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Abstract

Two major lines of investigation have been pursued in this thesis: (1) More efficient, robust and
realistic numerical techniques are designed for the simulation of complex turbulent fluid flows;
(2) A new algorithm and its analysis is performed in the context of multiphasic fluid flow, for a
cohesive fine-grained sediment (fluid mud) transport in estuaries.

Estuaries exist between marine and freshwater system where waters of different physical, chem-
ical and biological composition meet, combine and disperse primarily due to tidal influences.
In the present thesis, the behavior of cohesive sediment in estuaries is reviewed based on the
existing literature. Basic theories and recent developments are introduced to describe the for-
mation of fluid mud from a very dilute suspension and its motion down a natural river bed with
complex bathymetry. The present work contributes to the numerical simulation of complex
turbulent multiphasic fluid flows encountered in estuarine channels, with the aim of the better
understanding of the underlying physical processes as well as predicting realistically the cohe-
sive sediment transport and bed morphology in such a zone. The model is based on the mass
preserving method by using the so-called Raviart-Thomas finite element on the unstructured
mesh in the horizontal plane. In the vertical, the computational domain is divided into number
of layers at predefined heights and the method uses a conventional conforming P1 finite element
scheme, with the advantage that the lowermost and uppermost layers variable height allow a
faithful representation of the time-varying bed and free surface, respectively. Concerning the
modeling of turbulence, the research effort focuses on the turbulence two-equation k− ε closure
for the vertical parameterization of eddy viscosity. More precisely, a robust up-to-date algorithm
is used for this issue. The new methodology is developed with the aim to account for more gen-
eral relevant effects in the closure. The proposed model offers the capability to cope with the
stiffness problem introduced by the large difference between the solid phase flow time scale and
the hydrodynamic one, by using a sub-cycling strategy, whereas the splitting scheme is adopted
with the aim of stability and the positivity of the relevant turbulent variables. The flexibility
of the model and its performance are evaluated on several free-surface flow configurations with
increasing complexity : homogeneous unsteady non-uniform flows in plane open channel flows,
U-shaped (193o) curved open channel flow.

Concerning the cohesive sediment transport, most of the existing models in the literature assume
the analogous transport characteristics with that of the coarse sediment and adopt the relevant
developed sediment transport for the latter to treat the former. Moreover, these existing models
do not account for the consolidation of the mud-bed. The present research effort focused on a
novel methodology based on the realistic empirical relationships, which accounts for the mutually
exclusive processes for re-suspension and/or erosion and deposition of fine sediment, whereas
only a limited range of bed shear stresses is allowed for simultaneous erosion and deposition to
occur. Hence, on this basis, the new model investigated the bed morphology evolution by taking
into account of the fluidization and/or consolidation of the fluid mud, which was handled by
modeling the bed in three layers: (i) the mud-bed layer, (ii) the partially consolidated bed and
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(iii) the fully consolidated bed.
The prediction of deposition/re-suspension using these two different methods lead to a non
negligible difference in the results. Therefore, investigation of the true mechanism of ero-
sion/deposition processes for cohesive sediments and their implementation in the numerical
model is very important. This suggests that a realistic prediction must account for the fresh
mud-bed re-suspension once deposited, as well as the consolidation and/or fluidization of the
mud-bed deposits.

Finally, the capability and improvements of the model are demonstrated, and its predicting
performance is successfully evaluated by applying it to the simulation of the Po River Estuary
(PRE) in Italy, which is the main source of river water discharge into the Northern Adriatic Sea.
The analysis showed that the consolidation/fluidization process at the bed may have important
influence on the prediction of bed morphology evolution. The three-layer approach used in this
thesis is a first attempt to model these processes in detail within a numerical model.



Version abrégée

Deux axes principaux de recherche sont poursuivis dans cette thèse : (1) des techniques ef-
ficientes, robustes et réalistes sont développées pour la simulation des écoulements de fluides
complexes et turbulents ; (2) un nouvel algorithme est développé et analysé dans un contexte
d’écoulements multiphasiques, pour la simulation du transport de sédiments cohésifs (liquide
vaseux) dans les estuaires, où l’eau chargée de sédiments de la rivière (avec diffŕentes compo-
sitions physique, chimique et bilogique) se mélange à l’eau salée de la mer, sous influence de
marée.

Dans cette thèse, une revue est faite sur le comportement des sédiments de type cohésif dans
les estuaires, à partir d’une litérature détaillée. Les théories de base et les récents développements
sont introduits pour la description de la formation du liquide vaseux à partir du mélange en sus-
pension et de son mouvement sur le fond du canal de la rivière naturelle avec une bathimétrie
complexe. Le travail ci-présent est une contribution à la simulation numérique des écoulements
multiphasiques complexes et turbulents que l’on rencontre dans les canaux estuariens dans
l’optique d’une meilleure compréhension des processus physiques qui sont à l’origine, et de
permettre ainsi des prédictions réalistes du transport de sédiments cohésifs et la formation du
lit dans ces zones. Le modèle numérique garanti la conservation de masse et est construit sur
la base d’une méthode des éléments finis de type Raviart-Thomas sur une grille non-structurée
sur le plan horizontal. Dans la direction verticale, le domaine d’étude est sub-divisé en plusieurs
couches prédéfinies et le modèle utilise la méthode conventionnelle des éléments finis de type
P1 sur une grille conforme, avec l’avantage que l’épaisseur variable des couches du lit et de la
surface libre permet une meilleure réprésentation de la forme du lit et de la surface libre qui
varient en fonction du temps. En ce qui concerne la modélisation de la turbulence, les recherches
sont focalisées sur le modèle k− ε à deux équations de fermeture, pour la paramétrisation de la
composante verticale de la viscosité turbulente. Plus précisement, un algorithme robuste récent
est utilisé à cet effet. Une nouvelle méthodologie est proposée dans le but de tenir compte des
plus importants aspects généraux qui jalonnent la fermeture. La méthode de sous-cyclage pen-
dant l’intégration temporelle introduite dans le modèle proposé, permet de résourdre le problème
de raideur, dû à l’existence d’une large différence entre les échelles caractéristiques de temps.
En effet l’échelle caractéristique de temps de la phase solide est généralement très long par
rapport à celui de l’hydrodynamique. D’autre part le modèle adopte la méthode d’intégration
temporelle à pas fractionnés, afin d’obtenir et de préserver la positivité des variables de la tur-
bulence et d’assurer la stabilité du schéma numérique. La flexibilité et les performances du
modèle sont évaluées en l’appliquant pour la simulation des écoulements à surface libre suivant
plusieurs configurations de complexités croissantes : les écoulements homogènes, instationnaires
et non-uniformes dans les canaux ouverts droits et courbe à 193◦.

S’agissant du transport de sédiments cohésifs, la plupart des modèles qui existent dans la
littérature, utilisent par analogie aux les caractéristiques des sédiments de gros grains non-
cohésifs, des modèles de transport adaptés à ces derniers pour modeliser des premiers. Par
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ailleurs ces modèles ne traitent pas de la consolidation de la couche vaseuse du lit du canal.
Ce travail de recherche focalise l’attention sur sur une nouvelle méthodologie basée sur le
principe d’exclusion mutuelle dans les processus de re-suspension et/ou érosion d’une part, et
de déposition d’autre part. Dans ce cas précis, il n’existe qu’une gamme limitée de contraintes
de frottement qui permette un processus simultané de déposition et re-suspension. Ainsi donc,
en se basant sur ce principe, le nouveau modèle tient compte de la constitution et du comporte-
ment du lit en tenant compte de la fluidification et/ou la consolidation du liquide vaseux, et
entrâıne ainsi la formation de trois couches sur le lit du canal qui sont: (i) la couche frâıche
de vase, (ii) la couche partiellement consolidée et (iii) la couche complètement consolidée. La
prédiction du processus de déposition/re-suspension sur la base des deux méthodes conduit à
une différence non négligeable dans les résultats. Ainsi, l’investigation sur le mécanisme réel des
processus d’ éposion/érosion des sédiments cohésifs et de leur implémentation dans un modèle
numérique, devient une nécessité. Ceci laisse entrevoir qu’une bonne prd́iction doit tenir compte
du processus de re-suspension , de même que la consolidation et/ou fluidisation de la couche de
vase frâıchement déposée.

Finallement, la capacité et les améliorations du modèle sont proposées et ses performances
sont évaluées avec succès pour la simulation de l’embouchure de l’estuaire du fleuve Po (PRE),
qui est la principale source dans la partie Nord-Est de la Mer Adratique. L’analyse montre que
le processus de consolidation/fluidisation sur le lit pourrait avoir une influence importante sur la
prédiction de l’évolution de la formation et de la morphologie du lit. L’approche abordée dans
cette thèse, basée sur les trois composantes (type de couches) du lit, est une innovation en ce qui
concerne la prise en compte avec détails, de ce type de phénomème dans un modèle numérique.
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Chapter 1

Introduction

1.1 Motivations

The present research finds its motivation in the increasing need for efficient management of estu-
aries by taking into account the various conflicting environmental and socio-economical aspects.
Estuaries exist between marine and freshwater system and they are the primary catchment
drainage sites to the coastal ocean, where waters of different physical, chemical and biological
composition meet, combine and disperse primarily due to tidal influences (where the freshwater
charged with sediment from river meets the saline sea cold water). Many famous ports of the
world are situated in estuaries. Estuaries, which are of great economical importance to society,
pose challenging planning and management problems to engineers and scientists. As transitions
between fresh river water and saline sea water the estuaries not only offer an ideal environment
for the development of various natural habitats, but they also constitute a natural harbor and
attract human settlements. This inevitable and conflicting juxtaposition of natural and human
habitats creates a very fragile equilibrium which must be efficiently managed and conserved.
In this fragile equilibrium, the transport of the cohesive sediment in the water column and the
accompanying changes in the bed morphology of the estuary play an essential role in the dy-
namic equilibrium of estuaries. Fine cohesive sediments consisting of a mixture of clay, silt, fine
sand, and occasionally some organic matter, enter in several ways into management of natural
water bodies and into the design of water resources systems. The design of stable channels
with cohesive sediment bed, the control of shoaling in estuarine waterways and the prevention
of sediment pollution in coastal and estuarine zones are typical examples of cases where erosion
and deposition of cohesive sediments play a dominant role. Generally the estuary harbors have
a silty floor, and the navigation channels need to be regularly dredged for large ships to pass
through shoals. The deposition of the sediment in navigation channels threatens the security
of ships and the authorities in charge of the management of estuaries and harbors are often
faced with frequent costly dredging operations with important environmental and economical
consequences. Economic constraints dictate the construction of various coastal structures for
coastline stabilization and for harbor functions, as well as the costly and frequent dredging of
the estuary floor for maintaining safe navigation channels. On the other hand extreme care must
be taken not to endanger rich natural environment and various habitats occupying the estuaries
and to protect the coastal wetlands. Thus the development of the existing ports and improve-
ment of estuaries channels, especially in the heavy shoaling area, are necessary. The efficient
management of estuaries requires a sound understanding of the complex physical processes. The
relocation with regard to short and long term morphology of dredged material placed on the
seafloor at the open-water disposal sites can also be a problem (e.g. when the sediments are
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2 CHAPTER 1. INTRODUCTION

contaminated). The interventions on the estuary bed must therefore be optimized. For exam-
ple, two typical problems, with seemingly conflicting goals, often faced by coastal and estuary
engineers are:

• prevention or reduction of the sediment deposition in harbor basins, channels, cooling
water intakes, outlets of coastal power stations, etc;

• the favoring-deposition and reducing-erosion for the replenishment of beaches and protec-
tion of the foundations of marine structures. The knowledge of the transport of cohesive
sediments is also necessary for improving water quality, and relocation of dredged sedi-
ments.

Improvements of ports and navigation channels will result in a change in original regimes of
such an estuary such as shoaling patterns, circulation patterns, salinity intrusions etc. . . , and
planning of such work requires therefore a knowledge of estuarine dynamics, sedimentation
processes, sources of sediments, and location and amount of shoaling.

Nowadays, at many locations, offshore harbors are under construction to accommodate deep
draft ships and to avoid shoaling problems. The construction costs of such facilities are very
high, and therefore ports located in the vicinity of estuaries are still in use. Heavy shoaling in
the lower section of estuaries act as navigational barriers, which have been insignificant in the
past when vessels had shallow drafts.

Every year governments spend considerable amounts of money in estuarial development,
maintenance, and management projects without necessarily being sure what their likely outcome
and/or effectiveness will be.

The solution to many managerial problems in estuarine and coastal environments such as
wetland protection and restoration, maintenance of navigation channels, dredging and reloca-
tion of dredged materials , contamination of sediments from anthropogenic sources, evaluation
of the effects of man made construction works on siltation and turbidity maximum requires de-
tailed information on sediment transport, turbidity levels and siltation rates. Laboratory scale
models are quite costly and they cannot provide satisfactory answers to all questions. Field
measurements are difficult to realize, cost considerable amounts of money and the results may
contain too much noise for any general analysis. This suggests that adaptative management ap-
proaches launched from numerical modeling investigations are most appropriate for the better
understanding and to obtain cost-effective results.

The modeling of sediment transport in coastal regions has great economic value, and robust
and reliable numerical models with good predictive ability can provide invaluable information
to both researchers and engineers interested in the modeling of complex estuary dynamics and
hydrodynamics, driven by tidal forcing, wind action, density differences due to temperature,
salinity, sediment concentration, freshwater and sediment input from the river, etc. Fluvial
geomorphologists and sedimentation engineers recognize that there are complexities involved
in dealing with fine-grained material bed streams. There is also a consensus that there is no
universal approach for the solution of problems of managing or “re-naturalizing” streams in a
cohesive bed material environment. As a result, general practices point toward the need for
in-situ data collection and site-specific assessments. To effectively carry out these tasks, it is
imperative that practitioners have a thorough understanding of the different physical processes
that occur within streams bounded by fine-grained sediments.

This thesis attempts to present concise summary and discussion of the up-to-date knowledge
on the fundamental aspects of cohesive sediment dynamics modeling and on the basic erosional
and depositional processes modeling, together with some suggestions for future research needs.
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Hence, the present work aims at the development of a numerical model for simulating the
transport and fate of cohesive sediment in estuaries as well as for predicting the related changes
in bed morphology resulting from erosion and/or re-suspension and deposition processes.

This thesis is based on current knowledge of cohesive sediment transport including new
research and improvements to current knowledge, and future research directions. Moreover the
present thesis points out not only the simplifications encounter in available literature, but also
issues and topics not thoroughly understood.

1.2 The scope and layout of the thesis

1.2.1 The scope the thesis

The importance of the hydrodynamic behavior of cohesive sediments motivated extensive ba-
sic and applied research on the subject, particularly during the last thirty years. The current
knowledge, although not yet complete, contributed to a substantial understanding of the over-
all dynamics of cohesive sediments, revealed the role of hydrodynamical and physico-chemical
parameters on the process of erosion, transport and deposition and, led to the formulation of
equations for the initiation, degree and rates of deposition and re-suspension. In this field,
research has dual objectives of:

• understanding the basic processes,

• modeling the phenomenon.

Although these two objectives are expected to be strongly interrelated, scientists and engineers
have frequently resorted to phenomenological models based primarily on intuition and empirical
input with limited understanding of the dynamics of the processes involved. This has been the
case in the modeling of the dynamics of the processes involved. The modeling of cohesive sedi-
ment transport in an estuary involves the numerical solution of basic conservation equations. In
the present research, it is proposed to develop an integrated model of estuarine cohesive-sediment
transport around an existing hydrodynamic module based on a novel method for solving three-
dimensional (3D) shallow-water equations (SWE) with free surface (see [37], [90], [89]). The
method uses a mass-preserving, unstructured finite element approach in the horizontal plane. In
the vertical, the computational domain is divided into a number of layers at predefined heights
and the model uses a conventional conforming finite element scheme. During the computation
the layers may become empty or filled with water. The lowermost and uppermost elements
of variable height allow a faithful representation of the bed and the time-varying free surface
respectively. The model offers both hydrostatic and hydrodynamic pressure capabilities.

The developed hydrodynamic and sediment transport models should describe the fluid cir-
culation, distribution of cohesive suspended sediment and sediment deposition patterns for non-
homogeneous estuaries. The formulation of the models is based on the three-dimensional equa-
tions of conservation of mass and momentum. A suitable two-equation k−ε turbulence model is
introduced for the closure. By a similar procedure a set of advection-diffusion equations for the
temperature, salinity, as well as the three-dimensional model for sediment transport is obtained.
The Coriolis force, tidal forcing, wind action, resistance to flow at the bed, buoyancy effects due
to temperature, salinity and sediment concentration, bed-level changes due to deposition and
erosion are modeled for a realistic representation of the real world phenomena. In order to make
the model as general as possible, free-water-surface fluctuations, irregular bed boundaries, near
bed velocity profiles have been taken into account.
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The estuarine sediment transport is divided into various processes such as the re-suspension
during the flocculation process. Due consideration is made of the properties of sediment and
related bed morphology.

Investigations on formation of multi-layer at the bed (the so-called three-bed layer) from con-
solidation and/or fluidization have not been undertaken in numerical model elsewhere. In this
study, recent semi-empirical relationships collected from the wide review of the literature will
be used to evaluate temporal variability of estuarine circulation patterns as well as the bed
morphology deformation for a diurnal estuary. The understanding of circulation patterns spe-
cific to the systems will have important implications for determining the dynamics and fate
of sediment transport within estuaries. A better understanding of the interaction of physical
and biochemical processes will be very important for refining current remediation strategies and
provide further information for designing new management techniques.

The research consists of the following tasks:

• Implementing a k−ε turbulent closure scheme in the laminar hydrodynamic model by tak-
ing into account the influence of density stratification (due to salinity, suspended sediments
and temperature differences) on the production and dissipation of turbulence;

• Developing a module for advection-diffusion based on linear, nonconforming finite elements
for computing the suspended-sediment concentration, temperature and salinity;

• Developing a model for the simulation of the changes in bed morphology by considering a
three-layer sediment bed. The upper layer is the fluid-mud with a non-Newtonian rheology
due to high sediment concentration, the middle layer consists of partially consolidated
sediments and finally the lowest layer is the consolidated sediment bed. The interactions
with the water column (erosion and deposition) and the exchange mechanisms between the
layers (processes of consolidation, liquefaction, fluidization) will be modeled using available
recent physically-based semi-empirical models;

• Validation and verification of model will be obtained by using several benchmark data.
Finally, the quantitative assessment of the model results will be done by applying it to the
Po River Estuary in Italy on the Adriatic-Sea, for which field measurements are available.

1.2.2 Organization of the contents

The present dissertation was carried out during the author work thesis at the Swiss Federal
Institute of Technology in Lausanne (Ecole Polytechnique Fédérale de Lausanne) from October
2001 to June 2005. The sequential organization of the chapters follows the chronological order
of development of different ideas exposed here. It is important to note that many of the results
contained in this thesis were published or submitted for publication to international journals.
As summarized in the statement of the objectives of this thesis, two major lines of investigation
have been pursued.

• Chapter 2: Review of the literature on multiphasic fluid-flow in estuaries.

This chapter focuses on the review on the behavior and modeling of the cohesive sediment
(fluid mud) in estuaries from the existing literature, and fundamental theories have been
reviewed. This chapter provides some illustrative examples of the rather wide range of
situations concerned with the matter of variable density as well as some quantitative
information about some salient features of variable density effects in turbulence.
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• Chapter 3: Mathematical modeling.

This chapter is devoted to the mathematical modeling of the hydrodynamics, the turbu-
lence closure, the advection-diffusion partial differential equations (PDEs) for the matter
(salt, temperature and suspended sediment concentration) as well as the variable density.
The suitable boundary conditions have been derived as well as the new methodologies for
the numerical solutions.

• Chapters 4: Weak formulation and finite element method.

This chapter introduces the weak formulation and the finite element method (FEM). A
spatial discretization is proposed for three-dimensional shallow-water equations (SWE)
as well as the semi-discrete form of the partial differential equations system, using the
non-hydrostatic system for the variable density fluid flow.

• Chapter 5: Time discretization and the approximate formulation.

This chapter deals with the time discretization and the approximate formulation. In this
chapter, starting from the 3D turbulent incompressible Reynolds-Averaged Navier-Stokes
(RANS) equations for the variable density fluid flow, a general mathematical framework
for the factorizations of the algebraic system has been introduced. Particular attention has
been paid to the enhancement of the robustness of numerical algorithms for the simulation
of turbulent fluid flows. A robust fractional-step method is proposed for the turbulence
model with the aim of preserving positivity of the relevant variables as well the stability
of the scheme.

• Chapter 6: 3D model for turbulent free-surface flows: Numerical results.

This chapter focuses on the validation of the turbulence hydrodynamic model using sev-
eral complex turbulent flows, with the goal of providing more insight into some interesting
features of the flow field and the turbulence. The relevant physical mechanisms and pro-
cesses underlying these features and some illustrative examples of the rather wide range
of situations concerned with the matter of variable density will be investigated.

• Chapter 7: 3D Modeling of Cohesive Sediment in Estuaries.

This chapter deals with the cohesive sediment transport and bed morphology modeling.
Hence some quantitative information about some salient features of variable density effects
in turbulence will be provided. For the bed evolution modeling two approaches will be
investigated: (i) The concept of turbidity accumulations modeling will be applied to fluid
mud at the bottom using the recent advances in the calculation of erosion and deposition
rates of fluid-mud. (ii) A bed multi-layers model based on the consolidation process using
realistic empirical functions. Finally, in order to tackle a real case, the model is applied
to investigate the suspended sediment concentration and the seabed evolution in the Po
River Estuary in Italy.

• Chapter 8: General conclusions.

General conclusions are given in this chapter whereas future research topics are recom-
mended.





Chapter 2

Physical description of
environmental flows

2.1 Estuary: the theoretical background

Estuaries (see figure 2.1) transfer the water, sediments, nutrients and various pollutants collected
from a river catchment to the coastal zones.
The physical, chemical, sediment, water quality and ecological processes within estuaries are
exceedingly complex primarily due to their dynamic nature, complex mixing processes, stochastic
influences, strong antecedent effects and the vast number of complex ecological linkages. There
are many different definitions of estuaries (see Pierson et al. [107]):

• a semi-enclosed body water which has a free connection with the open sea water which is
measurably diluted with fresh water derived from land drainage,

• as an inlet of the sea reaching into a river valley as far as the upper limit of tidal rise,
usually being divisible into three sectors: (a) a marine or lower estuary, in free connection
with the open ocean; (b) a middle estuary, subject to strong salt and fresh water mixing;
(c) an upper or fluvial estuary, characterized by fresh water but subject to daily tidal
action.

From a continental point-of-view, estuaries are the recipients of almost all of the runoff and
groundwater flow yielded by catchment, where very little surface of groundwater flow enters the
coastal ocean directly. It is the rivers that act as the primary drainage system of catchment,
and, as the rivers enter the coastal zone, they become estuaries. During periods of high rainfall,
groundwater systems are recharged for the rivers or by surface percolation and, during periods of
low river flow, the same groundwater systems discharge to the river, water that is not returned
to the atmosphere by evaporation or transpiration by plants flows downstream to the estuary.
Consequently, estuarine systems are exceedingly vulnerable to catchment pollution. Conserva-
tive contaminants released within a catchment will eventually make their way downstream and
contaminate the estuary. These include industrial contaminants, pesticides from agricultural
activity and polluted runoff from urban drainage systems.

2.1.1 Estuaries, their ecosystems and environmental flows

Environmental flows describe fresh water flow (typically in-stream flow) that is maintained (or
not allowed to be used for other, typically anthropogenic purposes) solely for environmental
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reasons, to maintain the health and bio-diversity of a particular water-related entity, such as
river, wetland, groundwater system or estuary. Any flow storage or diversion structure that
alters the flow regime of a surface or groundwater system can influence the health of downstream
aquatic ecosystems. Examples of anthropogenic influences on flow regime include:

• dams, and tidal gates (for many purposes including water supply, flood control and hydro-
electricity)

• domestic water supply and water treatment works

• industrial water supplies

• irrigation water supply

• sewage treatment works (including possibly effluent re-use)

• catchment modifications (anything that alters the rainfall-run-off process); for exam-
ple, clearing vegetation and introducing impervious catchment surfaces (roofs, roads and
paving) will increase the quantity of surface runoff and reduce base flows.

• Channel modifications such as dredging, realignment and lining

• construction of in-stream obstructions and the creation of obstructions through sedimen-
tation and debris buildup

• withdrawals from groundwater systems.

The flows diverted by these works may or may not be controlled and/or measured. Environmen-
tal flows are essential to the minimization of negative influences on health of aquatic ecosystems
resulting from alterations to flow regime.

2.1.2 The distinctive nature of estuarine ecosystems

The significance of environmental flows on ecosystems has been the subject of intense inves-
tigation for many decades (see Arthington [1]). As consequence, the literature addressing en-
vironmental flows in rivers is large. Nevertheless, in spite of the significance of estuaries, the
understanding of flow-related processes in rivers and streams is very limited.

It is important to highlight the fundamental differences between fluvial and estuarine flow
systems particularly with climates. Much of environmental flow literature for rivers is focused
on very low flow conditions. In fluvial systems, flow only occurs in a downstream direction
and there are direct relationships between depth and flow velocity. In contrast, in estuaries
there is no direct relationship between depth and flow velocity except under very high flow
conditions. Flow depth is controlled primarily by ocean water levels and tides. Under moderate
to low fresh water inflows within estuaries, alternating upstream and downstream flows (flood
and ebb tides) are generated in response to tidal fluctuations in water level at the mouth. In
river, only water mass type is under investigation and, whilst water quality issues are complex
due to the intricate interactions of nutrients with in-stream biota, the scope of water quality
investigations are generally focused on the location and intensity of nutrient or pollutant sources
and their impact downstream. Within estuaries, water quality issues are far more complex than
in river systems due to their internal mixing of fresh water and saline waters. Estuarine biota
have differing tolerances to and dependencies on fresh and saline waters. Therefore, estuaries are
inhibited by much more diverse biota than rivers with diversity supplemented by fluxes from both
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Figure 2.1: Schematic of an estuary showing division into different regions of waves, tides and
shallow-water processes
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fluvial and marine origin. This bio-diversity within estuarine systems makes ecological response
to water quality impacts more difficult to predict. Nutrients and pollutants are dispersed by
both tidal and fresh water inflows and relative importance of these dispersion processes will
change in relation to the level of fresh water flow. In contrast with rivers, fresh water flow
has an important impact on estuary mouth morphology at the ocean. Littoral drift along the
coast due to wave action acts to close tidal entrances. Consequently, reduced fresh water flow
can result in complete or partial closure of estuary entrances, which can lead to: (a) obstruct
ships navigation channels, fish and crustacean migration; (b) alter estuarine flushing and water
quality; and (c) alter the estuarine temperature and salinity gradient. As consequence it is
not a simple issue to establish an appropriate amount of fresh water flow for an estuary, both
technically (due to the many complex physical, chemical and biological processes in estuaries)
and socio-economically (due to the many competing uses for water within and between estuarine
water users and those that may exist upstream).

2.1.3 Relevant estuarine ecological processes

In a review of literature concerning fresh water flow management in riverine estuaries, Estevez
[35] concluded: Fresh water is an integral part of the definition of an estuary and so deserves
primacy in all aspects of estuarine ecology, as a matter of first principles. Changes to inflows
have harmed many estuaries in the world, and have the potential to harm more. It is therefore
emphasized that estuarine ecosystems are complex, highly valued and linked to other ecosystems,
and there is a strong imperative to protect and maintain estuarine ecosystems. Furthermore,
protecting estuaries from inflow-reduction impacts it is not a straightforward task, due to their
complexity and the very limited knowledge of their ecological functioning. Hence, numerical
simulation of transport and fate of cohesive sediments with the relevant bed morpho-dynamics
may constitute an efficient tool for understanding the problems and for finding appropriate
solutions.

