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Abstract

Many important synchronization problems in distributed computing are impos-
sible to solve (in a fault-tolerant manner) in purely asynchronous systems, where
message transmission delays and relative processor speeds are unbounded. It is
then natural to seek for the minimal synchrony assumptions that are sufficient to
solve a given synchronization problem. A convenient way to describe synchrony
assumptions is using the failure detector abstraction.

In this thesis, we determine the weakest failure detectors for several fundamen-
tal problems in distributed computing: solving fault-tolerant mutual exclusion,
solving non-blocking atomic commit, and boosting the synchronization power of
atomic objects. We conclude the thesis by a perspective on the very definition of
failure detectors.
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Résumé

De nombreux problèmes importants en informatique répartie sont impossibles à
résoudre (de manière tolérante aux défaillances) au sein des systèmes purement
asynchrones, dans lesquels le temps pour transmetre un message et les vitesses
relatives des processeurs sont illimitées. Il est naturel de chercher les condi-
tions minimales de synchronisme qui sont suffisantes pour résoudre un problème
reparti donné. Une manière commode de décrire ces conditions consiste à utiliser
l’abstraction de détecteur de fautes.

Cette thèse détermine les détecteurs de fautes les plus faibles pour plusieurs
problèmes fondamentaux de l’informatique répartie: résoudre l’exclusion mutuelle
de manière tolérante aux fautes, résoudre la validation atomique de manière non-
bloquante, et amplifier la puissance de synchronisation des objets atomiques.
Nous concluons la thèse par une perspective sur la définition même de la notion
de détecteurs de fautes.
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Chapter 1

Introduction

A distributed system is a collection of individual computing units that can com-
municate with each other. This very general definition encompasses a wide spec-
trum of modern computing systems, including multiprocessors, local-area clusters
of workstations, and the Internet.

Distributed computing pursues a variety of benefits, including effective shar-
ing of resources, high availability, and fault-tolerance, which is the principal sub-
ject of this thesis. However, implementing distributed systems that enjoy these
benefits is notoriously difficult.

For example, many fundamental synchronization problems in distributed com-
puting, such as consensus, non-blocking atomic commit and mutual exclusion,
are impossible to solve (in a fault-tolerant manner) in purely asynchronous sys-
tems [28, 24], where message transmission delays and relative processor speeds
are unbounded. It is thus appealing to seek for the minimal synchrony assump-
tions that are sufficient to solve a given synchronization problem. The failure
detector abstraction [15, 14] provides a convenient way to describe synchrony
assumptions. In this chapter, we informally pose the weakest failure detector
question and overview the main results of this thesis.

1.1 Distributed computing and synchronization

Consider a computing unit that provides a certain service to a set of clients by
(a) receiving requests from the clients, (b) processing the requests, and (c) send-
ing back the corresponding responses. A failure of the unit makes the whole
service unavailable. A standard solution to avoid the issue of a single point of
failure would be to replicate the service, i.e., to devise a distributed algorithm
that, running on a collection of computers, would create an illusion of a central-
ized service to the clients [50]. The components of the replicated system must
be synchronized in a consistent way that would ensure progress and safety even
when some of the components fail by crashing (prematurely stopping taking steps
of computation). A consistency criterion of such a synchronization (a synchro-
nization problem) depends on the type of service that the replicated system is
supposed to provide. For example, consider the following classical synchroniza-
tion problems that arise in fault-tolerant distributed computing: implementing

1



2 Chapter 1. Introduction

state machines, processing transactions, and managing indivisible resources.

1.1.1 Consensus

The synchronization requirements of the state machine replication problem [50,
66] are captured by consensus [28], probably the most studied problem in dis-
tributed computing. Informally, in consensus, each thread of computation, which
we call a process, initially proposes a value, and eventually processes must reach
a common decision on one of the proposed values. Using reliable message-passing
channels and multiple instances of consensus, it is straightforward to implement a
replicated state machine, in which client requests and the corresponding responses
are totally ordered [15, 52].

1.1.2 Non-blocking atomic commit

The non-blocking atomic commit problem (NBAC) arises in distributed trans-
action processing [31, 68]. Informally, the set of processes that participate in a
transaction must agree on whether to commit or abort that transaction. Initially,
each process votes Yes (“I am willing to commit”) or No (“we must abort”), and
eventually processes must reach a common decision, Commit or Abort. The de-
cision to Commit can be reached only if all processes voted Yes. Furthermore, if
all processes voted Yes and no failure occurs, then the decision must be Commit.

1.1.3 Weak consensus

Consensus and NBAC are two instances of agreement problems. In these prob-
lems, processes should eventually agree on a common value. The weakest non-
trivial agreement problem is probably the weak consensus problem [28], in which
processes are required to decide on a common value in {0, 1} so that there is an
execution in which 0 is decided, and there is an execution in which 1 is decided.
We can immediately see that weak consensus is weaker than both consensus
and NBAC in the sense that any solution to consensus or NBAC can be easily
transformed into a solution to weak consensus.

1.1.4 Fault-tolerant mutual exclusion

The mutual exclusion problem [23, 51] involves managing a single, indivisible
resource that can be accessed by at most one process at a time (mutual exclusion
property). The process accessing the resource is said to be in its critical section
(CS). The fault-tolerant mutual exclusion problem (FTME) requires that if a
non-faulty process wants to enter its CS, then there eventually will be some non-
faulty process in its CS (progress property), even if some process crashes (stops
taking steps) while in its CS.
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1.2 Distributed computing model

1.2.1 Asynchronous system

Ideally, a distributed algorithm should be correct even if the system is asyn-
chronous. In an asynchronous distributed system, messages can take arbitrarily
long to be received and processes can run in arbitrarily varying speeds, i.e, there
are no bounds on communication (message transmission delays) and processing
(relative process speeds). A distributed algorithm that can work even in asyn-
chronous systems would be very appealing in practice, since its correctness would
not depend on such bounds.

1.2.2 Impossibility of synchronization

It is well-known that weak consensus (and thus consensus and NBAC) cannot be
solved deterministically in asynchronous systems in which at least one process
can fail by crashing (Fischer, Lynch and Paterson [28]). Essentially, the proof
of [28] is based on the fact that asynchronous systems provide no hints for ever
distinguishing a very slow (“sleeping”) process from a faulty one.

Similarly, FTME cannot be solved without any information about failures: if
a process crashes in its critical section, then no progress condition can be satisfied.

The impossibility result of [28] establishes that asynchronous distributed com-
putability is essentially different from classical Turing computability [69]: the
consensus problem, trivially solvable on a single processor, is impossible to solve
in an asynchronous system of two or more processors of which one can fail by
crashing.

1.2.3 Partially synchronous models

Given that many important synchronization problems, such as consensus, NBAC
and FTME, are not solvable in purely asynchronous systems, it is natural to
ask what happens if we strengthen the synchrony assumptions. For example,
we might want to assume that communication is synchronous, i.e., there exists
a known bound on message transmission delays, or, alternatively, that process-
ing is synchronous, i.e., there exists a known bound on relative process speeds.
Still, Dolev, Dwork and Stockmeyer [24] showed that restricting only one of these
parameters (communication or processing) does not help to solve consensus tol-
erating just one faulty process.1

However, if we restrict both parameters, then fault-tolerant consensus becomes
solvable. In a very general manner, Dwork, Lynch and Stockmeyer [25] introduced
a number of models with different kinds of partial synchrony and determined tight
bounds on the number of faulty processes that can be tolerated by a consensus
algorithm in each of these models.

In particular, they introduced the partially synchronous model in every ex-
ecution of which there are (unknown a priori) bounds on communication and

1Concurrently, Loui and Abu-Amara [56] showed that fault-tolerant consensus is impossible
to solve in the read/write shared memory model, which is computationally equivalent to the
communication synchronous model of [24].
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processing.2 In this model, consensus can be solved tolerating at most a minority
of faulty processes. If we strengthen the partially synchronous model by assum-
ing that communication is synchronous (i.e., the message transmission delays are
bounded, and the bound is known a priori), and processing is still partially syn-
chronous, then consensus can be solved tolerating any number of faulty processes.

1.2.4 Asking an oracle

Thus, we can circumvent the impossibility of consensus by introducing a cer-
tain amount of synchrony into the system, or, in other words, by providing a
mechanism to reason about process failures.

For example, assume that, in the partially synchronous model, every process
p runs the following failure detection algorithm [25, 15]. Periodically, p sends
“p-is-alive” to all and then waits for “alive” messages of other processes until
a timeout expires. If p timeouts on some process q, then p adds q to the list
of suspected processes. If p later receives a “q-is-alive” message, i.e., p made a
mistake by prematurely timing out on q, then p removes q from the list of suspects
and increments the timeout, in order to prevent such a mistake in the future. The
properties of the partially synchronous model ensure that there is a time after
which every non-faulty process will forever suspect every faulty process and stop
suspecting any non-faulty process.

The information about failures provided by this algorithm can be abstracted
out as follows. Let us consider an asynchronous system in which processes have
access to a distributed oracle. At each process and at each time, this oracle
outputs a list of suspected processes. The oracle guarantees that there is a time
after which (a) every faulty process is permanently suspected and (b) no non-
faulty process is ever suspected. (In fact, the oracle is an example of a failure
detector, as we discuss in Section 1.3.)

It turns out that this seemingly weak oracle can dramatically improve the
computational power of a distributed system: the synchrony assumptions pro-
vided by the oracle are sufficient to solve consensus tolerating a minority of
faulty processes [25]. If, in addition, communication is synchronous, it is possible
to solve consensus tolerating any number of failures [25, 53]. But are these syn-
chrony assumptions also necessary? Can we solve fault-tolerant consensus with
even less amount of synchrony?

1.3 The failure detector abstraction

1.3.1 Overview

Now we approach the central question of this thesis: what is the minimal amount
of synchrony that is sufficient to make a given synchronization problem solvable.

To answer the question we must define first what we mean by the “amount of
synchrony”. Since the impossibility of fundamental synchronization problems in-
herently comes from the impossibility of reasoning about failures in asynchronous

2[25] also considered a variant of the partially synchronous model in which bounds on com-
munication and processing are known a priori, but hold only after some unknown time.
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systems [28], it is convenient to describe synchrony in terms of failure detectors
introduced by Chandra and Toueg [15].

Informally, a failure detector is a distributed oracle that supplies the processes
with (possibly incomplete and inaccurate) hints about failures. The output by
failure detectors is not restricted in any way, except that it is defined exclusively
by failures (e.g., a failure detector cannot leak information about the local vari-
ables of other processes). For example, a failure detector can produce at any time
a list of identifiers (ids) of processes currently suspected to have crashed; or the
id of the current leader process; or a boolean formula, such as “neither p nor q is
crashed”.

A failure detector can be unreliable: it can make an a priori unbounded
number of mistakes, e.g., by suspecting non-faulty processes to have crashed or
electing a faulty process as a leader.

A number of failure detectors have been defined in the literature. The results
of this thesis make use of the following ones:

• The perfect failure detector P outputs a set of suspected processes at each
process. There is a time after which every crashed process is permanently
suspected by every non-faulty process, and no process is ever suspected
before it crashes [15].

• The eventually perfect failure detector 3P also outputs a set of suspected
processes at each process. But the guarantees provided by 3P are weaker
than those of P. There is a time after which 3P outputs the set of all
faulty processes at every non-faulty process [15].

• The leader failure detector Ω outputs the id of a process at each process.
There is a time after which it outputs the id of the same non-faulty process
at all non-faulty processes [14].

• The quorum failure detector Σ outputs a set of processes at each process.
Any two sets (output at any times and at any processes) intersect, and
eventually every set output at every correct process consists of only non-
faulty processes [20].

• The failure signal failure detector FS outputs green or red at each pro-
cess. As long as there are no failures, FS outputs green at every process;
after a failure occurs, and only if it does, FS must eventually output red
permanently at every non-faulty process [16, 32].

1.3.2 Comparing failure detectors

Sometimes a distributed algorithm meets its specification only under certain as-
sumptions about when and where failures might occur. These assumptions are
represented in the form of environments [14]. Examples of environments are: a
majority of processes are non-faulty; process p never fails before process q; no
process fails after it takes at least one step, etc.

Failure detectors can be partially ordered according to their synchronization
power. Informally, we say that a failure detector D is weaker than a failure
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detector D′ in an environment E if there exists an algorithm that transforms D′
into D in E (the formal definition comes later in Section 2.10). If D is not weaker
than D′ in E and D′ is not weaker than D in E , then we say that D and D′ are
incomparable in E .

For example, in most environments, Ω is weaker than 3P; 3P, Σ and FS
are pairwise incomparable; and each of Ω, 3P, Σ and FS is weaker than P.

Note that if D is weaker than D′ in E , then all problems solvable with D in E
are also solvable with D′ in E .

1.3.3 The weakest failure detector question

We say that a failure detector D is the weakest failure detector to solve a problem
M in an environment E if (a) there is an algorithm that uses D to solve M in
E , and (b) D is weaker than any failure detector D′ that can be used to solveM
in E .

Now the central question of this work can be formulated as follows:

What is the weakest failure detector to solve a given synchronization problem in
a given environment?

This question has inspired a number of interesting results. Especially related
to the results of this thesis are the following ones:

• Ω has been shown to be the weakest to solve consensus if at most a minority
of processes can fail [14].

• Σ has been shown to be the weakest to implement read/write shared mem-
ory in all environments, i.e., regardless of the number and timing of fail-
ures [20].

• (Ω,Σ), the composition of Ω and Σ, has been shown to be the weakest to
solve consensus in all environments [20].

• FS has been shown to be the weakest to solve NBAC with at most one
faulty process [16, 32].

1.4 Main results of this thesis

In this thesis, we determine the weakest failure detectors for several fundamen-
tal problems in distributed computing. The problems considered are: solving
fault-tolerant mutual exclusion, solving quittable consensus, solving non-blocking
atomic commit, and boosting the synchronization power of object types.

1.4.1 Mutual exclusion

The mutual exclusion problem [23, 51] involves managing access to a single, in-
divisible resource that can be accessed by at most one process at a time. In the
fault-tolerant mutual exclusion problem (FTME), we require that if a non-faulty
process wants to access the resource, then access is eventually granted to some
non-faulty process, even if some process crashes while accessing the resource.
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(a) We determine the weakest failure detector to solve FTME with a majority
of non-faulty processes. The trusting failure detector T outputs a set of
suspected processes at each process and ensures that: (1) there is a time
after which T trusts (does not suspect) every non-faulty process, (2) there is
a time after which T permanently suspects any crashed process, and (3) at
all times, if T suspects a process after having trusted it, then the process is
crashed. Failure detector T might suspect temporarily a non-faulty process.
Intuitively, T can thus make mistakes and algorithms using T are, from a
practical point of view, more resilient than those using P.

(b) We show also that a majority of non-faulty processes is necessary for any
FTME algorithm using T .

(c) We present a failure detector (T ,Σ) which is strictly weaker than P and which
is sufficient (but possibly not necessary) to solve the problem regardless of
the number and timing of failures.

(d) We consider group mutual exclusion [47, 38], a recent generalization of mu-
tual exclusion, and we show that T is the weakest to solve fault-tolerant group
mutual exclusion (FTGME) with a majority of non-faulty processes. Anal-
ogously, we show that (T ,Σ) is sufficient to solve FTGME regardless of the
number and timing of failures.

1.4.2 Quittable consensus and non-blocking atomic commit

Non-blocking atomic commit (NBAC) is a well-known problem that arises in
distributed transaction processing [31, 68]. To determine the weakest failure
detector to solve NBAC in all environments, we proceed through the following
steps:

(a) We consider a natural variation of consensus, called quittable consensus (QC)
introduced by Hadzilacos and Toueg [40]. Informally, QC is like consensus
except that, in case a failure occurs, processes have the option (but not
the obligation) to agree on a special value Q (for “quit”). We determine
the weakest failure detector to solve QC in all environments. This failure
detector, denoted Ψ, behaves as follows: For an initial period of time, the
output of Ψ at each process is ⊥. Eventually, however, Ψ either behaves
like the failure detector (Ω,Σ) at all processes or, if a failure occurs, it may
report a failure by outputting red at all processes. The switch from ⊥ to
behaving like (Ω,Σ) or reporting a failure need not occur simultaneously at
all processes, but the same choice is made at all processes.

(b) We establish that NBAC is equivalent to QC modulo the failure detector
FS: (i) given FS, any QC algorithm can be transformed into an algorithm
for NBAC, and (ii) any algorithm for NBAC can be transformed into an
algorithm for QC, and can also be used to implement FS.

(c) We use (a) and (b) to show that (Ψ,FS), the composition of Ψ and FS, is
the weakest failure detector to solve NBAC in all environments.
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1.4.3 Boosting the consensus power with failure detectors

Fault-tolerant consensus is impossible in asynchronous systems that provide just
a simple form of communication (reliable channels or read/write shared mem-
ory) [28, 24, 56]. One way to circumvent this impossibility, besides using failure
detectors, is to augment the system model with more powerful communication
primitives, typically defined through shared object types with sequential specifi-
cations [41, 56]. It is convenient to define the power of an object type T , denoted
cons(T ), as the maximum number n of processes that can solve consensus using
only objects of type T and registers. For instance, the power of the register type
is simply 1, the power of the test&set type is 2, whereas the compare&swap type
has power ∞ (consensus can be solved among any number of processes using
compare&swap objects) [41].

In a way, augmenting the system with powerful shared object types is or-
thogonal to strengthening the synchrony assumptions by using failure detectors.
Failure detectors provide information about failures, but cannot be used to com-
municate information between processes. On the other hand, objects with se-
quential specifications can be used for inter-process communication, but they do
not provide any information about failures.

Neiger proposed in [61] a way to effectively combine these two trends by
introducing a hierarchy of failure detectors Ωn, n ∈ N, such that:

(i) For all n, k ∈ N, Ωn is sufficient to solve consensus among k processes using
any set of types T such that cons(T ) = n and registers.

(ii) For all n ∈ N, Ωn+1 is strictly weaker than Ωn.

Informally, Ωn outputs, at each process, a set of processes so that all non-faulty
processes eventually detect the same set of at most n processes that includes at
least one non-faulty process. Note that Ω1 is equivalent to Ω.

It was conjectured in [61] that Ωn is actually the weakest failure detector to
boost the power of T to higher levels of the consensus hierarchy. As pointed out
in [61], the proof of this conjecture appears to be challenging and was left open.

In this thesis,

(a) We show that, that for all n, k ∈ N, and all m-ported one-shot deterministic
types T such that m ≤ n + 1 and cons(T ) ≤ n, Ωn is necessary to solve
consensus among k processes using registers and objects of type T . Although
one-shot deterministic types restrict every process to invoke at most one
deterministic operation on each object, they include many popular types
such as consensus and test&set, and they exhibit complex behavior in the
context of the type booster question [42].

As a side result, we formally prove that Ω is necessary to solve consensus
using only registers. The result was first stated in [53] but, to our knowledge,
its proof has never appeared in the literature.

(b) We consider t-resilient implementations of object types (we will simply call
these t-resilient objects): a process is only guaranteed to complete its opera-
tion on a t-resilient object, as long as no more than t processes crash, where
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t is a specified parameter. If more than t processes crash, no operation on a
t-resilient object is obliged to return.

We consider a system in which, for some t, k ∈ N, t ≥ 2, k processes com-
municate through (wait-free) registers and t-resilient objects of any types
(not necessarily one-shot and deterministic types with a known bound on the
number of ports). As a corollary to the results of (a), we show that Ωt+1 is
the weakest failure detector to solve consensus in this system.

1.5 Outline of this thesis

• In Chapter 2, we present the model of computation, and define formally
the notion of a weakest failure detector.

• In Chapter 3, we recall the techniques used to obtain fundamental “weakest
failure detector” results.

• In Chapter 4, we determine the weakest failure detector to solve fault-
tolerant mutual exclusion with a majority of non-faulty processes.

• In Chapter 5, we determine the weakest failure detector to solve quittable
consensus and NBAC in all environments.

• In Chapter 6, we determine the weakest failure detector to boost the con-
sensus power of one-shot deterministic objects and to boost the consensus
resilience level of any objects.

• Chapter 7 discusses alternative approaches to defining failure detectors and
concludes the thesis by speculating about some future research.





Chapter 2

Model

In this chapter, we describe the asynchronous message-passing model equipped
with a failure detector [14], considered in Chapters 4 and 5.

In Chapter 6, we revisit the model and provide additional details that are
necessary to describe a model in which processes communicate through atomic
objects of a given consensus power. A generic model in which processes com-
municate through distributed services, including reliable channels, atomic objects
and failure detectors, is discussed in Chapter 7.

2.1 Processes

The system consists of a set of n processes Π = {p1, p2, . . . , pn} (n > 1). Every
pair of processes is connected by a reliable channel. Processes communicate
by message passing. To simplify the presentation of our model, we assume the
existence of a discrete global clock. This is a fictional device: the processes have
no direct access to it. (The information about global time can however come
indirectly from failure detectors.) We take the range T of the clock’s ticks to be
the set of natural numbers and 0 (T = {0} ∪ N).

2.2 Failures and failure patterns

Processes are subject to crash failures. We do not consider Byzantine failures:
a process either correctly executes the algorithm assigned to it, or crashes and
stops forever executing any action.

A failure pattern F is a function from the global time range T to 2Π, where
F (t) denotes the set of processes that have crashed by time t. Once a process
crashes, it does not recover, i.e., ∀t : F (t) ⊆ F (t + 1). Let F denote the set of all
failure patterns.

Let F ∈ F. We define correct(F ) = Π−∪t∈TF (t), the set of correct processes
in F . Processes in Π − correct(F ) are called faulty in F . A process p /∈ F (t) is
said to be alive at time t. A process p ∈ F (t) is said to be crashed at time t. A
failure pattern F such that correct(F ) = Π is called failure-free.

An environment E is a set of failure patterns. Ef denotes the set of all failure
patterns in which up to f processes can crash: Ef = {F ∈ F : |correct(F )| ≥

11
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n−f}. Unless otherwise stated, we consider environments E in which at least one
process might crash and at least one process is correct: (∀F ∈ E : correct(F ) ≥ 1)
∧ (∃F ∈ E : faulty(F ) ≥ 1)

2.3 Failure detectors

A failure detector history H with range R is a function from Π× T to R. Infor-
mally, H(p, t) represents the value output by the failure detector at process p at
time t. A failure detector D with range RD is a function that maps each failure
pattern to a set of failure detector histories with range RD. D(F ) is thus the set
of failure detector histories permitted by D for failure pattern F . Note that we do
not make any assumption a priori on the range of a failure detector. When any
process p performs a step of computation, it can query its failure detector module
of D, denoted Dp, and obtain a value d ∈ RD that encodes some information
about failures.

If D and D′ are failure detectors, (D,D′) denotes the failure detector that
outputs a vector with two components, the first being the output of D and the
second being the output of D′. Formally, R(D,D′) = RD ×RD′ , and for each F ,
H̃ ∈ (D,D′)(F ) ⇔ H̃ = (H,H ′), H ∈ D(F ), H ′ ∈ D′(F ).

Now we define formally some failure detectors involved in this thesis:

• The perfect failure detector P [15] outputs a set of suspected processes
at each process. P ensures strong completeness: every crashed process
is eventually suspected by every correct process, and strong accuracy : no
process is suspected before it crashes.

Formally, for each failure pattern F , and each history H ∈ P(F ) ⇔(
∃t ∈ T ∀p ∈ faulty(F ) ∀q ∈ correct(F ) ∀t′ ≥ t : p ∈ H(q, t′)

)
∧(

∀t ∈ T ∀p, q ∈ Π− F (t) : p /∈ H(q, t)
)

• The eventually perfect failure detector 3P [15] also outputs a set of sus-
pected processes at each process. But the guarantees provided by 3P are
weaker than those of P. There is a time after which 3P outputs the set of
all faulty processes at every non-faulty process. More precisely, 3P satis-
fies strong completeness and eventual strong accuracy : there is a time after
which no correct process is ever suspected.

Formally, for each failure pattern F , and each history H ∈ 3P(F ) ⇔

∃t ∈ T ∀p ∈ correct(F ) ∀t′ ≥ t : H(p, t′) = faulty(F )

• The leader failure detector Ω [14] outputs the id of a process at each process.
There is a time after which it outputs the id of the same non-faulty process
at all non-faulty processes.

Formally, for each failure pattern F , and each history H ∈ Ω(F ) ⇔

∃t ∈ T ∃q ∈ correct(F ) ∀p ∈ correct(F ) ∀t′ ≥ t : H(p, t′) = q
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• The quorum failure detector Σ [20] outputs a set of processes at each pro-
cess. Any two sets (output at any times and at any processes) intersect,
and eventually every set consists of only non-faulty processes.

Formally, for each failure pattern F , and each history H ∈ Σ(F ) ⇔(
∀p, p′ ∈ Π ∀t, t′ ∈ T H(p, t) ∩H(p′, t′) 6= ∅

)
∧(

∀p ∈ correct(F ) ∃t ∈ T ∀t′ ≥ t H(p, t′) ⊆ correct(F )
)
.

• The failure signal failure detector FS [16, 32] outputs green or red at
each process. As long as there are no failures, FS outputs green at every
process; after a failure occurs, and only if it does, FS must eventually
output red permanently at every non-faulty process.

Formally, for each failure pattern F , and each history H ∈ FS(F ) ⇔

(
∀p ∈ Π ∀t ∈ T

(
H(p, t) = red→ F (t) 6= ∅

)
∧(

faulty(F ) 6= ∅ → ∀p ∈ correct(F ) ∃t ∈ T ∀t′ ≥ t H(p, t′) = red
)
.

2.4 Algorithms

The asynchronous communication channels are modeled as a message buffer which
contains messages not yet received by their destinations. An algorithm A is
a collection of n (possibly infinite state) deterministic automata, one for each
process. A(p) denotes the automaton on which process p is running algorithm
A. Computation proceeds in steps of A. In each step of A, process p performs
atomically the following three actions:

(i) p receives a single message addressed to p from the message buffer, or a null
message, denoted λ (receive phase);

(ii) p queries and receives a value from its failure detector module (query phase);

(iii) p changes its state and sends a message to a single process, according to the
automaton A(p) (send phase).

Note that the received message is chosen non-deterministically from the messages
in the message buffer destined to p, or the null message λ.

2.5 Configurations, schedules, and runs

A configuration defines the current state of each process in the system and the
set of messages currently in the message buffer. Initially, the message buffer is
empty. A step (p, m, d) of an algorithm A is uniquely determined by the identity
of the process p that takes the step, the message m received by p during the
step (m might be the null message λ), and the failure detector value d seen by p
during the step. We assume that messages are uniquely identified.
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We say that a step e = (p, m, d) is applicable to a configuration C if and only
if m = λ or m is in the message buffer of C. For a step e applicable to C, e(C)
denotes the unique configuration that results from applying e to C.

A schedule S of algorithm A is a (finite or infinite) sequence of steps of A.
S⊥ denotes the empty schedule. We say that a schedule S is applicable to a
configuration C if and only if (a) S = S⊥, or (b) S[1] is applicable to C, S[2] is
applicable to S[1](C), etc. For a finite schedule S applicable to C, S(C) denotes
the unique configuration that results from applying S to C.

A partial run of algorithm A in an environment E using a failure detector D
is a tuple R = 〈F,HD, I, S, T 〉 where F ∈ E is a failure pattern, HD ∈ D(F ) is a
failure detector history, I is an initial configuration of A, S is a finite schedule of
A, and T ⊆ T is a finite list of increasing time values (indicating when each step
of S occurred) such that |S| = |T |, S is applicable to I, and for all 1 ≤ k ≤ |S|,
if S[k] = (p, m, d) then:

(1) p has not crashed by time T [k], i.e., p /∈ F (T [k]), and

(2) d is the value of the failure detector module of p at time T [k], i.e., d =
HD(p, T [k]).

A run of algorithm A in an environment E using a failure detector D is a
tuple R = 〈F,HD, I, S, T 〉 where F ∈ E is a failure pattern, HD ∈ D(F ) is a
failure detector history, I is an initial configuration of A, S is an infinite schedule
of A, and T ⊆ T is an infinite list of increasing time values indicating when each
step of S occurred. In addition to satisfying properties (1) and (2) of a partial
run, R should guarantee that

(3) every correct (in F ) process takes an infinite number of steps in S and
eventually receives every message sent to it.

Property (3) ensures that every correct process must appear in R infinitely
often and receive every message sent to it (this conveys the reliability of the
communication channels).1

Remark. The algorithms presented in Chapters 4 and 5 work (or can be easily
transformed to work) also in a weaker model where steps of algorithms have finer
granularity (receive phase, query phase, and send phase are not encapsulated in
the same atomic step), and channels guarantee only that every correct process
eventually receives every message sent to it by any correct process. The lower
bounds presented in Chapters 4 and 5 hold also in a stronger model in which
every process can atomically send its messages to all.

2.6 Problems and solvability

A problem is a predicate on a set of runs (usually defined by a set of properties that
these runs should satisfy). An algorithmA solves a problemM in an environment
E using a failure detector D if the set of all runs of A in E satisfies M. We say

1The alternative “I/O automata-based” model, described in Section 7.1 assumes that execu-
tions are fair : each task gets infinitely many turns to take steps.
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that a failure detector D solves problem M in E if there is an algorithm A which
solves M in E using D.

2.7 Consensus and weak consensus

In the consensus problem, each process p starts with an initial value v ∈ {0, 1}
(we say that p proposes v), and terminates with a value v′ ∈ {0, 1} (we say that
p decides v′). It is required that:

Termination: Every correct process eventually decides.

Agreement: No two processes (whether correct or faulty) decide different val-
ues.

Validity: If a process decides a value v, then v was proposed by some process.

