be extracted, and the above
conjecture was found through p = f(b)p. The variation of the model is equivalent
to the case where a connection is added between any pair of sites x and y with a
probability proportional to |x —y|™* [112]. In this reference, o, = 2D was found
with mathematical rigour. Let us finally note that in one dimension and for small
p, the two models do coincide. This is in agreement with the fact that in that
case, the two predictions for a, are equal (o, =D +1=2D=21if D =1).

5.2 Wiring costs

The moments (/) and (/%) play a crucial role as far as the wiring costs of the
networks are concerned. The total wiring cost Cy = pL”(l) is also an important
quantity, its minimisation governing, for example, the evolution of cortical net-
works [101]. We find for the first two moments the scaling relations summarised
in Tab. 5.2, the expressions for integer o being modified by logarithmic correc-
tions. In 2 dimensions, SW topology can be realized even if (I) = const (that
is, for 2 < a < 3 = ) whereas this is not the case in 1 dimension where (I}
becomes finite in the L — oo limit only above a. = 2. Moreover, if D = 3, it is
even possible to have (I) = O(1) = (I?) while still being in the SW regime for
3 < a < 4= q,. An appropriate choice of the parameters D and « is thus the key
to constructing networks which are both efficient (SW topology) and economical
(low wiring costs).

It is furthermore interesting to have a closer look at the relationship between
the wiring costs and the topology. As « varies, one can ask what mean distance
results, given a total amount of wiring length (i.e. the total cost) to be used to
establish the additional connections. Fig. 5.4a reports these dependencies for o =
0,1,1.5 and 1.75 (going from the uppermost to the lowest set) for 1 dimensional
topologies of 10* sites. The largest value of (d) (the leftmost circle) corresponds to
the length scale L* < 10® <« 10* = L, thus all the points in the figure represent
the system in the SW regime. It can clearly be seen that the mean distance

| [0<a<l 1<a<2 2<a<3 a>3|

(1) L L*« const const
(1) L? L3« L3« const

Table 5.1: Behaviour of the moments of the connection-length distribution as a
function of the linear system size L.
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Distribution of flows
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Figure 5.4: (a) Mean distance as a function of the total wiring costs (divided

by the number of sites) for 1 dimensional topologies (N = 10%). The curves (o:
a=0,Ara=1 ¢ o =15and O a = 1.75) show that the mean distance
decreases with « for a fixed value of Cy /N. (b) Analogous results for D = 2
[N =500 % 500 and o =0 (o), a =1 (), « =2 (¢) and o = 3 (%)], the inset
enlarges the rightmost part of the curves. All the points shown here result from
averaging over 100 realisations of networks.

decreases with « at fixed wiring costs Cy /N, i.e. the larger o the smaller the
world. Let us now see how this behaviour can be understood in terms of the
analytical elaborations from the previous section. When Eq. (5.6) is expressed in
terms of z = Cy /N = p(l), L* being taken from Eq. (5.5), we obtain

1 Fo(4z) if a=0
d _ .
% ~ @x 1.7-"1[43:111(L{2)] if a= (5.8)
xo—2F, [const(a)xm if 1<a<?2.

Since F,(x) ~ Inz in the SW regime, this effectively raises the exponents of x
appearing to the left of F, in Eq. (5.8) slightly and thus qualitatively explains
the numerical results shown in Fig. 5.4a, at least for x = Cy, /N < 20. Moreover,
we made similar observations in 2 dimensions (Fig. 5.4b).
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Figure 5.5: Distribution of flows over the additional links for 1-dimensional lattices
(p = 0.1, N = 10%, 100 realisations). (a): full distributions (o: o = 0, 0: o = 1
and ¢: @ = 1.5). (b): mean values of the betweenness centralities and (c): relative

variances.