Major ecological processes involving changes in fresh water inflows and bed erosion

or deposition

Longley [77] has identified different functions of fresh water inflows when studying the ecological
studies focusing on the effects of fresh water inflows to Texas bays and estuaries. He also
examined the wider scientific literature and developed a list of impacts attributable to reduced
fresh water inflows. The most significant impacts identified were:

• increased salinity and vertical stratification of water column,

• penetration of the salt-wedge farther upstream allowing intrusion of predators and para-
sites of estuarine species, and increased intrusion into groundwater and surface resources.

• increased frequency of benthic anaerobic conditions and decreased inputs of nutrient and
organic matter used by estuarine species,

• loss of characteristic species and economically important seafood harvests.

• increases in erosion or deposition of delta areas resulting from the reduction or rise of
sediment flux
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Figure 2.2: 2D vertical view of the salt and fresh-water mixture process

Salinity-mediated and temperature processes

Salinity is considered to be the master factor and the prominence of the complex salinity pat-
terns in estuaries (see figure 2.2) that considered to have profound influence on the distribution
of estuarine organisms (see Deeley and Paling [27]). Many complex follow-on impacts may occur
as a result of these processes. The most notable concerns salinity impacts on the in-stream, loss
of shelter and foraging areas for fauna, bank instability and multi-linked water quality reduction.
Thus, the salinity regime of an estuary is fundamentally determinant for the distribution of its
water quality and flow processes. However when assessing the role of salinity, it is clearly im-
portant to recognize the complexities introduced by taking into account environmental variables
such as temperature.

Reductions in inflow-induced currents and vertical mixing

Processes involving changes in inflow-induced currents and the vertical mixing are the next
most common. Three major processes involve these changes and concern: (a) the water quality
changes induced by diminished vertical mixing (i.e. reduced turbulence level), (b) the direct
physical impacts on eggs and larvae, specifically reductions in their suspension in the water
column and their transport along the estuary, and (c) the loss of the physical-habitat component
with higher water velocities induced by fresh water inflows. These processes would be most
relevant to areas where tide-induced currents are least prevalent, i.e. in the upper reaches of
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estuaries and/or in estuaries which have mouths that significantly restrict tidal exchange.

Reductions in flushing and channel-maintenance flows

These moderate-to-high inflow processes involve reductions in flushing or channel-maintenance
inflows. This grouping is consistent with the understanding that episodes of high bed shear
stress are required to flush or maintain estuary channels. Some processes here, involve the
reduction of habitat quality by the reduced frequency of flushing inflows. These are probably
most relevant to moderate-magnitude inflows. They specially concern reduced physical -habitat
quality where hard substrates are coated by sediments or organic material for prolonged periods,
and water-quality deterioration due to the accumulation of organic material and subsequent high
biochemical oxygen demand. The other processes specially involves the reduced frequency of
channel-maintenance fresh water inflows resulting in habitat contraction. This would be most
relevant to high-magnitude inflows. Clearly, only water diversion schemes with large storage
capacities and also the nature and amount of bed material being carried along the estuary
would be capable of impacting such inflows. Estuaries with large volumes of such materials,
which would reflect catchment geology and integrity, and/or estuary-bank stability, would be
most prone to impacts arising from this process. Mouth closure (that is, severed marine-estuary
connectivity) has many ramifications for the numerous fauna that migrate between the estuary
and the ocean. Poor water quality may also result from reductions in tidal flushing.

Reductions input of river-borne nutrients and organic material

This moderate-and-high inflow process is consistent with the understanding that organic matter
and nutrients (bound to sediments) primarily enter rivers from their catchment during major
rainfall events, events which generate moderate-to-high inflows. In general only water diversion
schemes with relatively large transfer and/or storage capacities compared with catchment yield
would be capable of impacting such inflows.

Reduced dilution of pollutants

One process aggravation of pollutant problems, partially concerns the reduced dilution of pol-
lutants arising from agricultural, industrial or urban sources. Reductions in inflow-induced
currents and vertical mixing are also relevant to this process. Thus process is only relevant
to polluted estuaries, particularly estuaries where tide-induced currents are least prevalent (i.e.
in estuaries which have mouths that significantly restrict tidal exchange, and/or in the upper
reaches of estuaries).

2.1.4 The imperative to protect and maintain estuaries

There is clearly an imperative to protect and maintain estuaries given combination of their high
value and the vulnerability to the essential estuarine process to reductions in fresh water inflows.
It is recognized that fresh water inflows fluctuate naturally and therefore the diverse processes
would naturally stress estuaries. However, the key questions are:

• how far can the natural stressor be extended ?

• are there thresholds beyond which inflow-reduction impacts cause a noticeable escalation
of channel bed morphology and/or biology risks ?
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2.1.5 Estuary and multiphasic fluid-flow

Variable density fluid motions

The density ρ is defined as the ratio between the amount of mass Ma of a given body of fluid
to its volume Vo, to distinguish among the various sources of density variations (see [19], [18]).

It appears that two specific situations can be considered separately, according to whether (i)
the volume of a constant mass fluid element varies or (ii) the mass of a given volume of fluid
is changed. In this study we are concerned by the second one, with the dilatation effects that
are observed when the volume of a fluid element changes due to the thermal expansion of the
fluid. This volume variation, which results in a given amount of heat release to the fluid particle
(by thermal convection, radiation, chemical reaction. . . ) leads to buoyancy effects in non zero
gravity situations.

In such geophysical applications density variations are small (±3%) and they are supposed
to affect only the buoyancy terms (see [30]). Moreover the Boussinesq approximation is related
to the density changes, and the density is supposed to depend on temperature (T ), salinity (S)
and sediment concentration (Cs). i.e. ρ = ρ(T, S,Cs) (see more details in [80], [144]). In this
work the biological aspect will not be taken into account, and we will focus on the transport of
the pollutants or passive scalars (T , S, Cs) with the related variable density fluid flow as well
as the formation of the delta on the bed.

2.2 Turbulence modeling

2.2.1 Why turbulence modeling

Navier-Stokes equations describe correctly the flow for all values of Re = ρLV /µ and ν (the
Reynolds number and kinematic viscosity), where ρ is the density of the fluid, L and V a
characteristic length and velocity respectively, and µ the dynamic viscosity of the fluid. The
kinematic viscosity is defined by ν = µ/ρ. However, if ν becomes small (i.e. increased value of
Re), regularity of the solution is not preserved (i.e. the random fluctuations or turbulence effects
appear). In numerical simulations today computers cannot handle as many grid points as are
necessary to resolve small eddies. It is found that the smallest eddies are of order of magnitude
of ν

3

4 , and the number of grid points (n) that is necessary to resolve these structures is

n ∼ R
9

4
e

In applications with water (with ν = 10−6), Re ∼ O
(
106
)
, yielding n ∼ O

(
1013.5

)
.

It is not the motion of each and every small eddy which is interesting, but only the effect of
turbulence on quantities of engineering significance is relevant. Thus, the idea is to calculate
some sort of averaged flow field that is smoother than the actual flow, which drastically reduces
the number of grid points required. The effects of small scale fluctuations are estimated by
different ad hoc models, the derivation of which we will be concerned in the following chapters.

2.2.2 General properties

At a quick glance turbulent flow is characterized by chaotic movement of the fluid flow as opposed
to the ordered structure of laminar flow. This occurs, when inertial forces are large compared
to viscous forces so internal friction is no longer able to damp out chaotic fluctuations coming
from in-ever present and inevitable-disturbance (e.g. at the inflow, boundary, etc. . . ).
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The transition from laminar flow to turbulence was first investigated on a systematic basis by
Osborne Reynolds. To this end he introduced the dimensionless Reynolds Number. He observed
from his experiments that

1. flow through a geometrically similar setup is physically similar, if and only if Re is identical,

2. turbulence occurs, when Re exceeds a specific value (depending on the geometry)

In the sequel, as starting point for a mathematical description we will take the Navier-Stokes
equations for incompressible flow. A mathematical rigorous derivation from fundamental phys-
ical principals and conservation laws can be found in Pope [109] (see also Roland [124], Milos-
vav [95]).

2.2.3 Turbulence and natural fluid flows

There are hardly any situations in the dynamics of natural waters and the atmosphere that
do not involve turbulent effects at some particular point, and therefore only little insight can
be gained in the dominant processes if turbulence is not taken into account. The modeling of
this phenomenon has attracted a great many researchers and more and more advanced models
suitable for the description of large variety of geophysical flows evolved over the last decades.
Due to its complexity, a general model embracing all aspects of turbulence is still out of reach.
Nevertheless there has been an enormous progress in the understanding of turbulence. Nowadays
Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) provide data that were
previously obtained only by high-precision laboratory setups, and they have large impact on
the development of new turbulence models. However in this thesis we shall not consider LES
nor DNS modeling. Turbulence in atmosphere and in natural waters is extremely rich in scales
and processes. Its modeling is notoriously difficult and even the most advanced second-order
and third-order closures are known for their deficiencies ( [11], [125]). Turbulence phenomena of
geophysical interest are most often affected by the buoyancy of the fluid. Buoyancy introduces
the notion of potential energy to the budget equations. This fact inherently complicates the
description of turbulence.

Variable Density Fluid and Turbulence

As it is usual in fluid turbulence study, a statistical description is generally introduced to deal
with the random character of this flow regime. In the sequel some kind of mean motion will
be introduced, from which any actual flow realization departs by turbulent fluctuations. Thus,
when the density changes, the following questions, at least arise:

• what are the effects of density variations on the mean flow field?

• what are the effects of density fluctuations on the statistical characteristics of the fluctu-
ating motion?

• what are the specific turbulence mechanisms due to fluid density variations?

Dealing with variable density turbulence means that one is mainly concerned with (turbu-
lent) density fluctuations. In low speed incompressible flows, pressure fluctuations cannot be
taken as responsible for significant density fluctuations. Consequently, turbulent density fluc-
tuations basically occur from temperature or concentrations fluctuations, obviously associated
with velocity and vorticity fluctuations.
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2.2.4 Correlations of fluctuations and turbulent quantities

In the framework of the Reynolds decomposition with mean and fluctuating quantities, the
Reynolds Averaged Navier-Stokes Equations (RANS) for mean quantities contain unknown cor-
relations. Numerous methods have been suggested to express these correlations as functionals
of known mean parameters and thus to close the system of partial differential equations (PDE).
Formally, well-known equations for their transport can be derived in a purely mathematical
way (e.g. [143], [134]). More equations describing the turbulent transport quantities can be
constructed by derivation from fluctuation terms of the Navier-Stokes equations. However, this
introduces new unknown correlations and the number of equations easily increases beyond man-
ageable limit. To arrive at a balance between the number of unknowns and the number of
equations describing the transport of the turbulent fluxes, approximations for the unknowns
correlations in terms of known flow properties have to be devised. The most advanced ideas
with respect to geophysical and astrophysical modeling have been discussed and summarized
for e.g. in [11] and [13]. The recent modeling approaches with respect to geophysical appli-
cations are summarized in a review article by Sander [125]). All closure schemes presume the
knowledge of a number of turbulent length-scales. Many different ways to obtain estimates of
these scales exist. Some authors obtain them analytically as functions of local flow parameters
such turbulent Froude number (Fr), or the shear number (Sh) (see [12], [21]). This approach is
particularly convenient for the sub-grid scale models LES. An alternative approach is to obtain
the length-scales from the solution of differential equations. In that case, a differential equation
can be formulated either directly for length-scale l or indirectly for related quantity such as the
rate of dissipation, ε, of the turbulent kinetic energy k, or a turbulent frequency, ω, or for the
product kl. Four different kinds of closure schemes are currently used:

• so-called algebraic formulations, the phenomenological approach with the formulation of
mixing length;

• one-equation models;

• two-equation models;

• non-linear closure schemes.

Most of the three-dimensional models used in oceanography and physical limnology implement
much simpler one or two-equation turbulence closures. One of the popular closure scheme which
has recently attracted great attention in geophysical modeling is the two-equation k−ε model. It
has originally been developed by Launder et al. [45], [55], and [62]. Some geophysical applications
of this model have been described by Rodi [123]. The critical problem with this model is to
guarantee the positivity of k and ε and the stability of the scheme in numerical computations.

However, in view of widely applicable description of turbulent scheme and in spite of several
weaknesses, the two-equation models using two differential equations for both, the turbulent
kinetic energy and its rate of dissipation, have proven to produce reasonable results.

2.3 The modeling of cohesive sediment

2.3.1 Cohesive sediment behavior and flocculation process

The deposition of the sediment in navigation channels may threaten the security of ships. The
authorities in charge of the management of estuaries and harbors are often faced with frequent
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costly dredging operations having important environmental and economical consequences. The
relocation of the dredged material can also be a problem, especially when the sediments are
contaminated. The interventions on the estuary bed must therefore be optimized [163]. Estu-
arine sediments play also an important role in the equilibrium of estuarine ecosystems. They
contribute to biologic growth by delivering nutrients [42] and they also transport pollutants by
absorption/dissorption. High concentration of suspended sediments inhibit photosynthesis by
attenuating sunlight penetration into the water column [78]. The sediment-associated contam-
inants may become a major problem for living organisms [135]. The numerical modeling and
simulation of the transport and fate of cohesive sediments and the related bed morpho-dynamics
constitute an efficient tool for understanding the causes of sediment-related managerial problems
and for finding appropriate solutions. Figure 2.3 shows the cohesive sediment structure within
the estuary. Generally the estuary harbors have a silty floor, and the navigation channels need
to be regularly dredged for large ships to pass through shoal. These fine sediments forming the
bed material (in the order of micron) have relatively large ratios of surface area to volume. The
electrochemical forces on the surface of the sediments lead to attraction between the particles.
When fine particles collide with each other, the electrochemical force may cause them to bind
together to form floc leading to the so-called flocculation process. The mechanism of flocculation
considerably complicates the task of modeling the transport of cohesive fine sediments, such as
the ones found in estuaries. The flocculation depends on the average diameter of the fine mate-
rial, concentration of the solids, the level of turbulence intensity, and the salinity of the water.
The floc consist of a skeleton formed by solid particles with the liquid filling the interstices. The
density of the floc is, therefore, less than the density of the silt particles. The settling velocity of
these flocculated sediments depend not only on the floc size and floc specific density but also on
the concentration. The erosion and deposition mechanisms of cohesive sediments are also more
complicated due to the presence of electrochemical forces, and consolidation of the deposited
sediments. A bed made of consolidated cohesive sediments may resist relatively to large shear
forces. However, once the failure occurs large chunks of sediment may be lifted from the bed.
During the deposition, the consolidation of very fine particles takes place very slowly. Near
the bed the depositing silt forms a layer with very high solid concentration. Such mud layers
have a very small unit weight and a high degree of fluidity. They can be easily put into motion
by relatively weak currents or wave action. With time such layers may loose their water and
become consolidated.

2.3.2 The cohesive-sediment transport modeling

The cohesive sediment transport in an estuary involves the numerical solution of basic conser-
vation equations for mass, momentum and turbulent energy. The Coriolis force, tidal forcing,
wind action, resistance to flow at the bed, buoyancy effects due to temperature, salinity and
sediment concentration, bed-level changes due to deposition and erosion should all be modeled
for a realistic representation of the real world phenomena. In this respect, numerous research
works have been carried out to establish well validated physical and mathematical descriptions
of the behavior and fate of concentrated near-bed cohesive sediment suspensions and their inter-
action with the water column and the bed as well as the turbulence characteristics of sediment
laden flow.

Van Rijn [115, 117] has developed a depth-integrated 2D model and a 3D model for non
cohesive sediment transport. Only 3D model was used for simulating seabed evolution. Roberts
[120] used a 2D depth-averaged model to investigate the fluid-mud. Ziegler and Nisbet [164]
used a 2D model to study the transport of cohesive and non-cohesive sediments in Pawtuxet
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Figure 2.3: Bed structure and flocculation process within estuary
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River in Rhode Island without simulating the seabed evolution. Guan et al. [43] used a 2D
width-integrated model to compute sediment transport in Jiaojiang River Estuary in China.
Lin and Falconer [73] used a 3D layer-integrated model to predict suspended sediment fluxes in
the Humber Estuary, UK. Chen et al. [20] have successfully applied a three-dimensional finite
difference model with hydrostatic pressure distribution for cohesive sediment transport by tidal
currents and the resulting bed level changes to the Pearl River Estuary.

In the recent years several European research projects were launched on estuarine model-
ing within the framework of MArine Science and Technology (MAST). The MAST-COSINUS
project aimed at establishing well validated physical and mathematical descriptions of the be-
havior and fate of concentrated near-bed cohesive sediment suspensions and their interaction
with the water column and the sediment bed. One of the outcomes of this project was a COupled

Hydrodynamical Ecological model for Regional Shelf seas called COHERENS [80]. The model
COHERENS is composed of: a physical component with modules for currents, temperature
and salinity; a microplankton module for simulating biological-ecological processes; a sediment
module describing the deposition and resuspension of organic and inorganic material; an Eu-
lerian and a Lagrangian particle tracer module for simulating the transport of contaminants
(e.g. radioactive and non-radioactive waste material). The model does not however simulate
the changes in bed morphology. Delft Hydraulics also developed an integrated 2D/3D model
for simulating hydrodynamics and transport phenomena resulting from tidal and meteorologi-
cal forcing. This model simulates also the variation of the bed morphology. The processes of
consolidation, liquefaction, fluidization, erosion which determine the formation of the fluid-mud
were studied by several researchers. Liu [76] derived several empirical functions for forecasting
sediment deposition amounts in navigation channels. The unified theory of settling and consol-
idation proposed by Toorman [138] and the fluidization model of Yamomoto et al. [161] allow
the computation of the density and/or stress history within the mud layer. The erosion of the
consolidated sediment is generally used with an excess-shear type empirical relation in which
the yield stress is a rheological property of the consolidated mud layer [44] and it is specified as
a function of the density. Recently, van Kesteren et al. [145] proposed a geotechnical approach
in order to take into account liquefaction and fluidization. Recent studies aim at parameterizing
the structure of the mud using structural kinetics theory. This method was successfully applied
to the modeling of the thixotropic behavior of mud [137] and to the formation of floc [155].

It is interesting to note that almost all of the models above assume a hydrostatic pressure
distribution and use a finite difference or finite volume approach based on a topographically con-
form, sigma-transformed grid which, regardless of the depth, forces the same number of divisions
in the water column. Most of the existing models are laminar (use simple algebraic expressions
for parameterizing eddy coefficients), and they use varying degrees of parameterization in order
to simplify the equations to be solved, whereas most of the exchange mechanisms are expressed
by semi-empirical equations of state.

2.3.3 Cohesive sediment transport and turbulence

In the recent years considerable research work was carried out to establish well validated physi-
cal and mathematical descriptions of the behavior and fate of concentrated near-bed cohesive-
sediment suspensions and their interaction with the water column and the bed as well as the
turbulence characteristics of sediment laden flow. For estuarine flows the turbulence models
should take into account the damping effect of vertical density stratification due to the presence
of salt, and sediment as well as due to temperature differences. Casamitjana and Schladow [14]
discussed the importance of a good turbulence modeling in the Eulerian approach used for pre-
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dicting suspended sediment transport. Various researchers have numerically investigated the
interaction between the turbulence and the sediment particles: Reynolds stress model [133], al-
gebraic mixing-length model [64] and k− ε two-equation model [142]. Olsen and Skoglund [103]
calculated sediment concentration profiles in a sand trap using k − ε turbulent model. Most
of those models have considered only non-cohesive sediments for the sediment concentration
profiles computation. In many models the settling velocity denoted by wss is taken as constant,
whereas in reality it strongly depends on flocculation influenced by the turbulence intensity,
salinity and temperature. Huang [49] proposed an expression of cohesive sediment settling ve-
locity in which flocculation with effects of water temperature, settling distance sediment size and
sediment concentration have been considered. Dyer [32] presented a conceptual model of the
effect of shear and concentration on median floc settling velocity. The heuristic formulation of
van Leussen and Corneliss [146], which relates flocculation and break-up to the dissipation rate
of turbulent kinetic energy, was implemented with great success in the numerical estuary model
by Malcherek et al. [81]. Tang [132] derived a function of critical shear stress for mixtures of
cohesive and non cohesive sediments. Mehta and Srinivas [87] studied the entrainment between
the water column and the fluid-mud.

Winterwerp and Kranenburg [156] derived an integral entrainment model by integrating the
equation for kinetic turbulent energy over the water depth. Winterwerp and Kranenburg [157]
proposed to model the entrainment of the fluid-mud as the entrainment of a dense fluid. Bas-
soullet et al. [3] studied the sediment transport over an inter-tidal mud-flat and discussed about
the field investigations and estimation fluxes within the “Baie De Marennes-Oleron”(France).
Brenon and Le Hir [7–9] characterized the modeling of fine sediment dynamics in the estuaries,
The changing position of the areas of maximum turbidity in estuaries, and the related processes
of resuspension/settling and (de)flocculation are characterized with application made on the
“Seine” estuary in France and the three-dimensional modeling of suspended cohesive sediment
in the oriental Seine bay (Manche, France) has been studied. Some of these studies include also
the (laser-reflectance) methodology used to investigate particle aggregate dynamics in experi-
mental tidal flows. Such studies provide many insights into the complex relationships between
floc size, tidal-velocity and suspended-sediment concentration, which may be useful in assessing
the distribution of fines in ancient tidal deposit. The concept of turbidity accumulations mod-
eling was applied successfully to fluid mud flows in the Loire estuary by Le Hir [65]. Le Hir
et al. [66] applied continuous modeling concept to the highly concentrated suspended sediment.
The results were compared successfully with the field measurements in a macro tidal estuary.
Mallet et al. [82] discussed the use of numerical computation and statistical techniques to de-
scribe sedimentary circulation patterns in the mouth of the Gironde estuary in France. The
mathematical modeling of the transport of fine particles and the mechanisms of the turbidity
maximum stability have been applied to the Gironde Estuary by Sottolichio et al. [131]. Silva
and Le Hir [128] discussed the rheological response of stratified muddy bed to water waves, while
Roberts et al. [121] investigated the use of simple mathematical models to the effect of tidal cur-
rents and waves on the profile shape of inter-tidal mud-flats. Withehouse et al. [151] studied the
influence of bed forms, flow, and sediment transport over inter-tidal mud-flats. The characteri-
zation of the inter-tidal flat-mud hydrodynamics has been discussed by Le Hir et al. [67]. A new
set of equations and a new algorithm for computing erosion and deposition cohesive sediment
transport has been proposed by Krishnappan [57] for the Fraser river (Canada). Chen et al. [20],
using empirical functions specially developed for cohesive sediments have simulated successfully
the Pearl River Estuary in China.
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2.4 Concluding remark

Winterwerp and Kranenburg [158] discussed the interaction between suspended cohesive sedi-
ment and turbulence, and suggestions are made how to incorporate turbulence damping effects
into standard turbulence models. The recommendations made resulting from their work exem-
plify the many uncertainties in quantifying cohesive-sediment dynamics, and the use of relatively
simple turbulence modeling is recommended, because more complex models do not perform any
better by lack of proper calibration data in the case of sediment-laden flows. They also dis-
cuss the dynamics of high-concentrated mud suspension, the flocculation processes and settling
behavior of cohesive sediment. It should be emphasized that, although numerical hydrody-
namic models are strongly based on the basic physics, sediment transport models rely heavily
on the use of various empirical formula and are only numerical frameworks for interpolating and
extrapolating full-scale field or laboratory measurements of “hydraulic sediment parameters”,
such as threshold shears. Calibration of models against field and/or laboratory measurements
is, therefore, of prime importance. Most of existing models of fine sediments transport assume
the fine sediments behavior to be analogous to that of the coarse-grained sediment and conse-
quently use transport theories developed for coarse sediment to treat the fine sediment. Among
the many differences between the two types of sediments, the most crucial is the difference in
the critical condition for initiation and cessation of sediment motion in a flowing medium. For
the coarse-grained sediment, the critical conditions for initiation and cessation merge into a
single criterion, i.e. the coarse sediments undergo simultaneous erosion and deposition while
being transported under a constant bed shear stress. In the case of fine sediment, on the other
hand, two distinct critical conditions (for deposition and erosion) were identified in literature
(see Partheniades and Kennedy [106]; Partheniades et al. [105]; Ashish and Partheniades [2];
Lau and Krishnappan [61]). It should be pointed out that, for fine sediments, the simultaneous
erosion and deposition is possible only for a certain range of bed shear stresses. Hence for shear
stresses outside of this range, there could only be sediment deposition or erosion, but not both
simultaneously. A true representation of the erosion and deposition of fine sediment is important
for the cohesive sediment transport models. It is shown that if the simultaneous erosion and
deposition is assumed, then the model will predict an enhanced dispersion of the contaminants
whereas a mutually exclusion erosion and deposition will result in the preservation of compar-
atively high concentration of sediment bound contaminants over long distance from the source
(see also [57]).

Recently Willis and Krishnappan [153] derived a new approach for numerical modeling cohesive
mud in rivers and estuaries as well as recent advances in the calculation of erosion and deposition
rates of cohesive sediment. Le Hir and Thouvenin [68] discussed the mathematical modeling of
cohesive sediment and particle contaminants transport in the Loire estuary in France. Thorn
and Parsons [136] investigations shown the possibility to model an estuary using quantitative
relations from another one with the analogous characteristics.

In the present thesis, on the basis of the above mentioned literature the RANS equations will be
solved in the framework of the SWE, and a suitable two-equation k− ε closure model is adopted
to account for buoyancy effects encountered in multiphasic fluid-flows. Advection-diffusion equa-
tions will be written for the transport of scalar quantities such as salinity, concentration and
temperature to account of the variable density fluid present in the estuaries. A new set of
equations for the solid transport modeling respectively from (a) Chen et al. [20] (with simul-
taneous deposition and erosion) and (b) Krishnappan [57] (with mutually exclusive deposition
and re-suspension power laws) will be incorporated in the model to investigate the suspended
sediment concentration and seabed evolution, using the concept of turbidity accumulations mod-
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eling (see [65]) and applying continuous modeling concept to the highly concentrated suspended
sediment (see Le Hir et al. [66]), some empirical relationships investigated from experiments by
Trimbak and Mehta [139] on the one hand, and on the other hand from the field observations
by Migniot [93] in the Loire estuary, will be used for the bed consolidated-layers modeling in
the Po River Estuary (PRE) in Italy.





Chapter 3

Mathematical modeling

In this chapter, starting from the three-dimensional incompressible Navier-Stokes equations, the
mathematical modeling of free surface water flows is developed. Proper boundary conditions are
introduced and some simplifying assumptions (hydrostatic and Boussinesq approximations) are
presented. Finally 2D and 3D models are derived and discussed, while the closure turbulence
equations and the suitable boundary conditions are introduced.

3.1 Modeling of the geophysical flows

In this chapter we will review the mathematical modeling of free surface flows for environmental
applications. In particular we will discuss the validity of some hypotheses usually adopted in
this context.

Many engineering and environmental flow problems involve the study of water motion in
rivers, lakes and seas. They are characterized by the presence of a free surface and, in some
cases, by a vertical scale much smaller than the horizontal one. For that reason they are com-
monly called shallow water flows. In this context a very common assumption is the hydrostatic
approximation for the pressure distribution which is valid for long waves (small vertical accel-
erations). This approximation implies that the momentum equation in the vertical direction, z,
is reduced to a static relation, i.e. the z derivative of the pressure is balanced by the gravity
acceleration. In practical applications many 1D (depth and width averaged) and 2D (depth
averaged) models based on this assumption are used. Nevertheless, in some situations the ne-
cessity of a detailed description of the 3D velocity field and/or the presence of short waves
(or strong bathymetry gradients) demands the use of a 3D model. A 3D hydrostatic model
is suitable for obtaining a three dimensional description of the velocity field (provided that a
particular attention is paid to the calculation of the vertical velocity, as we will see in section
3.4.2) however to account for short waves one must resort to a more accurate model in which
the hydrostatic assumption is removed.