The proof that Ω is necessary to solve consensus presented in [14] holds even
for a weaker variant of the problem, called non-uniform consensus that requires
Termination, Validity and the following form of agreement:

Non-Uniform Agreement: No two correct processes decide different values.

The Agreement property of consensus is sometimes referred to as Uniform Agree-
ment.

A similar weak consensus problem requires Agreement and Termination of
consensus, but Validity is substituted with the following weaker property:

Non-Triviality: Every algorithm that solves weak consensus must have a run
in which 0 is decided by some process, and a run in which 1 is decided by
some process.

Similarly, non-uniform weak consensus can be obtained from weak consensus by
replacing Agreement with the Non-Uniform Agreement.

By definition, every algorithm that solves (non-uniform) consensus (in an
environment E using a failure detector D) trivially solves (non-uniform) weak
consensus in E using D. The converse however does not hold (see Section 3.1.9
for more discussion on this). Since non-uniform weak consensus cannot be solved
in asynchronous systems tolerating just one failure [28], neither can any stronger
variant of consensus.

2.8 The merging lemma

The following results follow directly from the definition of runs:

Lemma 2.1 Let A be any algorithm, and R1 = 〈F,H, I, S ·S1, T · T1〉 and R2 =
〈F,H, I, S · S2, T · T2〉 be partial runs of A, such that the sets of processes that
take steps in S1 and in S2 are disjoint and T1 and T2 contain distinct times. Let
T̂ be the merging of T1 and T2 (in increasing order) and Ŝ be the corresponding
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merging of S1 and S2 (i.e., the steps of Ŝ are the steps of S1 and S2 in the order
indicated by T̂ ). Then R̂ = 〈F,H, I, S · Ŝ, T · T̂ 〉 is also a partial run of A.2

Corollary 2.2 Let A be any weak consensus algorithm, and R1 = 〈F,H, I, S ·
S1, T ·T1〉 and R2 = 〈F,H, I, S ·S2, T ·T2〉 be partial runs of A, such that the sets
of processes that take steps in S1 and in S2 are disjoint and T1 and T2 contain
distinct times. If some process decides x1 in R1 and some process decides x2 in
R2 then x1 = x2.

2.9 Causality and the initial state lemma

Let R = 〈F,H, I, S, T 〉 be a (partial or regular) run of an algorithm A. Follow-
ing [50], we define a causality relation →R for steps of R as follows. For any 1 ≤
k ≤ |S|, let M [k] denote the message buffer of configuration S[1] ·S[2] · · ·S[k](I).
Let 1 ≤ k, k′ ≤ |S|, S[k] = (p, m, d) and S[k′] = (p′,m′, d′). We say that S[k]
causally precedes S[k′] in R, and we write S[k] →R S[k′], if one of the following
conditions hold:

(1) p = p′ and k ≤ k′;

(2) m′ 6= λ and p sends m′ in S[k], i.e., m′ ∈M [k]−M [k − 1];

(3) ∃k′, 1 ≤ k′′ ≤ k′: S[k]→R S[k′′] and S[k′′]→R S[k′].

It follows from the definition of causality that if, for some processes p and q, the
last step of p in a partial run R is not causally preceded by any step of q, then, no
matter how we modify the initial state of q in R, p will not notice it. Formally:

Lemma 2.3 Let A be any algorithm, R = 〈F,H, I, S, T 〉 be any partial run of
A, and p, q be any processes such that no step of q causally precedes the last step
of p in R. Then for any initial configuration I ′ of A such that I and I ′ differ
only in the state of q, there exists a partial run R′ = 〈F,H, I ′, S′, T 〉 of A such
that p has the same state in S(I) and S′(I ′).

2.10 Reducibility

Let D and D′ be failure detectors, and E be an environment. If, for failure
detectors D and D′, there is an algorithm TD′→D that transforms D′ into D in E ,
we say that D is weaker than D′ in E , and we write D �E D′.

If D �E D′ but D′ �E D, we say that D is strictly weaker than D′ in E , and
we write D ≺E D′. If D �E D′ and D′ �E D, we say that D and D′ are equivalent
in E . If D �E D′ and D′ �E D, we say that D and D′ are incomparable in E .

Algorithm TD′→D that emulates histories of D using histories of D′ is called
a reduction algorithm. Note that TD′→D does not need to emulate all histories of
D; it is required that all the histories it emulates be histories of D.

2For any sequences u and w, u · w denotes the concatenation of the two sequences.
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2.11 A weakest failure detector

We say that a failure detector D is the weakest failure detector to solve a problem
M in an environment E if the following conditions are satisfied:

(a) D is sufficient to solve M in E , i.e., D solves M in E , and

(b) D is necessary to solve M in E , i.e., if a failure detector D′ solves M in E ,
then D is weaker than D′ in E .

There might be a number of distinct failure detectors satisfying these condi-
tions. (Though all such failure detectors are in the just defined sense equivalent.)
Hence, it would be more technically correct to talk about a weakest failure de-
tector to solve M in E .





Chapter 3

Background

The first “weakest failure detector” result, referred here as the CHT proof, ap-
peared in the seminal paper by Chandra, Hadzilacos and Toueg [14]. They showed
that Ω is the weakest failure detector for solving consensus in asynchronous
message-passing systems with a majority of correct processes.

Another milestone in the “weakest failure detector” research trend was de-
termining the weakest failure detector for implementing read/write shared mem-
ory [20]. Combined with earlier work on state machine replication [50, 66], this
result leads to determining the weakest failure detectors for solving consensus
in all environments, i.e., for all assumptions on when and where failures might
occur.

The approach taken in [14] and the result of [20] inspired some of the tech-
niques derived in this thesis. Section 3.1 gives a short overview of the technical
details of the approach, and Section 3.2 shows how the approach can be used
to derive the result of [20]. Both results are important to recall in order to
comprehend the results of this thesis.

3.1 The CHT proof

Let E be any environment, D be any failure detector that can be used to solve
consensus in E , and A be any algorithm that solves consensus in E using D.
We determine a reduction algorithm TD→Ω that, using failure detector D and
algorithm A, implements Ω in E . Recall that implementing Ω means outputting,
at every process, the id of a process so that eventually, the id of the same correct
process is output permanently at all correct processes.

3.1.1 Overview of the reduction algorithm

The basic idea underlying TD→Ω is to have each process locally simulate the
overall distributed system in which the processes execute several runs of A that
could have happened in the current failure pattern and failure detector history.
Every process then uses these runs to extract Ω.

In the local simulations, every process p feeds algorithm A with a set of
proposed values, one for each process of the system. Then all automata composing
A are triggered locally by p which emulates, for every simulated run of A, the
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Gp ← empty graph
kp ← 0
while true do

receive message m
dp ← query failure detector D
kp ← kp + 1
if m is of the form (q, Gq, p) then Gp ← Gp ∪Gq

add [p, dp, kp] and edges from all vertices of Gp to [p, dp, kp] to Gp

send (p, Gp, q) to all q ∈ Π

Figure 3.1: Building a DAG: process p

states of all processes as well as the emulated buffer of exchanged messages.
Crucial elements that are needed for the simulation are (1) the values from

failure detectors that would be output by D as well as (2) the order according
to which the processes are taking steps. For these elements, which we call the
stimuli of algorithm A, process p periodically queries its failure detector module
and exchanges the failure detector information with the other processes.

The reduction algorithm TD→Ω consists of two tasks that are run in parallel
at every process: the commmuncation task and the computation task. In the
communication task, every process maintains ever-growing stimuli of algorithm
A by periodically querying its failure detector module and sending the output to
all other processes. In the computation task, every process periodically feeds the
stimuli to algorithm A, simulates several runs of A, and computes the current
emulated output of Ω.

3.1.2 Building a DAG

The communication task of algorithm TD→Ω is presented in Figure 3.1. Executing
this task, p knows more and more of the processes’ failure detector outputs and
temporal relations between them. All this information is pieced together in a
single data structure, a directed acyclic graph (DAG) Gp. Informally, every
vertex [q, d, k] of Gp is a failure detector value “seen” by q in its k-th query of its
failure detector module. An edge ([q, d, k], [q′, d′, k′]) can be interpreted as “q saw
failure detector value d (in its k-th query) before q′ saw failure detector value d′

(in its k′-th query)”.
DAG Gp has some special properties which follow from its construction. Let

F be the current failure pattern in E and H be the current failure detector history
in D(F ). Then:

(1) The vertices of Gp are of the form [q, d, k] where q ∈ Π, d ∈ RD and k ∈ N.
There is a mapping τ : vertices of Gp 7→ T, associating a time with every
vertex of Gp, such that:

(a) For any vertex v = [q, d, k], q /∈ F (τ(v)) and d = H(q, τ(v)). That is,
d is the value output by q’s failure detector module at time τ(v).

(b) For any edge (v, v′) in Gp, τ(v) < τ(v′). That is, any edge in Gp reflects
the temporal order in which the failure detector values are output.
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(2) If v′ = [q, d, k] and v′′ = [q, d′, k′] are vertices of Gp, and k < k′, then (v, v′)
is an edge of Gp.

(3) Gp is transitively closed: if (v, v′) and (v′, v′′) are edges of Gp, then (v, v′′)
is also an edge of Gp.

(4) For all correct processes p and q and all times t, there is a time t′ ≥ t, a
d ∈ RD and a k ∈ N such that for every vertex v of Gp(t), (v, [q, d, k]) is an
edge of Gp(t′).1

Note that properties (1)–(4) imply that, for every correct process p, t ∈ T
and k ∈ N, there is a time t′ such that Gp(t′) contains a path g = [q1, d1, k1] →
[q2, d2, k2] → . . ., such that (a) every correct process appears at least k times in
g, and (b) for any path g′ in Gp(t), g′ · g is also a path in Gp(t′).

3.1.3 Simulation trees

Now DAG Gp can be used to simulate runs of A. Any path g = [q1, d1, k1],
[q2, d2, k2], . . . , [qs, ds, ks] through Gp gives the order in which processes q1, q2, . . . ,
qs “see”, respectively, failure detector values d1, d1, d2, . . . , ds. That is, g contains
an activation schedule and failure detector outputs for the processes to execute
steps ofA’s instances. Let I be any initial configuration ofA. Consider a schedule
S that is applicable to I and compatible with g, i.e., |S| = s and ∀k ∈ {1, 2, . . . , s},
S[k] = (qk,mk, dk), where mk is a message addressed to qk (or the null message
λ).

All schedules that are applicable to I and compatible with paths in Gp can
be represented as a tree ΥI

p, called the simulation tree induced by Gp and I. The
set of vertices of ΥI

p is the set of all schedules S that are applicable to I and
compatible with paths in Gp. The root of ΥI

p is the empty schedule S⊥. There
is an edge from S to S′ if and only if S′ = S · e for a step e; the edge is labeled
e. Thus, every vertex S of ΥI

p is associated with a sequence of steps e1 e2 . . . es

consisting of labels of the edges on the path from S⊥ to S. In addition, every
descendant of S in ΥI

p corresponds to an extension of e1 e2 . . . es.
The construction of ΥI

p implies that, for any vertex S of ΥI
p, there exists

a partial run 〈F,H, I, S, T 〉 of A where F is the current failure pattern and
H ∈ D(F ) is the current failure detector history. Thus, if in S, correct processes
appear sufficiently often and receive sufficiently many messages sent to them,
then every correct (in F ) process decides in S(I).

In the example depicted in Figure 3.2, a DAG (a) induces a simulation tree a
portion of which is shown in (b). There are three non-trivial paths in the DAG:
[p1, d1, k1] → [p2, d2, k2] → [p1, d3, k3], [p2, d2, k2] → [p1, d3, k3], [p2, d2, k2] →
[p1, d3, k3] and [p1, d1, k1] → [p1, d3, k3]. Every path through the DAG and an
initial configuration I induce at least one schedule in the simulation tree. Hence,
the simulation tree has at least three leaves: (p1, λ, d1) (p2,m2, d2) (p1,m3, d3),
(p2, λ, d2) (p1,m

′
3, d3), and (p1, λ, d3). Recall that λ is the empty message: since

the message buffer is empty in I, no non-empty message can be received in the
first step of any schedule.

1For any variable x and time t, x(t) denotes the value of x at time t.
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[p2, d2, k2]

[p1, d3, k3]

[p1, d1, k1]

(p1, λ, d1)

(p1,m
′
3, d3)

S⊥

(a) (b)

(p2, λ, d2)

(p1, λ, d3)

(p2,m2, d2)

(p1,m3, d3)

Figure 3.2: A DAG and a tree

3.1.4 Tags and valences

Let Ii, i ∈ {0, 1, . . . , n} denote the initial configuration of A in which processes
p1, . . . , pi propose 1 and the rest (processes pi+1, . . . , pn) propose 0. In the compu-
tation task of the reduction algorithm, every process p maintains an ever-growing
simulation forest Υp = {Υ0

p,Υ
1
p, . . . ,Υ

n
p} where Υi

p (0 ≤ i ≤ n) denotes the sim-
ulation trees induced by Gp and initial configurations Ii.

For every vertex of the simulation forest, p assigns a set of tags. Vertex S of
tree Υi

p is assigned a tag v if and only if S has a descendant S′ in Υi
p such that p

decides v in S′(Ii). We call the set tags the valence of the vertex. By definition, if
S has a descendant with a tag v, then S has tag v. Validity of consensus ensures
that the set of tags is a subset of {0, 1}.

Of course, at a given time, some vertices of the simulation forest Υp might not
have any tags because the simulation stimuli are not sufficiently long yet. But this
is just a matter of time: if p is correct, then every vertex of p’s simulation forest
will eventually have an extension in which correct processes appear sufficiently
often for p to take a decision.

A vertex S of Υi
p is 0-valent if it has exactly one tag {0} (only 0 can be

decided in S’s extensions in Υi
p). A 1-valent vertex is analogously defined. If a

vertex S has both tags 0 and 1 (both 0 and 1 can be decided in S’s extensions),
then we say that S is bivalent.2

It immediately follows from Validity of consensus that the root of Υ0
p can at

most be 0-valent, and the root of Υn
p can at most be 1-valent (the roots of Υ0

p

and Υn
p cannot be bivalent).

3.1.5 Stabilization

Note that the simulation trees can only grow with time. As a result, once a vertex
of the simulation forest Υp gets a tag v, it cannot lose it later. Thus, eventually

2The notion of valence was first defined in [28] as the set of values than are decided in all
extensions of a given execution. Here we define the valence as only a subset of these values,
defined by the simulation tree.
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every vertex of Υp stabilizes being 0-valent, 1-valent, or bivalent. Since correct
processes keep continuously exchanging the failure detector samples and updating
their simulation forests, every simulation tree computed by a correct process at
any given time will eventually be a subtree of the simulation forest of every correct
process.

Formally, let p be any correct process, t be any time, i be any index in
{0, 1, . . . , n}, and S be any vertex of Υi

p(t). Then:

(i) There exists a non-empty V ⊆ {0, 1} such that there is a time after which
the valence of S is V . (We say that the valence of S stabilizes on V at p.)

(ii) If the valence of S stabilizes on V at p, then for every correct process q,
there is a time after which S is a vertex of Υi

q and the valence of S stabilizes
on V at q.

Hence, the correct processes eventually agree on the same tagged simulation
subtrees. In discussing the stabilized tagged simulation forest, it is thus conve-
nient to consider the limit infinite DAG G and the limit infinite simulation forest
Υ = {Υ0,Υ1, . . . ,Υn} such that for all i ∈ {0, 1, . . . , n} and all correct processes
p, ∪t∈TGp(t) = G and ∪t∈TΥi

p(t) = Υi.

3.1.6 Critical index

Let p be any correct process. We say that index i ∈ {1, 2, . . . , n} is critical if
either the root of Υi is bivalent or the root of Υi−1 is 0-valent and the root of
Υi is 1-valent. In the first case, we say that i is bivalent critical. In the second
case, we say that i is univalent critical.

Lemma 3.1 There is at least one critical index in {1, 2, . . . , n}.

Proof: Indeed, by the Validity property of consensus, the root of Υ0 is 0-valent,
and the root of Υ1 is 1-valent. Thus, there must be an index i ∈ {1, 2, . . . , n}
such that the root of Υi−1 is 0-valent, and Υi is either 1-valent or bivalent. 2

Since tagged simulation forests computed at the correct processes tend to the
same infinite tagged simulation forest, eventually, all correct processes compute
the same smallest critical index i of the same type (univalent or bivalent). Now
we have two cases to consider for the smallest critical index: (1) i is univalent
critical, or (2) i is bivalent critical.

(1) Handling univalent critical index

Lemma 3.2 If i is univalent critical, then pi is correct.

Proof: By contradiction, assume that pi is faulty. Then G contains an infinite
path g in which pi does not participate and every correct process participates
infinitely often. Then Υi contains a vertex S such that pi does not take steps in
S and some correct process p decides in S(Ii). Since i is 1-valent, p decides 1
in S(Ii). But pi is the only process that has different states in Ii−1 and Ii, and
pi does not take part in S. Thus, S is also a vertex of Υi−1 and p decides 1 in
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S(Ii−1). But the root of Υi−1 is 0-valent — a contradiction. 2

(2) Handling bivalent critical index

Assume now that the root of Υi is bivalent. Below we show that Υi then contains
a decision gadget, i.e., a finite subtree which is either a fork or a hook (Figure 3.3).

S0

(0-valent)

S (bivalent)

(q, m, d)

S⊥

S0

(0-valent)
S1

(1-valent)

S (bivalent)

(q, m, d′)

S⊥

S1

(1-valent)

(q′, m′, d′)

(a) (b)

S′

(q, m, d) (q′, m′, d′)

Figure 3.3: A fork and a hook

A fork (case (a) in Figure 3.3) consists of a bivalent vertex S from which
two different steps by the same process q, consuming the same message m, are
possible which lead, on the one hand, to a 0-valent vertex S0 and, on the other
hand, to a 1-valent vertex S1.

A hook (case (b) in Figure 3.3) consists of a bivalent vertex S, a vertex S′

which is reached by executing a step of some process q, and two vertices S0 and
S1 reached by applying the same step of process q′ to, respectively, S and S′.
Additionally, S0 must be 0-valent and S1 must be 1-valent (or vice versa; the
order does not matter here).

In both cases, we say that q is the deciding process, and S is the pivot of the
decision gadget.

Lemma 3.3 The deciding process of a decision gadget is correct.

Proof: Consider any decision gadget γ defined by a pivot S, vertices S0 and S1

of opposite valence and a deciding process q. By contradiction, assume that q is
faulty. Let g, g0 and g1 be the simulation stimuli of, respectively, S, S0 and S1.
Then G contains an infinite path g̃ such that (a) g · g̃, g0 · g̃, g1 · g̃ are paths in G,
and (b) q does not appear and the correct processes appear infinitely often in g.

Let γ be a fork (case (a) in Figure 3.3). Then there is a finite schedule S̃
compatible with a prefix of g̃ and applicable to S(Ii) such that some correct
process p decides in S · S̃(Ii); without loss of generality, assume that p decides
0. Since q is the only process that can distinguish S(Ii) and S1(Ii), and q does
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not appear in S̃, S̃ is also applicable to S1(Ii). Since g1 · g̃ is a path of G and S̃
is compatible with a prefix of g̃, it follows that S1 · S̃ is a vertex of Υi. Hence, p
also decides 0 in S1 · S̃(Ii). But S1 is 1-valent — a contradiction.

Let γ be a hook (case (b) in Figure 3.3). Then there is a finite schedule S̃
compatible with a prefix of g and applicable to S0(Ii) such that some correct
process p decides in S0 · S̃(Ii). Without loss of generality, assume that S0 is
0-valent, and hence p decides 0 in S0 · S̃(Ii). Since q is the only process that can
distinguish S0(Ii) and S1(Ii), and q does not appear in S̃, S̃ is also applicable
to S1(Ii). Since g1 · g̃ is a path of G and S̃ is compatible with a prefix of g̃, it
follows that S1 · S̃ is a vertex of Υi. Hence, p also decides 0 in S1 · S̃(Ii) But S1

is 1-valent — a contradiction. 2

Now we need to show that any bivalent simulation tree Υi contains at least one
decision gadget γ.

Lemma 3.4 If i is bivalent critical, then Υi contains a decision gadget.

Proof: Let i be a bivalent critical index. In Figure 3.4, we present a procedure
which goes through Υi. The algorithm starts from the bivalent root of Υi and
terminates when a hook or a fork has been found.

S ← S⊥
while true do

p← 〈choose the next correct process in a round robin fashion〉
m← 〈choose the oldest undelivered message addressed to p in S(Ii)〉
if 〈S has a descendant S′ in Υi (possibly S = S′) such that, for some d,

S′ · (p,m, d) is a bivalent vertex of Υi〉
then S ← S′ · (p, m, d)
else exit

Figure 3.4: Locating a decision gadget

We show that the algorithm indeed terminates. Suppose not. Then the
algorithm locates an infinite fair path through the simulation tree, i.e., a path
in which all correct processes get scheduled infinitely often and every message
sent to a correct process is eventually consumed. Additionally, this fair path goes
through bivalent states only. But no correct process can decide in a bivalent state
S(Ii) (otherwise we would violate the Agreement property of consensus). As a
result, we constructed a run of A in which no correct process ever decides — a
contradiction.

Thus, the algorithm in Figure 3.4 terminates. That is, there exist a bivalent
vertex S, a correct process p, and a message m addressed to p in S(Ii) such that

(*) For all descendants S′ of S (including S′ = S) and all d, S′ · (p, m, d) is not
a bivalent vertex of Υi.

In other words, any step of p consuming message m brings any descendant
of S (including S itself) to either a 1-valent or a 0-valent state. Without loss of
generality, assume that, for some d, S · (p, m, d) is a 0-valent vertex of Υi. Since
S is bivalent, it must have a 1-valent descendant S′′.
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If S′′ includes a step in which p consumes m, then we define S′ as the vertex
of Υi such that, for some d′, S′ · (p, m, d′) is a prefix of S′′. If S′′ includes no step
in which p consumes m, then we define S′ = S′′. Since p is correct, for some d′,
S′ · (p, m, d′) is a vertex of Υi. In both cases, we obtain S′ such that for some d′,
S′ · (p, m, d′) is a 1-valent vertex of Υi.

Let the path from S to S′ go through the vertices σ0 = S, σ1, . . . , σm−1, σm =
S′. By transitivity of G, for all k ∈ {0, 1, . . . ,m}, σk · (p, m, d′) is a vertex of Υi.
By (*), σk · (p, m, d′) is either 0-valent or 1-valent vertex of Υi.

σ0 = S (bivalent)

Case 1

(0-valent)

(p, m, d)

(0-valent)

(1-valent)

σm = S′

(1-valent)
Case 2

(p′′,m′′, d′′)

σk−1

σk
(p, m, d′)

(p, m, d′)

(p, m, d′)

(p, m, d′)

S⊥

Figure 3.5: Locating a fork (Case 1) or a hook (Case 2)

Let k ∈ {0, . . . ,m} be the lowest index such that (p, m, d′) brings σk to a
1-valent state. We know that such an index exists, since σm · (p, m, d′) is 1-valent
and all such resulting states are either 0-valent or 1-valent.

Now we have the following two cases to consider: (1) k = 0, and (2) k > 0.
Assume that k = 0, i.e., (p, m, d′) applied to S brings it to a 1-valent state.

But we know that there is a step (p, m, d) that brings S to a 0-valent state (Case 1
in Figure 3.5). That is, a fork is located!

If k > 0, we have the following situation. Step (p, m, d′) brings σk−1 to a 0-
valent state, and σk = σk−1 · (p′,m′, d′′) to a 1-valent state (Case 2 in Figure 3.5).
But that is a hook!

As a result, any bivalent infinite simulation tree has at least one decision gad-
get. 2

3.1.7 The reduction algorithm

Now we are ready to complete the description of TD→Ω. In the computation
task (Figure 3.6), every process p periodically extracts the current leader from



3.1. The CHT proof 27

its simulation forest, so that eventually the correct processes agree on the same
correct leader. The current leader is stored in variable Ω-outputp.

Initially:
for i = 0, 1, . . . , n: Υi

p ← empty graph
Ω-outputp ← p

while true do

{ Build and tag the simulation forest induced by Gp }
for i = 0, 1, . . . , n do

Υi
p ← simulation tree induced by Gp and Ii

for every vertex S of Υi
p:

if S has a descendant S′ such that p decides v in S′(Ii) then
add tag v to S

{ Select a process from the tagged simulation forest }
if there is a critical index then

i← the smallest critical index
if i is univalent critical then Ω-outputp ← pi

if Υi
p has a decision gadget then

Ω-outputp ← the deciding process of the smallest decision gadget in Υi
p

Figure 3.6: Extracting a correct leader: code for each process p

Initially, p elects itself as a leader. Periodically, p updates its simulation forest
Υp by incorporating more simulation stimuli from Gp. If the forest has a univalent
critical index i, then p outputs pi as the current leader estimate. If the forest
has a bivalent critical index i and Υi

p contains a decision gadget, then p outputs
the deciding process of the smallest decision gadget in Υi

p (the “smallest” can be
well-defined, since the vertices of the simulation tree are countable).

Eventually, the correct processes locate the same stable critical index i. Now
we have two cases to consider:

(i) i is univalent critical. By Lemma 3.2, pi is correct.

(ii) i is bivalent critical. By Lemma 3.4, the limit simulation tree Υi contains a
decision gadget. Eventually, the correct processes locate the same decision
gadget γ in Υi and compute the deciding process q of γ. By Lemma 3.3, q
is correct.

Thus, eventually, the correct processes elect the same correct leader — Ω is
emulated!

3.1.8 Multivalent critical index

We can easily adapt the notion of valence to a multivalued version of consensus
where processes agree on a value in a set V of two or more elements.

Let I be any initial configuration of a multivalued consensus algorithm A.
Again, let ΥI

p denote the tagged simulation tree induced by Gp and I. We say
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that a vertex S of ΥI
p is u-valent if it has only one tag u (u ∈ V ). We say that a

vertex S of ΥI
p is multivalent if it has two or more tags.

Let I0, I1, . . . , Im be initial configurations ofA such that for all i = 1, 2, . . . ,m,
Ii−1 and Ii differ in the state of exactly one process. Again, let Υi

p denote the
tagged simulation tree induced by Gp and Ii, i = 0, 1, . . . ,m. We define i to
be critical if the root of Υi is multivalent (in which case i is called multivalent
critical), or if the root of Υi−1 is u-valent and the root of Υi is v-valent, where
u, v ∈ V , u 6= v, and Ii−1 and Ii differ in the state of one process (in which case
i is called univalent critical). Note that the notions of decision gadgets as well
as Lemmas 3.3 and 3.4 can be easily generalized to handle multivalent critical
indices. We will come back to this issue in Section 5.2.

3.1.9 Weak consensus vs. consensus

In weak consensus, the Validity property of consensus is replaced with the fol-
lowing weaker property:

Non-Triviality: Every algorithm that solves weak consensus must have a run
in which 0 is decided by some process, and a run in which 1 is decided by
some process.

The proof of [14] does not show that Ω is necessary to solve weak consensus. More
precisely, Lemma 3.1 does not hold anymore: it might happen that, in a given
execution of the reduction algorithm, all trees of the simulation forest Υ are, say,
0-valent. Thus, there might be no critical index, i.e., the failure detector history
does not help to extract Ω.

In fact, Ω is not the weakest failure detector for solving weak consensus. The
failure detectorD that, for any failure pattern, can output either 0 at all processes,
or 1 at all processes, is sufficient to solve weak consensus in any environment [14].
It is straightforward to show that Ω is not weaker than D in any nontrivial
environment (e.g., Ef with 0 < f < n).

In a sense, there is a gap between the weak consensus problem considered
in the impossibility proof of Fischer, Lynch and Paterson [28], and the consen-
sus problem for which the weakest failure detector was determined by Chandra,
Hadzilacos and Toueg [14]. Interestingly, the gap collapses when the consensus
impossibility is circumvented using deterministic shared objects with sequential
specifications: any objects that can be used to solve weak consensus, are powerful
enough to solve consensus [36].

3.2 Implementing a register

In this section, we show that the quorum failure detector Σ is the weakest fail-
ure detector to implement atomic registers in all environments. The result was
first obtained by Delporte-Gallet, Fauconnier and Guerraoui [20]. An alternative
“CHT-like” proof, based on exchanging failure detector samples and using the
samples as stimuli for locally simulated runs, was later presented in [26]. We
review here the proof of [26], because a similar technique is employed in this
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thesis to determine the weakest failure detector for solving quittable consensus
(Section 5.2).

3.2.1 Read/write shared memory

A register is a shared object accessed through two operations: read and write.
The write operation takes as an input parameter a specific value to be stored
in the register and returns a simple indication ok that the operation has been
executed. The read operation takes no parameters and returns a value according
to one of the following consistency criteria. A (single-writer, multi-reader) safe
register ensures only that any read operation that does not overlap with any other
operation returns the argument of the last write operation. A stronger regular
ensures that any read operation returns either a concurrently written value, or the
value written by the last write operation. The strongest atomic register ensures
that any operation appears to be executed instantaneously between its invocation
and reply time events. (Precise definitions are given in [43, 9].)

The registers we consider are fault-tolerant : they ensure that, despite con-
current invocations and possible crashes of the processes, every correct process
that invokes an operation eventually gets a reply (a value for the read and an ok
indication for the write).

The classical results [71, 44] imply that if a failure detector D is sufficient to
implement a safe one-writer one-reader register for any two processes, then D is
sufficient to implement an atomic multi-writer multi-reader register. Thus, we
do not need to specify here whether the register implemented using D is safe,
regular or atomic: all these registers are computationally equivalent.

3.2.2 The sufficiency part

Recall that the quorum failure detector Σ outputs a set of processes at each
process. Any two sets (output at any times and by any processes) intersect, and
eventually every set consists of only correct processes.