5.3 Distribution of flows

Up to this point, we have seen that a positive value of « in the connection-
length distribution leads to favourable properties: for example, given a certain
amount of wiring length, choosing a higher « (but still below the value o, = D+1)
leads to a smaller world. In order to obtain a more complete picture, we also
studied the implications of our model regarding the distribution of flows over the
additional links. The corresponding quantity is the link betweenness centrality
which was introduced in Chapter 1. Let us briefly recall this measure. If every
node sends one packet (of information) to every other node, there are

b(s) = 3 "4E ) (5.9)

n
“p 4B

packets flowing through link s, where n 45 is the number of shortest paths between
nodes A and B, and nag(s) counts only those going through connection s, the
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Figure 5.6: Betweennesses for 1D networks (N = 10%) where the wiring costs
associated to the additional links are fixed. First (a) and second (b) moments (o:
Cw/N = 10, O: Cy /N = 100). These results were obtained by averaging over

100 realisations of networks.

sum running over all pairs of nodes®. Fig. 5.5 reports the full distribution of the
betweennesses (a), the corresponding mean values (b) and fluctuations (c¢) for
1D networks with a fixed number of additional links (p = 0.1, N = 10%) and
a = 0,1,1.5. These computations were performed with the help of an efficient
algorithm [38, 113]. The observation that (b.) increases with « can be understood
through the following argument [114]: (b.) is obtained from Eq. (5.9) by summing
over all links and dividing the result by E, the total number of them, that is,

1 N?
be) — dap = —(d 5.10
EZMBZMB = F X s =F (5.10)
h\/_/ ’
nABdaAB

where dap is the distance between nodes A and B, i.e. the length in terms of
the n umber of links of the corresponding shortest path. Hence, if the links of
the underlying lattice are ignored, we indeed expect that (b.) increases with «
since (i) N and E are independent of v and (ii) (d) is an increasing function
of « (Fig. 5.2). Regarding the fluctuations, one can argue similarly. The second

3Tt is assumed that every packet is routed through the shortest path.
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moment of the betweenness centrality, i.e.

; Z nan(s Z repls Z Z Z nap(s)nep(s)

NAB nNcp NaB Ncp
(5.11)

is essentially determined by the extent to which shortest paths overlap since for

a given link s, the factor nag(s)ncp(s) is non-zero only if the link s is part of a
shortest path from A to B and of another one from C to D. Evidently, the higher
a the smaller the fraction of real shortcuts, i.e. those carrying the traffic, and
the very same links also overlap more and more. This qualitatively explains the
behaviour of o(b.)/{b.) = 1/(b2)/(b.)> — 1 observed in Fig. 5.5.

It is also interesting to study the betweenness distribution when the wiring
resources (to build the network) are fixed. In Fig. 5.6, we report the numerical
results for Cy, /N = 10 (lower sets) and Cy /N = 100 (upper sets), the remaining
parameters being D = 1 and N = 10*. Panel (a) illustrates that (b.) now decreases
with «. This is in agreement with Eq. (5.10), i.e. (b.) ~ (d)/E, since both (d) (see
Fig. 5.4) and 1/E ~ (pN)™! = (I)/Cw are decreasing functions of . Regarding
the variances, panel (b) shows that

o(be) - o(be)
{(be) low/n=10 " (be) low/N=100

for @ 2 0.5. This indicates that increasing the total costs, thus providing more
additional links, reduces the degree to which shortest paths overlap - if we adopt
the reasoning given for p = const - which is reasonable.

5.4 Robustness

In the previous sections of this chapter, we have investigated properties of
spatial small-world networks (with connection lengths that decay as a power
law) whose connectivity patterns were not changed, once the additional links
had been added. Yet, it is interesting to study the behaviour of the networks
with respect to link deletion. The associated concept, that is, robustness, can
for example be defined as the extent to which the mean distance increases when
a definite fraction of additional links is failing. Two different types of failure
can be distinguished. On the one hand, it is possible that certain connections
are malfunctioning for whatever reason, resulting in random failures. The other
scenario is directly related to the traffic on the network: as the links may only
be able to carry flow amounts which lie below a certain threshold, overload of
the additional connections occurs which is the second type we shall investigate.
We further merely compare networks with equal (initial) wiring costs, that is the
trivial case p = const is not studied in this section.