In the sequel the Navier-Stokes Equations and the Boussinesq approximation are reviewed
and discussed, with the boundary conditions to close the problem and to describe the motion of
the free surface. The hydrostatic assumption is introduced and the SWE model based on this
approximation is presented. Finally the 3D non-hydrostatic model is introduced.

23
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Figure 3.1: The computational domain Ω̂(t)

3.2 The Turbulent Navier-Stokes equations and the Boussinesq

approximation

Let us refer to the Cartesian coordinate system (x, y, z). We are interested in the description
of the motion of a free-surface viscous incompressible fluid in a time-dependent 3D domain Ω̂(t)
(with t > 0). Let Ω be a fixed bounded region of Ω̂(t) representing the domain of definition of
the function z = −h(x, y, t) which describes the bathymetry with respect to the reference level
z = 0; Ω is such that for every t the projection on the xy plane of the volume occupied by the
water at time t is contained in Ω. Finally the boundary of Ω will be denoted by γf .

It is worthwhile to notice that usually h does not depend on t. However, we will see in section
3.2.3 that there are problems where the bottom shape can change with time in a prescribed
manner.

Moreover z = η(x, y, t) is the function describing the free surface with respect to the reference
level z = 0 (see fig. 3.1). The total depth of the fluid at point (x, y) at time t will be denoted
by H(x, y, t) = h(x, y, t) + η(x, y, t).

The domain which is occupied by the fluid at time t is then

Ω̂(t) = {(x, y, z)|(x, y) ∈ Ω, z ∈ (−h(t), η(t))} . (3.1)

The boundary of Ω̂(t) is denoted by Γ(t) and comprises three parts (see fig. 3.2):
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Figure 3.2: Notation for the boundary

1. the bottom topography Γb(t) = {(x, y,−h(t))|(x, y) ∈ Ω};

2. the free surface Γs(t) = {(x, y, η(t))|(x, y) ∈ Ω}

3. the “lateral” boundary Γl(t) = {(x, y, z)|(x, y) ∈ γh, z ∈ (−h(t), η(t))} . This part of the
boundary includes “vertical walls” (Γc) and fictitious water-water boundary, ΓOpen =
γfo × (−h(t), η(t)), where γfo is the bold-dashed segment in figure 3.2.

Applying the Reynolds decomposition to turbulent flow (see [109], [124], [118]), an ensemble
time-averaged mean value is well-defined for a variable Φ. From time-averaging procedure each
instantaneous variable Φ is represented as a time-mean value, Φ̃, and a fluctuation value Φ′,
with the following properties :

Φ = Φ̃ + Φ′ , 〈Φ〉 = Φ̃ , 〈Φ′〉 = 0 (3.2)

where 〈Φ〉 = 1
T

∫ T
0 Φdt denotes the averaging procedure in which T is time-averaging period

(this period T should be larger than the dominant turbulent scale, but smaller than the long
periodic effects such as the tidal scale). This decomposition is applied to the dependent variables
(such as velocity and pressure fields). When the Navier-Stokes equations are averaged the non
linear term of the material time derivative generates a new tensor, the Reynolds turbulent stress,
which in index notation is given by

Rij = −ρṼ′
iV

′
j (3.3)

here, V denotes the velocity field. This Reynolds stress is usually modeled via the Boussinesq
eddy viscosity concept µT that is written
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R = −2

3
kI + 2µTτ (3.4)

where τ =
(
∂Ṽi/∂xj + ∂Ṽj/∂xi

)
/2 is the mean strain rate tensor, I is the identity tensor and

µT is the turbulent dynamic viscosity. In the sequel, for the ease of notation, the mean turbulent
quantities like the velocity and pressure fields will be used without tilde.

3.2.1 Hydrodynamics

The motion of the fluid is described by the following RANS valid for ∀t > 0 and ∀(x, y, z) ∈ Ω̂ (t),
in which the physical viscosity ν = 10−6

[
m2/s

]
is neglected with respect to the turbulent

viscosity :





∇ ·V = 0

DV

Dt
= −1

ρ
∇p+ ∇xy · (νh∇xyV) +

∂

∂z

(
νv

∂

∂z
V

)
+ G̃f

(3.5)

In the sequel we will use also the following notations : V = (u, v, w) is the 3D velocity vector. νh

and νv represent respectively the horizontal and vertical eddy viscosity coefficients (see [122]),
p is the mean pressure, G̃f = (f1v,−f2u,−g) contains the gravity term g = (0, 0,−g)T and the

Coriolis term fxy (f1 = 2Ωmsinφ, f2 = 2Ωmcosφ)T , in which Ωm stands for the magnitude of the

angular velocity of the Earth and φ for the angle of latitude. ∇xy =
(

∂
∂x ,

∂
∂y

)
is the 2D nabla

operator (the corresponding 3D operator is denoted by ∇).
( D

Dt = ∂
∂t + u ∂

∂x + v ∂
∂y + w ∂

∂z ) stands for the material derivative, and υ = (u, v) is the 2D
horizontal velocity vector.
As for variable density fluids some simplifying assumptions are usually made. First of all it
must be noticed that density variations occurring in practical applications are relatively small
(±3%) with respect to the average density. Due to this fact density variations are important
only in those terms where they give rise to buoyancy forces and can be neglected in those terms
where the density appears as a parameter describing the inertia of the fluid (see [31], [141]).

In particular in the momentum equation we must consider density variations in the term
1

ρ
∇p;

moreover we suppose that the density can be written as the sum of a reference density ρ0 and

a local variable density δρ, such that
∣∣∣ δρρ0

∣∣∣� 1, we have

1

ρ
=

1

ρ0 + δρ
=

1

ρ0

(
1 + δρ

ρ0

) ≈ 1

ρ0

(
1 − δρ

ρ0

)
. (3.6)

where ρ is the fluid density, ρ0 = 999.842594[kg/m3 ] is the reference water density at temperature
T = 4oC. As we will point out in section 3.5, the pressure can be split into two parts: an
hydrostatic one phρ0

= ρ0g(η − z) deriving from the average density and a correction δp such
that p = phρ0

+ δp; hence we have

−1

ρ
∇p ≈ − 1

ρ0
∇p+

δρ

ρ2
0

∇p = − 1

ρ0
∇p+

δρ

ρ2
0

∇phρ0
+
δρ

ρ2
0

∇(δp)

= − 1

ρ0
∇p− δρ

ρ0
g +

δρ

ρ0
g∇η +

δρ

ρ2
0

∇(δp).
(3.7)
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where g is a vector containing the gravity acceleration. In the system of equations (3.5) the
Boussinesq approximation is invoked, and this implies that the density ρ, is assumed to be
constant, ρ0, except in the buoyancy term. Consequently the last two (second order) terms can
be neglected, yielding

−1

ρ
∇p = − 1

ρ0
∇p+

δρ

ρ0
g. (3.8)

Moreover, the local variable density is supposed to depend only on temperature T , salinity
S and concentration of a passive scalar Cs, i.e., ρ = ρ(T, S,Cs).

For T , S and/or Cs an additional equation must be specified as follows

DΦ

Dt
−∇xy ·

(
νh

σΦ
∇Φ

)
− ∂

∂z

(
νv

σΦ

∂Φ

∂z

)
= FΦ, for Φ = (T, S,Cs) (3.9)

where Φ (here and in the following sections) may represent T, S or Cs and σΦ is a Schmidt
turbulent number depending on the considered variable Φ.

A more suitable equation of state (see also [80], [144]) can be written as follows,

ρm = ρ0 + a1 · T + a2 · T 2 + a3 · T 3 + a4 · T 4 + a5 · T 5

+
(
a6 + a7 · T + a8 · T 2 + a9 · T 3 + a10 · T 4

)
S

+
(
a11 + a12 · T + a13 · T 2

)
S3/2 + a14 · S2

ρ = ρm +

(
ρs − ρm

ρs

)
Cs

(3.10)

where ρm and ρs expressed in [ kg/m3] are respectively the liquid mixture and sediment density,
Cs is the sediment concentration, S and T are respectively the salinity and temperature of
the fluid mixture (liquid+solid). The given coefficients in equation (3.10) can be found in the
following table:

a1 = 0.06793952 a2 = −0.009095290 a3 = 0.0001001685 a4 = −0.000001120083

a5 = 0.000000006536332 a6 = 0.824493 a7 = −0.0040899 a8 = 0.000076438

a9 = −0.00000082467 a10 = 0.0000000053875 a11 = −0.00572466 a12 = 0.00010227

a13 = −0.0000016546 a14 = 0.00048314

Table 3.1: The coefficients of the equation of state (3.10)

The introduction of the closure relationship (3.4) brings the difficulty of turbulence modeling
to the turbulent viscosity. this parameter will be related to the turbulent kinetic energy k and
the dissipation rate ε on the basis of dimensional arguments, i.e. νT = cµ

k2

ε , with cµ a constant
that will be calibrated on known homogeneous flows. Therefore, we have to compute k and ε
through pdes which will be given in the sequel.

3.2.2 The k − ε turbulence closure

One of the most difficult problems in such geophysical modeling is the adequate parameterization
of the vertical exchange processes. In the present work, there are represented through the
eddy coefficients νv, λv , which values are to be provided by a turbulence scheme. In view of
widely applicable description of turbulent scheme, two-equation models using two differential
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equations for both, the turbulent kinetic energy and its dissipation rate have proven to give
good results [80].

Turbulence phenomena of geophysical interest are most often affected by the buoyancy of
the fluid. Buoyancy introduces the notion of potential energy to the budget equations. This
fact inherently complicates the description of the turbulence: at first, potential energy can
be converted to kinetic energy in free convection. Next in stable situations potential energy
can be gained from kinetic energy and a parallel energy cascade ending with the destruction
of temperature fluctuations by thermal conduction is opened up. Besides this, the situation is
further complicated by the fact that non-locally acting internal waves with properties completely
different from turbulence can also contribute significantly to the fluctuating potential energy.
In the present work the state-of-the-art k − ε turbulence model will be introduced to be able
to account for both the homogeneous and stratified flows. The turbulence equations read, (see
also [63], [122], [96]).

Dk

Dt
−∇ ·

[
cµ
k2

ε
∇k
]

= cµ
k2

ε
Pd − ε− λvN

2 (3.11)

Dε

Dt
−∇ ·

[
cε
k2

ε
∇ε
]

= c1kPd −
ε

k

[
c3λvN

2 + c2ε
]

(3.12)

The squared shear frequency or production term Pd is (see [80]):

Pd =
1

2

(
‖∇V + ∇VT ‖

)2
(3.13)

where ‖.‖ is the 2−norm of the matrix. The constants are given: c1 = 0.126, c2 = 1.92, cµ = 0.09,
cε = 0.07. In the above equations, N is the Brunt-Väisälä frequency, with the related following
squared buoyancy N 2 (see [80]) expression,

N2 = −νv

σt

g

ρ0

∂ρ

∂z
(3.14)

Here σt = 1 is a constant, and the following expressions of eddy coefficients νv, λv should
include the stability parameters to account for the turbulence damping in the stratified fluid
flows (see Luyten et al. [79], COHERENS [80]):

νv = Su
k2

ε
+ ν , λv = Sb

k2

ε
+ λb (3.15)

Su =
0.108 + 0.0229αN

1 + 0.471αN + 0.0275αN2

, Sb =
0.177

1 + 0.403αN
(3.16)

where λb = 10−6, and the following stability coefficients αN and c3 can be expressed as,

αN =
k2

ε2
N2 (3.17)

c3 =

{
−0.4 for N 2 < 0
1 otherwise

(3.18)
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Richardson-number

The Richardson number is useful for classification of stratified flows depending on the stability
of the water column. It can be defined according to the shear production and the buoyancy
(see [104])

Ri =
N2

νvPd
(3.19)

3.2.3 Boundary conditions for the hydrodynamics

Free-surface

Consider now the system (3.5), at the free surface we impose a kinematic condition which states
that the velocity of the fluid is equal to the velocity of the free surface itself

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= w, on Γs(t). (3.20)

This equation is able to describe the motion of the free surface of the fluid.

We need another equation that expresses a dynamic condition. If we neglect surface tension
we have

p = pa (3.21)

where pa is the atmospheric pressure and moreover

νv
∂u

∂z
= f1(W) (3.22)

where W is the wind velocity vector and f1(W) is a prescribed function. Typically f1(W) =
ρaCw|W|W, where |W| denotes the modulus of the wind speed at the reference level above the
mean free surface, ρa is the air density, and Cw is a constant whose value depends on the wind
speed, such as:

Cw =





1.2 × 10−6, if |W| ≤Wc,

1.2 × 10−6 + 2.25 × 10−6

(
1 − Wc

|W|

)2

, if |W| > Wc,
(3.23)

where Wc = 5.6m/s, as expressed in [26].

Bottom

On the bottom, the kinematic condition accounts for the presence of sinks and/or sources de-
scribed by the known function Fb(x, y, t) and for the bottom shape variation in time. Thus we
have

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ w = Fb, (3.24)

i.e.

w + u
∂h

∂x
+ v

∂h

∂y
= F̃b, on Γb(t), (3.25)

where F̃b = Fb−
∂h

∂t
accounts for the bottom shape functions that can be described from various

values depending of the type of flow (see for instance [140], [89]):
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1. The case of a draining vortex where there is no change in the bottom shape

(
∂h

∂t
= 0

)

but there is a net flux through the bottom (Fb 6= 0) (see [140]). The same situation is
encountered in the case of filtration of water in the ground (see for instance [91]).

2. The transport of sediment changes the shape of the bottom (hence
∂h

∂t
6= 0 and Fb = 0)

due to deposition or erosion.

3. The effect of a seaquake (see [84]) can be modeled through a sudden change in the bottom

shape (
∂h

∂t
6= 0).

The no-slip boundary condition is applied together with a zero normal velocity component to
Γb. This second condition can be represented by :

w + u
∂h

∂x
+ v

∂h

∂y
= Fb −

∂h

∂t
= F̃b, on Γb (t) (3.26)

where Fb(x, y, t) and ∂h
∂t are known functions describing sinks and/or sources and the variation

of the bottom shape, respectively.

At the bottom, with the no-slip boundary condition it is easily observed that viscous fluids
have zero velocity at solid walls. The problem is that some assumptions used to derive the k− ε
equations are not fulfilled in these near wall regions and indeed the model fails. Consequently
we can either modify the equations appropriately in these parts of the domain to be able to
use the same boundary conditions at the same boundary anyway, or we can introduce a new
boundary inside the original area where the model is assumed to be valid. Both approaches can
be found in the literature.

• The so-called Low-Reynolds-number-Models, where the constants cµ, c1, c2, cε are replaced
with stability functions fµ, f1, f2, fε. These functions should be chosen in a way to reflect
the right behavior of the flow near the wall. In the case of strong velocity gradient in
the near-wall regions, adaptative refinement is required, and it might happen that all the
refinement is done in this region alone. The resulting solution would be a dissatisfying
level of accuracy in the interesting inner region.

• The so-called wall law or wall function, where an algebraic relation is developed between
the velocity and the normal distance to the wall (see figure 3.3).

Analysis and comparison of different approaches can be found in [129].
In the sequel we will use the wall function to establish a nonlinear boundary condition at the
interface between the inner domain and the boundary layer.

wall function

The figure 3.3 represents the region close to the wall b, where shear stress (see Eq. (3.32)) is
defined according to the so-called law of the wall.

The wall − functions approximation is applied to the region closed to the rigid wall (see
[62]), by assuming that no-slip flow condition prevails in the region close to the wall with the
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universal logarithmic velocity distribution normal to the wall. The universal logarithmic velocity
distribution can be applied in the boundary layer. (see figure 3.3)

Vt

V∗
=

1

κ
ln
(
Eδ+n

)
,with δ+n =

V∗δn
ν

(3.27)

where V∗ is a vector whose magnitude is the friction velocity, V∗, and whose direction is that of
the projection, Vt, of the velocity at the first mesh point, A, near (on the plane parallel) to the
wall. κ is von Karman universal constant, δn is the normal distance to the nearest wall (distance
of point A), ν is the molecular viscosity of water, and E is the wall roughness coefficient.

Remark 1 It is worthwhile to notice that the coefficient E in the above relation accounts for
all flow regimes, either hydraulically smooth, rough, or transitional.

A

δ

n 

τn n 

τ n t

e

e

n

n

t 

t A

A

A

A

τnn

A
n

τnt

ne

δn
e t

b

b

*
κ

=t 

wall

t

V V
V

V

V

V

V V n 
+δln(E    )

Figure 3.3: wall boundary

The wall roughness coefficient E is adjusted according to the standard roughness ( Wu et
al. [159])

E = exp [κ (B − ∆B)] (3.28)

where B is an additive constant, ∆B is a roughness function related to the standard roughness,
ks, such as (see [16]):

∆B =





0 for k+
s < 2.25

[
B − 8.5 + 1

κ ln k
+
s

]
sin [0.4258 (ln k+

s − 0.811)] for 2.25 < k+
s < 90

B − 8.5 + 1
κ ln k

+
s for k+

s > 90

(3.29)
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where k+
s = V∗ks

ν is the roughness Reynolds number, κ = 0.41 , and B = 5.2.

Remark 2 Strictly speaking the validity of the equation above is limited at the wall, but is
extended to the cell center A close to the wall by approximation

From Boussinesq concept and the definition of the shear stress one can find :

V 2
∗ =

τnt

ρ
= νv

[(
∂Vt

∂n

)]

A

(3.30)

also the velocity gradient is computed by taking the derivative of the logarithmic law (3.27) and
one can find that:

[(
∂Vt

∂n

)]

A

=
V∗
κδn

(3.31)

From equations (3.31) and the eddy coefficients formulation the dynamic boundary condition
becomes

τ nt,b = −ρC
1

4
µ k

1

2

A

κVt,A

ln
(
Eδ+n

) (3.32)

V∗ = C
1

4
µ k

1

2

A (3.33)

in which kA represents the turbulent kinetic energy at the first vertical point from the bottom.

3.2.4 Integral form of the free surface equation

Let us now derive an alternative form of the equation describing the motion of the free surface.
To this aim we integrate the first equation [i.e. (local) mass balance] of system (3.5) along the
vertical coordinate

∫ η

−h

∂u

∂x
dz +

∫ η

−h

∂v

∂y
dz +

∫ η

−h

∂w

∂z
dz =

∫ η

−h

∂u

∂x
dz +

∫ η

−h

∂v

∂y
dz + ws − wb = 0, (3.34)

where ws and wb are the vertical velocities on the surface and on the bottom. Using the Leibniz
rule

∂

∂s

∫ b(s)

a(s)
f (x, s) dx =

∫ b(s)

a(s)

∂f

∂s
(x, s) dx+ f (b (s) , s)

∂b

∂s
− f (a (s) , s)

∂a

∂s
(3.35)

we obtain

ws − wb = −
∫ η

−h

∂u

∂x
dz −

∫ η

−h

∂v

∂y
dz =

− ∂

∂x

∫ η

−h
udz + u|η

∂η

∂x
+ u|−h

∂h

∂x
− ∂

∂y

∫ η

−h
vdz + v|η

∂η

∂y
+ v|−h

∂h

∂y
. (3.36)

Using now (3.20) and (3.25) we finally have

∂η

∂t
+

∂

∂x

∫ η

−h
udz +

∂

∂y

∫ η

−h
vdz = F̃b. (3.37)
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Remark 3 In the above derivation we have implicitly assumed that the free surface is repre-
sented by a single valued function of x and y; this fact implies that some phenomena, such
as overturning waves, cannot be described. To describe overturning and breaking waves other
methods could be used, such as e.g. the marker-and-cell (MAC) [46] [150], the volume of fluid
(VOF) [48] and the level-set [53], [126]. The VOF and level-set methods do not use the integrated
form of the continuity equations to find the free surface positions but they solve an additional
advection equation to track the position of the particles on the free surface.

Remark 4 In some situations when the variations of the free surface are small the rigid lid
approximation might be used, i.e. equation (3.20) is substituted by w = 0 on Γs(t). This
hypothesis avoids the solutions of a free surface problem and is widely adopted in ocean modeling
(where even the bottom kinematic condition is simplified to w = 0 on Γb(t)) (see [75]).

In this case integrating the continuity equation in the vertical direction and recalling that
w = 0 on Γb(t) ∪ Γs(t) we obtain

∇ ·
∫ 0

−h
udz = 0, (3.38)

i.e. we have a non-local constraint in the system. For an analysis of this problem see [74]
and [75].

Open sea

We have now to discuss the conditions on Γl (t) = ΓOpen (t)∪Γc (t). Let us first consider Γopen(t)
(that we suppose to be vertical): this is a fictitious boundary used for computational purposes
and on it the effect of the outside is taken into account. Typically we impose the elevation as a
function of time i.e. H (x, y, t) = H0 (x, y, t) where for all (x, y) ∈ γfo, H0 is a prescribed function
of t; moreover the normal component of the velocity is set to zero on Γc (t). Another approach
has been proposed for the velocity by Huang and Lu [50], who have derived the velocity from
the radiation condition (see also Yauw and Mellor [101]) using the observed data and according
to the tidal wave propagating speed

√
gh. This form reads,

∂υ

∂t
− ci∇xyυ = 0, ci =

√
gHmax

δρm

ρm
(3.39)

where υ = (u, v) is the horizontal velocity vector, ci is the baroclinic internal wave speed, Hmax

is the observed maximal flow total depth, δρm is the top-to-bottom fluid density difference.

Solid-wall

Here on the rigid boundary Γc (t), the slip condition is applied and normal component of the
velocity is set to zero for reflecting walls, and the no-slip boundary is applied for non reflecting
walls.

Upstream

The given known functions describes the flow

Q = f (x, y, t) (3.40)

V = f (Q,Hinl) (3.41)

where Q denotes a prescribed discharge, Hinl is the water depth at inlet.
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3.2.5 Boundary conditions for the turbulence equations

Bottom

The production of the turbulent kinetic energy is merely due to the (turbulent) shear stress.

Since the velocity is equal to zero everywhere along the wall , Vt = 0 (no slip condition)
and Vn = 0 (no flux across the wall), the production term or squared shear frequency can be
rewritten,

Pd = νv

[(
∂Vt

∂n

)2

+ 2

(
∂V n

∂τ

)2
]

(3.42)

The first and second terms denote respectively the turbulent energy production due to shear
and the normal stress. The second term is too small compared with the first one, and can be
neglected, and the squared shear frequency can be written as follows :

Pd = νv

[(
∂Vt

∂n

)2
]

(3.43)

The link between the wall function and the k equation is achieved through the turbulent
kinetic-energy production, the velocity gradient, and the shear velocity. Thus by combining Eqs.
(3.27), (3.30)-(3.31), one can find the following final equations for the wall function :

εA = [Pd]A =
C

3

4
µ k

3

2

A

κ [δn]A
(3.44)

kA =
V 2
∗b

C
1/2
µ

(3.45)

Following the approximation in which the effect of normal stress is neglected, a local energy
balance exists and there is equilibrium between production and dissipation of turbulence, i.e.,
there is a local balance between the rate of turbulent energy dissipation, ε, and its production
(squared shear production), Pd ( [62], [124]). This yields :

εA = [Pd]A = νv

[(
∂Vt

∂n

)2
]

A

(3.46)

From Boussinesq concept and the definition of the shear stress one can find :

V 2
∗ =

τnt

ρ
= νv

[(
∂Vt

∂n

)]

A

(3.47)

Free-surface

At free-surface Dirichlet boundary conditions are respectively applied for k and ε as follows

k =
V 2
∗√
cµ

; ε =
(kCµ)1.5

0.07κh
(3.48)

or Neumann condition upon kinetic energy, ∂k
∂z = 0, during flooding.
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Solid or lateral wall

Here on the rigid boundary Γc (t), Neumann condition is applied for the turbulence variables
(i.e. zero normal derivative).

Open sea

The Robin boundary condition is applied and can be written as follows,

k = ζ
V 2
∗√
cµ

+ (1 − ζ)
∂k

∂n
; ε = ζ

(kCµ)1.5

0.07κh
+ (1 − ζ)

∂ε

∂n
(3.49)

where ζ = 0 during flooding and ζ = 1 during ebbing.

Upstream

The given known functions describe the flow

k = 0.03Vnx
2; ε = cµ

k1.5

0.09h
(3.50)

where Vnx stands for the velocity normal to the upstream surface.

3.3 Initial conditions

Using the initial values V0, η0, the initial conditions for velocities and free-surface are computed
after running the model to reach the steady state.

The initial values of turbulent quantities : (see Versteeg and Malalasekera [147])

k = 1.5(0.06U)2 (3.51)

ε =
cµ

3/4k3/2

0.09h
(3.52)

where U is the known mean-value of uniform distribution velocity.

3.4 The hydrostatic approximation

3.4.1 Geophysical modeling and the scaling of the governing equations

In some geophysical applications the domain of interest is characterized by different geomet-
ric scales in the horizontal and in the vertical direction. In this section we will analyze the
consequences of this geometrical anisotropy by deriving what is perhaps the most widely used
approximation in geophysical modeling: the hydrostatic relation.

Let U,W,L,H be the scales for the horizontal and vertical velocities, for a characteristic
horizontal length and for the depth. Performing a scaling procedure on the continuity equation
we obtain that

O
(
U

L

)
= O

(
W

H

)
. (3.53)
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The non-dimensional form of the vertical component of the momentum equation reads

ξ2
(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ v∗

∂w∗

∂y∗
+ w∗

∂w∗

∂z∗

)
=

−∂p∗
∂z∗

− 1

Fr2
ρ

ρ0
+

1

Re

[
ξ2
(
∂2w∗

∂x2
∗

+
∂2w∗

∂y2
∗

)
+
∂2w∗

∂z2
∗

]
,

(3.54)

where the subscript ∗ denotes non-dimensional quantities, ξ = H/L and

Fr =
U√
gH

, Re =
LU

ν
, (3.55)

are the Froude and Reynolds numbers. Finally the time and the pressure has been scaled as
follows t∗ = Ut/L and p∗ = p/(ρ0U

2).
Since in typical applications Fr ' 0.1 and the variation of ρ is small the gravitational term

(as well as the pressure term) must always be retained. As for the other terms depending on
the values of Re and ξ we can have the situation illustrated in the table 3.2. The symbol
× indicates that the corresponding term should be retained. The hydrostatic approximation

ξ Re vertical
accelerations

vertical
viscous
term

horizontal
viscous
term

Corresponding
model

� 1 small × Primitive equa-
tions with vertical
viscosity (PEV2)
see [74]

� 1 large Hydrostatic
approximation

� 1 small × × × Full Navier-
Stokes equations

� 1 large × Primitive equa-
tions

Table 3.2: Different type of approximation

reduces the vertical momentum equation to a static relation, i.e.

∂p

∂z
= −ρg. (3.56)

This approximation is equivalent to considering long waves in which the wave-length is large com-
pared with the depth of the fluid (see [60]). The hydrostatic pressure ph, under the Boussinesq
approximation, can be easily obtained integrating (3.56) along the vertical coordinate between
z and η and using (3.21)

ph = pa + g

∫ η

z
ρdz = pa + gρ0(η − z) + g

∫ η

z
∆ρdz, (3.57)

where ∆ρ = ρ−ρ0 and ρ0 denotes an average density value. The terms gρ0(η−z) and g
∫ η
z ∆ρdz

are called barotropic and baroclinic pressure, respectively.
A similar scaling argument performed on the horizontal momentum equations shows that when
ξ � 1 the horizontal viscous term are negligible with respect to the vertical ones.
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3.4.2 3D Hydrostatic Shallow Water model

The first model that we introduce is a 3D model for a variable density fluid under the hydrostatic
assumption where only the continuity equation is integrated along the vertical (see [149]). The
system reads





Dυ

Dt
− ∂

∂z

(
νv
∂υ

∂z

)
+ g∇η + g∇

(∫ η

z

∆ρ

ρ0
dz

)
= fxy,

∂η

∂t
+ ∇ ·

∫ η

−h
υdz = F̃b,

∇xy · υ +
∂w

∂z
= 0,

Dζ

Dt
−∇ ·

[
cζ
k2

ε
∇ζ
]

= Fζ for ∀ζ = (k, ε)

DΦ

Dt
−∇xy ·

(
νh

σΦ
∇Φ

)
− ∂

∂z

(
νv

σΦ

∂Φ

∂z

)
= FΦ, Φ = (T, S,Cs) ,

ρ = ρ(T, S,Cs),

(3.58)

where the unknowns are υ, w, η, k, ε, T , S, and Cs. Since w is not differentiated in time, no
initial value for this unknown should be assigned. Moreover, w does not contribute to the energy
conservation relation. It is worthwhile to notice also that the vertical velocity depends on t only
implicitly through the variations of the other unknowns (for this reasons w is called diagnostic
variable, in contrast u, v and η are called prognostic). In fact, from the computational point of
view, the vertical velocity can be recovered a posteriori using the divergence free equation once
the horizontal velocity is known, i.e.