By a simple variation of the algorithm of Attiya et al. for implementing
registers in a message-passing system with a majority of correct processes [8],
we obtain an algorithm that implements registers in any environment using Σ.
Where the original algorithm uses waiting until a majority responds to ensure
that a read operation returns the most recently written value, we can use the
quorums provided by Σ to the same effect.

3.2.3 The reduction algorithm

Now we need to show that any failure detector that can be used to implement
registers can be transformed into Σ.

Let E be any environment. Let D be any failure detector that can be used to
implement in E a set of atomic registers {Xp}p∈Π, where for every p ∈ Π, Xp can
be written by p and read by all processes. We present an algorithm that, using
D, implements Σ.

To extract Σ, we assign a particular protocol, i.e., a sequence of operations on
the implemented registers, to every process. In this protocol, denoted A, every
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Initially:
Σ-outputp ← Π { Σ-outputp is the output of p’s module of Σ }
I ← the initial configuration of A

while true do
wait until p adds a new failure detector sample

u to its DAG Gp

repeat
let Gp(u) be the subgraph induced by

the descendants of u in Gp

S ← set of all schedules of A
compatible with some path of Gp(u) and applicable to I

until there is a schedule S ∈ S of a complete p-solo run of A
Σ-outputp ← set of all processes that take steps in the schedule S

Figure 3.7: Extracting Σ: code for each process p

process p first writes 1 in Xp, and then reads the registers {Xq}q∈Π (we assume
that each Xq is initialized to 0). A run in which p is the only process that executes
A, is called a p-solo run of A. A p-solo run in which p completes A, is called a
complete p-solo run of A.

It is important to notice that in any run R of A in which two processes p
and q both complete executing A, either p reads 1 in Xq, or q reads 1 in Xp.
Intuitively, this implies that the sets of processes “involved” in the executions of
A at p and q intersect, which gives us a hint of how to extract Σ from A and D.

Again, the reduction algorithm consists of two tasks: the communication task
and the computation task.

The communication task, in which each process p samples its local module of
D, exchanges the failure detector samples with the other processes, and assembles
these samples in an ever-increasing directed acyclic graph Gp, is organized exactly
as in Section 3.1 (Figure 3.1). The computation task, in which p simulates runs of
A and uses these runs to extract its current quorum (the output of its emulated
module of Σ), is presented in Figure 3.7.

To compute its current quorum, process p first waits until enough “fresh” (not
previously appeared) failure detector samples are collected in Gp. Eventually, Gp

includes a sufficiently long fresh path g such that there is a schedule S of a
complete p-solo run of A, compatible with g. The set of processes that take steps
in S constitute the current quorum of p stored in variable Σ-outputp.

The correctness of the reduction algorithm follows immediately from the fol-
lowing two observations:

(1) Eventually, at every correct process p, Σ-outputp contains only correct pro-
cesses.

Indeed, there is a time after which faulty processes do not produce fresh
failure detector samples and thus do not participate in fresh schedules of A
simulated by p.

(2) For all p and q, Σ-outputp and Σ-outputq always intersect.
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Indeed, assume, by contradiction, that there exist P,Q ⊂ Π such that
P ∩Q = ∅, and, at some time t1, p computes Σ-outputp = P and, at some
time t2, q computes Σ-outputq = Q.

By the algorithm of Figure 3.7, A has a complete p-solo run Rp = 〈F,H, I,
Sp, Tp〉 and a complete q-solo run Rq = 〈F,H, I, Sq, Tq〉 such that the sets
of processes that participate in Sp and Sq are disjoint.

By Lemma 2.1, the two runs Rp and Rq can be composed in a single run R =
〈F,H, I, S, T 〉 that is indistinguishable from Rp to p, and indistinguishable
from Rq to q.

Hence, both p and q complete A in R. Since Rp is a p-solo run, and p
cannot distinguish R and Rp, p reads 0 from register Xq in R. Respectively,
q reads 0 from register Xp in R. But this cannot happen in any register
implementation: at least one of the processes p and q must read 1 in the
register of the other process!

The contradiction implies that Σ-outputp and Σ-outputq always intersect.

Thus, for all environments E , Σ is the weakest failure detector to implement
atomic registers in E .

3.2.4 Solving consensus in all environments

Once we determined the weakest failure detector to implement atomic registers,
determining the weakest failure detector for solving consensus in all environments
is straightforward. This failure detector is (Ω,Σ), the composition of Ω and Σ.

Indeed, failure detector (Ω,Σ) can be used to solve consensus in all environ-
ment, by first implementing registers out of Σ, and then consensus out of registers
and Ω [53].

On the other hand, consensus can be used to implement atomic registers in
any environment [50, 66], and thus to extract Σ. Combined with the fact that
Ω is necessary to solve consensus in any environment [14] (see Section 3.1), this
implies that (Ω,Σ) is necessary to solve consensus in any environment.





Chapter 4

Mutual Exclusion

This chapter considers the fault-tolerant mutual exclusion problem (FTME) in
a message-passing asynchronous system and determines the weakest failure de-
tector to solve the problem, given a majority of correct processes. This failure
detector, which we call the trusting failure detector, and which we denote by T ,
is strictly weaker than the perfect failure detector P but strictly stronger than
the eventually perfect failure detector 3P. We show that a majority of correct
processes is necessary to solve FTME with T . Moreover, T is also the weak-
est failure detector to solve the fault-tolerant group mutual exclusion problem
(FTGME), given a majority of correct processes.

Section 4.1 defines the fault-tolerant mutual exclusion problem. Section 4.2
introduces the trusting failure detector T . Sections 4.3 and 4.4 show that T is,
respectively, necessary and sufficient to solve the problem. Section 4.5 discusses
the bounds on the number of correct processes necessary to solve the problem
with T and introduces a failure detector (T ,Σ) which is sufficient to solve the
problem without a majority of correct processes. Section 4.6 generalizes these
results to the group mutual exclusion problem. Section 4.7 discusses the costs of
resilience provided by T . Section 4.8 discusses practical issues of implementing
T . Section 4.10 reviews the related work.

The results of this chapter appeared originally in [22].

4.1 The fault-tolerant mutual exclusion problem

FTME involves the allocation of a single, indivisible, resource among n processes.
An alive (not crashed) process with access to the resource is said to be in its
critical section (CS ). When a process is not involved in any way with the resource,
it is said to be in its remainder section. To gain access to its critical section, a
process executes a trying protocol, and after the process is done with the resource,
it executes an exit protocol. This procedure can be repeated, so each process i
cyclically moves from its remainder section (remi) to its trying section (tryi), then
to its critical section (criti), then to its exit section (exiti), and then back again
to remi. We assume that every process i is well-formed, i.e., i does not violate
the cyclic order of execution: remi, tryi, criti, exiti, . . ..

A mutual exclusion algorithm defines trying protocol tryi and exit protocol

33
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exiti for every process i. (We do not restrict the process behavior in the critical
and remainder sections.)

We say that the algorithm solves the FTME problem if, under the assumption
that every process is well-formed, any run of the algorithm satisfies the following
properties:

Mutual exclusion: No two different processes are in their CSs at the same
time.

Progress:

(1) If a correct process is in its trying section, then at some time later
some correct process is in its CS.

(2) If a correct process is in its exit section, then at some time later it
enters its remainder section.

We will show in Sections 4.3 and 4.4 that, in any environment with a majority
of correct processes, any algorithm that solves the FTME problem can be trans-
formed into an algorithm satisfying not only the properties above but also the
following “fairness” property:

Starvation freedom: If no process stays forever in its CS, then every correct
process that reaches its trying section eventually enters its CS.

Note that mutual exclusion is a safety property while progress and starvation
freedom are liveness properties.

An alternative stronger definition of the problem can allow a process to be
initially in its CS. It is straightforward to show that the perfect failure detector
P is necessary for this problem. Instead, we follow the classical definitions of the
problem (see, for example, [57, chapter 10]) in which the competition between
processes for the critical section is “fair”, since none of them can usurp the
CS from the very beginning.

4.2 The trusting failure detector

This section introduces a new failure detector, denoted T , that we call the trusting
failure detector. The range of T is RT = 2Π. Let HT be any history of T .
HT (i, t) represents the set of processes that process i suspects (i.e., considers
to have crashed) at time t. We say that process i trusts process j at time t if
j /∈ HT (i, t).

For every failure pattern F , T (F ) is defined by the set of all histories HT
that satisfy the following properties:

Strong completeness: eventually, every crashed process is permanently sus-
pected by every correct process. That is:

∀i /∈ correct(F ),∃t : ∀t′ > t,∀j ∈ correct(F ), i ∈ HT (j, t′)
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Eventual strong accuracy: eventually, no correct process is suspected by any
correct process. That is:

∀i ∈ correct(F ),∃t : ∀t′ > t,∀j ∈ correct(F ), i /∈ HT (j, t′)

Trusting accuracy: every process j that is suspected by a process i after being
trusted by i is crashed. That is:

∀i, j, t < t′ : j /∈ HT (i, t) ∧ j ∈ HT (i, t′) ⇒ j ∈ F (t′)

Note that the first two properties are the same as in the definition of the eventually
perfect failure detector 3P [15] (Section 2.2).

Figure 4.1 depicts a possible scenario of failure detection with T . Let Π =
{p1, p2, p3, p4}. Initially, the failure detector module at process p1 outputs {p2, p3,
p4}: H(p1, t1) = {p2, p3, p4}, i.e., process p1 trusts only itself. At time t2 > t1,
processes p2 and p3 also get trusted by process p1: H(p1, t2) = {p4}. Process
p3 crashes and at some time later is not trusted anymore by process p1: ∀t ≥
t3,H(p1, t) = {p3, p4}. Note that process p1 never trusts process p4.

p1

p3

p4

H(p1, t1) = {p2, p3, p4} H(p1, t2) = {p4} H(p1, t3) = {p3, p4}

p2

Figure 4.1: Failure detection scenario for T

Now we identify the position of T in the hierarchy of failure detectors intro-
duced in [15]. We show that, in most environments, 3P is strictly weaker than T ,
and T is strictly weaker than P. The “weaker” parts of the proofs follow directly
form the definition of T . The “strictly” parts of the proofs are done by contradic-
tion: we assume that a reduction algorithm TT →P (respectively, T3P→T ) exists
and expose a run of this reduction algorithm that violates some properties of P
(respectively, T ).

Proposition 4.1 Let E be any environment that contains a failure pattern in
which some process initially crashes, and a failure-free failure pattern. Then
T ≺E P.

Proof:
(a) By definition, T �E P in any environment E : P satisfies all properties of T .
Indeed, strong completeness is given for free, eventual strong accuracy is implied
by strong accuracy of P. Trusting accuracy follows from the fact that P guaran-
tees that any suspected process is crashed.
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(b) Now we show that P is not weaker than T . Intuitively, this follows from
the fact that T is allowed to make mistakes by suspecting processes before they
crash (see the scenario of Figure 4.1).

By contradiction, assume that there exists a reduction algorithm TT →P that,
for any failure pattern F ∈ E and any history HT ∈ T (F ), constructs a history
HP such that HP ∈ P(F ).

Consider failure pattern F1 ∈ E such that F1(0) = {j}, correct(F1) = Π−{j}
(the only faulty process j is initially crashed) and take a history H1

T ∈ T (F1)
such that H1

T (i, t) = {j}, ∀i 6= j, ∀t ∈ T. Consider run R1 = 〈F1,H
1
T , I, S1, T 〉 of

TT →P that outputs a history H1
P ∈ P(F1). By the strong completeness property

of P: ∃k0 ∈ N,∃l ∈ Π− {j}: H1
P(l, T [k0]) = {j}.

Consider failure pattern F2 ∈ E such that correct(F2) = Π (F2 is failure-free)
and define a history H2

T such that ∀i ∈ Π and ∀t ∈ T:

H2
T (i, t) =

{
{j}, t ≤ T [k0]
∅, t > T [k0]

Note that H2
T ∈ T (F2), and ∀t ≤ T [k0], ∀i ∈ Π − {j} : H1

T (i, t) = H2
T (i, t).

Consider run R2 = 〈F2,H
2
T , I, S2, T 〉 of TT →P such that S1[k] = S2[k],∀k ≤ k0

(processes take the same steps in R1 and R2 up to time T [k0]). Let R2 output a
history H2

P ∈ P(F2). Since partial runs of R1 and R2 for t ≤ T [k0] are identical,
the resulting history H2

P is such that H2
P(l, T [k0]) = {j}, for some l ∈ Π − {j}.

But process j is alive at T [k0] in F2, i.e., the strong accuracy property of P is
violated — a contradiction.

Thus, T ≺E P. 2

Proposition 4.2 Let E be any environment that, for some process j, contains
all failure patterns in which j crashes, and a failure-free failure pattern. Then
3P ≺E T .

Proof: 3P �E T in any environment E : by definition, every T satisfies strong
completeness and eventual strong accuracy.

Now we show that T is not weaker than 3P. Intuitively, this follows from
the fact that T is allowed to make only a bounded number of mistakes, while the
number of mistakes 3P can make is unbounded.

By contradiction, assume that there exists a reduction algorithm T3P→T that,
for any failure pattern F ∈ E and any history H3P ∈ 3P(F ), constructs a history
HT such that HT ∈ T (F ).

Consider a failure-free pattern F1 ∈ E (correct(F1) = Π) and take H1
3P ∈

3P(F1) such that ∀i, ∀t ∈ T: H1
3P(i, t) = ∅. Consider a run R1 = 〈F1,H

1
3P ,

I, S1, T 〉 of T3P→T that outputs a history H1
T ∈ T (F1). By the eventual strong

accuracy property of T , ∃k0 ∈ N, such that ∀k ≥ k0 and ∀i ∈ Π: H1
T (i, T [k]) = ∅.

Now consider a failure pattern F2 ∈ E such that correct(F2) = Π− {j} and j
crashes at time T [k0] + 1. Take a history H2

3P ∈ 3P(F2) such that for all t ∈ T
and i ∈ Π:

H2
3P(i, t) =

{
H1

3P(i, t), t ≤ T [k0]
{j}, t > T [k0]
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Now consider a run R2 = 〈F2,H
2
3P , I, S2, T 〉 of T3P→T that outputs a history

H2
T ∈ T (F2). Assume that S1[k] = S2[k], ∀k ≤ k0. By definition, for all i ∈ Π,

H2
T (i, T [k0]) = ∅. By the strong completeness property of T , there exists a time

k1 > k0 such that ∀i 6= j: H2
T (i, T [k1]) = {j}.

Now we construct a history H3
3P such that for all t ∈ T and i ∈ Π:

H3
3P(i, t) =


H1

3P(i, t), t ≤ T [k0]
H2

3P(i, t), T [k0] < t ≤ T [k1]
∅, t > T [k1]

Clearly, H3
3P ∈ 3P(F1).

Finally, consider a run R3 = 〈F1,H
3
3P , I, S3, T 〉 of T3P→T that outputs a

history H3
T ∈ T (F1). Assume that S3[k] = S2[k], ∀k ≤ k1. Since partial runs of

R2 and R3 for t ≤ T [k1] are identical, there exists i 6= j such that:

H3
T (i, T [k0]) = ∅,

H3
T (i, T [k1]) = {j}.

In other words, j is suspected by i at time T [k1] after being trusted by i at time
T [k0] < T [k1]. By the trusting accuracy property of T , j is crashed in F1, which
contradicts the assumption that F1 is failure-free.

Thus, 3P ≺E T . 2

4.3 The necessary condition for solving FTME

This section shows that the trusting failure detector T is necessary to solve FTME
in any environment E . In other words, we show that if a failure detector D solves
FTME in E , then T �E D.

Assume that an algorithm A solves FTME in an environment E using a failure
detector D. A reduction algorithm TD→T that transforms D into T is presented
in Figure 4.2. At any time t ∈ T and for any process i ∈ Π, TD→T outputs the
set of processes suspected by i, denoted T -outputi(t).

In the algorithm of Figure 4.2, processes can access n different critical sec-
tions. For convenience, we denote by CSj the critical section of j-th instance
of A, where j = 1, 2, . . . , n. Let tryij , critij , exitij and remij denote, respec-
tively, trying, critical, exit and remainder sections of process i with respect to
CSj , j = 1, 2, . . . , n. By definition, if CSj is used correctly (the processes are
well-formed with respect to CSj), then A guarantees the properties of FTME.

The idea of the algorithm is the following. Initially, ∀i ∈ Π: T -outputi = Π
(every process is suspected). Process i first runs the trying protocol tryii in order
to enter CSi. Since i is the only process in the trying section for CSi, i eventually
either crashes, or enters CSi and then sends the message [i, i] to all. Every process
j that received [i, i] stops suspecting i and executes tryji in order to enter CSi.

In our algorithm, a process can leave its CS only because of a crash. Thus,
the only reason for which a process i can enter CSj (i 6= j) is the crash of j. In
this case, process i sends the message [i, j] to all processes. Every process that
receives the message [m, i, j] (i 6= j) starts suspecting j.
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As a result, eventually, no correct process is suspected by any correct process
and every crashed process is permanently suspected by every correct process.
Moreover, the only reason to start suspecting a process i after having trusted i,
is a crash of i. That is, the output of T is extracted.

To ensure progress of the failure detector output, the reduction algorithm of
Figure 4.2 maintains, at every process i ∈ Π, n + 2 parallel tasks:

• task 0 in which i runs the trying protocol tryii;

• task k (k = 1, 2, . . . , n) in which i detects that k has entered CSk, stops
suspecting k and runs the trying protocol tryik (lines 9–10 are executed
atomically);

• task n+1 in which i detects failures of other processes and starts suspecting
them.

1: T -outputi ← Π { Initialization }
2: crashedi ← ∅
3: start tasks 0, . . . , n + 1

4: task 0:
5: tryii { i requests CSi }
6: send [i, i] to all { i enters CSi }

{An indication that k entered CSk is received }
7: task k (k = 1, 2, . . . , n):
8: upon receive [k, k] do
9: if k /∈ crashedi then

10: T -outputi ← T -outputi − {k} { i stops suspecting k }
11: if k 6= i then
12: tryik { i requests CSk }
13: send [i, k] to all { i enters CSk }

{An indication that j entered CSk is received }
14: task n + 1:
15: upon receive [j, k] with j 6= k do
16: crashedi ← crashedi ∪ {k}
17: T -outputi ← T -outputi ∪ {k} { i starts suspecting k }

Figure 4.2: Reduction algorithm TD→T : code for each process i

Theorem 4.3 For any environment E, if a failure detector D solves FTME in
E, then T �E D.

Proof: The algorithm of Figure 4.2 extracts the trusting failure detector T from
any failure detector that solves FTME. According to the algorithm, no process i
requests twice the same instance CSj or exits. Thus, each i is well-formed with
respect to each CSj . Note that, once it has entered CSj , i can leave CSj only if
i crashes.
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By contradiction, assume that the strong completeness property of T is vio-
lated. More precisely,

∃F, ∃i ∈ correct(F ), ∃j /∈ correct(F ) : ∀t,∃t′ > t, j /∈ T -outputi(t
′).

By the algorithm, initially, j ∈ T -outputi, and the correct process i removes j
from T -outputi (line 10 of Figure 4.2) at most once and only if (a) the message
[j, j] is received (line 8), i.e., at some earlier time, l was in CSj (line 6) and, (b)
j /∈ crashedi.

If and when it happens, i runs tryij in order to enter CSj (line 12). By the
progress property of FTME, at some time later, some correct process m is in CSj .
By the algorithm, m sends [m, j] to all. Eventually, process i receives [m, j] (j is
faulty, thus, m 6= j). Since lines 9–10 are executed atomically, i cannot execute
line 16 (while processing [m, j]) before executing line 10 (while processing [j, j]).
As a result of processing [m, j], i adds j to T -outputi (line 17) and, since j has
already been inserted into crashedi and is never removed from there, j stays in
T -outputi forever — a contradiction.

Thus, strong completeness of T is satisfied.
By contradiction, assume that the trusting accuracy of T is violated. More

precisely,

∃F, ∃i, ∃t, t′, ∃j /∈ F (t′) : (t < t′ ∧ j /∈ T -outputi(t) ∧ j ∈ T -outputi(t
′)).

By the algorithm, i suspects j at time t′ only if some process k 6= j enters CSj at
some time t0 < t′ and only if, at some time t1 < t0, j itself entered CSj . By the
mutual exclusion property of FTME, j had to leave CSj before t0. Since j never
executes the exit protocol, j could leave CSj only because of its crash, that is,
j ∈ F (t′) — a contradiction.

By contradiction, assume now that eventual strong accuracy is violated. More
precisely,

∃F,∃i ∈ correct(F ),∃j ∈ correct(F ),∀t,∃t′ > t : j ∈ T -outputi(t
′).

Note that the assumption implies that ∀t ∈ T, j ∈ T -outputi(t), otherwise,
trusting accuracy is violated.

Thus, i never stops suspecting j: by the algorithm, i never reaches line 10
while processing the reception of [j, j]. That is, either (1) i receives [k, j] with
k 6= j and put j into crashedi (lines 15-17), or (2) i never receives [j, j].

Assume that (1) is true. By the algorithm, [k, j] with k 6= j can be only
received if k entered CSj at some time t0 and if, at some time t1 < t0, j entered
CSj . Since j never executes the exit protocol, j could leave CSj only if it is faulty
— a contradiction.

Assume that (2) is true. Since both i and j are correct, j never sends [j, j]
(line 6). Thus, no process ever receives [j, j]. By the algorithm, a process k
executes the trying protocol trykj only if k received [j, j]. Thus, j is the only
correct process that ever requests access to CSj . By the progress property of
FTME, j eventually enters CSj and sends [j, j] to all — a contradiction. Thus,
the reduction algorithm of Figure 4.2 guarantees the properties of T . 2
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Note that TD→T does not use the full generality of FTME: in the algorithm,
exit protocol is never used, and every process executes its trying protocol with
respect to every CSj at most once. This suggests that T can be extracted from
a weaker problem than FTME which can be seen as a form of leader election.

4.4 The sufficient condition for solving FTME

We describe in Figure 4.3 an algorithm that solves FTME using T assuming any
environment E in which a majority of processes are correct. The algorithm uses
the fact that 3P �E T and, as a result, we can implement total order broadcast
using T in E [15].

Total order broadcast is defined through the primitives to-broadcast() and
to-deliver() and satisfies the following properties:

validity: if a correct process i to-broadcasts a message m, then i eventually
to-delivers m;

agreement: if a process to-delivers a message m, every correct process eventually
to-delivers m;

integrity: each process to-delivers every message at most once, and only if the
message was previously to-broadcast;

total-order: if a process i to-delivers a message m before having to-delivered a
message m′, then no process j can to-deliver m′ without having to-delivered
m first.1

Note that the properties above imply that for any processes i, j and any times
t, t′, either the sequence of messages to-delivered by i at time t is a prefix of the
sequence of messages to-delivered by j at time t′, or vice-versa. In particular, if a
process i to-delivered a message m at time t and a process j to-delivered a message
m′ at time t′, then either m is to-delivered by j before t′ or m′ is to-delivered by
i before t.

The algorithm of Figure 4.3 assumes that:

- an algorithm implementing total order broadcast is provided;

- every process i has access to the output of its trusting failure detector
module Ti;

- every process i is well-formed.

It is assumed that the underlying total order broadcast algorithm maintains
at each process i a local variable TO-queuei, initially empty FIFO queue. In a
background task, whenever i to-delivers m, it atomically adds m to the end of
TO-queuei. In addition, each process i maintains the following local variables:

1This definition of the total-order property is slightly stronger than the one proposed in [39]:
we require that all correct processes deliver the same sequence of messages, and all faulty pro-
cesses deliver prefixes of this sequence. This distinction however does not matter for our results,
since the algorithm given in [15] implements the strongest version of total order broadcast.
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1: readyi ← false { Initialization }
2: ri ← 0
3: trustedi ← ∅
4: start tasks 0, . . . , n

Trying protocol tryi:
5: if not readyi then
6: send [me, i] to all { Send a trust request to all }
7: wait until received bn/2c+ 1 [ack]’s
8: readyi ← true
9: ri ← ri + 1

10: to-broadcast([i, ri])
11: repeat
12: wait until TO-queuei is not empty
13: [j, k]← pop(TO-queuei) { Get the next waiting request }
14: if i 6= j then
15: wait until received [exit, j, k] or received [crash, j]
16: until i = j
17: { i enters CS }

Exit protocol exiti:
18: send [exit, i, ri] to all

{ A crash of process l is detected }
19: task 0:
20: upon (l ∈ trustedi and l ∈ Ti) do
21: trustedi ← trustedi − {l}
22: send [crash, l] to all { l stops being trusted }

{ A trust request is received from m ∈ Π }
23: task m (m = 1, 2, . . . , n):
24: upon receive [me, m] do
25: wait until m /∈ Ti { Wait until m is trusted }
26: trustedi ← trustedi ∪ {m}
27: send [ack] to m

Figure 4.3: FTME algorithm using T : code for each process i

1. a boolean readyi, initially false, indicating whether i is ready to execute the
trying protocol;

2. a set trustedi ⊆ Π, initially empty, of processes currently trusted by i;

3. an integer ri, initially 0, indicating the number of times i has run the trying
protocol;

4. integers j and k indicating the last processed request of the type [j, k] where
j is the process that issued the request and k is j’s request number.

The algorithm also assumes that every process i stores the identifiers of all
received messages in a buffer, so that, for a given message m, the predicate
“received m” (lines 7 and 15 of Figure 4.3) is true if and only if m has been
previously received by i.
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The idea of our algorithm is inspired by the well-known Bakery algorithm of
Lamport [49, 51]: the processes that wish to enter their CSs (the candidates) first
draw tickets and then are served in the order of their tickets’ numbers. Before
drawing a ticket, every candidate asks for a permission to proceed from some
correct process and waits (line 7) until the permission is received (this eventually
happens due to the assumption that a majority of processes are correct). Then the
candidate is put into the waiting queue implemented by the total order broadcast
mechanism. Total order broadcast guarantees that the requests are eventually
delivered in the same order (line 12), i.e., no candidate i can be served unless
every candidate in the waiting queue before i has been served and has released
the resource, or crashed (line 15). If a process crashes in its CS, then at least one
correct process will eventually detect the crash and inform the others (lines 20-
22).

To ensure the progress property of FTME, in addition to the trying and exit
protocols (respectively, lines 5–17 and line 18), the algorithm maintains, at every
process i ∈ Π, n + 1 parallel tasks:

• task 0 in which i detects failures of other processes;

• task m (m = 1, 2, . . . , n) in which i takes care of the trust request of process
m.

We prove the correctness of the algorithm through Lemmas 4.4 and 4.5.

Lemma 4.4 No two different processes are in their CSs at the same time.

Proof: By contradiction, assume that i and j (i 6= j) are in their CSs at time
t0. Let, at time t0, ri = ki and rj = kj .

In the trying protocol (lines 5–17), every process to-broadcasts its request for
a CS and no process enters its CS before having first to-delivered its request.
Thus i must have to-delivered [i, ki] and j must have to-delivered [j, kj ] before
t0. By the properties of total order broadcast, either j to-delivered [i, ki] before
having to-delivered [j, kj ], or the reverse. Assume, without loss of generality, that
to-deliver([i, ki]) precedes to-deliver([j, kj ]) at j. That is, at some time t1 < t0,
j passed the “wait” clause in line 15 while processing [i, ki]. Thus, one of the
following events occurred before t1 at j:

(1) j received [exit, i, ki]: by the algorithm, i left the CS with ri = ki before
time t1. But i is in the CS with ri = ki at t0 > t1 — a contradiction.

(2) j received [crash, i]: by the algorithm, at some process m and time t2 < t1
the following is true: i ∈ trustedm and i ∈ Tm. But i can be in trustedm

only if previously i /∈ Tm (lines 25–26). That is, m stopped trusting i at
time t2. By the trusting accuracy property of T , i is crashed at t2. But i
is in the CS at t0 > t2 — a contradiction.

Hence, mutual exclusion is guaranteed. 2
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Lemma 4.5 If a correct process is in its trying section, then at some later time
some correct process is in its CS. If a correct process is in its exit section, then
at some later time it enters its remainder section.

Proof: Assume that a correct process ī in its trying section at some time tc with
rī = r̄, and no correct process is ever in its CS after tc. By the algorithm, ī never
reaches line 17. Thus, ī is blocked in a “wait” clause or at the non-terminating
repeat-until loop. The first “wait” clause (line 7 of Figure 4.3) is not able to
block the process, due to eventual strong accuracy of T and the fact that at least
bn/2c+1 processes are correct. Thus, ī eventually issues to-broadcast([̄i, r̄]). The
second “wait” clause (more precisely, the statement in line 12 of Figure 4.3) is
not blocking either, because of validity of total order broadcast: eventually, i
to-delivers at least one message – [̄i, r̄]. Further, if the “wait” clause in line 15 is
not blocking, then validity of total order broadcast implies that [̄i, r̄] is eventually
to-delivered by ī, thus ī exits the repeat-until loop and enters its CS.

Thus, ī is blocked in the third “wait” clause (line 15 of Figure 4.3) while
processing some [j̄, k̄] (̄i 6= j̄). Thus, ī never receives [exit, j̄, k̄] or [crash, j̄].

By integrity of total order broadcast, j̄ has previously to-broadcast [j̄, k̄]
(line 10 of Figure 4.3).

Let j be any process that completes line 10.
We observe first that (Claim 1) j has been previously put in trustedm by

some correct process m. Indeed, j received bn/2c+ 1 [ack]’s from processes that
trusted j. Since at least bn/2c + 1 processes are correct, j receives at least one
[ack] from a correct process m that previously put j in trustedm at some time t0.