As far as random failures are concerned, Fig. 5.7 illustrates to what extent the
mean distances of 1D networks increase for Cy /N = 10 (left) and Cy /N = 100
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Figure 5.7: Robustness with respect to random failures. These figures show to
what extent the mean distance increases when a fraction g of the additional
connections is removed. The initial 1D networks have a fixed cost: Cy /N = 10
(left) and Cy /N = 100 (right), and « takes on the values 0 (o), 1 (O), 1.5 (o)
and 1.75 (x). These results were obtained by averaging over 1000 realisations of
networks consisting of L = 10* nodes.

(right), a taking the values 0,1, 1.5 and 1.75 if up to 10% of the additional links
are deleted. We find that for low costs (Cyw /N = 10), a = 0 corresponds to the
most robust system, becoming more fragile as « increases. Yet, at high wiring
costs (Cw /N = 100), the WS-type network (o = 0) is most vulnerable, and the
robustness related to random failures undergoes an inversion between these two
cost values, simply reflecting the non-trivial behavior of {d)(p). We observed an
analogous effect in 2 dimensions. Changing the network structure through such
random failures obviously entails a redistribution of the flows. Fig. 5.8 shows that
{b.) increases with the failure fraction ¢, which does not come as a surprise.

In the case of overload, we found the behaviour to be independent of the wiring
costs of the initial network. The vulnerability always increases with «, that is,
the relative increase of the mean distance (caused by deleting a certain fraction of
the most charged links) is lowest for e = 0. Fig. 5.9 reports this behaviour for 1D
networks, the lowest set corresponding to o« = 0 and the uppermost to a = 1.75
(Cw/N = 10). This finding is in agreement with the arguments given above in the
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Figure 5.8: Link betweenness centrality distribution for several (random) removal
fractions ¢. The distribution associated to the initial network (characterised by
Cw /N = 10, corresponding to ¢ = 0 and [J) is shifted rightwards as ¢ increases to
0.1 (o) and 0.5 (x). These results were obtained by averaging over 1000 realisations
of networks of size (N = 10%).

previous section. The higher « the smaller the fraction of real shortcuts carrying
the majority of the traffic and making (d) small. As a consequence, (d) increases
the faster upon their removal the larger «. Furthermore, this result does not de-
pend on the details of the overloading process: whether a given fraction of the
most charged links is removed simultaneously or the failure is accomplished in a
cascade-like fashion, the dependency of the robustness from « remains unaltered.
The bold symbols in the inset of Fig. 5.9 show the cascade-like case, illustrat-
ing that (d)/{d)(¢ = 0) increases with « as well. In 2 dimensions, we obtained
analogous results (Table 5.2).

| a [ 0 1 2 3 |
| (d)/{d(q=0)) | 1.05+£0.01 1.08+001 1.24+0.02 1.37+0.04 |

Table 5.2: Overload-related robustness (simultaneous removal of 10% of the most
charged connections). The values shown here were obtained by simulating the
process for 100 different realisations of networks consisting of N = 100 x 100 sites
with initial wiring costs Cy /N = 10. The emerging picture is that networks with
low « are most robust.
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Figure 5.9: Robustness with respect to overload. This figure shows the extent
to which the mean distance increases upon removing a fraction ¢ of the most
charged, in terms of flow, links for 1D networks (N = 10% Cy /N = 10) for
a=0(x),a=1(0),a=15(0) and o = 1.75 (¢). The inset enlarges the region
0 < ¢ < 0.2 and the relative increase of (d) upon a cascade-like removal of links
is also shown (for ¢ = 0.1, bold symbols). Here we averaged over 10 realisations
of failures and networks.