∂w

∂z
= D, (3.59)

where D = −∇ ·υ is a known function. This computational approach has two main drawbacks:

• any inaccuracy in the calculation of υ will result in errors in the computation of w;

• equation (3.59) is a first order differential equation thus it necessitates only one boundary
condition at in flow. Since two boundary conditions involving w were prescribed, in par-
ticular (3.20) and (3.25), we have an overdetermined system. To overcome this problem
usually only one of the boundary conditions is enforced. In the present work, this influenc-
ing boundary condition will be enforced at the bottom. This suggests that the flow in the
channel is mostly influenced by gravity forces (i.e. Froude number less than 1 for fluvial
regime), buoyancy and the flocculation (stratification). Consequently the bed behavior
has a great influence on the free-surface evolution. One can refer to [98] for alternative
approach.

3.5 3D Non-hydrostatic model for variable-density flows

3.5.1 3D detailed description of free-surface flows

Several 3D computations using the conventional hydrostatic pressure assumption and/or the
shallow-water equations (SWE) assumptions have been successfully applied to many engineering
problems, and their use has become standard practice in environmental impact studies in most
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of geophysical flows such as estuarial and coastal regions. However in presence of steep bottom
slopes (i.e. strong vertical accelerations), and when short waves must be considered this above
approximation is no longer valid (see Whitham [152]). Moreover it is shown (see [10], [102]),
that the hydrostatic system is ill-posed in presence of open boundaries. The 3D non-hydrostatic
model is more suitable to obtain the description of the velocity field, in some situations where
the necessity of detailed description of the 3D velocity field (e.g. the presence of short waves or
strong bathymetry) demand the use of such a model. In this case attention must be paid to the
detailed description of the vertical structure of the velocity and the density stratification of the
fluid. In this section we present a 3D model for free-surface flows, in which the non-hydrostatic
pressure is included in the momentum equations for incorporation in the surface elevation, for
the variable density fluid flow.

3.5.2 3D Reynolds Averaged Navier-Stokes equations for free-surface flows

The key assumption is that the pressure p can be written as the sum of an hydrostatic term ph

and an hydrodynamic correction pc = ρq such that:

p (x, t) = ph + pc = pa + gρ0 (η − z) + g

∫ η

z
∆ρdz + ρq (x, t) (3.60)

From the computational point of view, it is shown that the splitting of the pressure is very
attractive (see [89]). Using this pressure splitting we obtain the following 3D non-hydrostatic
system





∇xy · υ +
∂w

∂z
= 0

Dυ

Dt
−∇xy · (νh∇xyυ) + g∇xyη + g∇

(∫ η

z

∆ρ

ρ0
dz

)
− ∂

∂z

(
νv
∂υ

∂z

)
+

1

ρ0
∇q = fxy

∂η

∂t
+ ∇xy ·

(∫ η(x,y)

−h(x,y)
υdz

)
= F̃b

Dw

Dt
−∇xy · (νh∇xyw) − ∂

∂z

(
νv
∂w

∂z

)
+

1

ρ0

∂q

∂z
= 0

Dζ

Dt
−∇ ·

[
cζ
k2

ε
∇ζ
]

= Fζ for ∀ζ = (k, ε)

DΦ

Dt
−∇xy ·

(
νh

σΦ
∇Φ

)
− ∂

∂z

(
νv

σΦ

∂Φ

∂z

)
= FΦ for Φ = (T, S,Cs)

ρ = ρ (T, S,Cs)

(3.61)

In the present work the horizontal diffusion is parameterized through the uniform horizontal
coefficient ,νh, using empirical relation from Elder [33]:

νh = ζhu∗ (3.62)

where ζ it is a constant:e.g ζ = 0.1 to 0.3, u∗ is a representative shear velocity. In this system
(3.61) we have recovered the prognostic character of the vertical velocity. Thus we have a full
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energy conservation principle in which all the three components of the velocity and the total
pressure are taken into account. The system (3.61) is convective dominant. Hence the initial
boundary value problem is well-posed also in presence of open boundaries. Using the linearized
inviscid constant-density form of the above system of equations, it is shown that the three-
dimensional non-hydrostatic system ensures that the gravity waves are treated accurately with
an exact dispersion relation (see [89]). An analogous dispersion relation for the non-hydrostatic
model in the rigid lid case has been studied by Marshall et al. [85].





Chapter 4

Weak formulation and finite element
approximation

In this chapter a spatial discretization is proposed for the three-dimensional shallow-water equa-
tions (SWE) as well as the semi-discrete form of the partial differential equations system. This
is an extension of the finite element method presented in [89, 90], (see also [71]). This scheme
is based on the combined use of Lagrangian linear finite element in the vertical direction, and
the Raviart-Thomas finite element in the horizontal plane. In this chapter the non-hydrostatic
system will be taken into consideration.

4.1 Domain discretization

Let us introduce some detailed figures for the computational uses. Figure 4.1 represents the
physical domain. The physical three-dimensional domain is embedded in a parallelepiped com-
posed of N layers.

Remark 5 In the sequel the subscript k will be used as an index to identify the k th layer in
the vertical direction, and this must not introduces any confusion with the “turbulent kinetic
energy”.

By Ik we identify the layer k whose thickness δzk is fixed. A layer is said to be active if it
is wet. By Ik+1/2 we identify the fictitious layer whose thickness δzk+1/2 is a distance between
the triangles located at mid-height of the layers k and k + 1 (cf. figure 4.2). The number of
active layers depends on the depth of the water column; therefore, it is not constant over the
whole domain and can also change in time, to account for the variation of the free surface and
bottom shape. In particular the thickness of the lowermost active layer (denoted by the index
k0) depends on the bottom shape, and the thickness of the uppermost active layer (denoted
by the index K) varie in space and time according to the free surface location. The horizontal
projection of the domain Ω is discretized using an unstructured triangular mesh Th. The same
mesh is placed in the middle of each layer. The vertical distance between the grids of the layers
k and k + 1 will be denoted by δzk+1/2 = [δzk + δzk+1]/2. It is important to emphasize that
the mesh is the same on each layer. In a layer, as shown in figure 4.2, each triangular mesh
element defines a three-dimensional prismatic element. The generic prism of the tridimensional
grid will be denoted by P . The horizontal components of the velocity vector are defined at the
middle of the edges of the triangular mesh elements, while the vertical components are associated

41
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with the lower and upper horizontal faces of the element in the case of non-hydrostatic pressure
assumption. The set of all prism in the finite element (F.E.) grid will be denoted by Ph.

4.2 Weak formulation: functional spaces

The horizontal velocity is approximated combining the lowest order Raviart-Thomas element
(RT0) in the xy plane (see [114], [90], [37]) with the P1 elements along the vertical direction.
Let us introduce some functional spaces that will be used in this work. Let Ω ∈ Rd and we have:

L2 (Ω) =

{
ψ :

∫

Ω
ψ2dΩ <∞

}
(4.1)

H1 (Ω) =
{
ψ ∈ L2 (Ω) : ∂xiψ ∈ L2 (Ω) , i = 1, . . . , d

}
(4.2)

The following space of vectors have been introduced to derive the weak form of the 3D
hydrodynamic model:

H0,c (div; Ω) = {τ : τ ∈
(
L2 (Ω)

)2
, div τ ∈ L2 (Ω) , τ · n = 0 on Γc} (4.3)

where Γc denote the vertical solid wall.

4.3 Finite element approximation

4.3.1 Raviart-Thomas and P1 finite element

For every integer r ≥ 0 we denote by Pr(T ) the space of polynomials of degree ≤ r on each
triangle T ∈ Th (see figure 4.1) and consider the Raviart-Thomas vector finite element space of
lowest order (see [71], [90], [114]):

RT0 (T ) = (P0(T ))2 ⊕ xP0(T ) =

{
υ =

(
b
c

)
+ a

(
x
y

)
, a, b, c ∈ R

}
. (4.4)

Let us introduce the following finite element spaces:

Qh = {q ∈ H0,c (div; Ω) | q |T∈ RT0 (T ) , ∀T ∈ Th} ,

Uh =
{
ψ ∈ L2 (Ω) | ψ |T∈ P0 (T ) , ∀T ∈ Th

}
,

WI1
1/2

=
{
ϕ ∈ C0 ([−h, η]) | ϕ |Ik+1/2

∈ P1

(
Ik+1/2

)
,∀Ik+1/2 ∈ I1/2

}
,

WI1
1

=
{
ζ ∈ C0 ([−h, η]) | ζ |Ik

∈ P1 (Ik) , with ζ |−h= 0 and ζ |η= 0,∀Ik ∈ I1

}
,

WI0
1

=
{
φ ∈ L2(Ω) | φ |k∈ P0 (p) ,∀Ik ∈ I1

}
,

Xp =
{
χ ∈ L2(Ω) | χ |p∈ P0 (p) ,∀p

}

(4.5)

Let us consider in figure 4.3 two triangles adjacent to the edge ei, which belongs to the T i
+ and

T i
−, the following associated shape function τ i ∈ Qh can be defined as,

τ i (x) |T =
x− xj

2 |T | , supp (τi) = T i
− ∪ T i

+ (4.6)
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divτ i =
1

|T | , τ i |T ·nm =
δim
|ei|

(4.7)

where xj is the coordinate of a generic Gauss point, supp (τi) (a support of τi) is a generic edge
of the two triangles T i

− ∪ T i
+, |T | and |ei| are respectively the area of the triangle T and the

length of the edge ei ; δij is the Kronecker symbol. nm is the outward normal to the edge em.
The shape functions, from their properties can guarantee the continuity of the normal flux to
each edge of the triangle. Let us associate to the layer denoted by zk and zk+ 1

2

, respectively

the shape functions ϕk and ϕk+ 1

2

, which have as geometrical support (zk−1, zk+1) for the first

interval and (zk− 1

2

, zk+ 1

2

) for the second interval. Denoting by Ned and Nel respectively the

number of (oriented) edges el and triangles Tj in the mesh, by k0 and K respectively the indices
of bottom and uppermost layer, the approximation solutions for the variables can be written

υh (x, z) =

K∑

k=k0

Ned∑

j=1

(Jj)k τ j (x)ϕk (z) , τ ∈ Qh, ϕ ∈WI1
1/2
,

ηh (x) =

Nel∑

j=1

ηjψj (x) , ∀ψ ∈ Uh,

wh (x, z) =

Nel∑

s=1

K−1∑

k=k0

(ws)k ψs (x)χk+1/2 (z) , ψ ∈ Uh, χ ∈WI1
1
,

qh (x, z) =

Nel∑

s=1

K−1∑

k=k0

(qs)k ψs (x)χk (z) , ψ ∈ Uh, χ ∈WI0
1

(4.8)

with (Jj)k =
∫
el υk · njdσ

4.3.2 Finite Element Approximation for the turbulence variables and scalars
(heat, salt, sediment concentration)

The approximate solutions for those variables can be written

kh (x, z) =

K∑

k=k0

Ned∑

j=1

(kj)k ψj (x)ϕk (z) , ψ ∈ Uh, ϕ ∈WI1
1/2
,

εh (x, z) =

K∑

k=k0

Ned∑

j=1

(εj)k ψj (x)ϕk (z) , ψ ∈ Uh, ϕ ∈WI1
1/2
,

Φh (x, z) =

Nel∑

s=1

K−1∑

k=k0

(Φs)k ψs (x)χk (z) , ∀ψ ∈ Uh,∀χ ∈WI0
1
,∀Φ(T, S,C) = scalars

(4.9)

Remark 6 To simplify the algebraic form of the problem (and consequently reduce the compu-
tational cost), it is desirable to diagonalize the mass matrix. Therefore two kinds of lumping
procedure are required: one for the ϕ-mass matrix, and the second one for the τ -mass matrix.
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For the first one, we can use the following quadrature formula,

∫ zk+1

zk−1

ϕsϕkdz





= 0 for s 6= k,

=
δzk+1/2+δzk−1/2

2 = ∆zk for s = k

(4.10)

For the second one, we can use the following quadrature formula,

∫

τi

(τ iτ r) dx





= 0 for i 6= r,

= di
|ei|

for i = r
(4.11)

where di denotes the distance between the centers of the circumscribed circles to each of the
two adjacent triangles T i

− and T i
+.

4.3.3 The weak formulation

First of all we suppose that the 3D domain Ω̂ is made of the extension of Ω in the vertical
direction z (extrusion). Thus any integral over the Ω̂ can be written as follows

∫

bΩ
(· · · ) dΩ̂ =

∫

Ω

(∫ η(x,y,t)

−h(x,y,t)
dz

)
dΩ (4.12)

Using Gauss formula the variable density problem statement (3.61) becomes: Find υh ∈ Qh ×
WI1

1/2
, wh ∈ Uh ×WI1

1
, qh ∈ Uh ×WI0

1
, ηh ∈ Uh, kh ∈ Uh ×WI1

1/2
, εh ∈ Uh ×WI1

1/2
, such that

∫

∂p
wn+1nzdS =

∫

∂p
υ · nxydS, ∀p ∈ Ph (4.13)

∫

Ω

∂ηh

∂t
ψdΩ +

∫

Ω

(
∇xy ·

∫ η

−h

υdz

)
ψdΩ =

∫

Ω
F̃bψdz ∀ψ ∈ Uh (4.14)

∫

Ω

∫ η

−h

Dw

Dt
ψχdzdΩ −

∫

Ω

∫ η

−h

ϕ∇xy · (νh∇xyυ) τdzdΩ −
∫

Ω

∫ η

−h

∂

∂z

(
νv
∂w

∂z

)
ψχdzdΩ

+
1

ρ0

∫

Ω

∫ η

−h

∂q

∂z
ψχdzdΩ = 0∀ψ ∈ Uh,∀χ ∈WI1

1

(4.15)

∫

Ω

∫ η

−h

ϕ
Dυh

Dt
· τdzdΩ = g

∫

Ω

∫ η

−h

ϕηh∇xy · τdzdΩ,

− νv

∫

Ω

∫ η

−h

τ · ∂υh

∂z

∂ϕ

∂z
dzdΩ +

∫

Ω

∫ η

−h

ϕfxy · τdzdΩ,

+

∫

Ω
[(ρaCw‖W‖W · τϕ) |η − um|−h · τϕ|h] dΩ,

+ g

∫

Ω
∇xy

(∫ η

z

ρ− ρ0

ρ0
dz

)
· τϕdΩ +

1

ρ0

∫

Ω
∇xyqh · τϕdΩ,

− g

∫

Γ0∩Γb

∫ η

−h

ϕηhτ · ndzdγ, ∀ϕ ∈WI1
1

(4.16)
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∫

Ω

∫ η

−h

ψ
DΦh

Dt
χdzdΩ −

∫

Ω

∫ η

−h

ψ

[
∇xy ·

(
νh

σΦ
∇xyΦh

)]
χdzdΩ

−
∫

Ω

∫ η

−h

ψ

[
∂

∂z

(
νv

σΦh

∂Φh

∂z

)]
χdzdΩ

=

∫

∂Ω
χ

[
νh

σΦ
(∇xyΦh)

]
ψ · nxydγ −

∫

∂Ω
χ

[
νv

σΦh

(
∂Φh

∂z

)]
ψ · nzdS

+

∫

Ω

∫ η

−h

ψFΦχdzdΩ

(4.17)
Turbulence equations read,

∫

Ω

∫ η

−h

ψ
Dkh

Dt
ϕdΩdz −

∫

Ω

∫ η

−h

ϕ∇ · [νe (∇kh)]ψdΩdz

=

∫

Ω

∫ η

−h

ψ
[
cµνePd + λvH

(
(−N)2

)]
ϕdΩdz

−
∫

Ω

∫ η

−h

ψ
[
λvH

(
(N)2

)
+ c2εh

]
ϕdΩdz

(4.18)

∫

Ω

∫ η

−h

ψ
Dεh
Dt

ϕdΩdz −
∫

Ω

∫ η

−h

ψ∇ · [νe (∇εh)]ϕdzdΩ

=

∫

Ω

∫ η

−h

ψ
(
c1khPd +H

(
(−N)2

))
ϕdΩdz

−
∫

Ω

∫ η

−h

ψ
kh

νe

[
c2εh + c1c3λvH

(
(N)2

)]
dΩdz

(4.19)

where nxy, nz are respectively the horizontal and vertical components of the normal vector n,
|P | and |T | denote respectively the volume of the prism (P ) and the surface of the triangle of

the prism. νe =
k2

h
εh

, and H is the Heaviside function defined as follows

H (x) =





= x for x > 0

= 0 otherwise
(4.20)

4.3.4 Semi-discrete system equations

Let us define the various matrices related to the spatial discretization of Eqs.(4.13)-(4.19). The
velocity mass matrix is obtained as;

Mυ =

∫

Ω

∫ η

−h

τ iϕl

K∑

k=k0

Ned∑

j=1

(Jj)k ϕkτ jdzdΩ

=

Ned∑

j=

K∑

k=k0

τ jϕl |Ω|j
∫

Ω
τ jτ jdΩ

∫ zk+1

zk−1

ϕkϕkdz =

Ned∑

j=

K∑

k=k0

∆zk (Jj)k
dj

|ej |
|Ωj|

(4.21)

where the test functions ϕ and τ are chosen as ϕ = ϕl (l = 1 . . .K) and τ = τ i (i = 1 . . . Ned).
Following the same line of reasoning, we can define the following matrices and right-hand side
expressions
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• horizontal velocity stiffness matrix Kυ

Kυ = νv

∫

Ω

∫ η

−h

τ i
∂ϕl

∂z

Ned∑

j=1

K∑

k=k0

τ j (Jj)k

∂ϕk

∂z
dzdΩ

= νv

Ned∑

j=1

K∑

k=1

|Ω|j (Jj)k

dj

|ej |
1

∆zk

(
zk+1 − zk
δzk+1/2

− zk − zk−1

δzk−1/2

)
(4.22)

• “vertical” velocity mass matrix Mw

Mw =

∫

Ω

∫ η

−h

ψiχl

Nel∑

s=1

K−1∑

k=k0

(ws)k χk+1/2ψs (x) dzdΩ

=

Nel∑

s=1

K−1∑

k=k0

|T |j ∆zk (ws)k χk+1/2ψs (x)

(4.23)

• “vertical” stiffness matrix Kw

Kw =

∫

Ω

∫ η

−h

ψiχl

Nel∑

s=1

K−1∑

k=k0

[
∂

∂z

(
νv

∂ (ws)k ψsχk+1/2

∂z

)]
dzdΩ

=

Nel∑

s=1

K−1∑

k=k0

|T |s ∆zk

[
∂

∂z

(
νv
∂ (ws)k

∂z

)]
(4.24)

• free surface mass matrix Mη

Mη =

∫

Ω
ψi

Nel∑

j=1

ψjdΩ =

Nel∑

j=1

ηhψj |T |j (4.25)

• turbulence variables mass matrix Mζ=(k,ε)

Mζ =

∫

Ω

∫ η

−h

τ iϕl

K∑

k=k0

Ned∑

j=1

(ζj)k ϕkτ jdzdΩ =

Ned∑

j=

K∑

k=k0

(ζj)k |Ω|j ∆zk (4.26)

• turbulence variables stiffness matrix Kζ

Kζ =

∫

Ω

∫ η

−h

τ i




cζ

Ned∑

j=1

K∑

k=k0

τ jτ j (ζj)k
∂ϕl

∂z

∂ϕk

∂z




dzdΩ

=

Ned∑

j=1

K∑

j=1

|Ω|j (ζj)k

[
cζ
dj

|e|j
1

∆zk

(
ϕk+1 − ϕk

∆zk+1/2
− ϕk − ϕk−1

∆zk−1/2

)]
(4.27)

with the following matrix (to account for the buoyancy)
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Eζ =

∫

Ω

∫ η

−h

τ


λvH

(
(N)2

)
+

K∑

k=k0

Ned∑

j=1

cζ (ζj)k τjτjϕk


ϕdΩdz

=




Ned∑

j=1

K∑

k=k0

|Ω|j cζ (ζj)k

dj

|e|j
∆zk + λvH

(
(N)2

)



(4.28)

• scalars mass matrix MΦ=(S,T,C)

MΦ =

∫

Ω

∫ η

−h

ψiχl

Nel∑

s=1

K∑

k=k0

(Φs)k χkψs (x) dzdΩ

=

Nel∑

s=1

K∑

k=k0

|T |s ∆zk (Φs)k χkψs (x)

(4.29)

• scalars stiffness matrix KΦ

KΦ =

∫

Ω

∫ η

−h

ψiχl

Nel∑

s=1

K∑

k=k0

[
−ψj∇xy ·

(
νh

σΦ
∇xy (Φs)k χk

)
− ψk

∂

∂z

(
νv

σΦ

∂ (Φs)k χj

∂z

)]
dzdΩ

=

Nel∑

j=1

K−1∑

k=k0

|T |j ∆zk

[
−∇xy ·

(
νh

σΦ
∇xy (Φj)k

)
− ∂

∂z

(
νv

σΦ

∂ (Φs)k
∂z

)]

(4.30)
and the following expressions

∫

Ω

∫ η

−h

DT
xy

(
q

ρ0

)
=

Nel∑

s=1

Ned∑

i=1

ϕlτ i∇xy

Nel∑

s=1

NK∑

k=k0

qs
ρ0
ψsχkdzdΩ

Dz

(
q

ρ0

)
=

Nel∑

s=1

K−1∑

k=k0

|T |s ∆zk

[
1

ρ0

∂qsψsχk

∂z

] (4.31)
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• right hand side for horizontal velocity Rυ [ Eq. (4.16)]

Rυ = −
∫

Ω
τ i





∫ η

−h

ϕlfxydz − ϕl


(ρaCw‖W‖W ) |η −

Ned∑

j=1

τ jϕ|h





dΩ

+ g

∫

Γ0∩Γb

∫ η

−h

ϕl

∑

s=1

ψs

Ned∑

j=1

τ j · ndzdγ + g

∫

Ω

∫ η

−h

∇xy

(
ρs − ρ0

ρ0

)
ψsχkdzdΩ

+
1

ρ0

∫

Ω

∫ η

−h

ϕlτ i

Nel∑

s=1

NK∑

k=k0

∇xyqsψsχkdzdΩ

=

Nel∑

s=1

Ned∑

i=1

τ ifxy −


(ρaCw‖W‖W ) |η −

Ned∑

j=1

τ jϕ|h


 |Ω|i

+ g
∑

j∈Γ0∩Γb

Nel∑

s=1

ψk |Ω|j τ j · nj −
Nel∑

s=1

NK∑

k=k0

∇xy

(
ρs − ρ0

ρ0

)
ψsχkdzdΩ

+
1

ρ0

Nel∑

s=1

NK∑

k=k0

∇xyqsψsχk

(4.32)

• right hand side for vertical velocity Rw [see eq. (4.15)]

Rw =

∫

Ω

∫ η

−h

ψiχl

Nel∑

s=1

K−1∑

k=k0

1

ρ0

∂qsψsχk

∂z
dzdΩ =

Nel∑

s=1

K−1∑

k=k0

1

ρ0
χkqs |Ω|s (4.33)

• right hand side for free surface Rη [eq. (4.14)]

Rη =

∫

Ω
FψsdΩ =

Nel∑

s=1

F̃bψs (4.34)

• right hand side for turbulence equations Rζ [eqs. (4.18), (4.19) ]

Rζ =

∫

Ω

∫ η

−h

τiϕlcζPd

Ned∑

j=1

K∑

k=k0

τjϕkdzdΩ = Pd

Ned∑

j=1

K∑

k=k0

dj

|e|j
∆zk |Ω|j (4.35)

• right hand side for passive scalars RΦ [eq. (4.17)]
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RΦ =

∫

∂Ω
χlψi





Ned∑

j

K∑

k=k0

[
νh

σΦ
(∇xyΦh)

]
ψjχk · nxy



dγ

−
∫

∂Ω
χlψi





Ned∑

j

K∑

k=k0

[
νv

σΦh

(
∂Φh

∂z

)]
χkψj · nz



dS +

∫

Ω

∫ η

−h

FΦψsχldΩ

=





Ned∑

j

K∑

k=k0

[(
νh

σΦ
(∇xyΦh)

)
ψjχk · nxy +

(
νv

σΦh

(
∂Φh

∂z

))
χkψj · nz

]
∆zk

+
K∑

k=k0

Ned∑

j=1

(
FΦj

)
k
|T |j ∆zk

(4.36)

Let us introduce some useful operators,

DxyIv =

∫

Ω
ψs

(
∂

∂x

∫ η

−h

u+
∂

∂y

∫ η

−h

v

)
dΩ

=

K∑

k=k0

Ned∑

j=1

[
∂

∂x
(τxj)ϕk +

∂

∂y
(τyj)ϕk

]
∆zk |Ω|j

(4.37)

Gxyηh =

∫

Ω

∫ η

−h

ϕlτ iηh∇xy ·
Ned∑

j=1

τ jdzdΩ

=

K∑

k=k0

Ned∑

j=1

ϕkτ jηh

(
∂τxjϕk

∂x
+
∂τyjϕk

∂y

)
∆zk |Ω|j

(4.38)

where Dρ (x, z) =
∫ η
z (ρ− ρ0) /ρ0dς is the approximation term of the density. The vertical

integration operator is defined by Ivυ =
∫ η
−h
υdz.

Considering a generic triangle, the external approximated pressure can be written

P0 =

Nel∑

j=1

p0jψj (x) (4.39)

where p0j are computed from the centers of the circumscribed circles of the two-adjacent trian-
gles.

The Coriolis term, F can be expressed as follows:
The approximation of the vector fxy can be written

fxy (x, z) =

K∑

k=k0

Nel∑

l=1

(
J̃l

)
k
τ (x)ϕk (z) (4.40)

where
(
J̃l

)
k

is the normal horizontal flux such that

(
J̃l

)
k

= C [(υl)k · nl |el|] (4.41)
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where (υl)k is the horizontal velocity on the edge l in the kth layer, while C is a following tensor

C =




0 f1

−f2 0


 (4.42)

Finally the Coriolis term can be defined using the lumping formulation

F =

∫

Tl

∫ zk+1

zk−1

ϕkfxy · τ ldxdz ≈
(
J̃l

)
k
∆zk

dl

|el|
(4.43)

Thus the space discretization of the former partial differential equations generate a semi-discrete
system of non linear ordinary differential equations (ODEs)





Dxyυ +Dzw = 0

d

dt
(Mηη) +DxyIvυ = Rη

D

Dt
(Mυυ) +Kυυ +DT

xy

(
q

ρ0

)
− gGxyη = Rυ − gGxyDρ + F − gGxyP0

D

Dt
(MwW) +KwW +Dz

(
q

ρ0

)
= Rw

D

Dt
(MΦΦ) +KΦΦ = RΦ for ∀Φ = (S, T,C)

D

Dt
(Mζζ) +Kζζ = Rζ for ∀ζ = (k, ε)

(4.44)

where d
dt is a Lagrangian derivative, D

Dt is the material derivative.