Then we notice that (Claim 2) if j is faulty, then every correct process
eventually receives [crash, j]. Indeed, if j is faulty, then, by trusting completeness
of T , every correct process (and, in particular, the correct process m of Claim 1)
eventually and permanently suspects j, i.e., ∃t1 > t0 : ∀t > t1 : j ∈ Tm. Thus,
eventually, the condition of line 20 is satisfied at m for j (j ∈ trustedm and
j ∈ Tm). Thus, m sends [crash, j] to all processes and every correct process
eventually receives it.

Hence, process j̄ is necessarily correct. Indeed, if j̄ is faulty, then, by Claim 2,
correct process ī eventually receives [crash, j̄] and releases from waiting in line 15.

Further, we observe that trusting accuracy of T implies that (Claim 3) if a
message [crash, j] is received, then j is crashed.

Finally, we show that (Claim 4) if a correct process m passed an entry [j, k] in
the total order (is not blocked in line 15 while processing [j, k]), then no correct
process can be blocked while processing [j, k]. Indeed, the following cases are
possible:

(a) j = m: j enters its CS (line 17). By the assumption of the proof, no correct
process is in its CS after tc, thus, j left its CS before tc and j sent [exit, j, k]
to all (line 18). Thus, every correct process eventually receives the message
and releases.

(b) j 6= m, and j is faulty. By Claim 2, every correct process eventually receives
[crash, j] and releases.

(c) j 6= m, and j is correct. By Claim 3, m could only receive [exit, j, k]. Every
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correct process eventually receives [exit, j, k] and releases.

Recall that ī is blocked in line 15 while processing request [j̄, k̄] (̄i 6= j̄). By
Claim 2, j̄ is correct, and, by Claim 4, j̄ should have passed all entries in the
total order that ī has passed before reaching [j̄, k̄]. By the algorithm j̄ enters its
CS (line 17). By the assumption of the proof, no correct process is in its CS after
tc, thus, j̄ left its CS before tc and sent [exit, j̄, k̄] to all. ī eventually receives the
message and releases — a contradiction.

The second part of the lemma follows directly from the algorithm: every
correct process i that runs exiti enters remi after a finite number of steps. That
is, every correct process in its exit section eventually enters its remainder section.

Thus, progress is guaranteed. 2

The following theorem follows directly from Lemmas 4.4 and 4.5:

Theorem 4.6 The algorithm of Figure 4.3 solves FTME using T , in any envi-
ronment in which a majority of processes are correct.

Finally, combining Theorem 4.3 and Theorem 4.6, we can state the following
result:

Theorem 4.7 For any environment E in which a majority of processes are cor-
rect, T is the weakest failure detector to solve FTME in E.

Remark. In fact, the algorithm of Figure 4.3 solves a seemingly harder problem: in
addition to mutual exclusion and progress, it satisfies also the starvation-freedom
property.

Indeed, assume that a correct process i is in its trying section with ri = k.
Eventually, due to the properties of the total order broadcast, all entities [j, l]
preceding [i, k] in the total order are eventually processed: if any process in its
CS eventually exits or crashes, no process can be blocked in a “wait” clause (see
line 15 in Figure 4.3). Finally, i eventually reaches its own entry [i, k] in the total
order and i enters its CS.

From Theorem 4.7 it follows that any algorithm solving FTME in any envi-
ronment E in which a majority of processes are correct can be transformed into
an algorithm that solves FTME with the starvation freedom property in E .

4.5 On the number of correct processes

By applying standard partitioning arguments, we can show that if it is possible
to solve FTME using T in an environment E , then the sets of correct processes
of any two failure patterns in E intersect.

Proposition 4.8 Let E be any failure pattern that includes a failure-free failure
pattern, and two failure patterns F1 and F2 such that correct(F1)∩correct(F2) = ∅.
Then no algorithm solves FTME using T in E.

Proof: Assume that an algorithm A solves FTME using T in E . Let X =
correct(F1) and Y = correct(F2). Consider two possible runs of A:
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(1) R1: no process in Y takes any step in R1 (processes in Y are crashed in
R1), and processes in X always suspect every process in Y . Assume that
a correct process i ∈ X is the only process in its trying section. By the
progress property of FTME, i enters its CS at some time t1.

(2) R2: no process from X takes any step in R2 (processes in X are crashed
in R2), no process in Y takes any step before t1 + 1, and processes in Y
always suspect every process in X. Assume that a correct process j ∈ Y is
the only process in its trying section. By the progress property of FTME,
j enters its CS at some time t2 > t1.

Assume that no process ever runs an exit protocol in R1 or R2. We construct
a run R that is identical to R1 at any time in [0, t1] and identical to R2 at any
time in [t1 + 1, t2]. Now assume that every process is correct in R, the processes
in X and Y start to trust each other after t2 (this is a valid history of T ), and
all messages sent between X and Y are delayed until t2 + 1. Evidently, R is a
run of A. But, since i and j never enter their exit sections, at time t2 both i and
j are in their CSs — a contradiction. 2

Now let us consider any environment E in which a majority of correct processes is
not necessarily guaranteed, and ask ourselves whether the perfect failure detector
P is the weakest to solve FTME in E . A close look at the correctness proof for the
algorithm of Figure 4.3 reveals that we use the assumption of a correct majority
only to implement the total order broadcast primitive and to guarantee that for
each correct process i, there is a correct process m that trusts i (“wait” clause in
line 7). If the quorum failure detector Σ [20] is available, we can overcome both
issues even if up to n − 1 processes can crash. Indeed, total order broadcast is
implementable in any environment using (T ,Σ) [15, 20] and the “wait” clause in
line 7 can be substituted by:

repeat
Qi ← Σi

until received [ack] from all j ∈ Qi

Σ guarantees that eventually all processes in Σi are correct. On the other hand,
by the eventual strong accuracy property of T , every correct process is eventually
trusted by all correct processes. Hence, this “wait” clause is non-blocking.

On the other hand, the properties of Σ imply that the output of Σi always
includes at least one correct process. That is, if i received [ack] from every process
in Σi, then at least one correct process m started trusting i. If i crashes while i is
in its CS, m will eventually detect the crash (by stopping trusting i) and inform
the other processes. Thus, we can implement FTME in any environment using
failure detector (T ,Σ). (For every failure pattern F , (T ,Σ) outputs a pair of
histories (HT ,HS) (R(T ,Σ) = 2Π × 2Π), such that HT ∈ T (F ) and HS ∈ S(F ).)

We show that, in most environments, 3S is strictly weaker than P. As for
Propositions 4.1 and 4.2, the “weaker” part of the proof follows directly form the
definition of (T ,Σ), and the “strictly” part of the proof is done by contradiction:
we assume that a reduction algorithm T(T ,Σ)→P exists and expose a run of this
reduction algorithm that violates some properties of P.
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Proposition 4.9 Let E be any environment that contains a failure pattern in
which some process initially crashes, and a failure-free failure pattern. Then
(T ,Σ) ≺E P.

Proof:
(a) By Proposition 4.2 T ≺E P. It is straightforward to see that Σ �E P.

That is, both T and Σ are weaker than P. Thus, (T ,Σ) �E P.
(b) Now we show that P is not weaker than (T ,Σ). Indeed, assume there

exists an algorithm T(T ,Σ)→P that, for any failure pattern F ∈ E , constructs HP
from HT ∈ T (F ) and HΣ ∈ Σ(F ), such that HP ∈ P(F ).

Let j, l ∈ Π and j 6= l. Consider failure pattern F1 ∈ E such that F1(0) = {j}
(j is initially crashed), correct(F1) = Π−{j}, and take histories H1

T ∈ T (F1) and
H1

Σ ∈ Σ(F1) such that ∀i ∈ Π,∀t ∈ T: H1
T (i, t) = {j} (j is always suspected) and

H1
Σ(i, t) = {l}. Assume that the corresponding run R1 = 〈F1, (H1

T ,H1
Σ), I, S1, T 〉

of T(T ,Σ)→P outputs a history H1
P ∈ P(F1). By the strong completeness property

of P: ∃k0 ∈ N: H1
P(l, T [k0]) = {j}.

Consider failure pattern F2 ∈ E such that correct(F2) = Π and define histories
H2
T and H2

Σ such that ∀i ∈ Π and ∀t ∈ T:

H2
T (i, t) =

{
{j}, t ≤ T [k0]
∅, t > T [k0]

H2
Σ(i, t) =

{
{l}, t ≤ T [k0]
Π, t > T [k0]

Clearly, H2
T ∈ T (F2) and H2

Σ ∈ Σ(F2).
Consider a run R2 = 〈F2, (H2

T ,H2
Σ), I, S2, T 〉 of T(T ,Σ)→P that outputs a his-

tory H2
P ∈ P(F2), where S1[k] = S2[k],∀k ≤ k0. Thus, j takes no steps in S2

for all t ≤ T [k0]. Since partial runs of R1 and R2 for t ≤ T [k0] are identical,
the resulting history H2

P is such that H2
P(l, T [k0]) = {j}. In other words, j is

suspected before it crashes, and the strong accuracy property of P is violated.
By (a) and (b), we have (T ,Σ) ≺E P. 2

Hence, there is a failure detector (T ,Σ) which is strictly weaker than P and is
sufficient to solve FTME in any environment where up to n − 1 processes can
crash.

4.6 Group mutual exclusion

Group mutual exclusion [47, 48, 38] is a natural generalization of the classical
mutual exclusion problem [23, 51], where a process requests a “session” before
entering its critical section. Processes are allowed to be in their critical sections
simultaneously provided that they have requested the same session. Sessions
represent resources each of which can be accessed simultaneously by an arbitrary
number of processes, but no two of which can be accessed simultaneously.

Formally, the trying protocol of process i has an integer parameter s. We say
that i requests session s at time t if i is alive at t, and i is running the trying
protocol tryi(s) or it is in its CS immediately after running tryi(s). As with
FTME, we assume that every process i is well-formed.
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Thus, in addition to the progress properties of FTME, fault-tolerant group
mutual exclusion (FTGME) satisfies the group mutual exclusion and concurrent
entering properties (we follow the terminology used in Section 4.1):

Progress:

(1) If a correct process is in its trying section, then at some time later
some correct process is in its CS.

(2) If a correct process is in its exit section, then at some time later it
enters its remainder section.

Group mutual exclusion: If two processes are in their critical sections at the
same time, then they request the same session.

Concurrent entering: If a correct process i requests a session and no other
process requests a different session, then i eventually enters its CS.

The last property means that, for a given session, a process that has already
entered its CS cannot prevent another process requesting the same session from
entering its CS. The property excludes trivial solutions of group mutual exclusion
using any simple mutual exclusion algorithm. In contrast to [38, 70], we do not
make the assumption that a process can stay in its CS for a finite time only. This
is the reason why we put “eventually” instead of “a bounded number of its own
steps” as in [38, 47, 70] in the concurrent entering property. Clearly, if another
process is concurrently trying to enter a different session, it can enter its CS first.
In this case, the trying process can prevent another process from entering its CS.

FTGME is at least as hard as FTME: we can easily implement FTME from
FTGME by just associating every process with a unique session number. On the
other hand, we show here that T solves FTGME in a system with a majority of
correct processes. Thus, in the sense of failure detection, FTME and FTGME
are equivalent.

In Figure 4.4, we present an algorithm that solves FTGME using T . For
each process i, the algorithm of Figure 4.4 defines trying protocol tryi(sessioni)
that handles the request of i for session sessioni, and exit protocol exiti. In the
algorithm, each process i maintains the following local variables:

1. a boolean readyi, initially false, indicating whether i is ready to execute the
trying protocol;

2. an integer ri, initially 0, indicating the number of requests for the CS that
i has made;

3. a set trustedi, initially empty, of processes currently trusted by i;

4. an integer lsi, initially −1 (we assume that requested session numbers are
non-negative), indicating the number of currently satisfied session;

5. a set inCSi, initially empty, of requests with session number lsi that i sus-
pects to be currently satisfied;
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6. integers j, k and s indicate the last processed request of type [j, k, s] where
j is the process that issued the request, k is j’s request number and s is the
session that j requests.

The algorithm is similar to that of Section 4.4. Before requesting a session every
process waits until it gets trusted by a correct process. The requests are broadcast
using the total order broadcast primitive to-broadcast(), and delivered through
to-deliver(). It is assumed that a background task maintains at each process i a
FIFO “waiting” queue TO-queuei, initially empty. Whenever i to-delivers m, it
atomically adds m to the end of TO-queuei.

If several consecutive requests for the same session s are placed in the total
order, then the requests are satisfied simultaneously. No request for a new session
s′ 6= s is satisfied until all processes requested earlier session s leave their CSs.

Now we state the correctness of the algorithm through Lemmas 4.10–4.12.

Lemma 4.10 If two processes are in their critical sections at the same time,
then they request the same session.

Proof: Assume that processes i and j requesting sessions si and sj , respectively,
are in their CSs at some time t0. Let, at time t0, ri = ki and rj = kj .

In the trying protocol (lines 7–21), every process to-broadcasts its request for
a CS and no process enters its CS before having first to-delivered its own request.
Thus i must have to-delivered [i, ki, si] and j must have to-delivered [j, kj , sj ]
before t0. By the ordering property of to-broadcast, i and j can only to-deliver
[i, ki, si] and [j, kj , sj ] in the same order. Assume, without loss of generality, That
to-deliver([i, ki, si]) precedes to-deliver([j, kj , sj ]) at j.

By the algorithm, j can be in the CS with sessionj = sj and rj = kj at t0
only if every entry [j′, k′, s′] with s′ 6= sj in the total order preceding [j, kj , sj ] has
passed through the “if” clause defined in lines 16–17 before time t0. As a result,
before time t0, j has put (i, ki) into inCSj and set lsj to si (lines 18 and 19).

Since i is still in its CS with ri = ki at time t0, j could not have received
[exit, i, ki] before t0. Now assume that j received [crash, i] before t0: by the
algorithm of Figure 4.4, at some process m, at some time t1 < t0 the following is
true: i ∈ trustedm and i /∈ Tm (m stops trusting i). By trusting accuracy of T , i
is crashed at t1. But i is in the CS at t0 > t1 — a contradiction.

Thus, j has not received [exit, i, ki] or [crash, i] before t0, i.e., the condition
in line 27 is not satisfied at j before t0. As a result, at the moment when j to-
delivered [j, kj , sj ] (line 14), (i, ki) ∈ inCSj and lsj = si. Assume that j reaches
line 16 while processing [j, kj , sj ] at some time t1 < t0 (j is in its CS at t0).
Furthermore, inCSj is non-empty at any t ∈ [t1, t0] (it includes at least one entry
(i, ki)), j never receives [crash, j] (by trusting accuracy of T ), and lsj = si at t1.
Thus, j can pass lines 16–17 and enter its CS before t0 only if sj = si. Hence,
the group mutual exclusion property of FTGME is guaranteed. 2

Lemma 4.11 If a correct process is in its trying section, then at some time later
some correct process is in its CS. If a correct process is in its exit section, then
at some time later it enters its remainder section.
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1: readyi ← false { Initialization }
2: ri ← 0
3: trustedi ← ∅
4: inCSi ← ∅
5: lsi ← −1
6: start tasks 0, . . . , n

Trying protocol tryi(sessioni):
7: if not readyi then
8: send [me, i] to all { Send a trust request }
9: wait until received bn/2c+ 1 [ack]’s

10: readyi ← true
11: ri ← ri + 1
12: to-broadcast([i, ri, sessioni])
13: repeat
14: wait until TO-queuei is not empty
15: [j, k, s]← pop(TO-queuei) { Get the next waiting request }
16: if inCSi 6= ∅ and s 6= lsi then
17: wait until inCSi = ∅ or received [crash, j]
18: inCSi ← inCSi ∪ {(j, k)}
19: lsi ← s
20: until j = i
21: { i enters its CS }

Exit protocol exiti:
22: send [exit, i, ri] to all

23: task 0:
24: upon (j ∈ trustedi and j ∈ Ti) do
25: trustedi ← trustedi − {j} { A crash of process j is detected }
26: send [crash, j] to all { j stops being trusted }
27: upon ((j, k) ∈ inCSi and

(received [exit, j, k] or received [crash, j])) do
28: inCSi ← inCSi − {(j, k)} {[j, k, lsi] releases the CS }

29: task m (m = 1, 2, . . . , n):
30: upon receive [me, m] do
31: wait until m /∈ Ti { A trust request is received from m }
32: trustedi ← trustedi ∪ {m} { m is trusted by i }
33: send [ack] to m

Figure 4.4: FTGME algorithm using T : code for each process i

Proof: The proof is similar to the proof of Lemma 4.5. Assume that a correct
process ī is in its trying section at time t0, and no correct process ever enters its
CS after t0. Applying the arguments of Lemma 4.5, we observe that ī is blocked
in line 17 of Figure 4.4 because some entry (j̄, k̄) never leaves inCSi (line 28).
Claims 1–4 of Lemma 4.5 are proved similarly. By Claim 1 and Claim 2 of
Lemma 4.5, j̄ must be correct. By Claim 3 and Claim 4 of Lemma 4.5 j̄ should
have passed all entries in the total order that precede [j̄, k̄, s̄] and entered its
CS. Since no process is in its CS after t0, j̄ executed the exit protocol before t0
and sent [exit, j̄, k̄] to all. Thus ī eventually receives [exit, j̄, k̄] and releases — a
contradiction. Hence, the progress property of FTGME is ensured. 2
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Lemma 4.12 If a correct process i requests a session and no other process re-
quests a different session, then i eventually enters its CS.

Proof: Assume that, at time t0, a process i requests a session si with ri = ki

and no other process requests a different session. Thus, all processes requesting
different sessions have left their CSs or crashed before t0. As a result, after some
time, either inCSi = ∅ or lsi = si. By the algorithm, eventually, i starts process-
ing its own request [i, ki, si] with lsi = si (lines 14–16) and enters its CS (line 21).
Hence, the concurrent entering property of FTGME is ensured. 2

Finally, using the results of Section 4.3, we can state the following theorem:

Theorem 4.13 For any environment E in which a majority of processes are
correct, T is the weakest failure detector to solve FTGME in E.

Remark. Similar to the FTME algorithm of Figure 4.3, our FTGME algorithm
satisfies also the starvation freedom property.

Analogously, when dn2 e or more processes can crash, we can solve FTGME
with (T ,Σ), simply by implementing total order broadcast using (T ,Σ), and
substituting line 9 of the algorithm in Figure 4.4 with:

repeat
Qi ← Σi

until received [ack] from all j ∈ Qi

4.7 Cost of resilience

In this section we compare the performance of our algorithm (Figure 4.3) with
the well-known algorithms of [58] and [63]. (The algorithms of [58] and [63] were
designed for the failure-free asynchronous model but could be ported into the
crash-prone model assuming P. More details on the comparative analysis of the
algorithms of [58] and [63] are available in [67].)

The performance of mutual exclusion algorithms can be measured through
the following metrics [67]: (a) the bootstrapping delay, which is the time required
before a process runs its trying protocol for the first time; (b) the number of
messages sent during the trying protocol, (c) the synchronization delay, which is
the time required after a process leaves the CS and before the next process enters
the CS, and (d) the response time, which is the time required for a process to
complete the trying protocol. We also consider two special loading conditions:
low load and high load. In low load conditions, there is seldom more than one
request to enter the CS at a time in the system. In high load conditions, any
process that leaves the CS immediately executes the trying protocol again. In
discussing performance, we concentrate here on the runs where no process crashes
(the most frequent runs in practice), which are usually called nice runs.

We denote by tc the maximum message propagation delay, and ec the maxi-
mum CS execution time. The bootstrapping delay of our algorithm (Figure 4.3)
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is bounded by 2tc: before processing any request for CS, every process should
receive the acknowledgment from a majority of the processes. The algorithm has
a relatively high message complexity: each request for CS requires O(n2) mes-
sages per CS invocation. The synchronization delay is bounded by tc: that is, it
requires only one communication step to inform the next waiting process that it
can enter the CS. The response time in low load conditions is defined by the time
to deliver a total order broadcast message – 2tc. At high loads, on the average,
all other processes execute their CSs between two successive executions of the
CS: the response time converges to n(tc + ec).

The results of our comparative analysis are presented in Figure 4.5. The
performance degradation due to the use of T reflects the longer bootstrapping
delay which is inherent to the use of T and higher message complexity inherited
from using total order broadcast. It would be interesting to figure out to what
extent our algorithm of Figure 4.3 could be optimized, e.g., by breaking the
encapsulation of the total order broadcast box.

Metrics Maekawa [58] RA [63] T -based
Bootstrapping delay 0 0 2tc
Number of messages Low Moderate High
Sync. delay 2tc (deadlock-prone) tc tc

tc (deadlock-free)
Response time
low load 2tc 2tc 2tc
high load n(2tc + ec) n(tc + ec) n(tc + ec)

Figure 4.5: Comparative performance analysis of mutual exclusion algorithms

4.8 Implementing T

Is it more beneficial in practice to use a mutual exclusion algorithm based on
T , instead of a traditional algorithm assuming P? The answer is “yes, to some
extent”. Indeed, if we translate the very fact of not trusting a correct process
into a mistake, then T clearly tolerates mistakes whereas P does not. More
precisely, T is allowed to make up to n2 mistakes (up to n mistakes for each
module Ti, i ∈ Π). As a result, given synchrony assumptions, it is somewhat
easier to implement T than P.

For example, in a possible implementation of T , every process i can, starting
from 0, gradually increase the timeout tij corresponding to a heart-beat message
sent to a process j until a response from j is received. Thus, every such tij can be
flexibly adapted to the current network conditions. (Clearly, as soon as T starts
trusting a process j, it is not allowed to make mistakes about j any more.)

In contrast, P does not allow this kind of “fine-tuning” of the timeouts: the
timeouts are supposed to be known in advance. In order to minimize the prob-
ability of mistakes, the timeouts are normally chosen sufficiently large, and the
choice is based on some a priori assumptions about current network conditions.
This might exclude some remote sites from the group and violate the accuracy
properties of the failure detector.
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Thus, we can implement T in a more effective manner than P, and an al-
gorithm that solves FTME using T exhibits a smaller probability of violating
the requirements of the problem, than one using P, i.e., the use of T provides
more resilience. As we have shown in Section 4.7, the performance cost of this
resilience reflects the bootstrapping delay, i.e., the time a new process needs to
enter its CS for the first time, and higher message complexity inherited from
using total order broadcast.

4.9 Open questions

The question of the weakest failure detector for solving FTME in all environments
remains open.

In Section 4.5, we showed that (T ,Σ), a composition of the trusting failure
detector T and the quorum failure detector Σ [20], is sufficient to solve FTME in
all environments. However, by careful inspection of the algorithm in Figure 4.3,
we observe that the strong communication guarantees provided by Σ do not
seem to be necessary for solving FTME. Indeed, let us define a weaker form
of Σ, denoted Σme (“me” stands for mutual exclusion), that outputs a set of
processes at each process, called me-quorum. Eventually, every set consists of
only non-faulty processes and if two me-quorums output at times t and t′ (t > t′)
at, respectively, p and q do not intersect, then q has crashed by time t. In
other words, any me-quorum obtained by process p at time t is guaranteed to
intersect with any me-quorum obtained earlier by any process which is alive at
t. By employing the technique of Section 3.2, we believe we can show that Σme

is necessary to solve FTME in any environment.
Consider a (T ,Σ)-based FTME algorithm (Section 4.5). If we substitute Σ

with Σme, then we have a problem with the progress property of FTME. Indeed,
now a process j can enter its CS without getting trusted by a correct process first.
As a result, if j fails while in its CS, then there is no guarantee that some correct
process will eventually detect the failure. However, if any process i observes that
no process in Σme

i trusts j, and j previously “drew a ticket” by getting trusted by
all processes in Σme

j , then it immediately follows that j has previously crashed.
This can be used as a criterion to stop waiting and proceed to the next entry in
the total order (line 15 in Figure 4.3).

Similarly, we conjecture that (T ,Σme) can be used to implement an “obliv-
ious” form of total order broadcast, in which a process may “skip” delivering
messages of already failed processes. This meets the specification of FTME: a
process does not have to worry whether an already failed process could have
previously entered its CS or not.

We thus conjecture that (T ,Σme) is the weakest failure detector to solve
FTME in all environments.

4.10 Related work

The mutual exclusion problem has been extensively studied for the last few
decades [23, 51, 62, 1, 59, 55, 67]. Traditionally, mutual exclusion algorithms
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either assume that no process crashes outside its remainder section [23, 51, 62,
55, 67], or suppose that (1) every crash is eventually detected by every correct
process and (2) no correct process is suspected [1, 59]: the conjunction of (1) and
(2) is equivalent to the assumption of the perfect failure detector P. In other
words, P has been shown sufficient to solve mutual exclusion in a fault-tolerant
manner. However, to our knowledge, the question of whether P is also necessary
to solve FTME remained open until now.





Chapter 5

Quittable Consensus and
NBAC

In this chapter, the weakest failure detectors for solving quittable consensus (QC)
and non-blocking atomic commit (NBAC) in all environments are determined.

Section 5.1 recalls the specification of QC [40]. Section 5.2 determines the
weakest failure detector to solve QC. Section 5.3 recalls the specification of NBAC,
establishes a close relationship between QC and NBAC, and uses this to determine
the weakest failure detector to solve NBAC. Section 5.4 contains some concluding
remarks. Section 5.5 discusses the related work.

The results of this chapter appeared originally in [21].

5.1 Quittable consensus (QC)

In the quittable consensus problem, each process p starts with an initial value
v ∈ V (we say that p proposes v), and terminates with a decision value in
V ∪ {Q} (Q stands for “quit”) . It is required that:

Termination: If every correct process proposes a value, then every correct pro-
cess eventually returns a decision.

Agreement: No two processes (whether correct or faulty) return different val-
ues.

Validity: A process may only decide a value v ∈ V ∪ {Q}. Moreover,
(a) If v ∈ V , then some process previously proposed v.
(b) If v = Q, then a failure previously occurred.

Here V is an arbitrary set of at least two values. In the binary version of
QC, V = {0, 1}, i.e., processes can propose values in {0, 1} and decide values in
{0, 1,Q}.

Lemma 5.1 Any solution to binary QC can be transformed into a solution to
multivalued QC for any set of proposal values V .

55
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Procedure qcPropose(v): { v can be any value }
1: send [v, p] to all
2: k ← 0
3: repeat
4: c← (k mod n) + 1
5: if received [v′, pc] then
6: send [v′, pc] to all
7: d← bqcProposek(1) { run binary QC proposing 1 }
8: else
9: d← bqcProposek(0) { run binary QC proposing 0 }
10: k ← k + 1
11: until d ∈ {1,Q}
12: if d = Q return Q
13: wait until [v′, pc] is received
14: return v′

Figure 5.1: Transforming binary QC into multivalued QC: code for each process
p

Proof: A simple algorithm that transforms any solution to the binary QC into
a solution to a multivalued one is described in Figure 5.1. The algorithm employs
the technique of [60]. Each process p sends its proposal v ∈ V to all and then
runs through a sequence of instances of the given binary QC algorithm. For each
k ∈ N, bqcProposek() denotes p’s invocation of the k-th instance of the binary
QC algorithm.

In each round k, if p previously received the proposal of process p(k mod n)+1,
then p forwards the proposal to all and proposes 1, otherwise p proposes 0. If Q
is returned in the k-th instance of the given binary QC algorithm, then p returns
Q. If 1 is returned, then p waits until the proposal of process p(k mod n)+1 is
received and decides the proposal. Finally, if 0 is returned, then p proceeds to
round k + 1.

The Validity property of QC follows immediately from the algorithm. The
Agreement property of binary QC implies that the first instance of binary QC
which returns a value in {1,Q} is the same at all processes. The Agreement
property of QC follows. Since proposals sent by correct processes are eventually
received by all correct processes, 1 or Q is eventually decided in some instance
of binary QC algorithm. Since, before proposing 1 in instance k, process p first
forwards the proposal of p(k mod n)+1 to all, the proposal is eventually received
by all correct processes: the Termination property of QC follows. 2

5.2 The weakest failure detector to solve QC

We define a new failure detector denoted Ψ and show that it is the weakest failure
detector to solve QC in any environment. To prove this, we first show that Ψ
can be used to solve QC in any environment. We then prove that, for every
environment E , any failure detector that can be used to solve QC in E can be
transformed into Ψ in E .
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Procedure qcPropose(v): { v is 1 or 0 }
1: while Ψp = ⊥ do nop
2: if Ψp ∈ {green, red}
3: then { henceforth Ψ behaves like FS }
4: return Q
5: else { henceforth Ψ behaves like (Ω,Σ) }
6: d← consPropose(v) { use Ψ to run (Ω,Σ)-based consensus algorithm }
7: return d

Figure 5.2: Using Ψ to solve QC

5.2.1 Specification of failure detector Ψ

Roughly speaking, Ψ behaves as follows: For an initial period of time the output
of Ψ at each process is ⊥. Eventually, however, Ψ behaves either like the failure
detector (Ω,Σ) at all processes, or, in case a failure previously occurred, it may
instead behave like the failure detector FS at all processes. The switch from ⊥ to
(Ω,Σ) or FS need not occur simultaneously at all processes, but the same choice
is made by all processes. Note that the switch from ⊥ to FS is allowable only if
a failure previously occurred. Furthermore, if a failure does occur processes are
not required to switch from ⊥ to FS; they may still switch to (Ω,Σ).