5.5 Discussion

This chapter was devoted to our speculation that there is more about the
small-world phenomenon as was known until very recently, especially in the case
where the links have a physical correspondence, e.g. computer connections, axonal
or dendritic wire (brain) or metallic wire (integrated circuits). In Watts and Stro-
gatz’ model where the resulting shortcut-length distribution is uniform, building
a small world is a costly affair. In the context of flows over the network, most of
the traffic is carried by the few shortcuts (which are O(L) long). This makes the
system very vulnerable with respect to their deletion.

Since it is theoretically interesting and because power-law decaying
connection-length distributions have been reported in various contexts, we per-
formed a detailed analysis of appropriate model networks. The model consisted
in supplementing a D-dimensional lattice with additional links whose lengths are
distributed according to ~ =, Instead of the lattice, one could also start out with
a random distribution of nodes in D-dimensional space with only nearest neigh-
bour connections, the nearest neighbours being defined via Voronoi tesselations
[115].

By means of a simple analytical argument and through extensive numerical
simulations, we showed that small-world topology can be realised for a < a. =
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D+1. By studying the scaling of the moments of the length distribution, we found
that our small-world networks can be constructed in a very economical way if D
and o are chosen appropriately. In 3 dimensions, it is for example possible to
build a small world while (I} = O(1) = (I?). If networks differing in o with equal
wiring costs are compared, it turns out that the larger «, the smaller the world
(as long as o < o). Networks with a positive v also show favourable attributes
when it comes to the distribution of flows over the links. Finally, above a certain
value of the wiring costs Cyw /N, high o networks are more robust than low « ones
with respect to random failure of links while for the case of overload - be it the
simultaneous removal of the most charged connections or a cascade-like overload
- the vulnerability increases with «. These findings complement the observation
that power-law decaying connection-length distributions emerge quite naturally
when wiring costs along with shortest paths are minimised [69].
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Chapter 6

General conclusions and outlook

In this interdisciplinary study, we have employed the framework of statistical
physics in order to address several questions regarding the topology of large
and complex networked systems. The selected problems fall into the categories
(a) ‘how to obtain the topology’, (b) ‘topology as cause’ and (c) ‘topology
as effect’, these keywords providing an overall characterisation of the field of
complex networks. More precisely, it is not a trivial task to get the graphical
representation for many classes of networks (a); it is important to unravel
the role of topology as far as dynamic processes taking place on networks are
concerned (b), as well as to understand what factors shape the topology of
complex networks (c¢). In the following, we briefly summarise the results of this
study, draw our conclusions and give suggestions for future investigations.

Obtaining the graphical representation (a) is particularly challenging in the
case of the Internet (at the router level). Unlike the World Wide Web where links
are visible in the form of hyperlinks, the Internet’s topology must be queried
indirectly, e.g. by sending data packets from an arbitrarily chosen router to a set
of targets. We examined whether the map obtained through such an exploration
reflects the real topology or if this discovery method introduces systematic er-
rors resulting in a distortion of the topology. In order to approach this problem,
we mimicked the probing process by applying a treelike exploration method to
networks whose topology we know, making it possible to compare the original
connectivity patterns with the observed ones. At a qualitative level, the overall
topology is fairly well captured, that is homogeneity or heavy-tailed degree dis-
tributions are usually conserved by the mapping process. Dramatic effects, such
as the appearance of power-law degree distributions for underlying homogeneous
graphs, are found only in very peculiar cases. At a more quantitative level, we
numerically found for scale-free model networks, namely for the preferential at-
tachment model by Barabdsi and Albert and for the intrinsic vertex fitness model,
that the explorer “sees” a smaller exponent than the original one. For the first
of these models, we were able to support our finding with a simple analytical
argument. The interpretation of a reduced exponent is that low-degree vertices
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are underrepresented in the explored network. This is reasonable because these
vertices have fewer paths reaching them as the betweenness centrality generally
increases with the degree in the case of scale-free networks. However, a deeper and
model-independent understanding of this effect is still missing. This is of major
importance and should, in principle, allow for a prediction of the real exponent,
given the measured one. Clearly, the degree distribution is only one topologi-
cal property of a complex network. Regarding the interconnectedness, a treelike
exploration gives a good estimate for the diameter along with an underrepresen-
tation of short loops. It would thus be interesting to study to what extent C'(k) is
distorted, i.e. whether the mapping process conserves the hierarchical structure.
It would also be an interesting problem to investigate if degree correlations are
subject to such biases.