Let us notice that the various mass matrices depend upon on time through the vertical inte-
gration where the upper limit is η (x, y, t). This is a difficulty that we will address in the next
chapter when we deal with the time discretization.





Chapter 5

Time discretization and approximate
factorizations

In this chapter, starting from the three-dimensional turbulent incompressible Navier-Stokes
equations for the variable density fluid flow, we introduce a general mathematical framework for
the factorizations of the algebraic system with the non-hydrostatic pressure assumption. The
fractional step schemes are widely adopted for the numerical solution of 3D free-surface flows.
These schemes can be formally interpreted as deriving from inexact block factorizations of the
matrix arising from the time discretization of the original system. In the sequel the generalized
Yosida scheme (which is shown to behave well for large time-step [89], [37], [90]) that we intend
to introduce, will be used to solve the RANS pure hydrodynamics equations. The fractional time
step scheme proposed by Mohammadi and Pironneau [96] will be used to solve the turbulence
equations.

5.1 Time discretization

Free-surface flows imply that the geometry evolves with time. In order to avoid a fully coupled
problem with all difficulties associated with the resulting linear algebraic system, we assume
that the geometry is given (and in fact it is frozen) at time level tn = n∆t and this constitutes
the starting (or initial) condition to integrate the problem over the next step. Therefore the
different mass matrices do not depend on time and may leave the time derivatives.

Remark 7 The system (4.44) is convective dominant, and several different physical processes
with different time scales lead to the stiff character of the problem. Thus to avoid instability
problems (that could arise from the non-linear terms), we will use the characteristics method for
the time integration, especially for the material time derivatives.

Let us consider a discretization of the time interval [0, T ] into N subintervals [tn, tn+1] with
∆t = tn+1 − tn for n = 0, 1, . . . , N − 1. For the non-hydrostatic pressure case, applying the θ-
projection method to the free surface (η) and the surface velocity field (υ) the following implicit
time advancing scheme of the system (4.44) is reordered and the problem statement can be
written: For each n ≥ 0 find υn+1, wn+1, ηn+1, ζn+1, Φn+1 such that

55
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



Dxyυ
n+1 +Dzw

n+1 = 0

Mη

(
ηn+1 − ηn

)

∆t
+ θDxyIvυ

n+1 = Rn
η − (1 − θ)DxyIvυ

n

Mυ

(
υn+1 − υ (Xn)

)

∆t
+Kυυ

n+1 +Gxy

(
qn+1

ρ0

)
− θgGxyη

n+1 =

Rn
υ + (1 − θ) gGxyη

n − gGxyDn
ρ + Fn − gGxyP

n+1
0

Mw

(
Wn+1 −W (Xn)

)

∆t
+KwWn+1 +Dz

(
qn+1

ρ0

)
= Rn

w

MΦ

(
Φn+1 −Φ (Xn)

)

∆t
+KΦΦn+1 = Rn

Φ for ∀Φ = (S, T,C)

Mζ

(
ζn+1 − ζ (Xn)

)

∆t
+Kζζ

n+1 = Rn
ζ for ∀ζ = (k, ε)

(5.1)

In the above system υ (Xn) = υ
(
tn,X

(
tn, tn+1, (x, z)

))
.

The coordinate X(τ ; t,x) is the solution of the following problem (see [108], [112]):





dX (τ ; t,x)

dτ
= V (τ,X (τ ; t,x)) for τ ∈ (0, t)

X (t; t,x) = x




. (5.2)

From a geometric point of view X (·) = X (·; t,x) is the parametric representation of the tra-
jectories: X(τ ; t,x) is the position at time τ of a particle which has been driven by the field
V(u, v, w) and that occupies the position x at time t.
Problem (5.2) is a system of ordinary differential equations. For its discretization it is possible
to use a backward Euler scheme, or a more accurate fourth-order Runge-Kutta scheme. Since
(5.2) is non-linear, to compute X

(
tn; tn+1,x

)
we will use the velocity at time tn. The total

derivative for a generic variable Φ can be discretized as follows:

DΦ

Dt
(tn+1,x) ' Φ

(
tn+1,x

)
− Φ

(
tn,X

(
tn; tn+1,x

))

∆t
(5.3)

Remark 8 Actually by using the temporal first order Euler scheme, the above characteristics
method is found to be monotonic, and the stability is achieved accordingly.

5.1.1 Incremental scheme

When the initial distribution of the hydrodynamic pressure is known, typically when we restart
the simulation or when an analytical solution is available, the so-called incremental scheme
becomes useful.

In this case the xy-gradient and the z derivative of the hydrodynamic correction at time
tn+1 are split as follows

∇qn+1 = ∇
(
qn+1 − qn

)
+ ∇qn (5.4)

∂qn+1

∂z
=
∂
(
qn+1 − qn

)

∂z
+
∂qn

∂z
(5.5)
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Hence at the algebraic level, one has a different right-hand side accounting for the gradient of
hydrodynamic pressure at time tn and moreover Qn+1 represents now the increment of q. This
implies that an initial condition q0 is required for the hydrodynamic pressure. Moreover the
presence of ∇qn and ∂qn

∂z in the correction-step is of great importance when the hydrodynamic
correction becomes large compared to the hydrostatic pressure.

5.1.2 The Stokes-like algebraic system equations

The above overall ordinary differential equations system of the SWE is non-linear. The present
work adopts a strategy of decoupling to avoid a fully coupled problem with all its difficulties.
Therefore for the overall scheme we use the splitting between the “pure” hydrodynamic solver
(first, second and third equations of system (5.1)), followed respectively by the scalars solver
(fourth equation of system (5.1) and the turbulent solver (fifth equation of system (5.1)) .
Hence the hydrodynamic system of the ordinary differential equations (for dependent variables)
are solved first, then using these values we solve advection-diffusion equations for scalars (S, T,
Cs), and finally the turbulent quantities are computed with ζ = (k, ε).

The hydrodynamic model

At each time level tn+1, using the θ projection method upon the free-surface equation, and the
incremental scheme, the algebraic system of the ODEs can be written




A Ĝ

D 0






Λn+1

Qn+1 −Qn


 =




R̃ − ĜQn

0


 (5.6)

where Λn+1 =
(
υn+1,ηn+1,Wn+1

)T
is the unknown vector containing the discrete values of

horizontal velocity, elevation and vertical velocity. Ĝ = (Gxy, Gz) and D = (Dxy, Dz) are the
3D gradient and divergence operators respectively.
The matrices A, Ĝ and DT can be defined as follows

A =




1
∆tMυ +Kυ gθGxy 0

−θDxyIv
1

∆tMη 0

0 0 1
∆tMw +Kw




; Ĝ =




1
ρ0
Gxy

0

1
ρ0
Gz




; DT =




DT
xy

0

DT
z




(5.7)

where Mυ, Mη, Mw represent the mass matrices, Kυ, Kw represent the stiffness matrices. Gxy

and Dxy represent respectively the 2D horizontal gradient and divergence operator in the xy
plane. Gz and Dz represent the algebraic counterpart of respectively G and D in the vertical

direction. R̃ =
(
R̃1, R̃2, R̃3

)T
accounts for the boundary conditions and for the explicit terms

of time derivatives, hence we can define

R̃1 = Mυ∆t
υ

(Xn) − g (1 − θ)GxyP
n+1
0 − gGxyDn

ρ + Fn

R̃2 =
Mη

∆t η
n − (1 − θ)DxyIvυ

n

R̃3 = Mw
∆t W

n (Xn)

(5.8)
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5.1.3 The inexact factorizations

Let us consider A the block matrix in (5.6), then assuming that the block A is invertible, the
following LU factorization of A exists such that,




A Ĝ

D 0


 =




A 0

D −DBĜ






I BĜ

0 I


 (5.9)

with A−1 = B.

Remark 9 Unlike what happens with the classical differential projection schemes, it should be
noticed that the proposed algebraic approach here, does not explicitly require to impose unphysical
boundary conditions [89], [29]. On the other hand it should be noticed that all the physical-
relevant boundary conditions have already been incorporated at this stage, and the actual form
of matrices A and D in (5.6) does depend on them. Indeed no further conditions are needed.

Starting from (5.9), we can introduce suitable inexact factorizations in order to reduce the
computational effort [111].

Let us suppose that,
B = B1 in the L-step, B = B2 in the U step, one can obtain the following approximation matrix




A 0

D −DB1Ĝ






I B2D
T

0 I


 =




A AB2Ĝ

D D (B2 −B1) Ĝ


 (5.10)

• one can easily find that the mass conservation is fully unperturbed if B2 = B1 = B,

• equations concerning the vector Λ are unperturbed if B2 = A−1, and B1 = H 6= B2.

A candidate for the matrix H can be found by observing that

A =




1
∆tMυ +Kυ gθGxy 0

−θDxyIv
1

∆tMη 0

0 0 1
∆tMw +Kw




=
1

∆t




Mυ 0 0

0 Mη 0

0 0 Mw




+ B (5.11)

and we can also write

A =
1

∆t
M + B =

1

∆t
M







I 0 0
0 I 0

0 0 I


+ ∆tM−1B


 (5.12)

Hence a convenient choice of H (see [89], [111]) is given by

H = ∆tM−1 (5.13)
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5.1.4 The projection-correction method: the generalized Yosida method

Let us introduce first some useful explicit terms used by the finite element approximation:

• Terms of external pressure: GxyP
n+1
0 .

Applying the Gauss-Green formulation, the discretized form of the pressure term 4.39
reads

GxyP
n+1
0 =

3∑

l=1

zk+1∑

zk−1

pn+1
0 (∆zk)l dl ≈

3∑

l=1

(∆zk)l

(
pn+1
0T l

+

− pn+1
0T l

−

)
(5.14)

• Terms of density: GxyDn.
Let the function

Dn
ρ (x, z) =

∫ ηn

z

ρn − ρ0

ρ0
dς (5.15)

Cn =

∫

T
GxyDn

ρ · τϕdzdx (5.16)

Assuming that density is constant for a prism and using the trapezoidal rule for a basic
triangle Tj in a layer s, the function Cn can be written

Cn
s,Tj

≈ 1

ρ0

K∑

k=s

zk+1 − zk
2

(
∆ρn

k+1,Tj
+ ∆ρn

k,Tj

)
(5.17)

where ∆ρn
k,Tj

= ρn
k,Tj

− ρ0.

Using the Gauss-Green formula in Eq. (5.16), Eq. (5.17) reads

∫

Tl

∫ zk+1

zk−1

ϕk∇Cn · τ ldxdz ≈
(
Ck−1,T+

− Ck−1,T−

) ∫ zk−1/2

zk−1

ϕkdz

+
(
Ck,T+

− Ck,T−

) ∫ zk+1/2

zk−1/2

ϕkdz

+
(
Ck+1,T+

− Ck+1,T−

) ∫ zk+1

zk+1/2

ϕkdz

(5.18)

with the following integral expressions

∫ zk−1/2

zk−1

ϕkdz =
δ2zk−1

8δzk− 1

2

∫ zk+1/2

zk−1/2

ϕkdz = ∆zk − 1

8

(
δ2zk−1

δzk− 1

2

+
δ2zk+1

δzk+ 1

2

)

∫ zk+1te

zk+1/2

ϕkdz =
δ2zk+1

8δzk+1/2

(5.19)

nso
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Hence by using the value of H as in (5.13) the approximated values of υn+1 and qn+1 can
be computed by means of the following sequence of steps

L-step:





AΛ̃
n+1

= R − ĜQn

DΛ̃
n+1 −DBĜQ̃n+1 = 0

(5.20)

U-step:





Λn+1 + HĜ
(
Qn+1 −Qn

)
= Λ̃

n+1

Qn+1 −Qn = Q̃n+1

(5.21)

We observe that

HĜ = ∆t




1
ρ0
M−1

υ Gxy

0

1
ρ0
M−1

w Gz




; DHĜ = ∆t
1

ρ0

[
DxyM

−1
υ Gxy +

1

ρ0
DzM

−1
w Gz

]
(5.22)

Using the so-called Generalized Yosida Method (GYM), the L and U-step can be rewritten as
L-step:
Hydrostatic step





(
1

∆t
Mυ +Kυ

)
υ̃n+1 +θgGxyη̃

n+1 = 1
∆tMυυ

n (Xn) ,

− (1 − θ) gGxyη
n − 1

ρ0
GxyP

n+1
0 − gCn,

+Fn − 1
ρ0
GxyQ

n;

−gDxyIvυ̃
n+1 +

1

∆t
Mη η̃

n+1 = 1
∆tMη η̃

n

(5.23)

Determination of an intermediate vertical velocity

(
1

∆t
Mw +Kw

)
W̃n+1 =

1

∆t
MwWn (Xn) − 1

ρ0
GzQ

n; (5.24)

Determination of an intermediate pressure

−∆t
1

ρ0

[
DxyM

−1
υ Gxy +GzM

−1
w DT

z

]
Q̃n+1 = −

(
Dxyυ̃

n+1 +DzW̃
n+1
)

(5.25)

U-step:

Qn+1 = Q̃n+1 (5.26)





(
1

∆tMυ +Kυ

)
υn+1 +θgGxy

1
ρ0
ηn+1 =

(
1

∆tMυ +Kυ

)
υ̃n+1

+θgGxy
1
ρ0
η̃n+1 − (1 − θ) gGxy

1
ρ0
ηn

− 1
ρ0
Gxy

(
Qn+1 −Qn

)

−DxyIvυ
n+1 + 1

∆tMηη
n+1 = DxyIvυ̃

n+1 + 1
∆tMη η̃

n+1

(5.27)
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(
1

∆t
Mw +Kw

)
Wn+1 =

1

∆t
MwW̃n+1 −Gz

(
Qn+1 −Qn

)
(5.28)

This GYM extends to the free-surface flow Yosida method for the Navier-Stokes Equations
(see [111]). The method of solution requires to solve

1. the hydrostatic step (5.23)-(5.24);

2. the system (5.25) in order to compute the intermediate pressure;

3. the hydrodynamic correction (5.27);

4. the tridiagonal system (5.28) in order to compute the vertical velocity at time step tn+1.

Remark 10 The nature of advection-diffusion equations for scalars is similar to that of the
turbulence equations, and the following solver will be considered to be closer to the one used for
computing the scalars (S, T,Cs) with some modifications. More precisely the turbulence equations
right-hand sides as well as the sediment concentration one, contains non-linear terms with the
source of difficulties in modeling, and will be subject of our attention in the following paragraphs
and in chapter 7.

The turbulence model

In a typical case of the problems that we want to solve, we are facing the situation where a fluid
enters a domain, moves through the domain in turbulent motion and exits again at one or more
outflows. The aim here is to develop a closed set of equations together with appropriate boundary
conditions, which govern the turbulent fluid flow. It should be pointed out that the turbulence
equations are generally convection dominated. The critical problem in the turbulence modeling
is the stability of the scheme as well as preserving the positivity of the turbulent kinetic energy,
k, and its rate of dissipation, ε. For k− ε turbulence modeling, Mohammadi and Pironneau [96]
analyzed some properties of this model and proposed two methods that could allow to enforce
those properties.

• A semi-implicit multi-step scheme using an auxiliary system

• A semi-implicit multi-step scheme in k and ε only.

In this work we basically follow the second approach for the k − ε turbulence modeling.
Here we will analyze some properties of the derived Stokes operator which will be used. More
precisely we will consider the existence, uniqueness and positivity of the solution, as well as the
stabilization of the scheme.

Existence and uniqueness of the solution

We know no existence or uniqueness results for the k−ε system itself. Some attempts concentrate
on a simpler model, which is formulated in the transformed functions ψ = ε2/k3, θ = k/ε and
contains some simplifications. For this system an existence result has been found (see [96]), but
uniqueness is still an open problem.
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The quasi-implicit form

The right-hand sides (RHS) of the turbulence equations contain the non-linear terms. On the
other hand the physical instabilities introduced by density gradient in multiphasic flows could
generate instabilities in the numerical scheme. To avoid such the inconvenient, the present thesis
adopts the quasi-implicit time discretization for the linearization of the RHS-sink terms in the
turbulence equations [see Eq. (4.28)]. For example, to illustrate our point, the time discretization
of the rate of dissipation in the RHS of the kinetic energy PDE Eq. (4.18) (a similar procedure
holds for the rate of dissipation PDE Eq. (4.19)), is represented by the following expression:

λvH
(
(N)2

)
+ εn kn+1

kn (see [80]). Thus the relevant matrices of stabilization become

Ek =

∫

Ω

∫ η

−h

τ i


λn

vH
(
N2
)n

+

K∑

k=k0

Ned∑

j=1

c1τjϕk


 ε

n

kn
ϕkdΩdz

Eε =

∫

Ω

∫ η

−h

τ




c3λn

vH
(
N2
)n

+
K∑

k=k0

Ned∑

j=1

c2τjτjϕk


 εn

kn
+ c1k

nP n+1
d


ϕdΩdz

(5.29)

Hence diagonal terms in stiffness matrix are boosted and the stability of the scheme is
improved. Moreover, to enforce the accuracy of the solution, a high order fourteen points
Gaussian quadrature formula is implemented for evaluating the source term at the right-hand
sides of the turbulence equations Eqs. (4.18) and (4.19).

Fractional-step algorithm: Mohammadi and Pironneau

The main idea of this algorithm proposed by Mohammadi and Pironneau (see [96]), is to split
the system of equations into a convection step and a diffusion step. At each time level tn+1 we
obtain the following algebraic system equation




Ak Ek

Eε Aε






kn+1

εn+1


 =




Rk

Rε


 (5.30)

where Ak = 1
∆tMk + Kk ; Aε = 1

∆tMε + Kε.

One can find the following LU factorization,




Ak Ek

Eε Aε


 =




Ak 0

Eε (Aε −EεB1kEk)






I B2kEk

0 I


 (5.31)

in which Ek and Eε come from the quasi-implicit temporal discretization Eq.(4.28) [80].
Here the algorithm is split into two fractional steps: (i) the convection step which only

contains the zero-order terms; (ii) the diffusion step for the others.
Convection step:
Here A−1

k = B1k contains only the zero-order terms of the matrix Ak





Akk̃
n+1 = Rk

Eεk̃
n+1 − (Aε −EεB1kEk) ε̃

n+1 = Rε

(5.32)
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Diffusion step:
In this step A−1

k = B2k contains only the diffusion terms of the matrix Ak





kn+1 + B2kEkε
n+1 = k̃n+1

εn+1 = ε̃n+1
(5.33)

At each time step the convective step is solved first using the Galerkin characteristics method
for the convection terms. Finally the diffusion step is solved and the θ projection method can be
adopted for e.g. Crank Nicolson with θ = 1/2 (see Rappaz et al. [113], Fletcher [36]) by means
of improving the time accuracy.

Positivity of k and ε, stability of the turbulence scheme

Here the zero order terms have been split into their positive and negative parts. For the stability
purpose, the positive terms are treated explicitly, while the negative terms are treated implicitly
(see also [80]).

It is worthwhile to notice that for a generic prism P , the computation of production, kinetic
energy and its dissipation rate takes into account all the neighbors contribution. Moreover, by
using an upwind scheme (characteristics Galerkin method), the conservative form of the scalar
equations and the fractional step algorithm can enforce preservation of the positive k, ε, as well
as the mass balance and the stability of the scheme.

Remark 11 The advection-diffusion equations for the passive scalars such as heat, salt and
solute concentration are similar to the turbulence equations. Thus the same solver will be used
for their solutions with a little adaptation for the sources, sinks and boundary conditions.

5.2 Important features of the general algorithm

The some important features of the overall solution method can be summarized as follows,

• The velocity field is described using lowest order Raviart-Thomas finite elements to account
of the discontinuity into the solution (see free-surface position), while the linear P1 Galerkin
F. E. M is used in the vertical direction.

• The linear systems are solved by means of conjugate gradient method in its stabilized
version namely the Bi-CGSTAB using Krylov accelerators (see Quarteroni and Valli [112]).

• In this study the so-called Eulerian-Lagrangian Galerkin (ELG)-weak method is adopted to
guarantee a high degree of mass conservation of model, i.e. in the finite element context,
the Eulerian-Lagrangian method combines the characteristics method with a Galerkin
finite element weak formulation, and the Eulerian grid is transported backward in time to
construct the Lagrangian grid. This method has better conservation properties.

• Moreover, because the spatial and temporal discretization are combined as result of the
Lagrangian tracking, the temporal discretization error is reduced markedly. In effect, the
Eulerian-Lagrangian methods perform the temporal discretization of the total derivative
by tracking a fictitious fluid particle during each time. Thus for example, the truncation
error for a first-order Eulerian-Lagrangian is proportional to the second total derivative of
Eulerian solution. Hence the accuracy is enforced in the numerical integration (see Morton
et al. [97], Benqé et al. [4]).
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• The principal advantage of the ELG method is that, owing to the Lagrangian (i.e. non-
local) nature of the advection step, the CFL restriction is eliminated, since there is no
limitation in theory on time step size in the Eulerian Lagrangian scheme. In practice
however, large time step introduces large errors in the approximation of the trajectories,
specifically in the location of the departure points at the foot of the characteristics lines.
Thus, for accuracy reason, the implicit time marching scheme is used for the free-surface
discretization (see second equation in system 5.1), and the time-step size , ∆t, needs to
be limited. This effectively places a limit on how large the time step can be (this is
none the less, much less restrictive than that imposed by Eulerian schemes), by means of
Courant-Friedrichs-Levy (CFL) restriction. This is found numerically to be

∆t ≤ 15
∆x√

τ0
ρm

; δτ <
∆t

10
(5.34)

where δτ stands for the characteristics parametric sub-scale time step size, and τ0 is the
bottom shear stress magnitude.

• The model uses the conservative scheme, which is particularly desirable for scalar trans-
port. The characteristics method taking the hyperbolic nature of the advection operator
into account was implemented via the ELG method. This method is suitable for the rel-
atively large time step and can enforce the preservation of the k − ε positivity as well as
the stability of the scheme.

• The model overall accuracy is found to be of first order in time and second-order in space.



Chapter 6

3D model for turbulent free-surface
flows: Numerical Results

This chapter deals with the validation of the turbulent hydrodynamic model, whereas some test
cases have been carried out to :

• check the validity of the model developed, by simulating the constant or variable density
fluid flow

• provide insight in some interesting features of the flow field and the turbulence and the
relevant physical mechanisms and processes underlying these features.

• provide some illustrative examples of the rather wide range of situations concerned with
the matter of variable density, and to bring out some numerical computations carried out
for simulating open channel fluid flows including a suitable k − ε turbulence closure for
stratified fluid flows.

• apply the acquired knowledge in an engineering sense, mainly by evaluating, improving
and developing suitable and efficient numerical scheme.

6.1 Validation of the model using benchmark test cases

Detailed experimental data for testing the solver are limited. However in order to check the
validity of the model developed, the computation was carried out for simulating open channel
flows and the computed results were compared with the experimental measurements from labo-
ratory flumes. Hence three cases of uniform and non-uniform unsteady flows in open channels
will be used to test our model. The data for straight-uniform open channel flow test case were
taken from Istiarto [54], those of non-uniform open channel flow were taken from Qu [110], while
those of curved open-channel flow test case were taken from Blanckaert [5]. The data for Qu’s
experiment have been measured by an electromagnetic measuring system (PROline Promag),
while other experimental data have been carried out with detailed velocity and turbulence
measurements in laboratory flumes at the Laboratoire d’Hydraulique Environnementale (LHE)
in the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland, using a specially designed
Acoustic Doppler Velocity Profiler (ADVP). The ADVP is capable of measuring instantaneous
profiles of three components of velocity simultaneously at a sampling frequency of 33 Hz. Using
these velocity measurements, the profiles of turbulence characteristics, and the components of
Reynolds stress tensor were also computed.

65
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The test results will be compared to experimental data for the steady open channel flow which is
the suitable case ( see [54]), curved open channel flow (see [5]) and for the unsteady open channel
flow (see [110]), for the water surface profile along the channel and the vertical distributions of
the velocity, eddy viscosity, and shear stress.

6.1.1 Stability conditions and accuracy of the model

The most important requirements on numerical methods for solving RANS arise from the goal
of producing an accurate realization of a flow that contains a wide range of length scales. Time
accuracy for the advection-diffusion equations (e.g. turbulence equations or closure equations)
requires a small time step and it is important to know whether the time-advance method is
stable for the time step demanded by accuracy. The most common description of the accuracy
of a time and spatial discretization method is its order, the numbers that describe the rates at
which the discretization errors decrease as the time step and/or grid size goes to zero.

6.1.2 The model accuracy

To compute the decay of the homogeneous turbulence convected by a uniform flow, some ana-
lytical solutions have been used (see [96])) for the steady open channel flow ( see [54], [71]) :

k = k0

(
1 + (ca − 1) x

ε0

k0

) 1

1−ca

(6.1)

ε = ε0
(

1 + (ca − 1) x
ε0

k0

) ca
1−ca

(6.2)

where x is the longitudinal coordinate, ca = 2.06 is a constant, k0 and ε0 are respectively the
initial values of the turbulent kinetic energy and its rate of dissipation. The channel is 38[m]
long, the width is B = 2[m] and the flow depth is h = 0.183[m]. The discharge is Q = 0.25[m3/s],
the bed roughness is ks = 0.0042[m], and the bed slope is set to S0 = 0.000624. Computations
were conducted using 100 layers. Several layers of thickness δzb = 0.002[m] have been used at
the bed (see figure 6.1) in order to take into account the boundary layer effects at the bottom.

Figures 6.3 and 6.2 show the good agreement between computed and analytical solutions.

6.1.3 Space and time accuracy

The order of the spatial accuracy of the model is investigated through the above analytical
solutions (for the temporal accuracy and following the Taylor hypothesis on frozen turbulence,
we used the same Eqs. (6.1) and (6.2) in which x is replaced by t). One can determine the
observed order of spatial accuracy on the space increment by calculating (see Michler et al. [88]),

p (Φ) = log

( ‖Φn − Φn+1‖2

‖Φn+1 − Φn+2‖2

)
/log (2) (6.3)

where p (Φ) denotes the observed order of spatial accuracy for the computed turbulence variable
Φ = (k, ε) on different mesh sizes (denotes by n, n+ 1, n+ 2), and the differences are measured
in the L2-norm. The computations were performed on different sequences of mesh sizes (to
determine the spatial order accuracy) and on different time-step sizes (to determine the temporal
accuracy). The error between the exact solution Φe and numerical solutions Φ = (k, ε) is
calculated using a high order Gaussian quadrature formula to compute the following L2 norm,
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Figure 6.1: Subdivision of channel bed between several layers of thickness δzb

‖e‖ = ‖Φe − Φ‖ =

[∫

bΩ
|Φe − Φ|2dΩ̂

] 1

2

(6.4)

Table 6.1 shows the observed order of spatial accuracy, where CA represents the ratio between
the maximum and minimum diameters of the circumscribed triangles (dT

max, d
T
min) of the 2D-

horizontal unstructured mesh. During computations, the coarse 2D unstructured mesh (for
n = 0 in table 6.1) has 300 elements and 117 nodes, while the finest mesh (for n = 7 in table
6.1) has 5044 elements and 2733 nodes.

Figure 6.5 shows the expected spatial accuracy behavior, i.e., second-order space accuracy.
This figure indicates a convergence of the scheme for k and ε. It is observed that ε equation
behaves better, while for a specific error tolerance, both solutions do not depend on the mesh
size.

Table 6.2 shows the observed order of temporal accuracy, where CT is a constant. The time
characteristic-Galerkin for the turbulence model uses first order explicit backward Euler scheme
to preserve the monotonicity of the scheme. The time discretization is expected therefore to be
first-order accurate. Consequently the coupled system can be at most first order time accurate
as confirmed in figure 6.4, in which we use the finest mesh corresponding to the last line of table
6.1.