More precisely, Ψ is defined as follows. For each failure pattern F ,

H ∈ Ψ(F ) ⇔
(
∃H ′ ∈ (Ω,Σ)(F ) ∀p ∈ Π ∃t ∈ T(

∀t′ < t H(p, t′) = ⊥ ∧ ∀t′ ≥ t H(p, t′) = H ′(p, t′)
))
∨(

∃t ∈ T
(
F (t) 6= ∅ ∧ ∃H ′ ∈ FS(F ) ∀p ∈ Π(

∀t′ < t H(p, t′) = ⊥ ∧ ∀t′ ≥ t H(p, t′) = H ′(p, t′)
)))

5.2.2 Using Ψ to solve QC

It is easy to use Ψ to solve QC in any environment E (see Figure 5.2). Each process
p waits until the output of Ψ becomes different from ⊥. At that time, either Ψ
starts behaving like FS or it starts behaving like (Ω,Σ). If Ψ starts behaving like
FS (Ψ can do so only if a failure previously occurred), p returnsQ. The remaining
case is that Ψ starts behaving like (Ω,Σ). It is shown in [20] that there is an
algorithm that uses (Ω,Σ) to solve consensus in any environment. Therefore,
in this case, processes propose their initial value to that consensus algorithm
and return the value decided by that algorithm. In Figure 5.2, consPropose()
denotes p’s invocation of the algorithm that solves consensus using (Ω,Σ). Hence,
we obtain the following result:

Theorem 5.2 For all environments E, Ψ can be used to solve QC in E.
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Initially:
1: Ψ-outputp ← ⊥ { Ψ-outputp is the output of p’s module of Ψ }

task 1:
2: do forever { This is done exactly as in [14] (Section 3.1) }
3: cobegin
4: p builds an ever-increasing DAG Gp of failure detectors samples by repeatedly

sampling its failure detector and exchanging samples with other processes.
5: ||
6: p uses Gp and the n + 1 initial configurations to construct a forest Υp of ever-increasing

simulated runs of algorithm A using D that could have occurred
with the current failure pattern F and the current failure detector history H ∈ D(F ).

7: coend

task 2:
8: wait until p decides in some run of every tree of the forest Υp

9: if p decides Q in some run
10: then
11: p executes A by proposing 0
12: else { every tree of Υp has a run where p decides 0 or 1 }
13: let I and I ′ be initial configurations that differ only in the proposal of one process and

S and S′ be schedules in Υp so that p decides 0 in S(I) and 1 in S′(I ′)
14: p executes A by proposing (I, I ′, S, S′)

15: wait until p decides in this execution of A
16: if p decides 0 or Q
17: then { extract FS }
18: Ψ-outputp ← red
19: else { p’s decision is of the form (I0, I1, S0, S1) }
20: Ω-outputp ← p ; Σ-outputp ← Π { extract (Ω, Σ) }
21: cobegin

{ extract Ω }
22: do forever Ω-outputp ← id of the process that p

extracts using Υp and the procedure described in [14]
23: ||

{ extract Σ }
24: let (I0, I1, S0, S1) be the decision value of p
25: let C be the set of configurations reached by applying

all prefixes of S0, S1 to I0, I1, respectively
26: do forever
27: wait until p adds a new failure detector sample

u to its DAG Gp

28: repeat
29: let Gp(u) be the subgraph induced by

the descendants of u in Gp

30: for each C ∈ C construct the set SC of all schedules compatible with
some path of Gp(u) and applicable to C

31: until for each C ∈ C there is a schedule S ∈ SC

such that p decides in S(C)
32: Σ-outputp ←

⋃
C∈C set of processes that take steps

in the schedule S ∈ SC such that p decides in S(C)
33: ||

{ combine Ω and Σ to Ψ }
34: do forever Ψ-outputp ← (Ω-outputp, Σ-outputp)
35: coend

Figure 5.3: Extracting Ψ from D and QC algorithm A: code for each process p
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5.2.3 Extracting Ψ from any failure detector that solves QC

Let D be an arbitrary failure detector that can be used to solve QC in some
environment E . Let A be an algorithm that uses D to solve QC in environment E .
We must prove that Ψ can be “extracted” from D in environment E , i.e., processes
can run in E a transformation algorithm that uses D and A to generate the output
of Ψ — a failure detector that initially outputs ⊥ and later behaves either like
(Ω,Σ) or like FS. The reduction algorithm TD→Ψ is shown in Figure 5.3 and is
explained below.

Overview of the reduction algorithm

Each process p starts by outputting ⊥ (line 1). While doing so, p determines
whether in the current run it is possible to extract (Ω,Σ), or it is legitimate to
start behaving like FS and output red because a failure occurred.

In task 1, p simulates runs of A that could have occurred in the current failure
detector history of D and the current failure pattern F , exactly as in [14] (see
Section 3.1). It does this by “sampling” its local module of D and exchanging
failure detector samples with the other processes (line 4). Process p organizes
these samples into an ever-increasing DAG Gp whose edges are consistent with
the order in which the failure detector samples were actually taken. Using Gp,
p simulates ever-increasing partial runs of algorithm A that are compatible with
paths in Gp (line 6). Each process p organizes these runs into a forest of n + 1
trees, denoted Υp. For any i, 0 ≤ i ≤ n, the i-th tree of this forest, denoted Υi

p,
corresponds to simulated runs of A in which processes p1, . . . , pi propose 1, and
pi+1, . . . , pn propose 0. A path from the root of a tree to a node S in this tree
corresponds to the schedule of a partial run of A, where every edge along the
path corresponds to a step of some process.

In task 2, p waits until it decides in some simulated run of every tree of the
forest Υp (line 8). If p decides Q in any of these runs, then a failure must have
occurred (in the current failure pattern), and so p knows that it is legitimate to
behave like FS by outputting red in this run. Otherwise (p’s decisions in the
simulated runs are 0s or 1s), p determines that it is possible to extract (Ω,Σ) in
the current run.

At this point, p executes the given QC algorithm A (using failure detector
D) in order to agree with all the other processes on whether to output red or
to extract (Ω,Σ). Specifically, if p has determined that it is legitimate to output
red then it proposes 0 to A (line 11), otherwise it proposes (I, I ′, S, S′) (line 14)
where I and I ′ are initial configurations that differ only in the proposal of one
process, and S and S′ are schedules in Υp such that p decides 0 in S(I) and 1 in
S′(I ′). The following lemma proves that these configurations and schedules exist.

Lemma 5.3 If any process p reaches line 12 then there are initial configurations
I and I ′, and schedules S and S′ in Υp, such that (a) I and I ′ differ only in the
proposal of one process, and (b) p decides 0 in S(I) and 1 in S′(I ′).

Proof: If any process p reaches line 12, then in each tree of Υp, p has a run in
which it decides 0 or 1. In the tree Υ0

p where every process proposes 0, p’s decision



60 Chapter 5. Quittable Consensus and NBAC

must be 0. Respectively, in Υn
p , p’s decision must be 1. The result immediately

follows. 2

If A returns 0 or Q, then p stops outputting ⊥ and outputs red from that time on
(line 18). If A returns a value of the form (I0, I1, S0, S1), then p stops outputting
⊥ and starts extracting Ω (line 22) and Σ (lines 24-32). Ω is extracted as in
[14] (see Section “Extracting Ω” below). Σ is extracted using novel techniques
explained in Section “Extracting Σ” below.

Note that processes use the given QC algorithm A and failure detector D in
two different ways and for different purposes. First each process simulates many
runs of A to determine whether it is legitimate to output red or it is possible
to extract (Ω,Σ) in the current run. Then processes actually execute A (this is
a real execution, not a simulated one) to reach a common decision on whether
to output red or to extract (Ω,Σ). Finally, if processes decide to extract (Ω,Σ),
they continue the simulation of runs of A to do this extraction.

Extracting Ω

To extract Ω, p must continuously output the id of a process such that, after
some time, correct processes output the id of the same correct process. This is
done using the procedure of [14] (see Section 3.1), with some minor differences
explained below.

As in [14], because of the way each process p constructs its ever-increasing
forest Υp of simulated runs, the forests of correct processes tend to the same
infinite limit forest, denoted Υ. The limit tree of Υi

p is denoted Υi. Each node S
of the limit forest Υ is tagged by the set of decisions reached by correct processes
in partial runs that correspond to descendants of S.

In [14] the only possible decisions were 0 or 1, and so these were the only
possible tags. Consequently, each node was 0-valent, 1-valent or bivalent (with
two tags). Here there are three possible decisions (0, 1 or Q) so each node is
0-valent, 1-valent, Q-valent or multivalent (with two or three tags).

In [14] (and here) the extraction of the id of a common correct process relies
on the existence of a critical index i in the limit forest Υ. Here we define i to
be critical if the root of Υi is multivalent (in which case it is called multivalent
critical), or if the root of Υi−1 is u-valent and the root of Υi is v-valent, where
u, v ∈ {0, 1,Q} and u 6= v (in which case it is called univalent critical).

In [14] it is shown that a critical index always exists. In our case, however,
this is not necessarily the case. If some process crashes (in the current failure
pattern), it is possible that in all simulated runs of QC algorithm A in Υ all
decisions are Q. In this case, the roots of all trees in the limit forest Υ are tagged
only with Q. So there is no critical index, and we cannot apply the techniques
of [14] to extract the id of a correct process! This is why, in our transformation
algorithm, processes do not always attempt to extract Ω from D. However, if a
process actually attempts to extract Ω (in line 22) then a critical index does exist
in the limit forest Υ, and so Ω can indeed be extracted:

Lemma 5.4 If any process reaches line 22 then the limit forest Υ has a critical
index.
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Proof: If a process reaches line 22, then it previously decided a tuple of the form
(I0, I1, S0, S1) in line 15. Thus, by the Validity property of QC, some process q
(not necessarily correct) proposed some tuple in line 14. We first show that the
limit forest Υ has some run where some correct process decides a value other
than Q.

Since q proposed a tuple in line 14, it must have decided some value v 6= Q in
some partial run R of A in Υq. Before q proposed its tuple in line 14, it sent to all
processes the finite path of q’s DAG (of failure detector samples) that gave rise
to the partial run R. Thus, after receiving this path and integrating it in its own
DAG, every correct process p also constructs partial run R (which is compatible
with this path), and includes it in its own forest Υp. So the partial run R where q
decides v is also embedded in the limit forest Υ. Note that Υ includes an infinite
run R∗ that extends R such that all the correct processes take an infinite number
of steps in R∗. By the Termination and Agreement properties of A, all the correct
processes decide v (the same as q) in run R∗. So Υ has a run where all correct
processes decide v 6= Q.

From the above, the root of some tree Υj of the limit forest Υ has tag v 6= Q.
Without loss of generality, assume v = 0. Note that the root of tree Υn, where
all processes propose 1, must have a tag u 6= 0 (it can be 1 or Q). Therefore,
some index i between j and n must be critical. 2

Extracting Σ

To extract Σ, p must continuously output a set of processes (a quorum) such that
the quorums of all processes always intersect, and eventually they contain only
correct processes. This is done in lines 24-32 as follows.

When process p reaches line 24, it has agreed with other processes on two
initial configurations I0 and I1 and two schedules S0 and S1 that are applicable
to I0 and I1, respectively. Consider the set C of configurations of A obtained by
applying all the prefixes of S0 and S1 to, respectively, I0 and I1 (line 25).

As in the reduction algorithm TD→Σ described in Section 3.2, to determine
its next quorum, p uses “fresh” failure detector samples to simulate runs of A
that extend each configuration in C (lines 29-30). It does so until, for each
configuration in C, it has simulated an extension in which it has decided (line 31).
The quorum of p is the set of all processes that take steps in these “deciding”
extensions (line 32).

Note that in line 27, p waits until it gets a new sample u from its failure
detector module (which happens in line 4 of task 1) and then it uses only samples
that are more recent than u to extend the configurations in C (lines 29-30). This
ensures the freshness of the failure detector samples that p uses to determine its
quorums. Consequently, quorums eventually contain only correct processes (one
of the two requirements of Σ).

The proof

Lemma 5.5 For each correct process p, there is a time after which Σ-outputp
contains only correct processes.
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Proof: Let p be a correct process. Note that: (a) p takes a new failure detector
sample u infinitely often (in line 27), and (b) Σ-outputp contains only processes
that take steps after the most recent sample u taken by p. Since faulty processes
eventually stop taking steps, there is a time after which Σ-outputp does not con-
tain any faulty process. 2

Lemma 5.6 For any processes p, q, Σ-outputp and Σ-outputq always intersect.

Proof: Recall that p and q agreed on a value of the form (I0, I1, S0, S1) in a
(real) execution of A (line 15). I0 and I1 are initial configurations that differ only
in the proposal of one process, and S0 and S1 are (simulated) schedules of A in
which some process decides 0 in S0(I0) and 1 in S1(I1). Thus, p and q also agree
on the set of configurations C that is obtained by applying all prefixes of S0 and
S1 to I0 and I1, respectively.

More precisely, let S0 = e1e2 . . . e` and S1 = f1f2 . . . fm (where the ei’s and
fj ’s are steps). Let C0 = I0 and Ci = ei(Ci−1) for 1 ≤ i ≤ `; similarly, D0 = I1

and Dj = fj(Dj−1) for 1 ≤ j ≤ m. Thus, C = {C0, . . . , C`, D0, . . . , Dm}.
Let Qp and Qq be the values of Σ-outputp and Σ-outputq at any two times.

We must prove that Qp ∩Qq 6= ∅. Suppose, for contradiction, that this is not the
case, i.e., Qp ∩Qq = ∅.

Consider the iteration of the loop in lines 26-32 at the end of which p set
Σ-outputp to Qp. In that iteration, for each Ci, 0 ≤ i ≤ `, p determined a
schedule σp

i such that p decides some value, denoted xp
i , in σp

i (Ci); and, for each
Dj , 0 ≤ j ≤ m, p determined a schedule τp

j such that p decides some value,
denoted yp

j , in τp
j (Cj). Note that Qp is the set of processes that take steps in

some of the schedules σp
i , 0 ≤ i ≤ `, and τp

j , 0 ≤ j ≤ m.
Consider now the iteration of the loop in lines 26-32 at the end of which q set

Σ-outputq to Qq. We define σq
i , xq

i , τ q
j , and yq

j , in an analogous manner. Similarly,
Qq is the set of processes that take steps in the schedules σq

i , 0 ≤ i ≤ `, and τ q
j ,

0 ≤ j ≤ m. (See Figure 5.4.)

Claim 5.6.1 For all i, 0 ≤ i ≤ `, xp
i = xq

i ; and for all j, 0 ≤ j ≤ m, yp
j = yq

j .

Proof of Claim 5.6.1. Since Qp and Qq are disjoint, for each i, 0 ≤ i ≤ `, the
sets of processes that take steps in σp

i and σq
i are disjoint. Thus, by Corollary 2.2

(applied with I = I0, S = e1e2 . . . ei, S1 = σp
i and S2 = σq

i ), xp
i = xq

i . The proof
that yp

j = yq
j is analogous.

By Claim 5.6.1, we can now define xi = xp
i = xq

i and yj = yp
j = yq

j .

Claim 5.6.2 For all i, 0 ≤ i < `, xi+1 = xi; and for all j, 0 ≤ j < m, yj+1 = yj .

Proof of Claim 5.6.2. Recall that Ci+1 = ei+1(Ci). Since Qp and Qq are
disjoint, the sets of processes that take steps in σp

i and σq
i are disjoint. Thus,

the process that takes step ei+1 does not take a step in at least one of σp
i or

σq
i . Without loss of generality, assume that it does not take a step in σp

i . Let
σ = ei+1 · σq

i+1. Note that σ is applicable to Ci. Moreover, the sets of processes
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Figure 5.4: Illustration of proof of Lemma 5.6

that take steps in σp
i and σ are disjoint. Thus, by Corollary 2.2 (applied with

I = I0, S = e1e2 . . . ei, S1 = σp
i and S2 = σ), xi = xi+1. The proof that yj = yj+1

is analogous.

Claim 5.6.3 x0 = 0 and y0 = 1.

Proof of Claim 5.6.2. Recall that some process decides 0 in C` = S0(I0).
Therefore, p decides 0 in σp

` (C`), and so x` = 0. By Claim 5.6.2 and a trivial
induction, xi = 0 for all i, 0 ≤ i ≤ `. In particular, x0 = 0. The proof that y0 = 1
is analogous.

Recall that I0 and I1 differ only in the initial value of one process. Let this
process be r. Since Qp and Qq are disjoint, the sets of processes that take steps
in σp

0 and τ q
0 are disjoint. So r does not take a step in at least one of σp

0 and
τ q
0 . Without loss of generality, assume that r does not take a step in σp

0 . Thus,
σp

0 is also applicable to I1. By Corollary 2.2 (applied with I = I1, S being the
empty schedule, S1 = σp

0 and S2 = τ q
0 ), x0 = y0. This contradicts Claim 5.6.3,

and completes the proof of Lemma 5.6. 2

Theorem 5.7 For all environments E, if failure detector D can be used to solve
QC in E, then the algorithm in Figure 5.3 transforms D into Ψ in environment
E.

Proof: Let A be any algorithm that uses D to solve QC in environment E . We
show that the algorithm in Figure 5.3 uses A to transform D into Ψ in environ-
ment E . In that algorithm, each process p maintains a variable Ψ-outputp. We
now prove that the values that these variables take conform to the specification
of Ψ. By inspection of Figure 5.3, it is clear that Ψ-outputp is either ⊥, or red



64 Chapter 5. Quittable Consensus and NBAC

(in which case we say it is of type FS), or a pair (q, Q) where q ∈ Π and Q ⊆ Π
(in which case we say it is of type (Ω,Σ)).

(1) For each process p, Ψ-outputp is initially ⊥ (line 1). If Ψ-outputp ever changes
value, it becomes of type FS forever (line 18) or of type (Ω,Σ) forever
(lines 20-34).

(2) For all processes p and q, it is impossible for Ψ-outputp to be of type FS
and Ψ-outputq to be of type (Ω,Σ). The types of Ψ-outputp and Ψ-outputq
are determined by the value returned by QC algorithm A in line 15. By the
Agreement property of QC, p and q cannot decide different values in line 15.

(3) For each correct process p, eventually Ψ-outputp 6= ⊥. To see this, let p
be any correct process. Process p simulates a forest Υp of ever-increasing
partial runs of A as in [14] (see line 6). In this simulation, every tree in Υp

has runs in which all correct processes take steps infinitely often and receive
all messages sent to them. So, by the Termination property of QC, every tree
in Υp has a run in which p decides. Therefore, eventually all correct processes
complete the wait statement in line 8, and execute A in line 11 or 14. By
the Termination property of QC, eventually p decides in that execution of
A, and stops waiting in line 15. Thus, p eventually sets Ψ-outputp to a value
other than ⊥ in line 18 or 34.

(4) For each process p, if Ψ-outputp is red then a process previously crashed in
the current run. To see this, let p be some process that sets Ψ-outputp = red
(line 18). Thus, p decides 0 or Q in the execution of A that it invoked in
line 11 or 14. If p decides Q then the fact that some process has previously
crashed in the current run follows immediately from part (b) of the Validity
property of QC. If p decides 0 then from part (a) of the Validity property
of QC, some process q proposed 0 in the execution of A that q invoked in
line 11. This implies that q decided Q in one of the simulated runs of A that
q has in its forest Υq. Recall that these are runs that could have occurred
with the current failure pattern. By part (b) of the Validity property of QC,
this means that some process has previously crashed in the current run.

(5) If the Ψ-output variable of any process is ever of type (Ω,Σ), then there is a
time after which, for every correct process p, Ω-outputp is the id of the same
correct process. To see this, suppose some Ψ-output becomes of type (Ω,Σ).
Then, by (2) and (3) above, eventually the Ψ-output variable of every correct
process also becomes of type (Ω,Σ). So every correct process sets its Ω-output
variable repeatedly in line 22 using the extraction procedure described in [14].
Since processes reach line 22, by Lemma 5.4, a critical index exists in the limit
forest Υ. By following the proof of [14], it can now be shown that eventually
all the correct processes extract the id of the same correct process. The only
difference is that whenever [14] refers to a bivalent node, we now refer to a
multivalent one, and whenever [14] refers to 0-valent versus 1-valent nodes,
we refer here to u-valent and v-valent nodes where u, v ∈ {0, 1,Q} and u 6= v.

(6) If the Ψ-output variable of any process is ever of type (Ω,Σ) then: (a) for every
correct process p, there is a time after which Σ-outputp contains only correct
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processes, and (b) for every processes p and q, Σ-outputp and Σ-outputq
always intersect. This is shown in Lemmas 5.5 and 5.6.

From the above, it is clear that the values of the variables Ψ-output conform to
Ψ: For an initial period of time they are equal to ⊥. Eventually, however, they
behave either like the failure detector (Ω,Σ) at all processes or, if a failure occurs,
they may instead behave like the failure detector FS at all processes. Moreover,
this switch from ⊥ to (Ω,Σ) or FS is consistent at all processes. 2

From Theorems 5.2 and 5.7, we have:

Corollary 5.8 For all environments E, Ψ is the weakest failure detector to solve
QC in E.

5.3 The weakest failure detector to solve NBAC

5.3.1 Specification of NBAC

In the non-blocking atomic commit problem (NBAC), each process p starts with
a value v ∈ {Yes,No} (we say that p votes v), and terminates with a decision
value Commit or Abort. It is required that:

Termination: If every correct process votes, then every correct process eventu-
ally returns a value.

Agreement: No two processes (whether correct or faulty) return different val-
ues.

Validity: A process may only return Commit or Abort. Moreover,
(a) If v = Commit then all processes previously voted Yes.
(b) If v = Abort then either some process previously voted No or a failure
previously occurred.

Despite their apparent similarity, QC and NBAC are different in important ways.
In NBAC, the two possible input values Yes and No are not symmetric: A single
vote of No is enough to force the decision to abort. In contrast, in QC, (as in
consensus) no input value has a privileged role. Another way in which the two
problems differ is that the semantics of the decision to abort (in NBAC) and
the decision to quit (in QC) are different. In NBAC, the decision to abort is
sometimes inevitable (e.g., if a process crashes before voting); in contrast, in QC,
the decision to quit is never inevitable, it is only an option. Moreover, in NBAC,
the decision to abort signifies that either a failure has occurred or someone voted
No; in contrast, in QC, the decision to quit is allowed only if a failure has occurred.

The following corollary to Lemma 2.3 follows directly from the specification
of NBAC:

Corollary 5.9 Let A be any NBAC algorithm, R = 〈F,H, I, S, T 〉 be any partial
run of A, p and q be any processes such that no step of q causally precedes the
last step of p in R. Then if p decides v in R, then v = Abort.
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5.3.2 Using FS to relate NBAC and QC

We first show that NBAC is equivalent to the combination of QC and failure
detector FS. We then use this result to establish a relationship between the
weakest failure detector to solve QC and the one to solve NBAC.

Theorem 5.10 NBAC is equivalent to QC and FS. That is, in every environ-
ment E:
(a) Given failure detector FS, any solution to QC can be transformed into a
solution to NBAC.
(b) Any solution to NBAC can be transformed into a solution to QC, and can be
used to implement FS.

Proof: Let E be an arbitrary environment.

(a) The algorithm in Figure 5.5 uses FS to transform QC into NBAC in E . Each
process p sends its vote to all processes and then waits until the votes of all
processes are received or FS detects a failure by outputting red. If the votes of
all processes are received and are Yes, then p runs a QC algorithm proposing 1.
Otherwise (i.e., if some vote was No or a failure was detected by FS), p runs a
QC algorithm proposing 0.

If 1 is decided in the QC algorithm, then p returns Commit. If 0 or Q is
decided, then p returns Abort.

The Agreement property of QC ensures that no two processes decide differ-
ently. If there are no no failures, then eventually p receives all the votes. If
a failure occurs, then FS eventually outputs red. Hence, the wait statement
in line 2 is non-blocking. The Termination property of QC ensures that every
correct process eventually decides.

Assume that p decides Commit. By Validity of QC some process q previously
proposed 1. By the algorithm, q received the votes of all processes and all the
votes were Yes.

Assume now that p decides Abort. By Validity of QC some process q previ-
ously proposed 0 or a failure previously occurred. If some process q proposed 0,
then either q received vote No from some process or a failure previously occurred
and was detected by FS.

In both cases, Validity of NBAC is ensured.

(b) It is known that NBAC can be used to implement FS in any environ-
ment [16, 32]. Roughly speaking, processes use the given NBAC algorithm re-
peatedly (forever), voting Yes in each instance. At each process, the output of
FS is initially green, and becomes permanently red if and when an instance of
NBAC returns Abort. It remains to prove that any solution to NBAC in E can
be transformed into a solution to QC in E . Such a transformation is shown in
Figure 5.6.

Each process p sends its proposal to all and executes the given NBAC al-
gorithm A by voting Yes. If A returns Abort, then p returns Q. If A returns
Commit, then p waits until it receives the proposals of all processes, and returns
the smallest proposal among them.
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Procedure nbacVote(v): { v is Yes or No }
1: send v to all
2: wait until [(for each process q in Π, received q’s vote) or FS = red]
3: if the votes of all processes are received and are Yes then
4: myproposal← 1
5: else { some vote was No or there was a failure }
6: myproposal← 0
7: mydecision← qcPropose(myproposal) { run the given QC algorithm }
8: if mydecision = 1 then
9: return Commit
10: else { mydecision = 0 or Q }
11: return Abort

Figure 5.5: Using FS to transform QC into NBAC: code for each process p

Procedure qcPropose(v): { v is 1 or 0 }
1: send v to all
2: d := nbacVote(Yes) { run the given NBAC algorithm A }
3: if d = Abort then
4: return Q
5: else
6: wait until [for each process q ∈ Π, received q’s proposal]
7: return smallest proposal received

Figure 5.6: Transforming NBAC into QC: code for each process p

By the Termination property of NBAC, A eventually returns a value in
{Commit,Abort} at every correct process. By the Agreement property of NBAC,
no two different values are returned by A at any two processes.

Assume that A returns Abort. By the algorithm in Figure 5.6, every process
returns Q or crashes — the Agreement and Termination properties of QC are
satisfied. By the Validity (b) property of NBAC and the fact that no process
votes No in its execution of A, it follows that a failure previously occurred — the
Validity property of QC is satisfied.

Assume now that A returns Commit. By the algorithm in Figure 5.6, every
process p waits until it receives the proposals of all processes, and then returns
the smallest proposal received. Let R be a partial run of A such that p decides
Commit in its last step in R. Corollary 5.9 implies that the last of step of p in R
is causally preceded by at least one step of every process q. By the algorithm in
Figure 5.6, before taking any step in R, q has previously sent its proposal to all.
Thus, eventually, p either crashes, or receives the proposals of all processes and
returns the smallest among them — the Agreement, Termination and Validity
properties of QC are satisfied. 2

5.3.3 The weakest failure detector to solve NBAC

Theorem 5.11 For every environment E, if D is the weakest failure detector to
solve QC in E, then (D,FS) is the weakest failure detector to solve NBAC in E.
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Proof: Let E be an arbitrary environment, and D be the weakest failure detector
to solve QC in E . This means that: (i) D can be used to solve QC in E and (ii) any
failure detector that solves QC in E can be transformed into D in E .

Let D′ = (D,FS). We must show that: (a) D′ can be used to solve NBAC in E ,
and (b) any failure detector that solves NBAC in E can be transformed into D′
in E .

(a) Since the output of D′ includes the output of D, by (i), D′ can be used to
solve QC in E . Since D′ also includes FS, by Theorem 5.10(a), D′ can be used
to solve NBAC in E .

(b) Let D′′ be a failure detector that solves NBAC in E . By Theorem 5.10(b),
(1) D′′ can be used to solve QC in E , and (2) D′′ can be used to implement FS
in E . From (1) and (ii), D′′ can be transformed into D in E . By (2), D′′ can be
transformed into (D,FS), i.e., into D′, in E . 2

From Corollary 5.8 and Theorem 5.11, we immediately have:

Corollary 5.12 For all environments E, (Ψ,FS) is the weakest failure detector
to solve NBAC in E.

5.4 Concluding remarks

Handling future failures

Our definitions of QC and NBAC do not allow a process to quit or abort because
of a future failure. We could have defined these problems in a way that allows
such behavior, as in fact is the case in some specifications of NBAC in the liter-
ature [31, 68]. Our results also hold with these definitions, provided we make a
corresponding change to the definitions of the failure detectors FS and Ψ: they
are now allowed to output red in executions with failures even before a failure
has occurred.

Environments with a majority of correct processes

In environments where a majority of processes are correct it is easy to implement
the quorum failure detector Σ: Each process periodically sends “join-quorum”
messages, and takes as its present quorum any majority of processes that respond
to that message [20]. Therefore, in such environments Ψ is equivalent to a simpler
failure detector, one which outputs just Ω where Ψ outputs (Ω,Σ).

Other models

The solutions presented in Figures 5.2 and 5.5 are also correct in a weaker model
where steps of algorithms have finer granularity (send phase, query phase, and
receive phase are not encapsulated in the same atomic step), and channels guar-
antee only that every correct process eventually receives every message sent to it
by any correct process.
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The algorithm in Figure 5.6 can be easily adapted for the weaker model. In
executing the NBAC algorithm A, each process collects the set of proposal values
of all processes whose steps in the current run of A causally precede p’s decision.
This set is determined by having p tag every message m (sent in the context of
the current execution of A) with the union of proposals attached to all messages
m′ causally preceding m (including its own proposal). If A returns Commit at
p, then, by Corollary 5.9, p collects the proposals of all processes. In this case, p
returns the smallest proposal among them.

Similarly, the algorithm of Figure 5.1 can also be adapted for the weaker
model by forwarding the proposal value of p(k mod n)+1 as an attachment to every
message sent in the context of each k-th instance of the binary QC algorithm in
which 1 is proposed.

The reduction algorithm described in Figure 5.3 is correct also in a stronger
model in which every process can atomically send its messages to all.