While our simulations were based on single source explorations, other authors
pointed out how the mapping improves if more than one source is used. All the
mentioned efforts and suggestions may ultimately lead to more efficient mapping
strategies and to a set of rules describing how to extrapolate for the real topology
from the measured one.

The second and major part of this thesis was devoted to dynamic processes
taking place on complex networks (b). More precisely, we studied the spreading of
an epidemic and examined how the topology influences the spreading behaviour.
The importance of topology in this context has been noted only rather recently:
it had been a long-standing problem why computer viruses are so persistent until
the scale-free topology of the Internet was shown to lie at the root of the absence
of any finite epidemic threshold. Interestingly, this result can be obtained through
the simplest mean-field approximation.

We have shown that ignoring “real space” pair correlations, i.e. assuming that
the states of connected infected nodes are uncorrelated, does not imply the ab-
sence of pair correlations in “degree space”. In other words, the fraction of infected
nodes of a given degree depends on the degrees of the nearest neighbours. Further
approximations then led to different levels of mean-field descriptions, the final one
corresponding to the simplest type mentioned in the previous paragraph. These
descriptions give a precise quantitative interpretation of the degree distribution
and the degree correlations in the dynamic behaviour.

While the role of the degree-related topology in the spreading behaviour can
be uncovered rather straightforwardly, it is much harder to unravel the corre-
sponding role of loops. Clearly, such an understanding cannot be gained at the
mean-field level where the number of nearest neighbours of a given node is the
only topological property entering into the approximation. By describing the epi-
demic dynamics as a Markovian process at an exact level, we derived two methods
which yield a quantitative interpretation of how local interconnectedness deter-
mines the dynamic behaviour, namely a two-time-step description and cluster
approximations.
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The former method was elaborated for homogeneous networks in which ev-
ery node “sees” identical connectivity patterns, and it consists in performing two
time steps exactly. This led to a subgraph development allowing to unravel how
the way the next-nearest neighbours (of an arbitrarily chosen node) are arranged
influences the spreading behaviour. The resulting equation describes how clus-
tering and grid-like ordering determines the onset of an epidemic, not only for
strictly homogeneous networks, but also for disordered ones in which every node
still has the same degree. The method could in principle be extended to hetero-
geneous networks, i.e. graphs in which not every node has the same degree. This
would lead to an understanding of how the degree distribution, the degree corre-
lations and the degree-dependent loop densities fogether determine the spreading
behaviour. The other line of extension is to carry out more than two time steps
exactly. In a 3-step description, the simulation result is approximated even better,
also providing a natural classification of loops up to length six. More generally, if
n steps are performed exactly, the accuracy improves systematically. In addition,
the accompanying classification of loops up to length 2n might be interesting in
its own right, given the current high attention paid to the study of network motifs
and subgraphs.

In the second method, one has to choose a fundamental cluster and the exact
description then leads to a set of equations for the probabilities that the cluster
is in a given configuration. As the choice of this cluster reflects the underly-
ing network topology, this method is more adequate for homogeneous networks.
We observed that in order to obtain a given accuracy, the cluster size must be
chosen much larger for regular lattices than for random networks. This can be
understood if we recall that the local treelike topology effectively makes random
networks infinite-dimensional structures. As the accuracy of the mean-field ap-
proximation increases with the dimension, i.e. the higher the dimension the weaker
the dynamical correlations, the above observation does not come as a surprise.
However, further work is needed in order to identify a controlling parameter that
determines the required cluster size for a given level of accuracy. In analogy to
the different levels of mean-field descriptions, the pair approximation could also
be transformed into degree space. In such a description, the (degree-dependent)
clustering coeflicient could be taken into account by interpreting it as the pro-
portion of open to closed triples. This hints at another approach uncovering the
combined effect of the degree-related topology and the loop structure. Since it is
currently not known whether the epidemic threshold vanishes for highly clustered
scale-free networks, the elaboration of computational strategies in this direction
is of the utmost importance.