6.2 Constant density flows: numerical results

Some numerical tests of various complexity have been conducted with the aim of outlining the
good properties of the model. It is worthwhile to mention that several layers of thickness δzb

have been used at the bed (see figure 6.1) to resolve the boundary layer effects at the bottom.
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n CA = dT
max

dT
min

k
[
m2/s2

]
ε
[
m2/s3

]
p (k) p (ε)

0 0.90537 0.09444869 0.0005053 1.7523201 1.1594802

1 0.45084 0.06473693 0.0007306 1.5348852 1.6964046

2 0.22551 0.04930999 0.0012773 1.8440260 1.8364252

3 0.11437 0.02277905 0.0027249 1.9016979 1.7976704

4 0.05586 0.01535665 0.0030808 1.9556649 1.9763579

5 0.02833 0.00823566 0.0033009 1.9997129 1.9980793

6 0.01406 0.00649211 0.0033198 2.0018692 2.0930549

7 0.00713 0.00648377 0.0033198 2.0018511 2.0919611

Table 6.1: Spatial order accuracy

n
(
∆t =

√
CT [s]

)
CT k

[
m2/s2

]
ε
[
m2/s3

]
p (k) p (ε)

0 0.2 0.0098023 0.0004865 0.460602294 0.470819844

1 0.15 0.0018911 0.0012081 0.965543241 0.976251193

2 0.1 0.0257790 0.0021249 0.976235828 0.996778353

3 0.08 0.0394728 0.0029808 0.996763275 1.032926204

4 0.06 0.0583956 0.0031808 1.011424351 1.033425036

5 0.05 0.0643692 0.0033198 1.073921159 1.054290358

6 0.02 0.0647604 0.0033585 1.073049571 1.068591611

7 0.01 0.0648377 0.0033874 1.079972414 1.079981914

Table 6.2: Temporal order accuracy
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Figure 6.4: Observed order p of temporal accuracy versus different mesh sizes
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Figure 6.5: Observed order of spatial accuracy p versus different time step sizes

6.2.1 Finite element solver with hydrostatic pressure and k − ε turbulence
model

This section deals with the numerical computations using the 3D model introduced in sec-
tion (3.4.2), which is used for simulating the constant density fluid flow under the hydrostatic
assumption. Note that the height of the free surface at the outflow section is prescribed.

Test I: Quasi-uniform flow

The channel layout and dimension is shown in figure 6.6-A. The discharge is set to Q =
0.25[m3/s], the bed slope S0 = 0.000624. The rough bed is characterized by an equivalent
roughness height, ks = 0.0042[m]. The flow depth at the outflow (downstream end of the flume)
is 0.183[m]. The experimental data are available for the flow case (see Istiarto [54]). The hor-
izontal grid is composed of 5044 elements and 2733 nodes, and the vertical is divided into 50
layers. The bottom is divided into fifteen lowermost layers of equal thickness δzb = 0.002[m] (see
figure 6.1). The time step is set to 0.1 [s], and the computation is performed till a steady state
is reached. The model produces the logarithmic velocity distribution as expected for uniform
flows. Figure 6.6-B shows the water surface. Figure 6.7 shows the steady state distributions of
the velocities at selected sections and compares the computed and measured distributions of the
velocity, the eddy viscosity, and the shear stress at half reach of the channel, x = 19.040[m] .
The water surface shows a decreasing flow depth in the first 8-meter reach. Further downstream
the flow depth gradually increases towards the specified depth of h = 0.183[m] at the outlet
boundary. Within the downstream half channel-reach, x ≥ 20[m], a nearly uniform flow-depth
is observed, showing less than 1 [mm] difference between the two ends of this channel reach.
The computed eddy viscosity profile compares favorably with the experimental one as shown in
figure 6.7. The eddy viscosity goes to zero near the free-surface, increases with the depth and
presents a maximum around the mid-depth, and then, decreases towards zero near the bed. The
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shear stress profile is linearly distributed with the depth, from zero at free surface to maximum
near the bed. The computed solutions agree quite well with the experiments.

Test II: Unsteady open-channel flow

The channel layout and dimensions are shown in figure 6.8 as well the specified triangular
hydrograph for the discharge. The channel is 18[m] long, the width is B = 0.60[m]. The
rough bed has an equivalent roughness height, ks = 0.0058[m]. The flow depth at the outflow
(downstream end of the flume) is 0.13[m]. The experimental data (velocities, water depth, shear
stress and eddy coefficient) are available for the flow case (see [110]). The grid is composed of
3216 elements and 1802 nodes and the vertical is divided into 30 layers and the time step is ∆t =
0.1[s].. The bottom is divided into fifteen lowermost layers of equal thickness δzb = 0.002[m]
(see figure 6.1).

Figure 6.9 shows at two stations x = 10.78[m] and x = 14.08[m], the comparison between
computed solution and measured time variation of flow depths. The model produces the surface
undulation as expected for the non-uniform flow.

Figure 6.10 shows the comparison between computed and measured distributions of the
velocity, the eddy viscosity, and the shear stress at two stations x = 10.78[m] and x = 14.08[m] at
time T=350[s]. The computed velocity distribution and eddy viscosity profile compare favorably
with the experiments. The eddy viscosity goes to zero near the free-surface, increases with the
depth with a maximum around the mid-depth, and decreases towards zero near the bed. The
shear stress profile is linearly distributed with the depth and from zero at the free surface goes
to maximum near the bed. Figure 6.11 shows good agreement between computed and measured
kinetic energy and its rate of dissipation at the selected sections. A good agreement is found
between the computed and measured flow fields.

6.2.2 Non-hydrostatic Pressure and k − ε Turbulence model

Several numerical models using the hydrostatic pressure have been successfully applied to the
free surface flows modeling in most of geophysical flows. However in the presence of complex
flows with complicated bathymetry (such as the natural rivers), it is useful to resort to a more
accurate model in which the hydrostatic assumption is removed.

In this subsection we present the numerical results obtained for the case of unsteady non-
uniform flows. The 3D model introduced in section (3.5) is used for simulating the constant
density fluid. Computations with and without hydrostatic pressure are compared for the same
trench to test the validity of the conventional pressure assumption.

Numerical results

To check the validity of the developed model, the computations were carried out against well-
known flows with the increasing complexity, using a high quality and high spatial resolution
data set. In the spatial discretization, the lowest layer thickness δzb (see figure 6.1) is chosen
such that, the adjacent grid point (first vertical grid point) should lie within the rough turbulent
boundary layer, i.e. 30ν/u∗ < δn = δzb/2 < 100ν/u∗. In the wall region, the shear stress can be
assumed constant, u∗ ≈ 0.1U , where U is a flow mean velocity (see [40]), δn is a normal vertical
distance of the first vertical mesh point from the bottom.
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Test III: Unsteady and non-uniform open-channel flow

The channel layout and dimensions as well as the given discharge hydrograph are shown in figure
6.8. The channel is 18[m] long, the width is B = 0.60[m]. The rough bed has an equivalent
roughness height, ks = 0.0058[m]. The flow depth at the outflow (downstream end of the flume)
is 0.13[m]. The experimental data are available for the flow case (see [110]). The 2D horizontal
unstructured mesh is composed of 30000 elements and 18000 nodes The mean diameter of the
circumscribe is about dT = 0.08[m] and the time step is set to ∆t = 0.1[s]. Computations were
conducted using 30 layers in the vertical direction, with several layers of thickness δzb = 0.002[m]
at the bottom.

Error between modeled depth and Experiments

Error estimation is conducted between the computed flow depth (Hc) and experiments (H) at
the selected sections x = 10.78[m] and x = 14.08[m], using the following expression

Error (H (t)) = (H (t) −Hc (t)) (6.5)

Figure 6.12 shows the error between computations and flow depth values and experiments at
time T = 350[s]. The error is found to be less than 0.0006[m], which confirms the good accuracy
of the numerical model.

computations versus experiments

Figure 6.13 shows the comparison between computed and measured distributions of the velocity,
eddy viscosity, and shear stress at two stations x = 10.78[m] and x = 14.08[m] using both the
hydrostatic and non-hydrostatic pressure in order to test the validity of conventional hydrostatic
pressure assumption.

The computed velocity, eddy viscosity and shear stress profiles of the well developed flow
at T = 700[s] compare favorably with the experiments. The eddy viscosity goes to zero near
the free-surface, increases with the depth with a maximum around the mid-depth and decreases
towards zero near the bed. Satisfactory results have been produced with and without non-
hydrostatic pressure. Computations agree well with experiments for the kinetic energy, its rate
of dissipation and shear stress at the selected sections. However, as shown in figure 6.14 the non-
hydrostatic pressure solution produces little improvement for this problem. In such a problem,
the additional computational expense may be kept to minimum by using hydrostatic pressure.
The non-hydrostatic pressure is more computationally expensive method, and must be used (full
3D) where these considerations are particularly significant.

Test IV: Sharp and curved open channel: discussions

The channel layout and dimensions are shown in figure 6.15. The discharge is set to Q =
0.089[m3/s], the bed slope S0 = 0.000624. The rough bed is characterized by an equivalent
roughness height, ks = 0.0022[m]. The flow depth at the outflow (downstream end of the flume)
is 0.159[m]. The experimental data are available for the flow case (see Blanckaert [5]).The
grid is composed of 50000 elements and 30000 nodes on the xy plane Figure 6.16 shows the
horizontal unstructured mesh with mean grid size of about dT = 0.05[m], while the time step
size is set to ∆t = 0.1 [s]. Computation is performed until the flow is well developed at T=1300
[s], using 60 layers, with several layers of thickness δzb = 0.002[m] at the bottom (see figure
6.1). Here Vn and Vs represent respectively the span wise and longitudinal velocity components
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(see figure 6.15). Computations were conducted with the hydrostatic pressure assumption for
different cross-sections with the increasing curvature, to determine the conditions where the
non-hydrostatic pressure component becomes significant.

Computations predict the bulk flow features, while the water surface profile is under-estimated
at the outer bank, and over-estimated at the inner bank.

Figure 6.17 shows the results in the cross-section at α = 120◦ , where H0 denotes the average
water depth. The conventional hydrostatic pressure is found to perform poorly, while non-
hydrostatic pressure solution behaves well with the increasing curvature. This might be resulting
from the incorporation of the free-surface movement rather than rigid-lid approximation. This
suggests that, in curved channel flows, the pressure-driven secondary effects are important and
the computation of free surface must be more improved to account of the damping effects of free
surface.

In figures 6.18 and 6.19, both hydrostatic and non-hydrostatic solutions show only one sec-
ondary flow circulation rotating clockwise from inner bank to outer bank, i.e. the weak secondary
currents are not predicted. The maximum under prediction in the secondary current for each
vertical examined in this cross-section is in between 25 and 95% for non-hydrostatic solution,
while the hydrostatic one is in between 30 and 105%. According to some analysis (see also
Ye and McCorquodale [162], Wilson et al. [154]), these results suggest that this model can be
considered to perform well compared to other models. Figure 6.19 shows the center of vortex
position, that is located at about z = 0.25[m] for the hydrostatic solution, z = 0.35[m] for the
non-hydrostatic solution while experiments is located at z = 0.4[m].

Figure 6.20 shows the cross-wise longitudinal velocity component at the section α = 1200,
and the hydrostatic solution is over predicted, while the non-hydrostatic solution is closer to
the experiments. The computed maximum primary velocity is offset towards the channel center
relative to the outside of the bend, leading to the under prediction in secondary currents strength.
This suggests that the turbulence-driven secondary effects are non-linear. The anisotropic stress
caused by walls and the junction region is not captured by the model. This could rely on
the reduced momentum transfers towards the outer region of the bend with the consequence
on the position of the maximum longitudinal velocity. Consequently, as shown by Gatski et
al. [39], the related weaker turbulence-driven secondary motion cannot be reproduced by linear
and isotropic eddy-viscosity turbulence models. However the major flow features such as the
presence and rotational sense of the major secondary currents are reproduced and agree well with
experiments. Moreover the non-hydrostatic pressure influence is found to be more significant
with the increasing curvature region. Therefore, although being more expensive, it becomes
useful for such flows where its influence is thought to be significant. This suggests that the
pressure-driven secondary currents are relatively important in the accurate description of the
velocity field, and the anisotropic turbulence models being useful for improving the flow field
prediction.

6.2.3 Concluding remark

In the present subsection the validation of the 3D finite element solver for the Reynolds-averaged
Navier-Stokes equations with the state-of-art k− ε turbulence closure is successfully conducted.
The tests were performed in order to validate the model against well-known flows with the
increasing complexity, using a high quality and high spatial resolution data set. Computations
with hydrostatic and non-hydrostatic pressure are compared for the same trench to test the
validity of the conventional hydrostatic pressure assumption. For the curved open channel,
as expected, the model does not reproduce the weaker secondary current in the straight part
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of the channel. The non-hydrostatic pressure influence is found to be more significant with
the increasing curvature region, and this suggests that the non-hydrostatic pressure (which
is the computationally expensive part of the scheme) may be useful and well suited when a
3D description of flow field is needed or where its influence is thought to be significant. The
model predicts reasonably the complex major features and their consequences on the 3D flows.
However, further study is needed to improve the general applicability of the model. The following
subsection will be focused on the non-uniform anisotropic turbulence-driven secondary motion.

6.3 3D model with non-hydrostatic pressure and modified k − ε

model

In this subsection, we are dealing with the presence of complex flows (short waves and/or
strong bathymetry) where the full 3D description of the velocity field is required. In such
a problem the non-hydrostatic pressure as well as the anisotropic features of the turbulence
closure are required. The modeling water flow system with curved or meandering open channel
is a subject of significant importance in large number of hydraulic and environmental flows,
and the physical phenomena characterizing such flows is important for environmental hydraulic
engineering. In such complex flows, the main flow while passing bend ways generates secondary
currents and superelevation of the water surface due to the centrifugal forces and the gravity
force. These secondary flows play an important role on the channel flow and for environmental
study. Numerical models using the standard linear k−ε turbulence with isotropic eddy viscosity
appear to be deficient in predicting moderately and strongly complex turbulent curved flows.
The 3D model introduced in section (3.5) is used for simulating the constant density fluid and
the model is applied for simulating a 193◦ curved open channel.

Turbulence modeling

The turbulent eddy coefficients in the governing equations are determined by the turbulence
modeling. For many situations, due to its relative simplicity, the k − ε turbulence model is
widely used with reasonable accuracy. Cokljat and Younis [22], showed that the standard k− ε
model based on an isotropic eddy viscosity assumption appears to be deficient in predicting
flow of complex turbulent shear layers such as the common hydraulics flows with significant
streamline curvature and free surface. In the present study we assume that, the streamline
curvature mainly affects the horizontal plane and the vertical direction is mostly influenced by
the free surface damping effects. According to experiments analysis [6], effects of the center-
region cell in moderately to strongly curved flow can only be modeled if one takes due account
of the deformation of downstream velocity profiles and the feedback between the downstream
velocity and the center-region cell. To account for the anisotropic effects of the turbulence
structure, the present study introduces new terms into the linear model formulation of the
state-of-the-art k − ε turbulence model. Hence, algebraic formulations are introduced into the
eddy coefficient computed from the previous k − ε turbulence modeling as follows,

νt = cµ
k2

ε
; νv = ζvνt ; νh = ζhνt (6.6)

in which νt is the isotropic turbulent viscosity calculated from previous k − ε model in
Eqs.(4.18) and (4.19). The streamline curvature effect ζh derived by Leschziner and Rodi [69]
is expressed as



84CHAPTER 6. 3D MODEL FOR TURBULENT FREE-SURFACE FLOWS: NUMERICAL RESULTS

������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
��������������������������������������������

������

α

30

180

150

60
90

120

9[m]

2[m]

0.5[m]

5[m] 1[m]

1[m]

1[m]

0.5[m]

m05

m25

p05

p15

p25

p35

n

s

B=1.3 [m]

h=0.11[m]
A A

Section A−A

n

z

n
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Figure 6.16: Test IV: The 2D unstructured triangular mesh for the 193o curved open-channel
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Figure 6.18: Test IV: Experiments versus computed solutions of the transversal velocity com-
ponent Vn of cross-stream at section α = 120◦ : A) Experiment ; B) Hydrostatic ; C) Non
hydrostatic
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Figure 6.20: Test IV: Experiments versus computed solutions of the stream wise velocity com-
ponent Vs of cross-stream at section α = 120o : A) Experiment ; B) Hydrostatic ; C) Non
hydrostatic
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ζh =
1

1 + 0.57k2

ε2

(
∂Vs
∂n + Vs

R

)
Vs
R

(6.7)

The influence of the free surface and the bottom, derived by Naot and Rodi [99] is expressed
as

ζv =
C2

v

(Cv + 0.15α2) (Cv + 0.2α2)
(6.8)

and

Cv = 1.5 − 0.5α1 ; α1 =

(
L

z1

)2

; α2 =

(
L

z2

)2

; z1 =

〈
1

z

〉−1/2

(6.9)

z2 =

〈
1

(H − z)2

〉−1/2

+ 0.31662L ; L =

(
C

3/4
µ

k

)
k3/2

ε
(6.10)

where Vs = downstream velocity component, R = local radius of curvature of streamline, n =
normal distance from the wall, L = dissipation length, z1, z2 = root-mean-squared reciprocal
distances from the solid walls and free surface, respectively.

Test V: simulation of 193◦ open channel

Numerical results

The channel layout, dimensions, grid and the characteristics of the flow are given in Test IV
at the previous subsection [see figures (6.15) and (6.16)]. Figure 6.21 shows good agreement
between computations and experiments, in which H is a water depth and, H0, denotes the
average water depth at the selected cross-sections (m05, α = 90◦, and p25).

Figures 6.22, 6.23 and 6.24 compare favorably the measured and computed solutions of
respectively the cross-stream downstream velocity (Vs) and transversal velocity (Vn) components
at the selected sections α = 90◦, m05, α = 30◦, α = 150◦, and p25. In such flow problem, the
secondary currents are produced from two sources : those which are generated by the lateral
pressure gradient with the embedded background turbulence due to the advective momentum
transport by the cross-stream circulation, and those which are bed form induced. The prediction
accuracy of the two former sources will be determined from both the free-surface calculation
method and the turbulence modeling, whereas the latter source will depend on the roughness
refinement and the turbulence representation.

Sotiropoulos and Patel [130], and Wilson et al. [154] advocate that, in case of flow with
roughness and cross-sectional uniformity, an anisotropic representation of turbulence is necessary
for an accurate description of most three-dimensional turbulent flows.

In this simulation some important features and processes underlying the full 3D computation
of such complex flow have been taken into account.

Experimental data analysis has shown (see [5]) the important role of advective momentum
transport by the cross-stream circulation in the distribution of downstream velocity and bottom
shear stress. The use of Lagrange-Galerkin method for computing the advection terms helps the
model to better describe the effect of cross-stream circulation in a dynamical way as well as the
vertical structure of the fluid flow.
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In this model the isotropic eddy-coefficients from linear k − ε turbulence model have been
modified to account for the anisotropic effects of the curvature and the embedded turbulence-
driven secondary motion. Due to the super-elevation of the water surface the non-uniform inward
pressure gradient is not in equilibrium with the non-uniform outward centrifugal force. This non-
equilibrium leads to a negative feedback of downstream velocity which relies on the kinetic energy
restitution. The center-region behavior is mainly influenced by the vertical gradient of centrifugal
force and the distribution of downstream velocity is influenced by the secondary circulation.
The non-hydrostatic pressure is included in the momentum equations for incorporation in the
surface elevation, and its correction provide the local continuity. This leads to the more improved
description (in the dynamic way) of the advective momentum transport with the consequence on
the free surface elevation. The consequence (as expected from experiments) on the computations,
is that the upper part of the flow is pushed toward the outer bank while the lower part of
the flow towards the lateral inner bank. In the straight part of the channel the outer-bank
weaker secondary currents are not captured, due probably to the fact that such mechanism
relies on strong anisotropy of turbulence, and in those areas the computed solutions of the
longitudinal velocity component is over predicted (at sections m05 and p25 in figures 6.22 and
6.24). In the curved part they rely both on the critical value of the curvature and background
turbulence. Besides the classical helical motion, a weaker and smaller outer-bank secondary flow
in the curvature region is under-predicted and observed (see figure 6.23). This suggests that,
in case of channel flow with uniform roughness and cross-section, the pressure-driven secondary
motion is relatively more important with the increasing strong curvature. Therefore the effects
of secondary circulation upon the downstream velocity Vs distribution are observed and the
maximum velocity shifts in outward direction such that the vertical profiles are flattened.

At the sections α = 90◦ and α = 150◦ (located in the strong curved region) the maximum
downstream velocity core remains towards the outer bank, however computations is under pre-
dicted and its width occupies the channel center (see figures 6.23 and 6.24). Experiments show
a relatively large band near to the right hand bank. This seems to be the reason of the strong
secondary currents in these regions (see sections α = 90◦ and α = 150◦). Compared to the
experiments, the computed solutions perform well and reproduce successfully the downstream
velocity, secondary circulations as well as the related weakness secondary circulation with in-
creasing curvature. The nearer outer-region behavior is influenced by the vertical gradient of
centrifugal force (which changes sign near the water surface). Figure 6.25 compares with good
agreement the computed solutions and experiments for the vertical velocity component at the
sections α = 90◦ and α = 150◦. The under prediction in secondary flows strength may result
in the computed maximum primary velocity core being offset towards the channel center rela-
tive to the outside of the bend. The maximum under prediction in the secondary current for
each vertical examined in one cross section ranged from 20 to 65% with the present model. In
such complex flow, the use of distributed heterogeneous roughness and the non-linear turbu-
lence model might help to predict more accurately the secondary motion with its inherently
three-dimensional effects and local bed features.

6.3.1 Concluding remark

In the present test case a full 3D semi-implicit F.E.M. solver with the non-hydrostatic pressure
is applied for simulating a 1930 open channel. More insight about the processes underlying the
interesting features of the flow field such as multi-cellular patterns of the secondary circulation
due to the curvature influence on the lateral free surface gradient and embedded turbulence have
been evaluated successfully. The use of Euler scheme of order O(∆t) with Lagrange-Galerkin
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method for computing the advection terms helps the model to preserve the monotonicity of the
solution and to better describe the vertical structure of the fluid flow. The incorporation of the
free-surface movement instead of the rigid-lid approximation, and the use of non-hydrostatic
pressure (suitable for short waves) better accounts for a wave-like oscillation of the pattern of
secondary motion embedded in background turbulence. Using modified algebraic expression
of eddy coefficients, the relevant modified k − ε turbulence accounts for anisotropic turbulence
effects in such flows. Even under predicted, the outer-bank weaker secondary circulation has been
successfully captured with the increasing curvature. Validation of the full 3D model is performed
by applying the model against well-known flow cases. This suggests that a simplified approach
of the turbulence modeling with modified algebraic expressions to account of the anisotropic
effects, may give slight improvement in the three-dimensional velocity distribution depending
on the cross-section location. It is well known that overestimation of the linear model is due to
the adoption of a straight-flow downstream velocity component profile, thereby neglecting the
feedback between the latter profile and the center-region cell (de vriend [25]). This suggests that
the effects of the center-region cell in moderately to strongly curved flow can only be modeled
if one takes due account of the deformation of downstream velocity profiles, and the feedback
between the downstream velocity and the center-region cell. Thus, by incorporating these terms
into the linear model formulation, we have developed the so-called anisotropic model. Moreover,
without information about spatial distribution of the roughness this model can accurately predict
presence and rotational sense of secondary currents in curved open channel with realistic cross-
sectional shape, and the examined turbulence characteristics being useful for the natural rivers
modeling.
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Figure 6.22: Test V: Measured and computed Iso contours of the of the downstream velocity
component Vs at the selected sections: A) section m05; B) section α = 30◦
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Figure 6.23: Test V: Iso contours at the section α = 90◦ of : A) downstream velocity component
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Figure 6.24: Test V: Measured and computed Iso contours of the of the downstream velocity
component Vs at the selected sections: A)section α = 150◦; B) section p25
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Figure 6.25: Test V: Measured and computed Iso contours of the vertical velocity component
Vz of cross-stream at the selected sections: A) section α = 90◦; B) section α = 150◦





Chapter 7

3D Modeling of Cohesive Sediment
in Estuaries

This chapter deals with the cohesive sediment transport and bed morphology modeling. In
this chapter quantitative information about some salient features of variable density effects in
turbulence will be provided. For the bed evolution modeling two approaches will be investigated:
(i) the concept of turbidity accumulations modeling will be applied to fluid mud at the bottom
using the recent advances in the calculation of erosion and deposition rates of fluid-mud; (ii) the
three-bed layers modeling based on the consolidation process, using realistic empirical functions.
In order to treat a real case and therefore demonstrate the feasibility of the method, the model
is applied to investigate the suspended sediment concentration and the seabed evolution in the
Po River Estuary in Italy.

7.1 3D model for turbulent and variable density fluid flows

In the present work the three-dimensional numerical model is implemented for simulating sed-
iment transport by taking into account the effects of cohesiveness between sediment as well as
the mutual influence of turbulence on flocculation process (buoyancy). From field observations
(Odd and Rodger [100]), we know that a layer of fluid mud will start to flow along the flat
bed of an estuary as a result of imposed hydrostatic head caused by the increase of the water
surface slope after slack tide. On the other hand, from the scale analysis in table 3.2, one could
easily find that the SWE-model is suitable for the estuaries modeling. Thus in the sequel the
3D-system of PDEs in section (3.4.2) will be used in the framework of hydrodynamic fluid flow
modeling with an ODE system from (5.1).

An efficient splitting scheme is employed to solve hydrodynamic, turbulence, suspended
sediment transport, heat, salinity and bed morphology. The splitting method partitions a time
step into fractional steps according to physical phenomena. In the first step hydrodynamics
is solved, followed by turbulence closure, then the advection-diffusion equations for passive
scalars (temperature, salinity, suspended sediment concentration) are solved in the third step
and finally the bed morphology is computed at the fourth step using empirical functions specially
developed for cohesive sediments. This model will be applied to investigate the suspended
sediment concentration and the seabed evolution in the Po River Estuary in Italy. The computed
results will be compared to the field measurements for validating the model.
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7.2 Cohesive sediment transport in estuaries

7.2.1 The numerical modeling approaches

Most of the existing models in the literature assume analogous transport characteristics with
that of the coarse sediment and adopt sediment transport that were developed for the latter to
treat the cohesive sediment. A contrario, it is shown that there are fundamental differences in
the transport characteristics of these two types of sediments (see [58], [86]).

For suitable modeling of an estuary, there are different parameters that require quantifica-
tion, such as sediment settling velocity, incipient shear stress of cohesive (and/or non-cohesive)
sediments (see figure 7.1). Up to now some natures of silt movement have been revealed and
many study works which include field measurement, theoretical analysis and simulation tests
have been carried out (see Chapter 1). The new model proposed in this thesis used novel re-
alistic empirical relationships of deposition and erosion or re-suspension of fine sediment in the
laboratory flumes derived from experiments and observations. This formulation will take into
account the differences in the critical conditions for erosion or re-suspension and deposition of
fine sediment and allows simultaneous erosion and deposition to occur only for a limited range
of bed shear stresses. In this thesis the cohesive sediment transport in estuaries relies on the
numerical solution of basic conservation equations of mass, momentum and turbulent energy.
The Coriolis force, tidal forcing, wind action, resistance to flow at the bed, buoyancy effects
due to temperature, salinity of sea-water and sediment concentration, bed-level changes due to
deposition and erosion will be modeled for a realistic representation of the phenomena.

In figure (7.1), the settling velocity is denoted by wss, dρ/dz denotes the vertical density
gradient, and dh/dt stands as the water depth gradient due to the formation of delta at the
bed. In the present work, silty sediment erosion, deposition, re-suspension and seabed evolution
will be taken into account as well as the consolidated bed layer in the 3D cohesive sediment
numerical model. Thus the new set of equations and new algorithm proposed by Krishnappan
and Engel [58] and the model developed by Chen et al. [20] will be applied for computing
erosion and deposition of cohesive sediment transport in the Po River Estuary in Italy. Finally
the validation of the model and its application will be therefore carried out.