5.5 Related work

NBAC has been studied extensively in the context of transaction processing
[31, 68]. Its relation to consensus was first explored in [37]. The timing condi-
tions sufficient for solving NBAC in a probabilistic manner were explored in [18].
Charron-Bost and Toueg [16] and Guerraoui [32] showed that despite some ap-
parent similarities, in asynchronous systems NBAC and consensus are in general
incomparable — i.e., a solution for one problem cannot be used to solve the other.
An exception is the case where at most one process may fail. In this case, NBAC
can be transformed into consensus, but the reverse does not hold [16, 32].

The problem of determining the weakest failure detector to solve NBAC was
explored and settled in special settings. Fromentin et al. [30] showed that to
solve NBAC between every pair of processes in the system, one needs a perfect
failure detector P. Guerraoui and Kouznetsov [33] determined the weakest failure
detector for NBAC within a restricted class of failure detectors, while from results
of [16] and [32] it follows that in the special case where at most one process may
crash, FS is the weakest failure detector to solve NBAC.

Guerraoui and Kouznetsov directly determined the weakest failure detector
for solving NBAC with a majority of correct processes [35]. Independently, Hadzi-
lacos and Toueg obtained the same result by introducing the quittable consensus
problem (QC), determining the weakest failure detector for solving QC with a
majority of correct processes, and establishing the relationship between QC and
NBAC [40].

A problem similar to QC, called detectable agreement, was introduced by
Fitzi et al. [29] for Byzantine environments. In detectable Byzantine agreement,
correct processes can sometimes agree on the fact that some of the processes
misbehave which matches the specification of QC for the case of crash failures.





Chapter 6

Failure Detectors as Type
Boosters

In this chapter, we show that Ωn is the weakest failure detector to solve con-
sensus among k processes using registers and objects of any m-ported one-shot
deterministic type T such that m ≤ n+1 and cons(T ) = n. As a corollary of our
result, we show that Ωt+1 is the weakest failure detector to solve consensus among
k processes using registers and t-resilient objects of any types (not necessarily
one-shot deterministic types with a bounded number of ports).

Section 6.1 presents necessary details on the model used in this chapter. Sec-
tion 6.2 recalls the hierarchy of failure detectors Ωn. Section 6.3 shows that Ωn is
necessary to boost the consensus power of one-shot deterministic objects one level
up in the consensus hierarchy. Section 6.4 generalizes this result to show that
Ωn is necessary to boost the consensus power of at most (n + 1)-ported one-shot
deterministic objects to any higher level in the consensus hierarchy. Section 6.5
applies our result to the question of boosting the resilience of a distributed system.
Section 6.7 concludes the chapter by discussing the related work.

An early version of the results of this chapter appeared in [34].

6.1 Preliminaries

We consider a set Π of k asynchronous processes p1, p2, . . . , pk (k ≥ 2) that
communicate using shared objects. The processes may fail by crashing, i.e., stop
executing their steps. A process that never crashes is said to be correct. A process
that is not correct is said to be faulty. We say that a subset U ⊆ Π is alive if U
includes at least one correct process. We consider here all failure patterns, i.e.,
we make no assumptions on when and where failures might occur.

6.1.1 Objects and types

Let for any m ∈ N, Nm = {1, . . . ,m}. An object is a data structure that can
be accessed concurrently by the processes. Every object is an instance of a
sequential type which is defined by a tuple (m,O,R,Q, δ). Here, m is a positive
integer denoting the number of ports (corresponding to the maximum number
of processes that can concurrently access an object of this type), O is a set of

71



72 Chapter 6. Failure Detectors as Type Boosters

operations, R is a set of responses, Q is a set of states, and δ is a relation known as
the sequential specification of the type: it carries each state, operation and port
number to a set of response and state pairs. We say that a type (m,O,R, Q, δ) is
deterministic if its sequential specification is a function δ : Q×O×Nm → Q×R.
In most of this chapter, we assume that object types are deterministic. A type
with m ports is said to be m-ported.

Informally, a port of an object of a one-shot type can be consistently used at
most once. More precisely, a type (m, O, R,Q, δ) is one-shot if R = R′ ∪ {⊥},
Q = Q′ × 2Nm , and for all o ∈ O, q, q′ ∈ Q′, U,U ′ ∈ 2Nm , j ∈ Nm, and r ∈ R:

((q′, U ′), r) ∈ δ((q, U), o, j) ⇒(
(j /∈ U) ∧ (U ′ = U ∪ {j}) ∧ (r ∈ R′)

)
∨(

(j ∈ U) ∧ (q′ = q) ∧ (U ′ = U) ∧ (r = ⊥)
)

The register type is defined as a tuple (k, O, R,Q, δ) where Q is a set of values
that can be stored in a register, O = {read(),write(v) : v ∈ Q}, R = Q∪{ok} and
∀v, v′ ∈ Q and j ∈ Nk, δ(v,write(v′), j) = (v′, ok) and δ(v, read(), j) = (v, v).1

A process accesses objects by invoking operations on the ports of the objects.
Unless explicitly stated otherwise, we assume that, in any execution, a port can
be used by at most one process, and a process can use at most one port of
each object (this corresponds to the one-to-one static binding scheme [13]). In
Section 6.5, we also consider the more permissive softwired binding scheme [13].

We consider here linearizable [43] objects: even though operations of concur-
rent processes may overlap, each operation takes effect instantaneously between
its invocation and response. If a process invokes an operation on a linearizable
object and fails before receiving a matching response, then the “failed” operation
may take effect at any time after the corresponding invocation. Any execution on
linearizable objects can thus be seen as a sequence of atomic invocation-response
pairs.

Unless explicitly stated otherwise, we assume that the object implementa-
tions are wait-free: any object operation invoked by a correct process eventually
returns, regardless of failures of other processes [41]. In contrast, t-resilient imple-
mentations of shared objects (considered in Section 6.5) provide weaker liveness
properties, they only guarantee that a correct process completes its operation, as
long as no more than t processes crash.

6.1.2 Algorithms

We define an algorithm A using a failure detector D as a collection of k determin-
istic automata, one for each process in the system. A(p) denotes the automaton
on which process p runs the algorithm A. Computation proceeds in atomic steps
of A. In each step of A, process p:

(i) performs an operation on a shared object or queries its failure detector
module Dp, and

1Note that our definition of the register type causes no loss of generality in describing the
read/write shared memory [71, 44].
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(ii) applies its current state together with the response received from a shared
object or the value received from Dp, during that step, to the automaton
A(p) to obtain a new state.

A step of A is thus identified by a pair (p, x), where x is either λ (the empty
value) or the failure detector value output at p during that step.

6.1.3 Configurations, schedules and runs

A configuration of A defines the current state of each process and each object in
the system. An initial configuration of A defines the initial state of each process
p and each object.

Let C be any configuration of A. For every process p, A(p) and the state of p
in C determine whether, in any step of p applied to C, p accesses a shared object
X (we say that p accesses X in C) or queries its failure detector module (we say
that p queries D in C). A step (p, x) is said to be applicable to C if:

(a) x = λ , and p accesses some shared object X in C, or

(b) x ∈ RD, and p queries D in C.

In case (b), x is interpreted as the value output by Dp during step (p, x). For a
step e applicable to C, e(C) denotes the unique configuration that results from
applying e to C (the configuration is unique because algorithms and objects
considered here are deterministic).

A schedule S of algorithm A is a (finite or infinite) sequence of steps of A.
S⊥ denotes the empty schedule. We say that a schedule S is applicable to a
configuration C if and only if (a) S = S⊥, or (b) S[1] is applicable to C, S[2] is
applicable to S[1](C), etc. For a finite schedule S applicable to C, S(C) denotes
the unique configuration that results from applying S to C.

Let S be any schedule applicable to a configuration C, and X be any object.
We say that S applied to C accesses X if S has a prefix S′ ·(p, λ) where p accesses
X in S′(C).

For any P ⊆ Π, we say that S is a P -solo schedule if only processes in P take
steps in S.

A partial run of algorithm A using a failure detector D is a tuple R =
〈F,HD, I, S, T 〉 where F is a failure pattern, HD ∈ D(F ) is a failure detector
history, I is an initial configuration of A, S is a finite schedule of A, and T ⊆ T
is a finite list of increasing time values such that |S| = |T |, S is applicable to I,
and for all 1 ≤ k ≤ |S|, if S[k] = (p, x) then:

(1) Either p has not crashed by time T [k], i.e., p /∈ F (T [k]), or x = λ and S[k]
is the last appearance of p in S, i.e., ∀k < k′ ≤ |S|: S[k′] 6= (p, ∗) 2;

(2) if x ∈ RD, then x is the value of the failure detector module of p at time
T [k], i.e., x = HD(p, T [k]).

2The last condition takes care about the cases when an operation of p is linearized after p
has crashed, and there can be at most one such operation in a run.
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A run of algorithm A using a failure detector D is a tuple R = 〈F,HD, I, S, T 〉
where F is a failure pattern, HD ∈ D(F ) is a failure detector history, I is an initial
configuration of A, S is an infinite schedule of A, and T ⊆ T is an infinite list of
increasing time values indicating when each step of S has occurred. In addition
to satisfying properties (1) and (2) of a partial run, R should guarantee that:

(3) every process that is correct (in F ) takes an infinite number of steps in S.

6.1.4 Consensus and consensus power

Let S be any set of types and D be any failure detector. We say that an algorithm
A solves consensus usingD and objects of types in S if, in the initial configurations
of A, processes propose values in {0, 1}, and in every run of A, only D and
objects of types in S are accessed and the Termination, Agreement, and Validity
properties (Section 2.7) are satisfied.

We say that a set S of types solves m-process consensus if there is an algorithm
for m processes that solves consensus using only registers and objects of types in
S (without failure detectors).

The consensus power of an object type T , denoted cons(T ), is the largest
number m of processes such that {T} solves m-process consensus. If no such
largest m exists, then cons(T ) =∞.

It is sometimes convenient to think of the consensus problem in terms of
an object type. Formally, the m-process consensus type is specified as a tuple
(m,O,R, Q, δ), where Q = {⊥, 0, 1} × 2Nm , O = {propose(v) : v ∈ {0, 1}},
R = {⊥, 0, 1}, and ∀v, v′ ∈ {0, 1}, U ∈ 2Nm , and j ∈ Nm, if j /∈ U , then
δ((⊥, U), propose(v), j) = ((v, U ∪{j}), v) and δ((v′, U), propose(v), j) = ((v′, U ∪
{j}), v′), otherwise (if j ∈ U), δ((v′, U), propose(v), j) = ((v′, U),⊥). Clearly, the
m-process consensus type is m-ported, one-shot, and deterministic.

6.1.5 Team consensus

We also use a restricted form of consensus, called team consensus. This variant
of consensus always ensures Validity and Termination, but Agreement is ensured
only if the input values satisfy certain conditions. More precisely, assume that
there exists a (known a priori) partition of the processes into two non-empty sets
(teams). Team consensus ensures Validity, Termination and

Team Agreement: If all processes in a team have the same input value, then
no two processes decide different values.

Obviously, team consensus can be solved whenever consensus can be solved. Sur-
prisingly, the converse is also true [61, 64]:

Lemma 6.1 Let S be any set of types. If team consensus among m ≥ 2 processes
can be solved using objects of types in S (without failure detectors), then S also
solves m-process consensus.
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6.1.6 Weak consensus

To prove our result, we also consider a weaker form of consensus, the weak con-
sensus problem [28]. Recall that weak consensus ensures the Termination and
Agreement properties of consensus, but Validity is replaced by a weaker Non-
Triviality property: every algorithm that solves the weak consensus problem has
a run in which 0 is decided and a run in which 1 is decided. Obviously, weak
consensus can be solved whenever consensus can be solved. We show below that,
if deterministic types are used, the converse is also true:

Lemma 6.2 Let S be any set of deterministic types. If weak consensus among
m ≥ 2 processes can be solved using objects of types in S (without failure detec-
tors), then S solves m-process consensus.

Proof: Let A be any algorithm that solves weak consensus among m ≥ 2
processes using objects of types in S.

Let G be the execution graph of A: the vertices of G are all possible configu-
rations of A (defined by the states of the processes and all shared objects); and
vertices s, s′ of G are connected with an edge directed from s to s′ if and only if
there is a step of A that, applied to s, results in s′.

A vertex s of G is assigned a tag v ∈ {0, 1} if it has a descendant s′ in G (i.e.,
there exists a path in G from s to s′) such that some process has decided v in s′.
If a configuration has both tags 0 and 1, it is called bivalent. If a configuration
has only one tag v, it is called v-valent. A configuration is univalent if it is 0-
valent or 1-valent. The Termination property of weak consensus ensures that any
configuration of A is either bivalent or univalent. It is straightforward to show
that A has a bivalent initial configuration [28].

We show first that there exists a critical configuration in G, i.e., a bivalent
configuration s̄ such that every step of A applied to s̄ results in a univalent
configuration. Suppose not, i.e., every bivalent configuration in G has a bivalent
descendant. Then, starting from any bivalent initial configuration of A, we can
build an infinite schedule of step of A that goes through bivalent configurations
only. By the Agreement property of weak consensus, no process can decide in a
bivalent configuration. Since we consider here all failure patterns, this schedule
corresponds to a run of A in which no process can ever decide — a contradiction
with the Termination property of weak consensus.

Assume now that the system is in a critical configuration s̄. Since the al-
gorithm A and the types in S are deterministic, the step of any given process
applied to s̄ triggers exactly one transition in graph G. Thus, for any step of A
applied to s̄, the valence of the resulting configuration is defined by the identity
of the process that takes that step. Now we partition Π into two teams Π0 and
Π1: for each i ∈ {0, 1}, Πi consists of all processes whose steps applied to s̄ result
in i-valent configuration. Since s̄ is bivalent and any step applied to s̄ results
in a univalent configuration, the two teams are non-empty. The algorithm in
Figure 6.1 solves team consensus problem team consensus among m processes for
teams Π0 and Π1.

Let all objects used by A be initialized to their states in s̄. For each i ∈ {0, 1},
we associate team Πi with a register Xi. Every process p writes its input value
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Initially:
all objects are initialized to their states in s̄

Procedure tcPropose(v): { let p ∈ Πi, i ∈ {0, 1} }
1: Xi ← v { write the proposal in the team’s register }
2: let p be initialized to its state in s̄
3: run A until it returns a value j ∈ {0, 1}
4: return Xj

Figure 6.1: A team consensus algorithm: code for each process p

into its team’s register and then runs A starting from p’s state in s̄ until A returns
a value j ∈ {0, 1}. Then the process returns the value of Xj .

Consider any run R of the algorithm in Figure 6.1. The Termination property
of weak consensus ensures Termination of our algorithm. Assume that p returns
a value of Xj in R, i.e. A returns j at p. By the definition of Π0 and Π1, the first
step accessing X in R is by a process q ∈ Πj . By the algorithm, q has previously
written its input value in Xj . Thus, Validity of team consensus is ensured. The
Agreement property of weak consensus ensures that A cannot return 1 − j at
any process q in R. Thus, no process can return a value of X1−j in R. Assume
now that all processes in a team propose the same value. Hence, Agreement is
ensured, since the processes return the value previously written in Xj , and no
two different values can be written in Xj .

Thus, team consensus can be solved among m processes using objects of types
in S initialized to their states in s̄. By Lemma 6.1, S solves consensus among m
processes. 2

6.2 Hierarchy of failure detectors Ωn

The hierarchy of failure detectors Ωn (n ∈ N) was introduced in [61]. Ωn (n ∈ N)
outputs a set of at most n processes at each process so that, eventually, the same
alive set (including at least one correct process) is output at all correct processes.

Formally, RΩn = {P ⊆ Π : |P | ≤ n}, and for each failure pattern F :

H ∈ Ωn(F ) ⇒ ∃t ∈ T ∃P ∈ RΩn ∀p ∈ correct(F ) ∀t′ ≥ t :
(P ∩ correct(F ) 6= ∅) ∧ (H(p, t′) = P )

Note that Ω1 is equivalent to Ω. It was shown in [61] that, for all n ≥ 1:

(a) Ωn+1 ≺ Ωn;

(b) for any type T such that cons(T ) = n, and any k > n, there is an algorithm
that solves k-process consensus using Ωn, registers, and objects of type T .

6.3 Boosting consensus power to level n + 1

In this section, we assume that k = n+1 processes communicate through registers
and objects of a one-shot deterministic type T such that cons(T ) ≤ n. We
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show that Ωn is necessary to solve consensus in this system. Our proof is a
generalization of the proof that Ω is necessary to solve consensus in message-
passing asynchronous systems [14] (see Section 3.1).

6.3.1 Overview of the reduction algorithm

Let n ≥ 1 and ConsD be any algorithm that solves consensus among k = n + 1
processes using a failure detector D, registers and objects of a one-shot determin-
istic type T such that cons(T ) ≤ n. We describe a reduction algorithm TD→Ωn

that emulates the output of Ωn using D and ConsD. The reduction algorithm has
all correct processes eventually agree on the same alive set of at most n processes.

Like the reduction algorithm of Section 3.1, TD→Ωn consists of two parallel
tasks: a communication task and a computation task.

In the communication task, each process p periodically queries its failure
detector module of D and exchanges the failure detector values with the other
processes values using read-write memory. All this information is pieced together
in a directed acyclic graph (DAG) Gp.

Let I l (l = 0, 1, . . . , k) denote an initial configuration of ConsD in which
processes p1, . . . , pl propose 1 and processes pl+1, . . . , pk propose 0. In the com-
putation task, p periodically uses its DAG Gp to simulate locally, for every initial
configuration I l (l = 0, 1, . . . , k) and every set of processes P ⊆ Π, a number
of finite P -solo schedules of runs of ConsD that could have occurred with the
current failure pattern and failure detector history. These schedules constitute
an ever-growing simulation tree, denoted ΥP,l

p . Since registers provide reliable
communication, all such ΥP,l

p tend to the same infinite simulation tree ΥP,l [14].
It turns out that the processes can eventually detect the same set P ⊆ Π

such that P includes all correct processes, and either (a) there exists a correct
critical process whose proposal value in some initial configuration I l determines
the decision value in all paths in ΥP,l, or (b) some ΥP,l has a finite subtree γ,
called a complete decision gadget, that provides sufficient information to compute
a set of at most n processes at least one of which is correct, called the deciding
set of γ. Eventually, the correct processes either detect the same critical process
or compute the same complete decision gadget and agree on its deciding set. In
both cases, Ωn is emulated.

A difficult point here is that, sometimes, the deciding set is encoded in an
object of type T . Since the specification of T is a parameter of the reduction
algorithm, we cannot directly use the case analysis of [14] (Section 3.1) to compute
the deciding set. Fortunately, in this case, using the fact that type T is one-
shot and deterministic, we can locate a special kind of decision gadget, which we
introduce here and which we call a rake. Informally, a rake can be used to identify
a set of “confused” processes that are not able to decide without communicating
with the other processes. Thus, the set of “non-confused” processes (of size at
most n) must contain at least one correct process.
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Initially:
Gp ← empty graph
kp ← 0

1: while true do
2: for all q ∈ Π do Gp ← Gp ∪Gq

3: dp ← query failure detector D
4: kp ← kp + 1
5: add to Gp [p, dp, kp] and edges from all vertices of Gp to [p, dp, kp]

Figure 6.2: Building a DAG: code for each process p

6.3.2 DAGs and simulation trees

The communication task of algorithm TD→Ω is presented in Figure 6.2. This task
maintains an ever-growing DAG that satisfies properties (1)–(4) of Section 3.1.2.
For each process p, the DAG is stored in a register Gp which is periodically
updated by p and read by all processes.

Let I l (l = 0, 1, . . . , k) denote an initial configuration of ConsD in which
processes p1, . . . , pl propose 1 and processes pl+1, . . . , pk propose 0. Let P ⊆ Π
be any set of processes, and g = [q1, d1, k1], [q2, d2, k2], . . . [qs, ds, ks] be any path
in Gp such that ∀i ∈ {1, 2, . . . , s} : qi ∈ P . Since algorithms and shared objects
considered here are deterministic, g and I l induce a unique P -solo schedule S =
(q1, x1), (q2, x2), . . . , (qs, xs) of ConsD applicable to I l such that:

∀i ∈ {1, 2, . . . , s} : xi ∈ {λ, di}.

Take any l ∈ {0, 1, . . . , k}. For every P ⊆ Π, all P -solo schedules of ConsD
induced by I l and paths in Gp are pieced together in a tree ΥP,l

p , called the
simulation tree induced by P , I l and Gp, and defined as follows. The set of
vertices of ΥP,l

p is the set of finite P -solo schedules that are induced by I l and
paths in Gp. The root of ΥP,l

p is the empty schedule S⊥. There is an edge from a
vertex S to a vertex S′ whenever S′ = S · e for some step e; the edge is labeled e.

The construction of ΥP,l
p implies that, for any vertex S of ΥP,l

p , there exists
a partial run 〈F,H, I l, S, T 〉 of ConsD where F is the current failure pattern and
H ∈ D(F ) is the current failure detector history.

We tag every vertex S of ΥP,l
p according to the values p decides in the de-

scendants of S in ΥP,l
p : S is assigned a tag v if and only if S has a descendant S′

such that p decides v in S′(I l). The set of all tags of S is called the valence of S
and denoted val(S). If S has only one tag u ∈ {0, 1}, then S is called u-valent.
A 0-valent or 1-valent vertex is called univalent. A vertex is called bivalent if it
has both tags 0 and 1.

Thanks to the reliable communication guarantees provided by registers, for
any two correct processes p and q and any time t, there is a time t′ ≥ t such that
Gp(t) ⊆ Gq(t′) and, respectively, ΥP,l

p (t) ⊆ ΥP,l
q (t′). As a result, and because the

DAGs Gp and the simulation trees ΥP,l
p of correct processes p grow monotonically

with time, the DAGs tend to the same infinite DAG G, and the simulation trees
tend to the same infinite simulation tree ΥP,l [14].
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Assume that correct(F ) ⊆ P . By construction, every vertex of ΥP,l has an
extension in ΥP,l in which every correct process takes infinitely many steps. By
the Termination property of consensus, this extension has a finite prefix S′ such
that every correct process has decided in S′(I l). Thus, every vertex S of ΥP,l has
a non-empty valence, i.e., S is univalent or bivalent. More generally:

Lemma 6.3 Let correct(F ) ⊆ P ⊆ Π, m ≥ 1, and S0, S1, . . . , Sm be any vertices
of ΥP,l. There exists a finite schedule S containing only steps of correct processes
such that

(1) S0 · S is a vertex of ΥP,l and all correct processes have decided in S0 · S(I l),
and

(2) for i ∈ {1, 2, . . . ,m}, if S is applicable to Si(I l), then Si · S is a vertex of
ΥP,l.

Proof: Let gi, i = 0, 1, . . . ,m, denote any path in G such that Si is compatible
with gi (by the construction of ΥP,l, such paths exist). Since each Gp satisfies
properties (1)–(4) of Section 3.1.2, it follows that G contains an infinite path g
such that (a) ∀i ∈ {0, 1, . . . ,m}, gi · g is a path in G, (b) the faulty processes do
not appear in g, and (c) the correct processes appear infinitely often in g.

Thus, there is a finite schedule S compatible with a prefix of g and applicable
to S0(I l) such that all correct processes have decided in S0 · S(I l). By construc-
tion, S contains only steps of correct processes. Recall that, ∀i ∈ {1, 2, . . . ,m},
gi · g is a path in G. Thus, if S is applicable to any Si(I l), i = 1, 2, . . . ,m, then
Si · S is a vertex of ΥP,l. 2

The following lemma will facilitate the proof of correctness of our reduction al-
gorithm.

Lemma 6.4 Let correct(F ) ⊆ P ⊆ Π. Let S0 and S1 be any two univalent
vertices of ΥP,l of opposite valence and V be any proper subset of Π. If S0(I l)
and S1(I l) differ only in the states of processes in V , then V includes at least one
correct process.

Proof: Since S0(I l) and S1(I l) differ only in the states of processes in V , any
(Π − V )-solo schedule applicable to S0(I l) is also applicable to S1(I l). By con-
tradiction, assume that V includes only faulty processes. By Lemma 6.3, there
is a schedule S containing only steps of correct processes (and thus no steps of
processes in V ) such that all correct processes have decided in S0 · S(I l) and
S1 · S is a vertex of ΥP,l. Since no process in Π − V can distinguish S0 · S(I l)
and S1 · S(I l), the correct processes have decided the same values in these two
configurations — a contradiction. 2

6.3.3 Decision gadgets

In our reduction algorithm, we exploit the notion of decision gadgets [14] by
defining forks and hooks similarly to [14], and introducing a new kind of de-
cision gadget which we call a rake. Informally, a rake can be used to identify
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a set of “confused” processes that are not able to distinguish two configura-
tions S0(I l) and S1(I l) such that S0 and S1 are univalent vertices of opposite
valence, and these confused processes can only get a decision value from other
(“non-confused”) processes. Therefore, at least one non-confused process must
be correct.

Let correct(F ) ⊆ P ⊆ Π. A decision gadget γ is a finite subtree of ΥP,l rooted
at S⊥ that includes a vertex S̄ (called the pivot of the gadget) such that one of
the following conditions is satisfied:

(fork) There are two steps e and e′ of the same process q, such that S̄ · e and
S̄ · e′ are univalent vertices of ΥP,l of opposite valence.

(hook) There is a step e of a process q and a step e′ of a process q′ (q 6= q′),
such that:

(i) S̄ · e′ · e and S̄ · e are univalent vertices of ΥP,l of opposite valence.

(ii) q and q′ do not access the same object of type T in S̄(I l).

If there is no x ∈ RD ∪ {λ} such that S̄ · e · (q′, x) is a vertex of ΥP,l, then
q′ is called missing in the hook γ. Clearly, if q′ is correct, then it cannot
be missing in γ.

(rake) There is a set U ⊆ P , |U | ≥ 2, and an object X of type T such that
each q ∈ U accesses X in S̄(I l) (U is called the participating set of γ).
Let E denote the set of all vertices of ΥP,l of the form S̄ · S where S =
(q1, λ), (q2, λ), . . . , (q|U |, λ) and q1, q2, . . . , q|U | is a permutation of processes
in U (E can be empty). S̄, U and E satisfy the following conditions:

(i) There do not exist a (Π−U)-solo schedule S′ and a process q′ ∈ Π−U ,
such that ∀S ∈ {S̄}∪E, S ·S′ ·(q′, λ) is a vertex of ΥP,l and q′ accesses
X in S · S′(I l).

(ii) If S ∈ E, then S is univalent.

(iii) If |E| = (|U |)!, i.e., E includes all vertices S̄ ·(q1, λ) ·(q2, λ) · · · (q|U |, λ)
such that q1, q2, · · · , q|U | is a permutation of processes in U , then there
are at least one 0-valent vertex and at least one 1-valent vertex in E.

Note that if |E| < (|U |)!, then there is at least one process q ∈ U such that
for some {q1, q2, . . . , qs} ⊆ U −{q}, S̄ · (q1, λ) · (q2, λ) · · · (qs, λ) is a vertex of
ΥP,l, and S̄ · (q1, λ) · (q2, λ) · · · (qs, λ) · (q, λ) is not a vertex of ΥP,l. We say
that such processes are missing in the rake. Clearly, every missing process
is in faulty(F ).

Examples of decision gadgets are depicted in Figure 6.3: (a) a fork where e =
(q, x) and e′ = (q, x′), (b) a hook where e = (q, x), e′ = (q′, x′), and q and q′ do not
access the same object of type T in S̄(I l); (c) a complete rake with a participating
set U = {q1, q2} and a set of leaves E = {S̄ · (q1, λ) · (q2, λ), S̄ · (q2, λ) · (q1, λ)},
where q1 and q2 access the same object of type T in S̄(I l).
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0-valent

1-valent

1-valent 0-valent

0-valent 1-valent

(a) (b)

S⊥S⊥ S⊥

S̄ S̄ S̄

e

(c)

e′e e′e (q1, λ)

(q2, λ)

(q2, λ)

(q1, λ)

Figure 6.3: A fork, a hook, and a rake

Lemma 6.5 Let correct(F ) ⊆ P ⊆ Π and l ∈ {0, 1, . . . , k}. If the root of ΥP,l is
bivalent, then ΥP,l contains a decision gadget.

Proof: Using arguments of Lemma 6.4.1 of [14] (Section 3.1), we can show that
there exist a bivalent vertex S∗ and a correct process p such that:

(*) For all descendants S′ of S∗ (including S′ = S∗) and all x ∈ RD ∪ {λ} such
that S′ · (p, x) is a vertex of ΥP,l, S′ · (p, x) is univalent.

Moreover, one of the following conditions is satisfied:

(1) There are two steps e and e′ of p, such that S∗ · e and S∗ · e′ are vertices of
ΥP,l of opposite valence.

(2) There is a step e of p and a step e′ of a process q such that S∗ ·e and S∗ ·e′ ·e
are vertices of ΥP,l of opposite valence.

If (1) is satisfied, then a fork is identified.
Consider case (2). If p = q, then by condition (*), S∗ · e′ is a univalent vertex

of ΥP,l, and a fork is identified.
Now assume that p 6= q. If p and q do not access the same object of type T

in S∗(I l), then we have a hook.
The only case left is when p and q access the same object X of type T in

S∗(I l). The procedure described in Figure 6.4 locates a rake in ΥP,l.
We show first that the procedure terminates. Indeed, eventually, either U =

Π, and the algorithm trivially terminates, because there is no q′ ∈ Π− U , or the
algorithm terminates earlier with some U ⊂ Π.