In principle, one could also imagine n-step cluster approximations, that is
exploiting temporal and spatial correlations simultaneously. In the framework of
a “two-step pair approximation”, the probability that the nodes up to two links
away from an arbitrarily chosen pair are in given states would then have to be
expressed in terms of intricately overlapping pairs.
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Finally, we wish to stress that our methods are independent of the choice of
the epidemiological model. Focusing on the role of topology, the SIS model was
an appropriate choice so as to keep the complexity due to the contact process at a
minimum. However, if we allowed the nodes to be in three or four possible states,
our methodologies could also be formulated for the susceptible — infected —
recovered (SIR) model or for the susceptible — exposed — infected — recovered
(SEIR) model. In fact, our methods could also be employed in order to describe a
dynamic process other than the spreading of an epidemic since they are systematic
descriptions of a system that evolves according to the rules of a probabilistic
cellular automaton. One example would be the dynamics of a neuronal network:
a neuron can be susceptible to synaptic inputs, fire an action potential thus
“infecting” other nodes, and display a refractory period after action potential
firing, corresponding to a third state.

Overall, our methods are rigorous approximations for dynamic probabilistic
systems of which we merely know the time evolution. In this context, the
probability of finding the system in a given configuration at a given time (even
in equilibrium) is only implicitly determined through its (Markovian) time
evolution. Due to their generality, we believe that our methods will prove useful
in different contexts.

In the case of a lethal infectious disease, nodes disappear in the course of
time. This means that a network on which a dynamic process takes place can
be altered by that process. Therefore, while we clarified the role of topology as
far as the spread of an epidemic is concerned (b), it should be beared in mind
that a dynamic process of this type can also shape the topology of a network
(¢). In this thesis, we considered another factor that determines to some extent
the topology of complex networks, namely spatial constraints. For a network
“living” in a Euclidean space, the positions of the nodes matter and the links
have a physical length to which a wiring cost can be associated. By adopting a
wiring cost perspective, we investigated under what conditions it is possible to
realise small-world networks. At first sight, wiring minimisation seems to conflict
with the emergence of a high global interconnectedness since that topological
property is due to the presence of long-range connections which are costly. Yet,
by supplementing D-dimensional lattices with additional links whose lengths [
are distributed according to a decaying power law, i.e. [~%, it resulted that small-
world networks can be constructed in a very economical way if D and « are
chosen appropriately. When it comes to flows over the links, we found that their
distribution becomes more optimal as « increases. Concerning random failures of
links, we obtained the non-trivial picture that the small-world network by Watts
and Strogatz (a = 0) is most vulnerable if a large amount of wire is available.
In the case of overload, on the other hand, the length distribution alone fully
determines the robustness, that is, networks characterised by a high value of o
are most vulnerable. As length distributions of the type investigated here have
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been observed in a number of real-world networks, such as integrated circuits,
the Internet or the human cortex, we believe these results will have intriguing
implications in their modelisation.

Besides wiring minimisation, there are other factors which shape the topology
of real, spatial small-world networks. The wiring patterns of a neural network
are for example subject to the minimisation of conduction delays related to the
transmission of signals along axons and dendrites. Furthermore, since ‘growth’
is a characteristic ingredient partly determining the architecture of the Internet
and neural networks, it would also be interesting to examine a model involving
growth along with simple rules for the establishment of connections with regard
to link length distributions.

In summary, this study was devoted to the topology of complex networks: how
we obtain it (a), what its role in dynamic processes is (b) and how specific factors
shape it (¢). In particular, we examined the treelike exploration of scale-free
networks and discussed the implications regarding the topology of the Internet.
As far as probabilistic processes on networks are concerned, we developed different
levels of mean-field approximations and two systematic methods which unravel
the role of short loops in the dynamic behaviour. Finally, we demonstrated that
many properties of small-world networks are favoured when the shortcut length
distribution is a decaying power law rather than a uniform distribution.