Remark 12 It should be pointed out that this model uses Boussinseq’s assumption, i.e. relation
between Reynolds shear stress and the gradient of velocity can be connected with eddy viscos-
ity coefficient. The turbulence modeling should account for the buoyant effects introduced by
multiphasic fluid-flow. To avoid the spurious numerical oscillations (due also from the physi-
cal instabilities), some stability functions (Su and Sb) have been used in the chapter 3, when
computing the eddy coefficients to take into account the damping of the turbulence [79]. On the
other hand in Eq. (4.18) and (4.19), the source terms have been discretized explicitly while the
sink terms have been discretized using the quasi-implicit forms, and consequently the nonlinear
terms have been linearized [80].

7.3 Solid phase flow modeling

Due to their different particle sizes, sediments may not have the same physical and chemical
characteristics. Usually the sediments with particle size less than 30 [µm] is classified as silty
sand [92]. Gravity force is predominant for coarse sand particle, while for fine or silty sand with
sediment size less than 100 [µm] (specially for less than 30 [µm]), viscous effect around particles
becomes significant. The transport of sediment particles by flow can be in the form of bed-load
(coarse particle size) or suspended load, depending on the size of bed particles and the flow
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Figure 7.1: Cohesive sediment transport processes within the estuaries
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conditions. In Po River Estuary sediments are mainly silty particles with medium diameter of
the sediments being about 0.064 [mm] [148].

The bed morphology evolution ∆z must be defined to close the so-called integrated continuity
equation Eq. (3.37). From equation (4.34) we assume that,

∫

Ω
F̃bdΩ =

∫

Ω

∫ Ts

0

∂h

∂t
ψdtdΩ = ∆z |Ω| (7.1)

where Ts represents the solid flow time scale (which is in general much higher than the hydro-
dynamic time scale). The following lines deal with the parameterization of the bed morphology
for the sediment transport. This bed evolution accounts for three processes including the bed
fresh deposit layer, ∆z, the partially consolidated and the fully consolidated bed.

Advection-diffusion equation for suspended sediment concentration

A cohesive sediment model is conducted using combined semi-empirical functions to predict the
seabed sediment deposition and erosion rates. As a reminder, the advection-diffusion equation
for the suspended sediment transport reads

DCs

Dt
−∇xy · (νh,s∇Cs) −

∂

∂z

[
(νv,s)

∂Cs

∂z

]
= Fs + ωss

∂Cs

∂z
(7.2)

where Cs [kg/m3] is the sediment concentration, νh,s and νv,s [m2/s] are respectively horizontal
and vertical mixing coefficients, ωss [m/s] is the settling velocity of sediment particles, Fs[m

3/s]
is the net flux of suspended sediment. The horizontal processes not resolved by the model
can be parameterized by the diffusion coefficient using empirical relations from Elder [33] and
Shirou [127]:

νh,s =
νh

σs
(7.3)

where σs = 1 is the turbulent Schmidt’s number, and νh is the horizontal parameterization of
eddy coefficient in Eq. (3.62). The vertical diffusion coefficient of sediment particles (νv,s) is
related to the diffusion of fluid momentum

νv,s = ζsφνv (7.4)

Based on the experimental data of Coleman [23], the factor ζs was found to be in the range of
1 to 3, and We chose ζs = 1.

Yalin and Finlayson [160] analyzed measured flow velocity profiles and observed that the local
velocity gradient in a sediment-fluid mixture is larger than that in a clear flow. This suggests
that the damping effects should be taken into account for the velocity distribution of the flow-
carrying sediment in suspension. The damping factor for local concentration φ reads [116]:

φ = 1 +

[
Cs

C0
s

]0.8

− 2

[
Cs

C0
s

]0.4

(7.5)

For concentration smaller than 1%, one can take a value of φ = 1.
The settling (fall/rise) velocity of the flocculated granule is expressed from Stokes function

[119] as follows

ωss = D2
50g

(ρm − ρ0)

18νChρ0
(7.6)
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where D50 is the sediment medium diameter. The Chezy’s coefficient Ch can be expressed as a
function of the relative roughness [40] such that

Ch =
√

8g

[
2 · log

(
af

ks/Rh

)]
(7.7)

where Rh [m] is the hydraulic radius of the channel flow, af = 12.7 is a given coefficient, ks[m]
is the bottom roughness.

The suspended cohesive sediment in seawater usually have flocculated structures. It should be
pointed out that the settling velocity of the flocculated granule is much larger than that of the
particles in dispersive state [92]. The smaller the sediment particle diameter size is, the stronger
the flocculation ability may be. To express such effects, Migniot [92] used a flocculation factor
L such that,

L =
ωL50

ωD50

(7.8)

where ωL50
is flocculation limited settling velocity and the ωD50

is the sand particle velocity
without flocculation.

A function ωL has been derived by Huang [49] for sediment velocity combined with water
temperature, settling distance, particle size and sediment concentration:

ωL = ωss

[
1 −

(
L− 1

L

)
e−KC0Zb

]
, L = 7.25 D−2

50 (7.9)

where K = 0.012 is constant, C0 is the initial sediment volumetric concentration, Zb is the
settling distance.

Bottom conditions

To solve Eq. (7.2), the boundary conditions and the physical parameters associated with the
sediment and flow properties must be known. The boundary conditions are given as the sediment
concentration at the river upstream intake and the sediment exchanges at the water surface, open
boundaries and seabed. The vertical sediment exchange, noted Fs is defined by the net flux of
the sediment which reads

Fs = D −E; D = ωssC; E = −νv,s
∂C

∂z
(7.10)

This net flux of the sediment in the vertical direction expressed as the difference of downward
sediment flux, D, and the upward sediment flux, E. The net vertical sediment transport is
assumed to be zero at the water surface boundary, resulting in Fs = 0. At the seabed the net
flux sediment is considered as the difference of the deposition to the bed, noted Db, and the
sediment entrainment from the bed, noted as Eb.

Remark 13 It is worthwhile to mention that the boundary conditions at the bottom, are deter-
minant for the net flux calculation and the related deposition on the bed. In the present work
we will use two approaches for simulating the sediment exchanges in the lowermost layer: (i)
Uniform critical conditions for erosion and deposition [28], [20]; (ii) Two different power law
functions for deposition and re-suspension from the mutually exclusive processes proposed by
Krishnappan and Engel [58].
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7.4 Seabed morphology

7.4.1 Evolution of the non-consolidated layer using single function

The seabed mud-fluid layer is modeled using semi-empirical functions to predict deposition and
erosion rates [20]. In the sequel, h is indeed as it was introduced in chapter 3, the height in
between the bottom and the xy reference plane.

For uniform sediments, the deposition rate is proportional to the concentration and can be ex-
pressed as the production of the settling velocity and sediment settling probability that accounts
for the turbulent parameter and physical features of the bed sediments

Db = αsωssC (7.11)

where αs is the probability of the sediment settling with the range of 0 up to 1.
The entrainment rate from seabed is assumed to be a function of flow parameters and physical
features of bed sediments:

Eb =

{
0 for τb ≤ τb,cr
−νv,s

(
∂C
∂z

)
z=a

= αsωssCa for τb > τb,cr
(7.12)

where Ca the near-bed equilibrium reference concentration at level a = 0.01h above the bottom
(value with water depth averaged) reflects the capacity to carry sediment by current. Under
currents based on field measurement and flume tests and based on energy considerations, Dou et
al. [28], (also [20]) derived function of reference concentration for silty particles at level a = 0.01h
above seabed such that:

Ca = α
ρρs

ρs − ρ

(
n2

su
3
a

h4/3ωss

)
(7.13)

in which ua is the current velocity at level a; α = 0.0067 is a constant coefficient; ns [m−1/3/s]
is the Strickler coefficient defined as ns = Rh/Ch, and Rh [m] is the hydraulic radius [40].

τb,cr is the critical erosion bed shear stress. τb is the bed shear stress which is expressed as
follows

τb = νv

√√√√
[(

∂u

∂z

)2

+

(
∂v

∂z

)2
]

(7.14)

Based on the information obtained from field measurements and experiments, Tang [132]
derived a function for incipient bed sediment motion velocity for the sediment particle size
ranging (see [132]) from 1 [µm] to 1.25 105 [µm], such that

ub,cr = ϑūb,cr =

[
3.2

(
γs − γ

γ

)
gD50 +

ξ

ρ∗D50

] 1

2

(7.15)

in which ub,cr is the bottom sediment incipient velocity; ūb,cr is the vertical averaged critical
velocity and

ϑ =

(
m+1

m

)
(

h
D50

)1/m
; m = 0.47

(
H

D50

)0.06

(7.16)

where γs = ρsg, and γ = ρg are the voluminal weight of respectively sediment and water (Graf
and Altinakar [41]), ρs is the sediment density. ξ = 2.9 10−5 [kg/m] and ρ∗ = 102 [kgs2/m4] are
the given coefficients related to viscous effects.
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The critical shear stress can be expressed as follows:

τb,cr =
1

77.5

[
3.2 (γs − γ)D50 +

ξ

D50

]
(7.17)

The non-consolidated bed layer (fresh deposit mud), ∆z, can be calculated using the following
expression Dou et al. [28], and Chen et al. [20]:

∆z =
αsωss

γ0
(C − βCa)∆τ (7.18)

in which γ0 is the dry sediment density, β is a coefficient and ∆τ is the solid flow time step.
The sediment dry density can be derived from the water content as a fraction of total mass or
as a ratio of water mass to solid mass. The dry density γ0, is the ratio of the dry mass (Md),
to the total volume (VT ) of water-saturated, and it can be calculated from the corrected water
content (Wd), and porosity (Φ):

γ0 =

(
Φ

Wd

)
ρm (7.19)

ρm is the pore fluid density. The porosity Φ, is the ratio of pore-water volume to total volume
and can be written:

Φ = 100

[
(ρg − ρb)

(ρg − ρm)

]
(7.20)

where ρb is the bulk density, ρg is the grain density in [kg/m3].

The grain density can be determined from the dry mass and dry volume such that

ρg =
(Md −Msal)[
Vd −

(
Msal
ρsal

)] (7.21)

t where ρsal = 2.257 [kg/m3] is the density of salt, S[ppt] is a pore-water salinity; Msal = S Mm

is the mass of salt in the pore fluid, and Mm = (MT −Md) / (1 − S) is the salt-corrected mass
of the seawater. Vd = Cs

ρs
VT is the volume of dry mass, with Cs a sediment mass-concentration

in [kg/m3].

The bulk density, ρb, is the density of the saturated sample and can be calculated from total
water-saturated mass MT and its volume VT , such that ρb = MT /VT .
The difference between total water-saturated mass MT and dry mass Md is taken as uncorrected
water mass, and the measured wet and dry masses must be corrected. Therefore the wet and
dry water contents, Wd and Wm (in percent), are given respectively by

Wd = 100

[
(MT −Md)

(Md − SMT )

]
; Wm = 100

[
(MT −Md)

((1 − S) MT )

]
(7.22)

where Mm = (MT −Md) / (1 − S) is the salt-corrected mass of pore-water
In Eq. (7.18), the coefficient, β, is defined as:

β =





1 C > Ca

1 C ≥ Ca and τb > τb,cr
C
Ca

C ≤ Ca and τb ≤ τb,cr

(7.23)
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7.4.2 Non-consolidated bed thickness using power law functions for mutually
exclusive deposition and re-suspension

For a true representation of the erosion and deposition of the fine cohesive sediment, Lau and
Krishnappan [61] have shown that these two processes are mutually exclusive for a certain range
of shear stresses. This information is very useful for the good representation of the consolidated
bed, since the consolidation process depends on the real quantity of deposited sediment and
its concentration at the bottom. From experiments, Krishnappan and Engel [58] have studied
the behavior of the Fraser river (Canada) that is found to be similar to that of the cohesive
sediment [57].

Computations will take into account the novel algorithm of Lau and Krishnappan using
power law functions for deposition and erosion of sediment at the bed, while some empirical
laws from Migniot [92, 93], will be used for the consolidation process.

Transport power law functions

For fine sediments, the simultaneous erosion and deposition is possible only for a certain range of
bed shear stresses. For shear stress outside of this range, there could only be sediment deposition
or sediment erosion, but not both simultaneously. The shear stress at which the concentration in
suspension becomes zero is termed the critical shear stress for deposition (τcd). From experiments
of Krishnappan and Engel [58], its value was estimated to be τcd = 0.05 [N/m2], while the
critical shear stress for erosion (i.e. shear stress for which there is no deposition) was calibrated
at τce = 0.12 [N/m2]. It should be pointed out that the critical shear stress for erosion for the
sediment is almost two and a half times the critical shear stress for deposition. From the power
law relationship between the fraction deposited and the ratio of bed shear stress to the critical
shear stress for deposition, the fraction deposited, fd, can be expressed as follows ( [57]),

fd =





1 − 0.26
(

τb
τcd

− 1
)

for
[
1 < τb

τcd
< 10.5

]

1 for τb
τcd

< 1

0 for τb
τcd

> 10.5

(7.24)

For complete re-suspension a shear stress 25 times larger than the critical shear stress for depo-
sition was found. The fraction of sediment re-suspended, fe, can be expressed as follows:

fe =





0.29
(

τb
τcd

− 2.4
)0.4

for
[
2.4 < τb

τcd
< 25

]

0 for τb
τcd

< 2.4

1 for τb
τcd

> 25

(7.25)

Mass balance of sediment in control segment

In the algorithm proposed by Lau and Krishnappan, sediment concentration is calculated using
the mass balance of sediment in a control segment located next to the bottom layer (which
comprises the three layers shown in figure 7.1). Sediment entering the control segment can be:
(i) from the upstream and (ii) from tributary inflows. Let us refer to figure 7.2, the amount of
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Figure 7.2: Schematic representation of control segment sediment (lowermost prism) mass bal-
ance

upstream sediment (qsu) entering the control segment (lowermost prism) during time interval
∆τ can be expressed as:

qsu = QtV
i−1
st +QtVst (7.26)

where V i−1
st is the volume of water-saturated (pore water) in the upstream segment (prism),

Vst is the of water-saturated in the tributary inflow to the control segment (prism next to the
lowermost prism in the water column), Q is the flow rate of the control segment and Qt is the
tributary inflow rate (figure 7.2). In figure 7.2, δzk0 represents the height of the lowermost prism
(lowermost active layer), and zb denotes the thickness of the total deposition on bed.

Sediment deposition and resuspension

Out of the incoming upstream sediment, qsu [kg], a portion will deposit depending on the
prevailing flow conditions. The sediment quantity coming from the upstream segment will be
subjected to the deposition only when the shear stress in the control segment is lower than that
in the upstream segment. If the shear stress in the control segment is equal to or greater than
that of the upstream segment, then the sediment arriving from the upstream segment would
have gone through the deposition process already and would have reached the steady state
concentration. Therefore, this sediment has to be routed straight through the control segment.
The amount that would deposit in the control segment, qsd [kg], can be therefore calculated
from the following expression,

qsd = QV i−1
st fd +QtVstfd if τ i

b ≤ τ i−1
b

qsd = QtVstfd if τ i
b > τ i−1

b

(7.27)

The amount of sediment that remains in suspension qss [kg] becomes

qss =
(
QV i−1

st +QtV
t
st

)
(1 − fd) if τ i

b ≤ τ i−1
b

qss = QtV
t
st (1 − fd) if τ i

b > τ i−1
b

(7.28)
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Remark 14 It should be pointed out that the bed evolution modeling needs a long period of
simulation (e.g. one year simulation for solid phase flow time scale, and a daily tidal time scale
for hydrodynamics. Thus when using the sub-cycling scaling during simulation, the solid phase
flow time step can be equivalent to ∆τ = N ∆t, with N > 0 being a natural number.

Sediment can also be re-suspended from deposits that occurred in previous time steps. This
resuspended amount can be calculated by keeping track of the amounts of deposited sediment
and the shear stresses at which the depositions took place. For a given shear stress, the sediment
re-suspension can be calculated with the appropriate τcd value as follows:

qsr = qn
sdfe (7.29)

where qn
sr is the value of total resuspended sediment, qsr [kg], at the previous time step.

The suspended sediment concentration in the control segment at the end of the current time
step reads

Cs =
(qsr + qss)

VT
(7.30)

The amount of sediment left behind the control segment (i) at the end of the current time
step must be updated such as:

qi
sd∗ = qn

sd (1 − fe) + δi,k (qsd)
k (7.31)

where qi
sd∗ is the updated value of the sediment deposit at the segment (i), δi,k takes a value of

unity if (i = k) and zero if (i 6= k, with k ∈ [1, 5] the indices of the k th face of the prism).
The concentration of the deposited sediment Csd, can be expressed as follows

Csd =
qsd
VT

(7.32)

7.4.3 Consolidation process and consolidated bed layers

The consolidation process is a function of the consolidation of the stationary suspension and the
partially consolidated component of the bed, by the packing of the bed, the force of cohesion
of the particles and the reduction thickness of the bed with time. It is considered that the
consolidation starts after the process of formation of the layer of the bed is complete, at which
time the thickness of the layer of the bed would be maximum (see [42], [86]). Experiments
revealed that after a certain time of consolidation Tdc, of a certain value Tdc1, the stationary
suspensions (layers of mud coldly deposited) undergo a reversal in re-suspension just like (it is
opposed to the drive when Tdc < Tdc1), when they are subjected to an excess of constraint of
friction (Hayter [47]). The profile of the bed has two categories of layers of various thicknesses
with a specific density, friction resistance and duration of stability. According to the experiment
of Migniot [92, 93], this duration of stability accounts for the consolidation.

According to Mehta’s experiments [139], [86] the mass of dry sediments in the stationary
suspension for which (Tdc = Tdc1), is built-in in the partially consolidated layer of the bed, and
will go up in suspension when it is subjected to an excess of constraint of friction. Standardized
relations were established between the average density of dry sediments, ρ̃g, (realized on the
depth) and the time of consolidation, and make it possible to determine this density in the
consolidation process as follows,

ρ̃g

ρ̃g∞
= 1 − α exp [−λRdc] ; Rdc =

Tdc

Tcd∞
(7.33)
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where ρ̃g∞ ∈ [110, 130] is the final average density of the consolidated layer of the bed, and
a value of ρ̃g∞ = 119.92 [kg/m3] is valid (Migniot [93]). Tdc∞ = 8 [days] corresponds to the
limiting value of the time of consolidation determined by Krone experiments [59] (see also [2]).
α = 0.845 and λ = 6.58 are empirical constants. The profile of sediments dry density for the
natural consolidation of the mud at the bed can be expressed as follows

ρg (zb)

ρ̃g
= βsZ

δ
∆; Z∆ =

Ej
b − z0
z0

(7.34)

in which βs and δ are the empirical constants. Ej
b is the thickness of layer according to the

nature of the deposit with j = 1, . . . , 3 (fresh mud layer, partially consolidated layer or fully
consolidated layer), and z0 = 30 ks is the bottom thin layer [143].

The thickness of the fully consolidated layer

From experiments, Mehta [86] drew up a table (7.1) of values of coefficients valid for the fine
and cohesive sediments as follows

Table 7.1: Time of consolidation

Tdc (hours) βs δ

2 0.36 −1.40

5 0.48 −0.72

11 0.62 −0.45

24 0.66 −0.50

≥ 48 0.80 −0.29

It can be found in table (7.1), that for values Tdc < 48 hours the parameters βs and δ
vary with time (this confers difficulties of making use of the formula 7.34 in this interval), since
one does not have information for intermediate times. A contrario for Tdc ≥ 48 hours, these
parameters are found to be constant. This suggests that the formula in Eq. (7.33) is suitable
for this interval (i.e. for the fully consolidated layers), and the consolidated bed thickness can
be calculated from Eq. (7.34).

The thickness of the partially consolidated layer

The speed of decantation decreases with the increase in concentration (Migniot [94]), and the
concentration of partially consolidated deposits vary slightly compared to the fully consolidated
layer. Compressing (cohesion between particles) is also influenced by the conditions of sedimen-
tation, in particular the initial thickness. According to experiments carried out in laboratory (see
Trimbak and Mehta [139]), any increment ∆Eb, of the concentration involves a corresponding
change of layer of deposit on the bed according to the following relation

∆Eb =
H

ρg (z)
∆Cs (7.35)

where ∆Cs = Cn+1
s − Cn

s is the fraction of concentration of deposit on bed, and ∆Eb is the
thickness of the partially consolidated bed.
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PRE −SD

Figure 7.3: Map of the Po River Estuary (PRE) and overview of the area of study

7.5 Prediction of discharges and bed morphology

In this section, flow field and cohesive sediment transport in the Po River Estuary (PRE) will be
simulated. PRE is located in the east of the Adriatic Sea along the direction North West-North
East (NW-NE) as shown in figure 7.3.

7.5.1 The Po River Estuary and Adriatic Sea

The Po River Estuary is the main source of the river water discharge into the Northern Adriatic.
The river plume hugs the western side of the basin as aided by the dominant cyclonic circulation
[15]. Along with wave re-suspension, the plume is responsible for the formation of 35 [m] thick
mud wedge that extend from Po Delta to Gargano subaqueous delta, 500 [km] further south.
During summer the Po River Estuary generally spreads over the entire northern sub-basin as a
thin surface layer 5 [m] (Cushman-Roisin et al. [24]). The Adriatic Sea forms the northernmost
part of the Mediterranean Sea. It is a relatively shallow almost rectangular basin bordered to
the north by the Alps, to the west by the Apennines and on the east by Dinaric mountain chain.
This temperate warm sea is more than 800 [km] long in NW-NE direction and has an average
width of about 200 [km]. The Adriatic Sea is often divided into three geographical regions,
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namely the Northern, Middle and Southern Adriatic basins. The Northern Adriatic, which is
the area lying north of the 100 [m] isobath, has a wide continental shelf, sloping gently south
and quite shallow. The middle Adriatic comprises the three trenches of the middle Adriatic
Pit, with a maximum depth of 270 [m] and is bounded by the 170 [m] deep Palagruza Sill. The
southern Adriatic extends from the Palagruza Sill to the Strait of Otranto, including the South
Adriatic Pit, which is at its deepest point around 1200 [m] (see Cattaneo et al. [15]).

Application to the Po River Estuary

Po River (Padus River in ancient times) flows 652 kilometers from West to East across northern
Italy, from Mount Monviso (in the Cottian Alps) to the Adriatic Sea near Venice. It has a
drainage area of 75,000 square kilometers. The axis of PRE is east longitude 12.05◦ and north
latitude 44◦96667. The 75000 [km2] river catchment of the Po is bounded at the North by the
Alps with peaks over 4500 [m], and at the South-West by the Apennines mountain chain with
peaks generally less than 2000 [m] (more than a third of the drainage area (30800 [km2]) can
be considered mountainous (Ketter and Syvistki [56]). It is the longest Italian river and goes
through many important Italian towns, including Turin and (indirectly) Milan. In Milan it
enters the town as a net of channels called navigli, creating a very characteristic area. Near
the end of its course, it creates a wide delta (with hundreds of small channels and 5 main ones
called Po di Maestra, Po della Pila, Po delle Tolle, Po di Gnocca and Po di Goro). The vast
valley around the Po is called Pianura Padana and is so efficiently connected by the river that
the whole valley became the main industrial area of the country.

Characteristics of Po River

The tidal regime is that of a irregular diurnal micro-tidal type with the mean diurnal range
form 0.80 [m] for the spring tide and 0.30 [m] for the neap tide. The M2 main tidal component
is taken into account in this study. High water levels in the North Adriatic Sea can be caused
by storms coming from the south-east, the Sirocco wind, associates to depressional fields, which
move towards the East and the mean wind speed is 30 − 50[km/h] (see [17]). These events
can determine oscillations with periods of 22 hours and maximum amplitudes often exceeding
1 meter. The data recorded by the tide gauge (of Porto Corsini) showed that during 1999, the
maximum value of the sea level rise recorded was 1.67 [m], caused by both the astronomical and
the meteorological effects (see [38]). The prevailing wind and waves, which determine the main
components of the solid coastal transport in the area are those from the North-east (locally called
Bora) and the South-east (Sirroco). The typical characteristics for waves can be summarized as
follows:

• Waves range: main orientation of the waves is 30 − 45◦ and 120 − 145◦.

• Maximum energetic wave Hs = 4 [m], with a wave period of 8 − 9 [s].

• Mean Hs = 1.5 − 2 [m], with a wave period of 5 − 6 [s].

The PRE has two flood periods, June (freshet caused by snow melting) and November (cor-
responding to precipitation maxima), and two low water periods, January and August (Marchi
et al. [83], Cattaneo et al. [15]). The average discharge of the PRE is 1.5 × 103 [m3/s], mea-
sured at Pontelagoscuro (near Ferrara) 90 [km] from the coast and just before the apex of delta.
Downstream of Pontelagoscuro, the Po forms a delta consisting of five major distributaries (see
figure 7.3): the Maestra, Pilla , Tolle, Gnocca and the Goro drain, respectively 2%, 65%, 12%,
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13%, 8% of the discharge. Salinity values for the station upstream reaches a maximum value
of 8-20 [g/l] or 8-20h correlated with the tide cycles, while simultaneously, salt percentage
measured downstream show high salt content, up to 25-35 [g/l] or 25-35h (see [34]).

The PRE is characterized by its high level of engineering; Comprehensive and contemporary
evaluations of physical, chemical and toxicological endpoints have been performed on sediments
of the PRE. The particle-size composition along the PRE showed a relatively uniform distribu-
tion of fine sand, a progressive downstream decrease of coarse sands and a corresponding increase
of fine materials [148]. The major sediments class is silty sand (with clay) in which the average
sediments size is less than 63 [µm]. Hundred detailed measurements of sediment dynamics at
each distributary channel have been taken. There is hardly any top set aggradation, most of
sediment load is funneled to the offshore, about 16 × 106 tonnes/year, causing a high rate of
fore-set propagation into the shallow northern part of Adriatic Sea, while bed-load contributes
only 2.5-5% of the total sediment output and high suspended sediment concentration (SSC).
The monthly suspended sediment load were measured for the main distributary channels during
six years field study (Kettner and Syvitski [56]), and may reach 300-400 [mg/l] in the main
river stream (Panaro-Pilla) and in Tolle branch, while it is around 150− 300[mg/l] in secondary
distributaries at South-Pilla and South-Tolle (see figure 7.4).

7.6 Simulation of PRE: Numerical results

To simulate the tidal currents and sediment transport in PRE, a large area was selected as the
modeled domain called PRE-SD shown in figure 7.3, and the 2D horizontal plane mesh in figure
7.4. The north upstream boundary has been set far upstream the five open boundaries as shown
in figure 7.4. The available field data for the model calibration were mostly provided by the
MOX (Modeling and Scientific Computing), Department of Mathematics, Politecnico of Milano
and the Istituto di ricerca Sulle Acque, CNR, Milan, Italy. In this model, the horizontal
unstructured mesh of simulated area has been divided into 3185 triangles in each horizontal
layer, and 2172 nodes with the mean space step size ranging from dT = 6.2 to 46.08 [m] (where
dT denotes the diameter size of the circumscribed triangle). The vertical is divided into 30
layers. To account of the boundary layer effects the bottom is divided into several thin layers
of thickness δzb = 0.5[m] (see figure 7.6).

The PRE bathymetry is shown in figure 7.5. The simulation period is from 14.00 of 1st of
May to 14:00 of 2nd May 1999 for hydrodynamic calibration. The forcing is neap tide in wet
season. There are seven tide gauges and seven tide stations and water open boundaries were
controlled by tidal levels and sediments concentrations located at NV , NT , ST1, ST2, SP1,
SP2, SP3 (see figure 7.4). The boundary conditions are specified in chapter 3.