Thus, we obtain a set U (|U | ≥ 2) and a vertex S̄ = S∗ · S′′ such that p or q
take no steps in S′′, S′′ applied to S∗(I l) does not access X (this is ensured by
always choosing a shortest schedule in line 10), and every q′ ∈ U accesses X in
S̄(I l). Furthermore:

(i) There do not exist a (Π − U)-solo schedule S′ and a process q′ ∈ Π − U ,
such that ∀S ∈ {S̄} ∪E, S · S′ · (q′, λ) is a vertex of ΥP,l and q′ accesses X
in S · S′(I l).
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1: U ← {p, q}
2: S̄ ← S∗

3: if 〈S̄ · e · e′ is vertex of ΥP,l 〉 then
4: E ← {S̄ · e′ · e, S̄ · e · e′}
5: else
6: E ← {S̄ · e′ · e}
7: while true do
8: if 〈 there exist a (Π− U)-solo schedule S′ and a process q′ ∈ Π− U

such that ∀S ∈ {S̄} ∪ E, S · S′ · (q′, λ) is a vertex of ΥP,l

and q′ accesses X in S · S′(I l) 〉
9: then
10: let S′ · (q′, λ) be a shortest such schedule
11: S̄ ← S̄ · S′

12: U ← U ∪ {q′}
13: E ← the set of all vertices S̄ · S of ΥP,l

such that S = (q1, λ), (q2, λ), . . . , (q|U |, λ)
where q1, q2, . . . , q|U | is a permutation of processes in U

14: else exit

Figure 6.4: Locating a rake in ΥP,l

(ii) If S ∈ E, then S is univalent.

Indeed, take any S ∈ E. By the algorithm in Figure 6.4, S = S∗ · S′ such
that every process in U takes exactly one step in S′. Since p ∈ U , p takes
exactly one step in S′. By (*), S is univalent.

(iii) If |E| = (|U |)!, i.e., E includes all vertices S̄ · (q1, λ) ·(q2, λ) · · · (q|U |, λ) such
that q1, q2, . . . , q|U | is a permutation of processes in U , then there is at least
one 0-valent vertex and at least one 1-valent vertex in E.

Indeed, assume that |E| = (|U |)!. By construction, S∗ ·S′′ ·e′ ·e, S∗ ·S′′ ·e ·e′,
S∗ · e′ · e · S′′ and S∗ · e′ · e · S′′, where e = (p, λ) and e′ = (q, λ), are
vertices of ΥP,l. Since S′′ applied to S∗(I l) does not access X, both p
and q access X in S∗(I l), and p or q take no steps in S′′, it follows that
S∗ ·S′′ · e′ · e(I l) = S∗ · e′ · e ·S′′(I l) and S∗ ·S′′ · e · e′(I l) = S∗ · e · e′ ·S′′(I l).
But S∗ · e · e′ and S∗ · e′ · e are univalent vertices of opposite valence. Thus,
S∗ ·S′′ · e · e′ and S∗ ·S′′ · e′ · e are also univalent vertices of opposite valence.
Since E includes at least one descendant of S∗ · S′′ · e · e′ and at least one
descendant of S∗ · S′′ · e′ · e, it follows that there are at least one 0-valent
vertex and at least one 1-valent vertex in E.

Hence, a rake with pivot S̄ and participating set U is located. 2

6.3.4 Critical index

We say that index l ∈ {1, 2, . . . , k} is critical in P if either ΥP,l contains a decision
gadget, or the root of ΥP,l−1 is 0-valent, and the root of ΥP,l is 1-valent. In the
first case, we say that l is bivalent critical. In the second case, we say that l is
univalent critical.
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Lemma 6.6 Let correct(F ) ⊆ P ⊆ Π. There exists a critical index in P .

Proof: By Validity of consensus, ΥP,0 is 0-valent and ΥP,k is 1-valent. Hence,
there exists l ∈ {1, 2, . . . , k} such that the root of ΥP,l−1 is 0-valent and the root
of ΥP,l is either 1-valent or bivalent. If the root of ΥP,l is 1-valent, then l is uni-
valent critical. If the root of ΥP,l is bivalent, then, by Lemma 6.5, ΥP,l contains
a decision gadget. Thus, l is critical. 2

6.3.5 Complete decision gadgets

If a decision gadget γ has no missing processes, we say that γ is complete. If γ
(a hook or a rake) has a non-empty set of missing processes, we say that γ is
incomplete.

Lemma 6.7 Let W be the set of missing processes of an incomplete decision
gadget γ. Then W ⊆ faulty(F ).

Proof: Let γ be an incomplete decision gadget of ΥP,l and q be a missing pro-
cess of γ. By definition, q ∈ P and there is a vertex S of ΥP,l such that for all
x ∈ RD ∪{λ}, S · (q, x) is not a vertex of ΥP,l. This can only happen if q is faulty
in F . 2

Lemmas 6.5 and 6.7 imply the following:

Corollary 6.8 Let C = correct(F ). If the root of ΥC,l is bivalent, then ΥC,l con-
tains at least one decision gadget, and every decision gadget of ΥC,l is complete.

6.3.6 Confused processes

The following two lemmas show that a complete hook or a complete rake in ΥP,l

can be used to compute a set of one or more “confused” processes that cannot
distinguish some two configurations S0(I l) and S1(I l) such that S0 and S1 are
univalent vertices of ΥP,l of opposite valence. Later we will use this fact to show
how to compute, at the correct processes, the same set of at most n processes
including at least one correct process.

Lemma 6.9 Let correct(F ) ⊆ P ⊆ Π and γ be a complete hook in ΥP,l defined
by a pivot S̄, a step e of q, and a step e′ of q′ (q 6= q′). There exists a process
p ∈ {q, q′} and two vertices S0 and S1 in {S̄ · e, S̄ · e′ · e, S̄ · e · e′} such that:

(a) S0 and S1 are univalent vertices of ΥP,l of opposite valence, and

(b) S0(I l) and S1(I l) differ only in the state of p.

Proof: By the definition of γ, S̄ · e and S̄ · e′ · e are univalent vertices of ΥP,l of
opposite valence, q and q′ do not access the same object of type T , and there is
a vertex S̄ · e · (q′, x) in ΥP,l for some x ∈ RD ∪ {λ}.

Assume that e′ = (q′, λ), and q and q′ do not access the same register in S̄(I l).
Thus, S̄ · e · e′ is a vertex of ΥP,l such that S̄ · e · e′(I l) = S̄ · e′ · e(I l). But S̄ · e
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and S̄ · e′ · e have opposite valences — a contradiction. Thus either (1) q′ queries
D in S̄(I l), or (2) q and q′ access the same register in S̄(I l).

(1) If q′ queries D in S̄(I l), then S0 = S̄ ·e and S1 = S̄ ·e′ ·e are univalent vertices
of ΥP,l of opposite valence such that S0(I l) and S1(I l) differ only in the state
of q′.

(2) Assume now that q and q′ access the same register X in S̄(I l). Thus, e =
(q, λ), e′ = (q′, λ), and S̄ · e · e′ is a univalent vertex of ΥP,l. Furthermore:

• If q writes in X in S̄(I l), then S0 = S̄ · e and S1 = S̄ · e′ · e are univalent
vertices of ΥP,l of opposite valence such that S0(I l) and S1(I l) differ
only in the state of q′.

• If q reads X in S̄(I l), then S0 = S̄ · e · e′ and S1 = S̄ · e′ · e are univalent
vertices of ΥP,l of opposite valence such that S0(I l) and S1(I l) differ
only in the state of q.

In each case, we obtain a process p ∈ {q, q′} and two vertices S0 and S1 in
{S̄ · e, S̄ · e′ · e, S̄ · e · e′} such that (a) S0 and S1 are univalent vertices of ΥP,l of
opposite valence, and (b) S0(I l) and S1(I l) differ only in the state of p. 2

The following lemma uses the assumptions that type T is deterministic and
cons(T ) ≤ n.

Lemma 6.10 Let correct(F ) ⊆ P ⊆ Π and γ be a complete rake in ΥP,l with a
pivot S̄ and a participating set U such that |U | = n+1. Let E be the set of leaves
of γ and X be the object of type T accessed by processes in U in S̄(I l). There
exist a process p ∈ U and two univalent vertices S̄ · S0 and S̄ · S1 in E such that

(a) val(S̄ · S0) 6= val(S̄ · S1), and

(b) S̄ ·S0(I l) and S̄ ·S1(I l) differ only in the states of processes in U −{p} and
object X.

Proof: Let γ be a complete rake with a pivot S̄ and a participating set U such
that |U | = n + 1. Let X be the object of type T such that each process q ∈ U
accesses X in S̄(I l). Let σX be the state of X in S̄(I l).

Construct a graph K as follows. The set of vertices of K is E, the set of leaves
of γ. Two vertices S̄ ·S and S̄ ·S′ of K are connected with an edge if at least one
process in U has the same state in S̄ · S(I l) and S̄ · S′(I l). Now we color each
vertex S̄ · S of K with val(S̄ · S).

Claim 6.10.1 Vertices of K are colored 0 or 1, and K has at least one vertex of
color 0 and at least one vertex of color 1.

Proof of Claim 6.10.1. Immediate from the definition of K.

Now we show that K is connected. By contradiction, assume that K consists of
two or more connected components. Let K0 be any connected component of K
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and K1 = K−K0. Note that for any two vertices S ∈ K0 and S′ ∈ K1, no process
has the same state in S(I l) and S′(I l). We establish a contradiction by showing
that consensus can be solved among n + 1 processes using registers and objects
of type T .

Claim 6.10.2 There is an algorithm that solves weak consensus among n + 1
processes using registers and one object of type T .

Proof of Claim 6.10.2. Let X, an object of type T , be initialized to σX . Every
process p ∈ U executes one step of ConsD determined by p’s state in S̄(I l) (by
the definition of γ, in this step, p accesses X). If its resulting state belongs to a
configuration S(I l) such that S ∈ K0, then p decides 0. Otherwise, p decides 1.

Termination is trivially ensured. Since the process state after taking one step
of σX unambiguously identifies to which component the resulting configuration
belongs, Agreement is satisfied. Non-Triviality follows from the fact that K0 and
K1 are non-empty.

By Claim 6.10.2 and Lemma 6.2, since T is deterministic, we can solve consensus
among n+1 processes using registers and one object of type T — a contradiction
of the assumption that cons(T ) ≤ n. Thus, K is connected.

By Claim 6.10.1 and the fact that K is connected, K has at least two vertices
of different colors, connected by an edge. From the construction of K, it follows
that there exist a process p ∈ U and two univalent vertices S̄ · S0 and S̄ · S1 of
opposite valence in E such that S̄ · S0(I l) and S̄ · S1(I l) differ only in the states
of processes in U − {p} and object X. 2

6.3.7 Deciding sets

Instead of the notion of a deciding process used in [14], we introduce the notion
of a deciding set V ⊂ Π. The deciding set V of a complete decision gadget γ is
defined as follows:

(1) Let γ be a fork defined by pivot S̄ and steps e and e′ of the same process q,
such that S̄ · e and S̄ · e′ are univalent vertices of ΥP,l of opposite valence.

Then V = {q}.

(2) Let γ be a complete hook defined by a pivot S̄, a step e of q, and a step e′

of q′ (q 6= q′).

By Lemma 6.9, there exists a process p ∈ {q, q′} and two vertices S0 and
S1 in {S̄ · e, S̄ · e′ · e, S̄ · e · e′} such that (a) S0 and S1 are univalent vertices
of opposite valence, and (b) S0(I l) and S1(I l) differ only in the state of p.
Then we define V = {p′} where p′ is the smallest such process.

(3) Let γ be a complete rake defined by a pivot S̄, a participating set U , and
a set of leaves E.

• If |U | ≤ n, then we define V = U .
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• If |U | = n + 1, then by Lemma 6.10 there is a process p ∈ U such
that, for some S̄ · S0 and S̄ · S1 in E, val(S̄ · S0) 6= val(S̄ · S1), and
S̄ ·S(I l) and S̄ ·S′(I l) differ only in the states of processes in U −{p}
and object X. Then we define V = U − {p′} where p′ is the smallest
such process.

By definition, in each case, V is a set of at most n processes. The following
lemma uses the assumption that type T is one-shot.

Lemma 6.11 The deciding set of a complete decision gadget contains at least
one correct process.

Proof: There are three cases to consider:

(1) Let γ be a fork with leaves S̄ · (p, x) and S̄ · (p, x), The deciding set of γ is
{p}. Since we consider here deterministic algorithms and objects, it follows
that p queries D in S̄(I l). Thus, S0(I l) and S1(I l) differ only in the state
of p. By Lemma 6.4, p is correct.

(2) Let γ be a hook with a deciding set V = {p}. By Lemma 6.4, p is correct.

(3) Let γ be a complete rake defined by a pivot S̄, a participating set U , and a
set of leaves E. Let X be the object of type T that processes in U access
in S̄(I l). The following cases are possible:

(3a) |U | ≤ n.
There exist two vertices S̄ ·S0 and S̄ ·S1 in E such that val(S̄ ·S0) = 0
and val(S̄ · S1) = 1. Since only processes in U take steps in S0 and
S1, and both schedules applied to S̄(I l) access only object X, the
configurations S̄(I l), S̄ · S0(I l) and S̄ · S1(I l) differ only in the states
of processes in U and object X. Assume, by contradiction, that all
processes in the deciding set V = U are faulty.
By Lemma 6.3, there is a schedule S containing only steps of correct
processes (and thus no steps of processes in U) such that all correct
processes have decided in S̄ · S(I l) and, for every S′ ∈ E, if S is
applicable to S′(I l), then S′ · S is a vertex of ΥP,l.
Suppose that S applied to S̄(I l) accesses X, i.e., S has a prefix S′′·(q, λ)
such that S′′ applied to S̄(I l) does not access X and q accesses X in
S̄ · S′′(I l).
Take any S′ ∈ E. Since S′(I l) and S̄(I l) differ only in the states of
processes in U and the state of X, S′′ includes no steps of processes in
U , and S′′, applied to S̄(I l), does not access X, it follows that S′′ ·(q, λ)
is applicable to S′(I l), Thus, for all S′ ∈ E, S′ · S′′ · (q, λ) is a vertex
of ΥP,l — a contradiction with the definition of γ.
Thus, S applied to S̄(I l) does not access X. Hence, S is also applicable
to S̄ · S0(I l) and S̄ · S1(I l). Thus, S̄ · S0 · S and S̄ · S1 · S are vertices
of ΥP,l.
But no process in Π − U can distinguish S̄ · S(I l), S̄ · S0 · S(I l) and
S̄ ·S1 ·S(I l). Thus, the correct processes have decided the same values
in these configurations — a contradiction.
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(3b) |U | ≥ n + 1, i.e., U = Π. Let V = U − {p} be the deciding set of γ,
i.e., for some S̄ ·S0 and S̄ ·S1, the vertices of ΥP,l of opposite valence,
S̄ · S0(I l) and S̄ · S1(I l) differ only in the states of processes in V and
object X. Assume, by contradiction, that all processes in V are faulty
(i.e., since k = n + 1, the only correct process is p).
By Lemma 6.3, there is a schedule S containing only steps of correct
processes (i.e., only steps of p) such that all correct processes have
decided in S̄ · S0 · S(I l), and if S is applicable to S̄ · S1(I l), then
S̄ · S1 · S is a vertex of ΥP,l.
Note that, since X is an object of a one-shot type, and p has already
accessed X at least once in S̄ ·S0(I l), every subsequent operation of p
on object X returns ⊥. Since the states of p and all objects except of
X are the same in S̄ ·S0(I l) and S̄ ·S1(I l), and p has already accessed
X at least once in S̄ · S1(I l), S is also applicable to S̄ · S1(I l) and p
cannot distinguish S̄ · S0 · S(I l) and S̄ · S1 · S(I l). Thus, S̄ · S1 · S is a
vertex of ΥP,l, and p has decided the same value in S̄ · S0 · S(I l) and
S̄ · S1 · S(I l) — a contradiction.

In each case, the deciding set V contains at least one correct process. 2

6.3.8 Reduction algorithm

Theorem 6.12 Let T be any one-shot deterministic type, such that cons(T ) ≤ n
and n ≥ 1. If a failure detector D solves consensus in a system of k = n + 1
processes using only registers and objects of type T , then Ωn � D.

Proof: Let F be any failure pattern and ConsD be any algorithm that solves
consensus in a system of k = n + 1 processes using D, registers, and objects of
type T .

The communication task presented in Figure 6.2 and the computation task
presented in Figure 6.5 constitute the reduction algorithm TD→Ωn . The current
estimate of Ωn at process p is stored in variable Ωn-outputp.

In the communication task described in Figure 6.2, every process p maintains
an ever-growing DAG Gp.

In the computation task described in Figure 6.5, for each Q ⊆ Π and each
l ∈ {0, 1, . . . , k}, process p constructs a finite simulation tree ΥQ,l

p induced by Q,
I l and Gp and tags each vertex S of ΥQ,l

p with a set of decisions p takes in all
S′(I l) such that S′ is a descendant of S in ΥQ,l

p .
We say that index l ∈ {1, 2, . . . , k} is p-critical in P if either ΥP,l

p contains a
decision gadget or the root of ΥP,l−1

p is 0-valent, and the root of ΥP,l
p is 1-valent.

In the first case, we say that l is bivalent p-critical. In the second case, we say
that l is univalent p-critical. Decision gadgets, missing processes, and deciding
sets are defined for each finite simulation tree ΥP,l

p in the same way as for the
“limit” simulation tree ΥP,l.

In every round of the task, trees ΥP,l
p are analyzed for several values of P ⊆ Π.

Initially P = Π. Let P have a p-critical index and let l be the smallest p-critical
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Initially:
Ωn-outputp ← {p}

1: while true do
2: for all Q ⊆ Π and l ∈ {0, 1, . . . , k} do
3: ΥQ,l

p ← simulation tree induced by Q, I l and Gp

4: V ← ∅
5: P ← Π
6: repeat
7: if P has no p-critical index then
8: V ← {p}
9: else

10: let l be the smallest p-critical index of P
11: if l is univalent p-critical then
12: V ← {pl}
13: else
14: γ ← the smallest decision gadget in ΥP,l

p

15: if γ is complete then
16: V ← the deciding set of γ
17: else
18: let W be the set of missing processes in γ
19: P ← P −W
20: until V 6= ∅ or P = ∅
21: if P = ∅ then V ← {p}
22: Ωn-outputp ← V

Figure 6.5: Extracting Ωn: code for each process p
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index in P . If l is univalent, then p outputs {pl} (line 12). If l is bivalent, and
the smallest decision gadget in ΥP,l

p , denoted γ, is complete, then p outputs the
deciding set of γ (line 16). If l is bivalent, and γ is incomplete, then p removes
missing (in γ) processes from P and proceeds to the next iteration (line 19).

Note that the “repeat-until” cycle in lines 6–20 is non-blocking. Indeed, even-
tually, p either sets V to a non-empty value (in lines 8, 12 or 16), or sets P to ∅
in line 19. In both cases, p exits the “repeat-until” cycle.

Recall that finite simulation trees ΥP,l
p at all correct processes p tend to the

same infinite simulation tree ΥP,l. Let F be the current failure pattern.

Claim 6.12.1 There exist P ∗, V ∗ ⊆ Π, correct(F ) ⊆ P ∗, such that there is a
time after which every correct process p always reaches line 21 with P = P ∗ and
V = V ∗.

Proof of Claim 6.12.1. By Lemma 6.6, every P ⊆ Π such that correct(F ) ⊆ P
has a critical index. Thus, there is a time after which all correct processes p
locate the same P such that P has a critical index l, and l is also the smallest
p-critical index in P . Moreover, if l is bivalent critical, then the correct processes
eventually locate the same smallest (complete or incomplete) decision gadget in
ΥP,l.

By Lemma 6.7, there is a time after which, whenever a correct process p
reaches line 19, W ⊆ faulty(F ). Thus, there is a time after which one of the
following cases always holds:

(a) p exits the “repeat-until” cycle in line 12 after having located a univalent
p-critical index in some P such that correct(F ) ⊆ P .

(b) p exits the “repeat-until” cycle in line 16 after having located a complete
decision gadget in univalent p-critical index in ΥP,l where P ⊆ Π and
correct(F ) ⊆ P .

(c) p reaches line 14 with P = correct(F ).

In case (c), by Corollary 6.8, there is a time after which the smallest decision
gadget in ΥP,l is complete and p exits the “repeat-until” cycle in line 16. In all
cases, there exist P ∗, V ∗ ⊆ Π such that correct(F ) ⊆ P ∗, and a time after which
every correct process always reaches line 21 with P = P ∗ and V = V ∗.

Let l be the smallest critical index in P ∗. There is a time after which, for all
correct processes p, l is also the smallest p-critical in P ∗. By the algorithm, only
the following cases are possible:

(1) l is univalent critical, i.e., the root of ΥP ∗,l−1 is 0-valent and the root of ΥP ∗,l

is 1-valent. In this case, eventually, every correct process p permanently
outputs V ∗ = {pl}. I l−1 and I l differ only in the state of process pl. By
Lemma 6.3, pl is correct.

(2) l is bivalent critical, i.e., ΥP ∗,l contains a decision gadget. Moreover, by
the algorithm, the smallest decision gadget in ΥP ∗,l is complete. In this
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case, eventually, every correct process p permanently outputs the deciding
set V ∗ (of size at most n) of the complete decision gadget. By Lemma 6.11,
the deciding set of γ includes at least one correct process.

In both cases, eventually, the correct processes agree on a set of at most n pro-
cesses that include at least one correct process. Thus, the reduction algorithm
described in Figures 6.2 and 6.5 emulates the output of Ωn. 2

Theorem 6.12 and the algorithm of [61] imply the following:

Theorem 6.13 Let T be any one-shot deterministic type such that cons(T ) = n
and n ≥ 1. Then Ωn is the weakest failure detector to solve consensus in a system
of k = n + 1 processes using registers and objects of type T .

Note that our reduction algorithm (Figure 6.5) is allowed to eventually output a
set of two or more processes only when a rake is located. In all other cases, it
eventually outputs a single correct process, which complies with the specification
of Ω. But a rake can be located only if the underlying consensus algorithm ConsD
employs objects of type T . Thus, as a corollary, assuming that only registers are
available, we obtain the following result, stated in [53].

Corollary 6.14 For every k ≥ 2, Ω is the weakest failure detector to solve con-
sensus among k processes using only registers.

6.4 Boosting consensus power to any level k > n

The results of Section 6.3 can be generalized as follows.

Theorem 6.15 Let T be any m-ported one-shot deterministic type, such that
m ≤ n + 1 and cons(T ) ≤ n. If a failure detector D solves consensus in a system
of k (k > n) processes using only registers and objects of type T , then Ωn � D.

Proof: Let F be any failure pattern and ConsD be any algorithm that solves con-
sensus in a system of k processes using D, registers, and objects of type T . The
reduction algorithm TD→Ωn is similar to the algorithm described in Figure 6.5.
The definitions of decision gadgets and deciding sets are equivalent to the ones
of Section 6.3. Indeed, since type T is at most (n + 1)-ported, the participating
set U of any rake γ can include at most n+1 processes. Respectively, if |U | ≤ n,
then the deciding set V of γ is U . If |U | = n + 1, then, by Lemma 6.10 there is
at least one “confused” process p, and the deciding set V is defined as U − {p}.
Clearly, |V | = n. One can easily see that V must be alive. Otherwise, there is a
(Π−V )-solo schedule, in which every correct process takes an infinite number of
steps such that no process can distinguish a 0-valent vertex from a 1-valent one.
The deciding sets of forks and hooks do not depend on the system size. 2

Theorem 6.15 and [61] imply the following:
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Theorem 6.16 Let T be any m-ported one-shot deterministic type such that
m ≤ n + 1 and cons(T ) = n. Then Ωn is the weakest failure detector to solve
consensus in a system of k (k > n) processes using registers and objects of type T .

6.5 Boosting object resilience

So far we assumed the one-to-one static binding scheme [13], according to which,
in every run, an object port can be accessed by at most one process, and a
process is allowed to access at most one port of every object. Furthermore, we
considered systems in which processes communicate through wait-free linearizable
implementations of shared objects. Every process can complete every operation
on an object in a finite number of its own steps, regardless of the behavior of
other processes.

In contrast, in this section, we assume the most permissive softwired binding
scheme [13]. In the softwired binding scheme, a process is allowed to apply
operations to any number of ports on an object, and the process “owns” a port
only for a duration of its operation. For consensus objects, the distinction between
the softwired and one-to-one static binding schemes is however negligible [10, 13]:

Lemma 6.17 For all m, k ∈ N, there is an implementation of a wait-free soft-
wired m-process consensus object shared by k processes from a bounded number of
wait-free m-process consensus base objects such that the binding with every base
object is one-to-one static.

Moreover, in this section, we consider t-resilient linearizable implementations
of object types (we will simply call these t-resilient objects). The liveness prop-
erties of a t-resilient object only guarantee that a correct process completes its
operation on the object port, as long as no more than t processes that access
other ports of the object crash in the middle of their operations (this corresponds
to strongly t-resilient implementations [13]).

Assume that k processes communicate through registers and t-resilient objects
of any object types (not necessarily one-shot deterministic types with a known
bound on the number of ports).

In this section, we show that Ωt+1 is the weakest failure detector to solve
consensus in this system.

6.5.1 Boosting resilience of atomic objects is impossible

We show first that it is impossible to solve (t + 1)-resilient consensus among
n > t + 1 processes using registers and t-resilient atomic objects (without failure
detectors).

The following two lemmas correspond to the “necessity” part and the “suffi-
ciency” part of Theorem 4.1 in [12], respectively.

Lemma 6.18 Let t and n be integers, 0 ≤ t, 1 ≤ n. Then there exists a t-resilient
n-process implementation of consensus from wait-free (t + 1)-process consensus
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objects and wait-free registers.3

Lemma 6.19 Let t and n be integers, 2 ≤ t < n. Then there exists a wait-free
implementation of (t + 1)-process consensus from t-resilient n-process consensus
objects and wait-free registers.

The following result follows easily from Herlihy’s universal construction [41]:

Lemma 6.20 Let t and n be integers, 0 ≤ t, 1 ≤ n. Let T be any n-ported type.
Then there exists a t-resilient implementation of an atomic object of type T from
t-resilient n-process consensus objects and wait-free registers.

The following result is shown in [41, 46]:

Lemma 6.21 Let n be an integer, n ≥ 0. There does not exist a wait-free
implementation of (n + 1)-process consensus from wait-free n-process consensus
objects and wait-free registers.

Theorem 6.22 Let t and n be integers, 0 ≤ t < n − 1. There does not exist
a (t + 1)-resilient n-process implementation of consensus from t-resilient atomic
objects and wait-free registers.

Proof: By contradiction, assume that there exists a (t+1)-resilient n-process im-
plementation of consensus from t-resilient atomic objects and wait-free registers.
We consider two cases:

First suppose that t = 0, so n ≥ 2. Thus, we have a 1-resilient n-process im-
plementation of consensus using 0-resilient atomic objects and wait-free registers.
By Lemma 6.20, each 0-resilient atomic object used in this implementation can
itself be implemented from 0-resilient consensus objects and wait-free registers.
By substituting these implementations for the objects, we obtain a 1-resilient
n-process implementation of consensus using 0-resilient consensus objects and
wait-free registers.

A 0-resilient consensus object shared by any number of processes can be easily
implemented from two wait-free registers as follows. Every process participating
in the consensus algorithm writes its input value in a dedicated “proposal” register
X (initialized to ⊥). Then the process keeps reading a dedicated “decision”
register D (initialized to ⊥) until a non-⊥ value is read, in which case the process
decides on this value. In parallel, a dedicated process p keeps reading X. As soon
as p reads a non-⊥ value v in X, p writes v in D.

Substituting once more, we obtain a 1-resilient n-process implementation of
consensus using only wait-free registers. But this contradicts the impossibility
result of [56].

Now suppose that t ≥ 1. By Lemma 6.20, each t-resilient atomic object
used in this implementation can itself be implemented from t-resilient n-process
consensus objects and wait-free registers. By substituting, we obtain a (t + 1)-
resilient n-process implementation of consensus from t-resilient n-process consen-
sus objects and wait-free registers. By Lemma 6.18, each t-resilient n-process

3Theorem 4.1 in [12] assumes 2 ≤ t. However, the necessity part of the theorem requires only
0 ≤ t.
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consensus object used in this implementation can be implemented from wait-free
(t + 1)-process consensus objects and wait-free registers. By substituting again,
we obtain a (t+1)-resilient n-process implementation of consensus from wait-free
(t + 1)-process consensus objects and wait-free registers. Now by Lemma 6.19
(using the fact that 2 ≤ t + 1 < n), a wait-free (t + 2)-process consensus ob-
ject can be implemented from (t + 1)-resilient n-process consensus objects and
wait-free registers. By substituting, we obtain an implementation of a wait-free
(t + 2)-process consensus object from wait-free (t + 1)-process consensus objects
and wait-free registers. But this contradicts Lemma 6.21. 2

6.5.2 Boosting resilience of atomic objects with failure detectors

Thus, roughly speaking, it is not possible to obtain a more fault-tolerant system
solving consensus by combining less fault-tolerant atomic objects. Not surpris-
ingly, this impossibility can be circumvented by augmenting the system with a
failure detector abstraction. Interestingly, our result on boosting the consensus
power of one-shot deterministic types (Theorem 6.16) implies the following:

Theorem 6.23 Let t and k be integers, k > t ≥ 2. Let T be any type such
that registers and t-resilient objects of type T implement t-resilient k-process con-
sensus. Then Ωt+1 is the weakest failure detector to solve consensus among k
processes using wait-free registers and t-resilient objects of type T .

Proof: By Lemma 6.19, a wait-free (t + 1)-process consensus object can be
implemented from wait-free registers and t-resilient objects of type T . The algo-
rithm of [61] implements wait-free consensus among k processes using registers,
wait-free (t+1)-process consensus objects and Ωt+1. This gives the sufficient part
of the theorem.