In a broader sense, it would for example be interesting to examine problems
at the interface of (b) and (c). That is, the dynamics of the network and that of
the epidemic process are usually coupled in a real situation, leading to a deeper
understanding of the interplay between topology and dynamics. Furthermore,
we only dealt with binary networks in which nodes are either connected or
not. It might be worthwhile to generalise the ideas presented in this thesis
to weighted networks, especially the methods serving to describe dynamic
probabilistic processes on networks. In an epidemiological context, this would
mean that the likelihood for the virus to be transmitted along a given (social)
link depends on its weight or, as far as the Internet is concerned, a virus is more
likely to propagate along a connection with a large flow of data. In addition
to the concrete open questions given in the above paragraphs, these are all
further interesting future directions for which the insights of this thesis provide
a valuable basis.

The results of this Ph.D. thesis were published in journals read by the scien-

tific community interested in complex networks and mathematical epidemiology,
and part of them were also presented to the neuroscience community.
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Appendix A

Full subgraph developments

On the following pages, we show the complete subgraph developments which
lead to the coefficients determining the epidemic threshold at the two-step level
described in Sec. 4.4 for the square lattice (Tab. A.1), the Kagomé lattice (Tab.
A.2) and the ring-type network (Tab. A.3). Every subgraph corresponds to a
term in Eq. (4.16), its contribution is obtained by the procedure illustrated in
Sec. 4.4.1. The - A"-coefficient of the threshold equation is obtained by summing
all the O(P) contributions (taking into account the multiplicities) of the n-th-
order subgraphs.
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Full subgraph developments

‘ order (n) H 1 2 3 4
subgraph
contribution | 4P + O(P?) | 2P+ O(P?) P+ O(P?) P+ O(P?)
multiplicity 4 4 4 1
subgraph
contribution P+ O(P% | 2P?+0O(P?) | 5P*+0O(PY)
multiplicity 2 4 4
subgraph
contribution 9P + O(P3) | 18P3 + O(PY)
multiplicity 4 2
| X A-coeff. | 16 -10 4 -1

Table A.1: Subgraph development for the square lattice. All the terms in Eq.
(4.16) are symbolized by a specific subgraph, its order being given by the number
of filled circles. The X - A\®-coefficient -10, as an example, is obtained by summing
the various O(P) contributions, that is 2-4+1-2+0-4 = 10, and the negative sign
comes from Eq. (4.16). The A-A3- and A- A-coefficients are unaltered with respect
to the treelike topology although other subgraphs enter into the development.
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Full subgraph developments

‘ order (n) H 1 2 3 4

subgraph

contribution P+ 0O(P?)

multiplicity 1
subgraph

contribution P+ O(P?) | 5P2+0O(P?) | 8P*+ O(P?)

multiplicity 4 4 4
subgraph

contribution 8P3 + O(PY)

multiplicity

A AN-coeff. | 16 -10 4 | -1

Table A.2: The subgraphs of all the orders for the Kagomé lattice. See Tab. A.1
for how the coefficients are obtained and as far as further details are concerned.
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Full subgraph developments

‘ order (n) H 1 2 3 4

subgraph

contribution | 4P + O(P?) | 2P + O(P?) P+ O(P?%

multiplicity 4 4 1
subgraph

contribution

multiplicity
subgraph

contribution P+O(P?) | 3P2+0(P3) | 2P*+ O(P?)

multiplicity 1 3 2
subgraph

contribution P+ O(P? | 5P*+0O(P?)

multiplicity 3

A+ N-coeff. | 16 | -16 | 6 | -1

Table A.3: The full subgraph development for the ring-type network. See Tab.
A.1 for the derivation of the A - A"-coefficients. With respect to the two lattices
treated above, the A - A%- and X - A3-coefficients are -16 and 6.
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