7.6.1 Numerical algorithms

For seabed evolution, a long period simulation need to be conducted. Generally, the smaller the
time step, the higher the accuracy. However for a small time step, the simulation will require
much more computational time.

Remark 15 The present thesis uses a decoupling between pure hydrodynamic, turbulence mod-
ule, passive scalars module and finally the solid phase flow (bed morphology) that solved in this
order (see figure 7.7). Thus the model offers a capability to cope with the stiffness problem
introduced by the large difference between the solid phase flow and hydrodynamics time scale.
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Figure 7.4: 2D-Horizontal Mesh of the domain of study and tidal gauges location in the Po
River Estuary
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Figure 7.5: The bathymetry in [m] of the domain of study of the Po River Estuary
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Figure 7.6: Sketch of the channel bed subdivided into several layers: L is the length and B is
the width of the cross section of the channel

It is well known that the k − ε turbulence model needs small time steps, while the bed mor-
phology (solid phase flow) needs a long time simulation. The model uses the sub-cycling strategy
in the mind of saving computation time. Therefore several time steps have been set as shown in
the flow chart of figure 7.7: δt = 60[s] for the pure hydrodynamic [see sections 5.1.4-5.1.4], one
day (∆τ = 24 [hours]) for the solid phase flow (transport of sediment) [sections 7.4.1, 7.4.2,
7.4.3] . It is worthwhile to notice that the time step for passive scalars, ∆t, is a multiple of
δt = 60[s] [Eq. 4.17].

conducted and the accuracy of numerical results were compared.
Figure 7.8 shows the comparisons of the computed and observed flow discharge at the tide gauge
North-Tolle (NT) during one year, from January to December 1999. The observed discharge is
greater at November corresponding to precipitation maxima. The model predicts well the total
water discharge (the model does not account for meteorological conditions such as precipita-
tion, and this could explain the discrepancy between computations and observations during this
period).
Figure 7.9 shows the comparisons of the computed and observed tidal elevations during the
flood at different tide stations. As indicated, the model predicts the tidal elevations with good
accuracy. The figures 7.10, 7.11, 7.12, 7.13, 7.14 and 7.15 show the comparisons of the computed
and observed flow velocity magnitude at different tide stations and different vertical layers
position at respectively free-surface, 0.8H, 0.6H, 0.4H and 0.2H. Good agreement is found
between computed and observed velocity distributions and the largest discrepancy is found at
the stations ST1 and ST2 near the open boundary at the South-Tolle1 (ST1) (this may be due
to the conjugate effects of wave and curvature effects on the flow in the so-called Tolle channel
branch).

Figure 7.16 shows a typical ebbing flow pattern and flooding pattern in a section of the
domain of study. The hydrodynamics computations have shown the ability of the model. Thus
based on these verifications, a long morphological simulation is performed to predict the seabed
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Figure 7.10: Comparison of the computed and observed current velocities at North-Venezia
(NV) station in Po River Estuary (see fig. 7.4)



120 CHAPTER 7. 3D MODELING OF COHESIVE SEDIMENT IN ESTUARIES

Time [hours]

Ve
lo

ci
ty

[m
/s

]

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Observed
Computed

ST1 : [surface]

Time [hours]

Ve
lo

ci
ty

[m
/s

]

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Observed
Computed

ST1 : [0.6h]

Time [hours]

V
e
l
o
c
i
t
y

[
m
/
s
]

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Observed
Computed

ST1 : [0.4h]

Time [hours]

V
e
l
o
c
i
t
y

[
m
/
s
]

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Observed
Computed

ST1 : [0.8h]

Time [hours]

Ve
lo

ci
ty

[m
/s

]

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Observed
Computed

ST1 : [0.2h]

Figure 7.11: Comparison of the computed and observed current velocities at South-Tolle1 (ST1)
station in Po River Estuary (see fig. 7.4)
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Figure 7.12: Comparison of the computed and observed current velocities at South-Tolle2 (ST2)
station in Po River Estuary (see fig. 7.4)



122 CHAPTER 7. 3D MODELING OF COHESIVE SEDIMENT IN ESTUARIES

Time [hours]

V
e
l
o
c
i
t
y

[
m
/
s
]

0 5 10 15 20 25
0

0.5

1

1.5

Observed
Computed

SP1 : [0.8h]

Time [hours]

Ve
lo

ci
ty

[m
/s

]

0 5 10 15 20 25
0

0.5

1

1.5

2

Observed
Computed

South-Pilla [SP1]

ST1 : [surface]

Time [hours]

Ve
lo

ci
ty

[m
/s

]

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observed
Computed

SP1 : [0.4h]

Time [hours]

Ve
lo

ci
ty

[m
/s

]

0 5 10 15 20 25
0

0.5

1

1.5

Observed
Computed

SP1 : [0.6h]

Time [hours]

V
e
l
o
c
i
t
y

[
m
/
s
]

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observed
Computed

SP1 : [0.2h]

Figure 7.13: Comparison of the computed and observed current velocities at South-Pilla1 (SP1)
station in Po River Estuary
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Figure 7.14: Comparison of the computed and observed current velocities at South-Pilla2 (SP2)
station (see fig. 7.4)
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Figure 7.15: Comparison of the computed and observed current velocities at South-Pilla3 (SP3)
station in Po River Estuary (see fig. 7.4)
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Figure 7.16: Flow pattern at the free surface in a zone of the domain of study in Po River
Estuary at: A) during ebbing; B) during flooding



126 CHAPTER 7. 3D MODELING OF COHESIVE SEDIMENT IN ESTUARIES

evolution, by taking into account the salt and temperature distribution with the related buoyancy
effects on the fluid flow. A wet spring current was chosen for one-year simulation period.

At first, the initial temperature T0 = 22.5◦C and zero sediment and salt concentration were
set in the entire modeled area as respectively the initial sediment concentration and salinity
(see [56]). An equilibrium distribution is achieved after about one month simulation, and these
values were re-applied as initial sediment, temperature and salinity to predict seabed evolution.
Figure 7.17 shows the predicted profiles of respectively the density, temperature and salinity
distribution at the selected gauge stations. Figure 7.18 shows the overall channel temperature
distribution at 3 month simulation. These figures indicate that the steady state is reached after
3 month simulation. The upper the layer the smaller the density and salinity, as the higher the
temperature. The density profile at the river inlet station North-Venezia (see fig. 7.4) is quit
constant over the water depth. Moreover the maximum difference between pore water density
(ρ) and water density, ρ0, is about 19 [kg/m3] in the channel. This suggests that the Po River
Estuary is a stable and fairly stratified estuary (see [41]). Figures 7.19 shows the predicted
salinity distribution in the overall channel after one year simulation at the layers respectively
near to the free-surface and bottom. This figure indicates that the salinity is maximum near the
open sea boundary and minimum at the river inlet. The bottom lioayers are more saline than
free-surface layers, as the sea-water is encounter in the lower part of the channel (towards the
open sea boundaries). This is in good accordance with the field observation.

Figures 7.20 shows the predicted contours of the suspended sediment concentration distri-
bution at layer level of z = 0.2H after one year simulation using: (A) a single pick-up and
deposition function; (B) two mutually exclusive functions for deposition and re-suspension pro-
posed by Krishnappan and Engel in Eqs. (7.24), (7.25) and (7.30); (C) the analytical function
in Eq. (7.13) at the reference level a = 0.01h. It indicates that the two-function solution is
closer to the analytical solution, while the single function over-predicts the suspended sediment
at the bottom. This relies on the fact that the two-function algorithm accounts for the fraction
of deposited bed-load sediment and the re-suspended one in addition to the updating process in
Eq. (7.31). Figure 7.21 shows the suspended sediment concentration (SSC) distribution respec-
tively after six months and one year simulation. It indicates that most of suspended sediment
stand at the upper layers, while the sediment distribution is influenced by the climate and sea-
son (dry or wet season). The one year simulation is conducted from May 1999 to April 2000,
when the river flow is lower during dry season, with the higher precipitation leading to higher
pick-up of sediment. The addition of a depth-varying shear stress from energetic waves (Hs = 2
[m]) and higher precipitation significantly increased dispersal of both the unflocculated and
flocculated material, with the flocculated material being confined to the shallowest sites near
the coastline. The observed suspended sediment discharge is about 16 × 106. The computed
mean suspended sediment discharge using a single function was found to be about 22 × 106

tonnes/year. While using the two-function the suspended sediment discharge was found to be
about 18×106 tonnes/yearwith mean SSC of about 250-420 [mg/l] in the main channel (Panaro-
Pilla) and about 120-340 [mg/l] in the secondary distributaries (South-Pilla and South-Tolle).
Thus two-function SSE is found to agree with the field observations. Figure 7.22 shows the
bed deformation due to deposition-re-suspension and erosion from the river upstream boundary
toward the PRE mouth branches progressively. It is found that when using the single function
[see Eq. (7.18)], the bed delta is over-predicted of about 8 to 15% compared to the two-mutually
exclusive power-law functions proposed by Krishnappan and Engel [see Eqs. (7.24)-(7.25)]. It
should be emphasized that the single function accounts only for the simultaneous deposition
and erosion process. This is the characteristic behavior of coarse sand particles, which is found
to be different from that of fine cohesive sediment particles. The point is that by assuming the
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Figure 7.17: Profiles of predicted density, temperature and salinity after 3 months simulation
at the selected gauges stations in Po River Estuary (see fig. 7.4): A) North-Venezia (NV) ;
B)south-Tolle1 (ST1); C)south-Pilla1 (SP1)
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Figure 7.18: Prediction of temperature [◦C] after 3 months of simulation in Po River Estuary
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same behavior between these two different kinds of particles, prediction does not fulfill the field
observations and experiments (see Chapter 2). Indeed, the fine cohesive sediment behavior is
quite different from the common coarse sand particles. The power-law two functions accounts
for the mutually exclusive processes between the fraction of re-suspended or eroded sediment
and the fraction of deposits which stands over the bed. This is very important and more useful
for good prediction of the bed consolidation and/or fluidization.
In the sequel we will use the two-mutually exclusive functions of re-suspension/deposition in
the framework of simulating the consolidation and/or fluidization processes. Figures 7.23, 7.24
and 7.25 show respectively the predicted contours of the bed-mud layer, the partially consoli-
dated and the complete consolidated bed thicknesses after three-month and one-year simulation.
These figures indicate that the bed deformation (deposition) moves progressively from the river
upstream toward the PRE mouth branches (open-sea boundaries). The mean bed-mud layer
thickness is about 4 ∼ 13 [cm/year], the partially consolidated one is about 2 ∼ 4 [cm/year]
and the fully consolidated is found to be about 4 ∼ 9 [cm/year]. The mean deposition rate
in the main channel is about 8 ∼ 20 [cm/year]. The amount of bed load (i.e. fresh deposits
mud) being about 9 × 105 tonnes/year, which is about 7% of the total suspended sediment dis-
charge. This confirms the experiments of Li and Zhang [72] and Van Rijn [119] who have found
that the rate of suspended load transport is much larger than the rate of bed-load transport
for fine particles, the ratio of the bed load compared to the suspended sediment discharge is
found to be closer to the field observations. The prediction of deposition/re-suspension using
two different approaches leads to a non-negligible difference in the results. The analysis showed
that the consolidation/fluidization process may have important influence on the prediction of
bed morphology, while the simulation of bed morphology using three-layer approach is a first
attempt to model these processes in detail within a numerical model.

7.7 Concluding remarks

A novel 3D numerical model has been built for the cohesive sediment transport and applied
for simulating temporal behavior of stratified water bodies with environmental forcing, by solv-
ing the SWE for incompressible flow using the hydrostatic assumption for pressure. Processes
modeled include heat, salt and sediment distribution, tidal forcing, surface wind forcing, inflows
and outflows as well as the turbulence modeling for multiphasic fluid-solid flow. The effects of
salinity, temperature and sediment concentration are most dramatically seen during periods of
simulation, leading to the stratification of the fluid flow. The micro-tidal PRE (i.e. tidal eleva-
tion < 2 [m]) is found to be a fairly stratified estuary , with the estuarine turbidity maximum
(ETM) i.e. near bed concentrations of 200 up to 420 [mg/l]. An investigation of the Hawkes-
bury River [52], has verified that turbidity maxima can occur in micro-tidal estuaries, despite
the concentrations of suspended sediment being significantly lower (i.e. ETM of 100 and 220
[mg/l]) in the Swan [51] and Hawkesbury River [52], respectively compared with 26000 [mg/l]
in the Tamar River, UK. This suggests that in micro-tidal estuaries the dominant processes
contributing to the generation and maintenance of the ETM could change. The insight gained
through the present study agrees well with such arguments. In the present model, silty sediment
erosion, deposition, re-suspension and seabed evolution have been taken into account as well as
the consolidated bed layer. The new set of equations and algorithm proposed by Krishnappan
and Engel [58] and the model developed by Chen et al. [20] have been applied for computing
erosion and deposition of cohesive sediment transport in the Po River Estuary in Italy.

The performance of a composite model for cohesive sediment transport has been analyzed.
This model accounts for the differences in the critical conditions for erosion or re-suspension and
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deposition of fine sediment, as well as the three bed-layers at the bottom. The power laws used
in this model allow to simultaneous erosion and deposition to occur only in a limited range of bed
shear stresses at the bed. For the good representation of the estuary, the natures of silt movement
from study works including field measurement, theoretical analysis and simulation tests have
been introduced in the model. The water elevation, velocity field, temperature, salinity and
sediment concentration profiles computed from the numerical models were compared successfully
to the experiments and analytical solution. It is found that, by assuming the common coarse
non-cohesive sediment behavior when modeling the fine cohesive sediment, the fresh-mud layer
prediction is found to be over-estimated of about 8-15%. This suggests that the transport
characteristics of the common coarse non-cohesive sediment is very different with respect to
the fine cohesive sediment one. This agrees well with experiments found in the literature. The
present model accounts for the three-component of the bed morphology (i.e. mud-bed layer,
partially consolidated bed and the complete consolidated bed), from the fluidization and/or
consolidation of the cohesive sediment on the channel bed. The prediction of deposition/re-
suspension using two different approaches leads to a non-negligible difference in the results. The
analysis showed that the consolidation/fluidization process may have important influence on the
prediction of bed morphology.

This suggests that a realistic prediction must account for the bed fresh mud re-suspension
into the model. Finally, the prediction of bed morphology using three-layer approach is a first
attempt to model these processes in detail within a numerical model. This three bed-layers

modeling sheds new light on a phenomenon not yet modeled in the existing numerical models
for the cohesive transport in the estuaries.

The present model is found to predict realistically the fine sediment transport modeling in
the PRE.
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[A]

[B]

Figure 7.19: Prediction of salinity after three-months simulation in Po River Estuary : A) at
layer level z = 0.8H; A) at layer level z = 0.2H
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Figure 7.20: Suspended sediment concentration in [kg/m3] after one-year simulation in Po River
Estuary at layer level z = 0.2H, using: A) single bed function Eq. (7.18); B) Mutually exclusive
power-laws functions Eqs. (7.24)-(7.25); C) analytical solution Eq. (7.13)
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Figure 7.21: Predicted Suspended sediment concentration in [kg/m3] in Po River Estuary using
the mutually exclusive power-laws functions Eqs. (7.24)-(7.25)



134 CHAPTER 7. 3D MODELING OF COHESIVE SEDIMENT IN ESTUARIES

X [km]

Be
d

De
lt

a
[m

]

5 10 15
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 Two functions
Single function

X [km]

Be
d

De
lt

a
[m

]

5 10 15
-0.05

-0.025

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Two functions
Single function

Y [km]

Be
d

De
lt

a
[m

]

0 0.5 1 1.5
-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Two funtions
Single function

[ C ]

[ B ]

[ A ]

Figure 7.22: Simulated fresh mud-bed in Po River Estuary using power-law functions Eqs.
(7.24)-(7.25): A) one month; B) three months; C)one year
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Figure 7.23: Contours of the fresh-mud bed in Po River Estuary using power-law functions: A)
one month; B) three months; C) six months; D) one year
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Figure 7.24: Contours of the partially consolidated bed in Po River Estuary 7.35: A) one month;
B) three months; C) six months; D) one year
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Figure 7.25: Contours of the fully consolidated bed in Po River Estuary using Eq. 7.34: A) one
month; B) three months; C) six months; D) one year





Chapter 8

General conclusions

8.1 Achievements

A new 3D cohesive transport model has been developed, incorporating both the mud in suspen-
sion and fluid mud at bottom with the consolidation, and the efficient turbulence closure model.
Two major lines of investigation have been pursued in this thesis. (i) More efficient, robust and
realistic numerical techniques have been designed for the simulation of complex turbulent fluid
flows; (ii) New algorithm and its analysis is performed in the context of multiphase fluid flow
for the cohesive sediment transport in the estuarine channels.

8.2 Turbulence modeling of variable density fluid flows

Major sources of lack of robustness of numerical algorithms for the turbulence closure compu-
tation for multiphase fluid flows in estuary are : (i) the undesired occurrence of negative values
for quantities that should always be positive (e. g, the turbulent kinetic energy and its rate
of dissipation); (ii) the lack of stability of the scheme (due to new additional driving and/or
stabilizing forces, when the density is no longer constant); (iii) generally turbulence models need
a small time step with respect to the Courant-Friedrichs-Lewy (CFL) stability condition. On
the other hand the transport of sediment needs the large time scale for the bed morphology
prediction.
In this work, we have proposed a designed strategy for enhancing positiveness (motonicity of
the temporal scheme) to achieve and to preserve the positivity during the iterations, and we
have used an efficient fractional step algorithm that preserves positivity of relevant turbulent
quantities. We have shown how to implement such a technique, by taking into account the
buoyancy and the time sub-scaling scheme (i. e. the time scale for solid phase flow that is
longer than the hydrodynamic one) for the stability issues. The resulting computational scheme
is very robust, flexible, stable and the procedure is well suited for treatment of complex flows
(for variable and stratified or constant density fluid flow) with good overall first order accuracy
in time and second order accuracy in space.

8.3 Cohesive sediment transport and bed morphology

Major sources of lack of reliability of numerical algorithms for the cohesive sediment transport
can be summarized as follows : (i) most of the existing models in the available literature for
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transport and fate of fine sediment in water columns assume the analogous transport charac-
teristics with that of the coarse sediment and adopt sediment transport that were developed
for the latter to treat the former; (ii) most of the existing models assume a constant settling
velocity, whereas in reality it strongly depends on flocculation influenced by turbulence intensity,
salinity and temperature distribution; (iii) almost all the existing models assume only one fresh-
mud layer at bottom using continuous modeling concept to the highly concentrated suspended
sediment.

In the present study we have shown (in conformity with recent researches and experiments
analysis) that there are fundamental differences in the transport characteristics between the
common coarse non-cohesive sediment and the fine cohesive sediment behavior. Novel realistic
empirical relationships have been proposed for deposition and erosion or re-suspension of fine
sediment, from experiments and in-situ observations. In the present work a derived function for
sediment settling velocity combined with water temperature, settling distance, particle size and
sediment concentration has been introduced.

The analysis in the present study showed that by using two different transport characteristics
of coarse sediment and for the fine cohesive sediment modeling, there is a difference between
results. This suggests that for a realistic prediction, numerical model must account for the fresh
mud re-suspension capability on the bed.

Thus the present model accounts for the differences in the critical conditions between erosion
or re-suspension and deposition of fine sediment and allows simultaneous erosion and deposition
to occur only for a limited range of bed shear stresses. For bed shear stresses outside of this
range, either erosion or deposition is allowed reflecting the cohesive nature of the sediment. The
up-to-date algorithms used in the present model, lead to a realistic prediction of the cohesive
sediment transport process as well as the turbulence modeling for the multiphase fluid-solid flow.
A derived function for sediment settling velocity combined with water temperature, settling
distance, particle size and sediment concentration has been introduced. Therefore, different
parameters such as sediment settling velocity, incipient shear stress of cohesive (and/or non-
cohesive) sediments, the Coriolis force, tidal forcing, wind action, resistance to flow at the
bed, buoyancy effects due to temperature, salinity of sea-water and sediment concentration,
bed-level changes due to deposition and erosion have been modeled satisfactorily for a realistic
representation of the real world phenomena by simulating the Po River Estuary which is found
to be one of the main estuary in Europe.

From the point of view of scientific appreciation, the present model investigates the cohesive
sediment transport with the three-bed layers component at the bed which are: (i) the mud-
bed layer, (ii)the partially consolidated bed, (iii) the complete consolidated bed. This bed
morphology relies on the fluidization and/or consolidation process of the cohesive sediment on
the channel bed. The prediction of bed morphology using three-layer approach is a first attempt
to model these processes in detail within a numerical model. This three bed-layers modeling
sheds new light on an phenomenon not yet modeled in the existing numerical models for the
cohesive transport in the estuaries.

The point is that without accounting of the fluidization and/or consolidation process, this
could obviously in the long term endanger the security and navigation in the channel.

The performance of a composite model for cohesive sediment transport has been analyzed,
and the water elevation, velocity field, temperature, salinity and sediment concentration profiles
computed from the numerical models were found to be in good agreement with the field mea-
surements. Hence this composite model can be considered as an innovative, realistic and robust
tool for predicting fine sediment transport modeling in the estuary.
The main scientific contributions of this study have been in determining the influence of the
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estuary hydrodynamics on the water quality, the mutual influence of the flocculation and tur-
bulence processes, the evolution of bed morphology and the benthic boundary layer components
at the bottom. In estuarine and coastal areas, sediments and water quality are exposed to short
term (e. g. tidal) and long term (e.g. seasonal rainfall-river flow) changes in salinity as well as
temperature. The effects of salinity are most dramatically seen during periods of stratification.
When a water body becomes stratified, vertical mixing is reduced, limiting interaction between
river water inputs on the surface and denser, more saline waters on the bottom. Knowledge
of the hydrodynamics, water and sediments quality and discharge acquired through intensive
field studies including theoretical analysis and simulation tests being carried out in the Po River
Estuary , enable validation of the model predictions. Due consideration is made of the prop-
erties of sediment and the relevant bed morphology. The micro-tidal Po River Estuary (i.e.
tidal elevation < 2[m]) is found to be a fairly stratified estuary , with the estuarine turbidity
maximum, ETM, (i.e. near bed concentrations) ranging from 200 to 420mg/l. It is shown that
turbidity maxima can occur in micro-tidal estuaries, despite the concentrations of suspended
sediment being significantly lower (i.e. ETM ranging from 100mg/l to 220mg/l; see Hughes et
al. [52], [51]). Thus in micro-tidal Po River Estuary the dominant processes contributing to the
generation and maintenance of the ETM could also change. The insight gained through the
present study are in accordance with such arguments.

Investigations of a so-called bed three-layers from consolidation and/or fluidization have been
undertaken in the present model using semi-empirical relationships collected from field observa-
tions and experiments, to evaluate temporal variability of estuarine circulation patterns as well
as the bed morphology evolution in the Po River Estuary . A better understanding of circulation
patterns and the interaction of physical and biochemical processes will be very important for
refining current remediation strategies and provide further information for designing appropriate
management strategies.

This was a first attempt to put together many semi-empirical equations in a numerical model.
The composite model using the stabilization function and strategies, behaves well and remains
stable during computations.

8.4 Future prospects

This work has led to a better understanding of several important issues related to the design
and assessment of numerical models for simulating fine cohesive sediment in the estuaries. It
has also opened new tracks for the rational development of turbulence two-equation closures as
well as the bed morphology evolution. Many of these ideas have still to be investigated further.
For instance, the models proposed in this work (composite equilibrium model) need additional
testing and development. In this optic, computations on more practical configurations and
systematic investigation would be necessary and the model must account for the importance
of the vertical stratification on the up-welling and down-welling motions which are modulated
by the tide, which generates in combination with the vertical density gradient, an internal
tide. The meteorological conditions should be taken into account for enhancing the free-surface
boundaries conditions for the temperature and salinity (i.e solar and non solar and long wave
radiation flux for the heat, evaporation and precipitation rates for the surface salinity and water
flow discharge).

Concerning the new strategy to solve turbulence equations, the context of coupling hydro-
dynamic and turbulence must be investigated, whereas the full 3D model (i.e. without Shallow
Water assumption) should be assessed to be well suited for the deep estuaries. Also the proposed
implementation of the three-layers bed morphology by introducing in this model a suitable re-
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stricted developed SWE for the bed evolution which includes the effect of wave action and a
multi-layer model of the muddy bed with the process of consolidation, should be evaluated [120].
More information on the flow properties of fluid mud at various concentrations might lead to an
improved model. Some investigation of the ideas [92] for the estuary bed evolution modeling has
to be performed [70] and opens interesting perspectives. The application of the non-equilibrium
models in inhomogeneous flows and their characterization still remains a task to be performed.
This model should be coupled to aquatic ecological module for simulating the dynamic ecosys-
tems.

The parallel version of numerical model will be an asset to reduce computational effort and
cost when simulating cohesive sediment transport and bed morphology.

Finally, the model should be applied to many real life harbor channels, for example the case
of the Wouri estuary in Cameroon (which is the main entrance of one of the most important
harbor in central Africa) for prediction of the movement of the sediments and for determining
the optimal strategy for the maintenance of the navigation channel.



Some implementation issues

Array storage

The square and rectangular arrays used during computations, have many null elements and
hence to save memory space they are store using the so-called Compact Sparse Row (CSR)
format. Given an array A (n×m) with nz non-zero elements the CRS format consists of 3
vectors called IA, JA and Ã (see figure 8.1):

• Ã is a vector of length nz and it contains the non-zero floating point numbers entries of
the matrix, stored row-wise;

• JA is a vector of length nz. for entry Ã (i), its corresponding column number is found
JA(i);

• IA is a vector of length n+ 1: since entries of the same row are stored consecutively in Ã,
we only need to know the index of the first entry row and the index of the last entry. The
index of the first element of row i is stored in IA(i), while the index of its last elements is
IA(i + 1) − 1. The vector IA has length n+ 1 since we need to know the index of the last
element of row n.
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Figure 8.1: CSR format
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Technical Report Rapports de synthése de l’APEEL 1984-199, vol. I : hydrosédimentaire
(Migniot & Le Hir), 63-83, Estuaire de la Loire, 1997.

[66] P. Le Hir, P. Bassoulet, and H. Jestin. Application of the continuous modeling concept to
the simulation of highly concentrated suspended sediment: comparison with measurements
in a macrotidal estuary. In INTERCOH98, editor, Procedings of the 5th International
Conference on Cohesive Sediment Transport, volume 5, Ansan (Corée), 2000.

[67] P. Le Hir, W. Roberts, O. Cazaillet, M. C. Christie, P. Bassoullet, and C. Bacher. Char-
acterization of intertidal flat hydrodynamics. Continental Shelf Res., 20:1433–1459, 2000.

[68] P. Le Hir and B. Thouvenin. Mathematical modeling of cohesive sediment and particulate
contaminants transport in the Loire. In K. R. Dyer & Robert R. J. Orth (eds), editor,
Estuary Proc. ECSA22/ERF Symp. - Plymouth, 71-78, Olsen & Olsen, 1994.

[69] M. A. Leschziner and W. Rodi. Calculation of annular and twin parallel jets using various
discretization schemes and turbulence-model variations. ASME, J. Fluid Engrg., 103:352–
360, 1981.
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1998: DIPET II (Diplôme de Professeur de l’Enseignement Technique de Deuxième grade)-
Master of Science in Engineering. Dept. of Mechanical Eng., Ecole Normale Supérieure de
l’Enseignement Technique (ENSET), The University of Douala, Cameroon.
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Profession

2001-present: Research assistant, Laboratoire d’Ingénierie Numérique (LIN) at EPFL.

1999-2001: Research assistant, Laboratoire de Mécanique de Fluides (LMF) at EPFL, and
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1. C. Leupi, (2000) Modélisation Mathématique en 3D du transport de Sédiments Cohésifs et
formation du Lit dans les canaux estuariens. TR, EPFL/DGM/LM, June 2000, unpub-
lished.

159