Assume now that a failure detector D solves consensus among k processes
using registers and t-resilient objects of type T . By Lemmas 6.18, 6.19, 6.20
and 6.17, any t-resilient object can be implemented from wait-free registers and
(t + 1)-process consensus objects so that, in the implementation, the binding
with each base object is one-to-one static. By recalling Lemma 6.21, we observe
that (t + 1)-process consensus is a (t + 1)-ported one-shot deterministic type of
consensus power t + 1.

Thus, D solves consensus using registers and objects of (t+1)-ported one-shot
deterministic type of consensus power t + 1 using the one-to-one static binding
scheme. By Theorem 6.15, Ωt+1 � D. This gives the necessary part of the theo-
rem. 2

6.6 Open questions

Neiger’s original conjecture that Ωn is the weakest failure detector for boosting
any type T (not necessarily one-shot deterministic type with n + 1 or less ports)
of consensus power n [61] remains unproved. We proved it only for (n+1)-ported
one-shot deterministic types.
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Note that in the proof of correctness of our reduction algorithm TD→Ωn (Sec-
tion 6.3), the assumption that type T is one-shot deterministic is used only in
Lemmas 6.10 and 6.11.

To prove Lemma 6.10, we assume the opposite, and we establish a contradic-
tion by showing that T can solve weak consensus among n + 1 processes. For
deterministic types, we show that T also solves consensus among n+1 processes.
For non-deterministic types, this is not the case. In [36], we present a non-
deterministic type that solves weak consensus among any number of processes,
but cannot solve 2-process consensus. Furthermore, certain non-deterministic
types exhibit unusual behavior with respect to the robustness question [11, 65, 54].

To prove Lemma 6.11, we use the fact that if the decision value is “locked” in
the state of a one-shot object X, then the only way for a fixed set W of one or more
“confused” processes to fetch the value is to communicate with at most n other
processes. This implies that at least one process in Π−W must be correct. If X
is multi-shot, this is not necessarily true. However, by Lemma 6.10, if processes
try to fetch the decision only by invoking a bounded number of operations on X,
then at least one of them will be confused. But it is still not clear whether it is
possible to extract Ωn using this fact.

Finally, in the case k > n+1, it is very appealing to get rid of the assumption
that type T is at most (n + 1)-ported. This assumption was used to prove
Lemmas 6.5 and 6.11, and it is not very clear whether these two results hold
without the bound on the number of ports of type T .

6.7 Related work

The notion of consensus power was introduced by Herlihy [41] and then refined
by Jayanti [45].

Chandra, Hadzilacos and Toueg [14] showed that Ω is the weakest failure
detector to solve consensus in asynchronous message-passing systems with a ma-
jority of correct processes. Lo and Hadzilacos [53] showed that Ω can be used
to solve consensus with registers and stated (without proof) that any failure de-
tector that can be used to solve consensus with registers can be transformed to
Ω.

Neiger [61] introduced the hierarchy of failure detectors Ωn and showed that
objects of consensus power n can solve consensus among any number of processes
using Ωn.

The relationship between consensus and weak consensus with respect to de-
terministic object types was established in [36]. An indirect proof that it is
impossible to boost the resilience of atomic objects without using failure detec-
tors, based on the results of [41, 46, 12], appeared in [34]. A direct self-contained
proof of this result appeared in [6], and then it was extended to more general
classes of distributed services in [7].



Chapter 7

Concluding Remarks

We conclude the thesis by discussing a generic framework that describes sys-
tems composed of distributed services (e.g., failure detectors, reliable channels,
or atomic objects) and proposing some future research directions.

7.1 Failure detectors as distributed services

We discuss here an alternative approach to describing failure detectors. This
approach makes it possible to put failure detectors on the same ground as other
abstractions in distributed computing. A distributed system is seen here as a col-
lection of processes that communicate through distributed services. A distributed
service, and, in particular, a failure detector, is defined through a predicate on
the traces of the corresponding I/O automaton [57, chapter 8]. Unlike in [14], we
avoid using the notion of time by explicitly modeling process failures as actions
in a computation.

We introduce the notion of a generic distributed service which can be used to
model the definitions of atomic objects [43, 41], reliable channels [28], and failure
detectors [15, 14]. Failure detectors defined in this manner seem to encompass all
failure detectors defined in the formalism of Chandra, Hadzilacos and Toueg [14],
except that they are not allowed to produce output based on future events. In
other words, the failure detectors defined in this chapter are realistic [19]. This
limitation however does not seem to impact most of important theoretical results
in the “failure detector” domain.

Our resulting framework describes systems composed of a collection of dis-
tributed services. A version of this framework was used in [7] to prove that
boosting consensus resilience of generic distributed services is impossible.

7.1.1 I/O automata

An I/O automaton [57, chapter 8] is a special kind of state machine in which
the transitions are associated with named actions. The actions can be input,
output, or internal. Inputs and outputs represent the external interface of the
automaton used for communication with the automaton’s environment. The
internal actions represent the internal transitions visible only to the automaton
itself. It is assumed that the input actions are out of the automaton’s control,
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unlike the output and internal actions.
A signature S is a tuple 〈in(S), out(S), int(S)〉 consisting of the input actions,

in(S), the output actions, out(S), and internal actions, int(S). We define the
locally controlled actions, loc(S), to be out(S) ∪ int(S), the external actions,
ext(S), to be in(S) ∪ out(S), and acts(S) to be all actions of S.

Formally, an I/O automaton (from now on simply an automaton) A is defined
by:

• sig(A), a signature;

• states(A), a (possibly infinite) set of states;

• start(A), a non-empty subset of states(A), called the initial states;

• trans(A), a state-transition relation, where

trans(A) ⊆ states(A)× acts(sig(A))× states(A);

• tasks(A), a countable partition of actions in loc(sig(A)).

An element (s, π, s′) of trans(A) is called a transition of A. The transition
(s, π, s′) is called input transition, output transition, or internal transition, if π
is, respectively, an input action, output action, or internal action.

If for some state s and action π, A has a transition (s, π, s′), then we say that
π is enabled in s. By definition, every automaton is input-enabled : every input
action is enabled in every state. A task e is said to be enabled in a state s if some
action of e is enabled in s.

An execution fragment is either a finite sequence s0, π1, s1, . . . , πr, sr, or an
infinite sequence s0, π1, s1, . . . , πr, sr, . . ., of alternating states and actions of
A such that (sk, πk+1, sk+1) is a transition of A for every k ≥ 0. An execution
fragment that begins with an initial state is called an execution. A trace of A is
a sequence of external actions of A obtained by removing the states and internal
actions from an execution of A. If α and α′ are execution fragments of A such
that α′ starts in the last state of α, then the concatenation α · α′ is defined, and
is called an extension of α.

We model a distributed system as a parallel composition of automata repre-
senting individual system components. The composition of automata identifies
actions with the same name in the component automata. When any component
automaton performs a step involving π, so do all component automata that have π
in their signatures. We assume that only compatible automata can be composed,
and we recall the notion of compatibility below. Informally, a countable collection
{Ai}i∈I of automata is compatible if, for all i, j ∈ I, i 6= j, (1) the internal actions
of Ai are not observable by Aj , i.e., int(sig(Ai)) ∩ acts(sig(Aj)) = ∅, and (2) the
sets of output actions of Ai and Aj are disjoint, i.e. out(sig(Ai))∩out(sig(Aj)) = ∅.
In a composition of compatible automata {Ai}i∈I , outputs of all the components
become outputs of the composition, internal actions of the components become
internal actions, and actions that are inputs of some components but outputs
of none become inputs of the composition. The states and initial states of the
composition are vectors of states and initial states of the component automata.
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The transitions of the composition are obtained by allowing the components that
have a particular action π in their signature to execute simultaneously a step
involving π, while all other components do nothing. The task partition of the
composition is a union of the components’ task partitions. Further, we “hide”
actions that are used for communication between components, by reclassifying
them as internal actions. This prevents them from being included in traces.

An execution α of A is said to be fair if for each task e of A: (1) if α is
finite, then e is not enabled in the final state of α, and (2) if α is infinite, then
α contains either infinitely many actions of e, or infinitely many occurrences of
states in which e is not enabled. A trace of a fair execution is called a fair trace.
Her we consider only fair executions.

7.1.2 Distributed services

We define a special kind of I/O automata, the canonical distributed service of
type U for endpoint set J and index k, where

• service type U is a tuple 〈V, V0, invs, resps, glob, δ1, δ2〉,

• J is a finite set of endpoints at which invocations and responses may occur,

• k is a unique index (name) for the service.

The parameter J specifies the set of processes connected to the service. A process
i ∈ J can issue any allowable invocation on the service and (potentially) receive
any allowable response. We allow concurrent (overlapping) operations, at the
same or at different endpoints. The service preserves the order among concurrent
invocations at the same endpoint i by keeping the invocations and responses in
internal FIFO buffers.

V is a non-empty set of values that can be stored in a state component val,
V0 ⊆ V is a non-empty set of initial values, invs is a set of invocations, resps is a
set of responses, glob is a set of global tasks, and δ1, δ2 are transition relations.

Here, δ1 is a total binary relation from J × invs× V × 2J to resps× V . It is
used to map an invocation at the head of a particular inv-buffer, the current value
for val, and the current set of failed processes, to a set of results, each of which
consists of a new value for val and a response to be added to the corresponding
resp-buffer. Further, δ2 is a total binary relation from V × 2J to V . It is used to
map a value of val and the current set of failed processes to a set of new values.

Figure 7.1 presents the code for a canonical distributed service automaton,
showing how these parameters are used.

We model a process failure at an endpoint i by an explicit input action fail i.
We say that a process i fails in a given execution if fail i occurs in that execution.
We say that a process i is correct if fail i never occurs. For every process i ∈ J ,
we assume that the service has two tasks, which we call the i-perform and i-
output tasks. The i-perform task includes the performi,k action, which carries
out operations invoked at endpoint i, and triggers a single response at endpoint i.
The i-output task includes all the bi,k actions giving responses at i. The service
may also include background processing tasks computeg,k (g ∈ glob), not related
to any specific endpoint.
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Canonical Service Sk = (U , J, k),
where U = 〈V, V0, invs, resps, glob, δ1, δ2〉

Signature:

Inputs:
ai,k, a ∈ invs, i ∈ J , the invocations at endpoint i
faili, i ∈ J

Outputs:
bi,k, b ∈ resps, i ∈ J , the responses at endpoint i

Internals:
performi,k, i ∈ J
computeg,k, g ∈ glob

State components:

val ∈ V , initially an element of V0

inv-buffer, a mapping from J
to finite sequences of invs,
initially identically empty

resp-buffer, a mapping from J
to finite sequences of resps,
initially identically empty

failed ⊆ J , initially ∅

Transitions:

Input: ai,k

Effect:
add a to end of inv-buffer(i)

Internal: performi,k, i ∈ J
Precondition:

a = head(inv-buffer(i))
δ1((i, a, val, failed), (b, v))

Effect:
remove head of inv-buffer(i)
val← v
add b to end of resp-buffer(i)

Internal: computeg,k, g ∈ glob
Precondition:

δ2((val, failed), v)
Effect:

val← v

Output: bi,k

Precondition:
b = head(resp-buffer(i))

Effect:
remove head of resp-buffer(i)

Input: faili
Effect:

failed← failed ∪ {i}
remove some invocations

from inv-buffer(i)

Tasks:

For every i ∈ J :
i-perform: {performi,k}
i-output: {bi,k : b ∈ resps}

For every g ∈ glob:
g-compute: {computeg,k}

Figure 7.1: A canonical distributed service Sk = (U , J, k)

A canonical distributed service is thus allowed to perform rather flexible kinds
of processing, both related and unrelated to individual endpoints.

The definition of fairness for I/O automata implies that, for every correct
process i ∈ J , the service eventually responds to any outstanding invocation at i.

7.1.3 Failure detectors

Failure detectors, a class of distributed services, are of a special interest in this
thesis. Informally, a distributed service is a failure detector if its responses depend
only on information about failures. Formally, a service Sk = (U , J, k), where
U = 〈V, V0, invs, resps, glob, δ1, δ2〉, is a failure detector if the following properties
are satisfied:
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• invs = {query}, and

• ∀i ∈ J , action performi,k does not modify the value of val, i.e.,
δ1((i, a, v, failed), (v′, b)) only if v = v′.

Since query actions do not modify the value of val, it is convenient to define
failure detectors in terms of traces from which all query actions are removed. We
call these modified traces failure detector histories.

Strictly speaking, the failure detectors we define through automata do not
provide all the functionality of those in the original model of [14]. Namely, because
our failure detectors are automata, they cannot predict future actions. In the
terminology of [19], our services encompass only realistic failure detectors.

In the following, we describe how a variety of well-known failure detectors [15,
14, 16, 32] can be modeled as distributed services. We give the definitions in our
model of five canonical failure detectors from the literature, the perfect failure
detector P [15], the eventually perfect failure detector 3P [15], the eventual
leader failure detector Ω [14], the quorum failure detector Σ [20], and the failure
signal failure detector FS [16, 32].

The perfect failure detector P

The perfect failure detector P [15] outputs a subset of its endpoints — the set of
suspected processes. It ensures the following properties:

Strong completeness: every failed process is eventually suspected at every correct
process, and,

Strong accuracy : no process is suspected before it fails.

Formally, let J be the set of endpoints of P. The internal state components
in P are presented in Figure 7.2.

Components of val:
∀j ∈ J : Sj ⊆ J , initially ∅

Figure 7.2: The composition of val in P

The global task set glob = {gj}j∈J . For any j ∈ J , task gj is responsible for
maintaining the current set Sj of suspected processes for endpoint j.

Responses of P are of the form suspect(J ′), J ′ ⊆ J . The set of internal
state components in P is presented in Figure 7.3. Task i-output simply puts a
suspect(Si) response into i’s response buffer. For each gj ∈ glob, task gj-compute
periodically updates Si by adding recently failed processes.

The eventually perfect failure detector 3P

The eventually perfect failure detector 3P [15] outputs a subset of its endpoints
— the set of suspected processes. It ensures the following properties:

Strong completeness: every failed process is eventually suspected at every correct
process, and
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Internal: performi,k

Precondition:
query = head(inv-buffer(i))

Effect:
add suspect(Si) to resp-buffer(i)

Internal: computegj ,k, j ∈ J

Precondition:
failed− Sj 6= ∅

Effect:
U ← choose a non-empty set in failed− Si

Sj ← Si ∪ U

Figure 7.3: Internal transitions in P

Eventual strong accuracy : eventually, no process is suspected before it fails.

In other words, eventually 3P outputs the set of all failed processes at all correct
endpoints.

Again, responses of 3P are of the form suspect(J ′), J ′ ⊆ J . We model even-
tual perfection using a mode variable, which can take values perfect or imperfect.
Initially, and after each new failure, mode is set to imperfect. A background task
is responsible for eventually switching mode to perfect. Since failures must eventu-
ally stop, the mode eventually remains perfect. While in perfect mode, the failure
detector suspects exactly the processes that have failed. In imperfect mode, any
set of processes can be suspected. The set of internal state components in 3P is
presented in Figure 7.4.

Components of val:
mode ∈ {perfect, imperfect}, initially imperfect
oldfailed ⊆ J , initially ∅

Figure 7.4: The composition of val in 3P

The global task set glob = {g1, g2}. Task g1 is responsible for, in case new
failure occurs, setting mode to imperfect while task g2 is responsible for setting
mode back to perfect. Since eventually no new failure occurs, mode eventually
stabilizes at perfect. The internal transitions of 3P are presented in Figure 7.5.

Internal: performi,k

Precondition:
query = head(inv-buffer(i))

Effect:
if mode = perfect then

add suspect(failed) to resp-buffer(i)
else

choose J ′ ⊆ J
add suspect(J ′) to resp-buffer(i)

Internal: computeg1,k

Precondition:
failed 6= oldfailed

Effect:
mode← imperfect
oldfailed← failed

Internal: computeg2,k

Precondition:
mode = imperfect

Effect:
mode← perfect

Figure 7.5: Internal transitions in 3P
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The eventual leader failure detector Ω

The eventual leader failure detector Ω [14] provides elect(l) (l ∈ J) responses at
all endpoints. Eventually (assuming that not all processes fail), the latest elect
announcements should be identical at all endpoints, and should indicate the name
of a correct endpoint.

Components of val:
oldfailed ⊆ J , initially ∅
leader ∈ J ∪ {⊥}, initially ⊥

Figure 7.6: The composition of val in Ω

We use two global tasks g1, g2. Now g1 sets leader to ⊥ and removes any
choice of leader, while g2 chooses a leader by setting leader to some non-failed
process. The corresponding transition definitions are presented in Figure 7.7.

Internal: performi,k

Precondition:
query = head(inv-buffer(i))

Effect:
if leader 6= ⊥ then

add elect(leader) to resp-buffer(i)
else

choose j ∈ J
add elect(j) to resp-buffer(i)

Internal: computeg1,k

Precondition:
failed 6= oldfailed

Effect:
leader← ⊥
oldfailed← failed

Internal: computeg2,k

Precondition:
leader = ⊥

Effect:
leader← choose l ∈ J − failed

Figure 7.7: Internal transitions in Ω

The quorum failure detector Σ

The quorum failure detector Σ [20] outputs a subset of its endpoints — the current
quorum. Σ guarantees that, any two quorums (output at any processes and at
any times) intersect, and, eventually, every quorum output at a correct process
contains only correct processes.

It is convenient to define Σ with respect to a given environment E , a set of
proper subsets of J , the set of endpoints of Σ. E specifies subsets of processes
that are allowed to fail in the same execution. For example E = {S : S ⊂
J ∧ |S| < d|J |/2e} assumes that at most a minority of processes can fail, and
E = {S : S ⊂ J} assumes that any proper subset of J can fail.

The set of internal state components in Σ is presented in Figure 7.8. Variables
mode and oldfailed are as in the definition of 3P. Variable Q contains the current
quorum. Variable Q contains the list of all quorums produced so far.

Responses of Σ are of the form quorum(Q). Task i-output simply puts a
quorum(Q) response into i’s response buffer.

The global task set glob = {g1, g2, g3}. As in the definition of 3P, task
g1 is responsible for, in case a failure occurs, setting mode to imperfect while
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Components of val:
mode ∈ {perfect, imperfect}, initially imperfect
oldfailed ⊆ J , initially ∅
Q ⊆ J , initially J
Q, a set of subsets of J , initially ∅

Figure 7.8: The composition of val in Σ

task g2 is responsible for setting mode back to perfect. Task g3, described in
Figure 7.9, computes the current quorum, based on the value of mode, the set
of failed processes, environment E , and all quorums computed earlier. More
precisely, the current quorum is computed as a subset of J that intersects with
any potential set of correct processes, and with any quorum computed earlier.
Moreover, if mode = perfect, then the quorum must be a subset of J− failed. It is
straightforward to see that any two computed quorums intersect, and, eventually,
any quorum contains only correct processes.

Internal: performi,k

Precondition:
query = head(inv-buffer(i))

Effect:
add quorum(Q) to resp-buffer(i)

Internal:
computeg1,k and computeg2,k as for 3P

Internal: computeg3,k

Precondition:
true

Effect:
if mode = perfect then

U ← J − failed
else

U ← J
Q← choose V ⊆ U such that

(∀S ∈ E, failed ⊆ S : V ∩ (J − S) 6= ∅)
∧ (∀S ∈ Q : V ∩ S 6= ∅)

Figure 7.9: Internal transitions in Σ

Note that if environment E assumes that no more than a minority of processes
in J can fail, then Q can be taken as any majority of processes (any majority in
J − failed, if mode = imperfect).

On the other hand, if E assumes that any proper subset of processes in J can
fail, then Q must include the set of all processes in J − failed (exactly J − failed,
if mode = perfect). In other words, in this environment, Σ must be at least as
strong as the perfect failure detector P [19].

The failure signal failure detector FS

The failure signal failure detector FS outputs green or red at each process. As
long as there are no failures, FS outputs green at every process; after a failure
occurs, and only if it does, FS must eventually output red permanently at every
non-faulty process [16, 32].

Formally, let J be the set of endpoints of FS. The internal state components
in FS are presented in Figure 7.10.

The global task set glob = {gj}j∈J . For any j ∈ J , task gj is responsible for
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Components of val:
∀j ∈ J : sj ∈ {green, red}, initially green

Figure 7.10: The composition of val in FS

maintaining the signal (green or red) for endpoint j.
Responses of FS are of the form signal(s), s ∈ {green, red}. The set of

internal state components in FS is presented in Figure 7.11. δ1(i, query, failed)
puts a signal(si) response into i’s response buffer. δ2 sets si to red in case a
failure occurs.

Internal: performi,k

Precondition:
query = head(inv-buffer(i))

Effect:
add signal(si) to resp-buffer(i)

Internal: computegj ,k, j ∈ J

Precondition:
failed 6= ∅ ∧ sj = green

Effect:
sj ← red

Figure 7.11: Internal transitions in FS

7.1.4 Reliable channels

As in [57], we model message-passing systems by introducing, for every two pro-
cesses i and j, a reliable channel automaton Ci,j . Let M be a fixed message
alphabet. The inputs of Ci,j are send(m)i,j (m ∈M) actions, and its outputs are
receive(m)i,j (m ∈M) actions. Ci,j has exactly two endpoints i and j and a task
partition, ensuring that every message sent from i to j is eventually received.

7.1.5 Atomic objects

In this section, we define another special class of distributed services, called
atomic objects. A service Sk of type Uk = 〈V, V0, invs, resps, glob, δ1, δ2〉 is an
atomic object if Uk is sequential which means:

• glob = ∅, i.e., there are no background processing tasks.

• ∀f1, f2 ∈ 2J , δ1((i, a, v, f1), (b, v′)) only if δ1((i, a, v, f2), (b, v′)), i.e., the
response on any invocation does not depend on failures.

That is, unlike failure detectors, the output of atomic objects is not allowed to
include information about failures.

We say that Uk is oblivious if no response depends on the endpoint that the
corresponding invocation is applied on, i.e., ∀i, j ∈ J , δ1((i, a, v, f), (b, v)) only if
δ1((j, a, v, f), (b, v)).

We say that Uk is deterministic if V0 is a singleton set {v0}, and δ1 is a
mapping, that is, for every (i, a, v, f) ∈ J × invs × V × 2J , there is exactly one
(b, v′) ∈ resps× V such that δ1((i, a, v, f), (b, v′)).

Examples:
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register: Here, V is any set, V0 = {v0} where v0 ∈ V , invs = {read}∪{write(v) :
v ∈ V }, resps = V ∪ {ack}, and

δ1 = {((i, read, v, f), (v, v)) : i,∈ J, v ∈ V, f ∈ 2J}∪
{((i, write(v), v′, f), (ack, v)) : i ∈ J, v, v′ ∈ V, f ∈ 2J}.

consensus: Here, V = {{0}, {1},⊥}, V0 = {⊥}, invs = {init(v) : v ∈ {0, 1}},
resps = {decide(v) : v ∈ {0, 1}}, and

δ1 = {((i, init(v),⊥, f), (decide(v), {v})) : i ∈ J, v ∈ V, f ∈ 2J}∪
{((i, init(v), {v′}, f), (decide(v′), {v′})) : i ∈ J, v, v′ ∈ V, f ∈ 2J}.

7.1.6 Distributed system model

Let Π = {p1, p2, . . . , pn} be the set of processes. We model a distributed system as
a parallel composition of process automata and a collection of distributed services
(Figure 7.12). The process automata handle requests from the external world,
and communicate through invoking operations on and receiving responses from
the distributed services. The distributed services do not directly communicate
with one another, but may interact indirectly via processes. The distributed
services might include point-to-point reliable channels, wait-free atomic objects
and failure detectors.

faili

Distr ibuted system

Distr ibuted services

A1 Ai

External world

Process automata

An

Figure 7.12: System model

Problems

A problem M is a predicate on traces of a distributed system. In particular, M
specifies the interface between the processes and the external world in terms of
M.invs andM.resps, operations which may be invoked on the processes by their
external clients and responses which may be returned by the processes to their
external clients, respectively.
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Process automata

Ai, i = 1, 2, . . . , pn, denotes the process automata on which process pi runs an
algorithm A. Each process automaton Ai has the following inputs and outputs:

• Inputs ai, a ∈ M.invs, and outputs bi, b ∈ M.resps, where M is the
specification of the problem our system is intended to solve.

• For each service Sk = (Uk, Jk, k) such that i ∈ Jk, outputs ai,k, a ∈ Uk.invs,
and inputs bi,k, b ∈ Uk.resps.

• Input fail i.

We assume that, for each pi ∈ Π, Ai is deterministic (we do not consider
randomized algorithms), and the locally-controlled actions of Ai are partitioned
in a finite set of tasks. We assume that the fail i input action affects Ai in such a
way that, from that point onward, no output actions are enabled, i.e., we consider
only crash failures.

Complete system

Let A be an algorithm, K be any set of natural numbers and D be a failure de-
tector (D /∈ {Sk}k∈K). The complete system 〈A,K,D〉 of processes in Π running
algorithm A, and using services {Sk}k∈K is a parallel composition of {Ai}pi∈Π,
{Sk}k∈K and D, where all the actions used to communicating among the compo-
nents are hidden.

Let τ be any trace of a distributed system 〈A,K,D〉. We denote by failed(τ)
the set of processes that fail in τ : failed(τ) = {i ∈ Π : fail i ∈ τ}.

Let E be any environment, i.e., any set of proper subsets of Π. Recall that E
specifies subsets processes that are allowed to fail in the same execution. (This
definition of environments is less fine-grained than the one of [14], because it does
not employ the timing of failures.) We say that τ is E-compliant if failed(τ) ∈ E .

Solving a problem

We say that a distributed system 〈A,K,D〉 solves a problemM in an environment
E if the set of fair E-compliant traces of 〈A,K,D〉 satisfies M.

In the following, we fix the set K of available distributed services, and we say
that a failure detector D solves a problemM in an environment E if there exists
a distributed system 〈A,K,D〉 that solves M in E .

Implementing distributed services

Implementing a distributed service is just a special case of solving a problem. We
say that a distributed system 〈A,K,D〉 implements a service Sk in an environment
E if any fair E-compliant trace of 〈A,K,D〉 is a trace of Sk.

Respectively, we say that a failure detector D implements a service Sk in E if
there exists a distributed system 〈A,K,D〉 that implements Sk in E .
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7.1.7 A weakest failure detector

The definition of the weakest failure detector to solve a given problem in a given
environment is now straightforward.

We say that D is weaker than D′ in E if D′ implements D in E . We say that
D is the weakest failure detector to solve a problem M in an environment E if:

(1) D is sufficient to solve M in E , i.e., there exists a distributed system
{Π,K,D} that solves M in E .

(2) D is necessary to solve M in E , i.e., if a failure detector D′ is sufficient to
solve M in E , then D is weaker than D′ in E .

There may be a number of failure detectors that satisfy these conditions. So it
would be more precise to say “a weakest failure detector”.

7.1.8 Applications

We conjecture that the tight lower bounds on the amount of synchrony presented
in this thesis hold also in the new model discussed in this chapter. In particular,
the proofs of Chapters 3–6 can be transformed in a straightforward manner to
be valid in the I/O automata-based model.

In particular, the construction of simulation trees, based on sampling the
output of a failure detector D (Chapters 3, 5 and 6), does not depend on the
way D is modeled. Recall that a crucial assumption about the output of D
used in the construction is transitivity of the simulation stimuli: if a DAG Gp

includes a path [q, d, k] → [q′, d′, k′] → [q′′, d′′, k′′] (a simulation stimulus), then
[q, d, k]→ [q′′, d′′, k′′] is also a path in Gp. Thus, by only observing the output of
its failure detector module, q′′ cannot conclude whether q′ has previously taken a
step in which q′ has seen value d′, or not. More generally, the output of a failure
detector module provides some hints about the current failure detector history,
but it cannot leak any information on the steps of other processes. This property
is trivially satisfied by failure detector services described in this chapter: a query
action cannot modify the internal state of a failure detector, and, thus, no future
query action can keep track of it.

The careful adaptation of the results of this thesis to the alternative model is
the subject of further research.

7.2 Future directions

The failure detector research domain initiated a number of interesting results.
One thread of research has concentrated on determining the weakest failure detec-
tors for solving various problems in various environment (for example, [14, 5, 30,
2, 21]). A second has focused on practical aspects of implementing failure detec-
tors and designing failure detector-based algorithms (for example, [17, 4, 27, 3]).
However, there still seems to be a lot of space for further research. In Sections 4.9
and 6.6, we discuss a few open questions related to the results of this thesis.

Determining the minimal synchrony assumptions for a given problem is just
a special case of a more general question: what is the strongest adversary that
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allows us to solve the problem. Adversaries can be parameterized according
to their abilities to (a) schedule communication and processing, (b) remove or
corrupt communication messages, (c) enforce Byzantine behavior of processes,
etc.

It would be very appealing to develop techniques for (1) determining the
strongest adversaries for important synchronization problems, and (2) designing
algorithms that enjoy high performance facing an adversary of a given power.

7.3 Summary

The impossibility results of [28, 24, 56] establish that asynchronous distributed
computability is essentially different from classical Turing computability [69]:
the consensus problem, trivially solvable on a single processor, is impossible to
solve in an asynchronous system of two or more processors of which one can
fail by crashing. One way to circumvent this impossibility is to augment the
asynchronous system model with certain synchrony assumptions. The notion of
the weakest failure detector [14] proposes a way to describe minimal synchrony
assumptions that are sufficient for solving distributed computing problems.

This thesis has focused on determining the weakest failure detectors for three
fundamental problems in distributed computing: solving fault-tolerant mutual
exclusion, solving non-blocking atomic commit, and boosting the synchronization
power of atomic objects.
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