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Abstract— Energy efficiency, i.e., the amount of battery energy
consumed to transmit bits across a wireless link, is a critical
design parameter for wireless ad-hoc networks. We examine the
problem of broadcasting information to all nodes in an ad-hoc
network, when a large percentage of the nodes act as sources.
We theoretically quantify the energy savings that network coding
can offer for the cases of two regular topologies. We then propose
low-complexity distributed algorithms, and demonstrate through
simulation that for random networks, network coding can in fact
offer significant benefits in terms of energy consumption.

I. INTRODUCTION

Network coding was recently proposed in [1]. With net-
work coding, intermediate nodes in the network not only
forward but also process the incoming information flows,
which may result in significant benefits. Wireless ad-hoc
and sensor networks are likely to be among the first areas
where network coding will be applied, as these environments
offer more freedom in terms of protocol design choices. The
wireless environment introduces both new challenges and new
capabilities. Challenges include interference from other users,
power constraints, and fading channels. Possible advantages
are the natural capability of broadcasting, making use of node
mobility, etc. An important factor in reaping benefits from
these depends on the development of low-complexity scalable
algorithms that are suited to the wireless environment.

We propose simple distributed algorithms for broadcasting
in wireless networks. Such one-to-all communication is essen-
tial as a discovery mechanism at the network or application
layer [2]. For example, it is used for route discovery in on-
demand ad-hoc routing protocols. We show that network cod-
ing can offer significant benefits in terms of energy efficiency,
which is perhaps the most important design metric for devices
in wireless ad-hoc networks.

The problem of minimum energy broadcasting in ad-hoc
wireless networks is NP-complete [3] and a large number of
approximation algorithms have been proposed. Usually, these
are either based on probabilistic algorithms where packets
are only forwarded with a certain probability [4], [5], [6], or
some form of topology control to form connected dominating
sets of forwarding nodes [7], [8]. Flooding, which is the
simplest possible algorithm, in wireless networks results in
a prohibitively large overhead [4].

If we allow intermediate nodes to code (i.e., we use network
coding), the problem can be formulated as a linear program
and thus accepts a polynomial-time solution. The authors in
[9] present a linear program formulation for the problem of

minimizing the energy per bit when multicasting in an ad-hoc
wireless network. An alternative formulation for minimum-
energy multicast in wireless networks is presented in [10],
where a distributed algorithm to select the minimum-energy
multicast tree is proposed.

Our focus is on broadcasting, which is a special case of
multicasting. Our work can also be thought of as an application
of [11] and [12] in the case of wireless ad-hoc networks. We
propose low complexity distributed algorithms and evaluate
their performance in terms of energy efficiency. To motivate
the proposed algorithms we start by examining in Section Il
structured configurations, such as the rectangular grid network.
We describe our algorithms for the general case in Section IlI
and present simulation results in Section V.

Il. CANONICAL EXAMPLES

This section presents two examples, the circular network
and the rectangular grid network, that motivate our algorithms
and demonstrate the potential of network coding. In both cases
we consider a wireless ad-hoc network with n nodes. We
assume that every node is a source, that wants to broadcast
information to all other nodes. Also, each node broadcasts at
a fixed range and therefore, each transmission consumes the
same amount of energy.

Let T;,. denote the total number of transmissions required
to broadcast one information unit to all nodes when we use
network coding. Similarly, let T, denote the required number
of transmissions when we do not use network coding. We are
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interested in calculating 7.

A. Circular Network

Consider n nodes placed at equal distances around a circle
as depicted in Fig. 1. Assume that each node can successfully
broadcast information to its two neighbors. For example,
node b; can broadcast to nodes a; and as.

Lemma 1: For the circular network it holds that

1) without network coding T, > n — 2
2) with network coding T}, > 251
Proof: Since a node can successfully broadcast to its two

nearest neighbors, each broadcast transmission can transfer at
most one unit of information to two receivers. We have n — 1
receivers to cover and thus the best energy efficiency we may
hope for is ”T‘l per information unit.

When forwarding w.l.g. we may consider a single source
broadcasting to n — 1 receivers. The first transmission reaches



Fig. 1. A circular confi guration.

two receivers. Each additional transmission can contribute one
unit of information to one receiver. ]

For the case of forwarding, it is easy to see that a simple
flooding algorithm achieves the bound in Lemma 1.

For network coding consider the following scheme. Assume
that n is an even number. Partition the n nodes in two sets
A={ai,...an} and B = {by,...bz} of size 5 each, such
that every node in A has as nearest neighbors two nodes in
B. For example, Fig. 1 depicts a circular configuration with
n = 8 nodes. It is sufficient to show that we can broadcast one
information unit from each node in set A to all nodes in sets A
and B using T;,. > % transmissions. \We can then repeat this
procedure symmetrically to broadcast the information from the
nodes in B.

Let {x1,...,z=} denote the information units associated
with the nodes in A. Consider the following transmission
scheme that operates in % steps. Each step has two phases,
where first nodes in A transmit and nodes in B receive
and then nodes in B transmit and nodes in A receive. For
simplicity of notation, we assume that all indices are  mod %

Algorithm NC1
Sep 1:

o Phase 1: The nodes in set A transmit their information
to their nearest neighbors, such that each node b;
receives x; and x;y; as shown in Fig. 1.

o Phase 2: The nodes in set B simply add the information
symbols they receive and broadcast it. For example,
node a; receives x; 1+ z; from node b; and x; 1 +x;
from node b;_1. Thus, node a; has the information
units from sources a;_; and a; 1.

Sep k, k> 1:

o Phase 1: Each node in A transmits the sum of the two
information units it received in phase 2, step k£ — 1.

o Phase 2: Each node in B transmits the sum of the two
information units it received in phase 1, step k.

Lemma 2: There exist schemes that achieve the lower
bounds in Lemma 1. Thus lim,,_, TT =1
Proof: Given the previous discussion it is sufficient to
show that Algorithm NC1 achieves the bound in Lemma 1.
It is easy to see that Algorithm NC1 will conclude in at
most 7 steps. Each step involves n transmissions and each
transmission brings one new information unit to two receivers.
Note that in the last step, second phase, fewer transmissions
are required, but this will not affect the order of the result. This
scheme transmits 5 information units in n % transmissions, and
thus, T5,c = 3. [ |
Assume now that each node can transmit at a constant radius
of k neighbors, i.e., each transmission reaches at most 2k
nodes. Consider set A to consist of 27}@ sources that are 2k
nodes apart, and set B to consist of 5 “relays”. Each node
in B is at distance & from its two closest neighbors in set A.
We then effectively reduce our problem to the k£ = 1 case and

we get directly the following theorem.

Theorem 1: In a circular network where each node can
broadcast information at a constant radius of & neighbors
Toe % 1

=2~ 1)
n—1 (
Tw =1 2

Note that adjusting the transmit power to reach further than
the direct neighbors is not energy efficient. It allows to reduce
the number of transmissions by a factor of &, but the received
power decays proportional to k' with a path loss exponent
l =~ 2 (depending on the environment). In total, such a scheme
requires a factor of k'~ more energy.

B. Rectangular Grid

Consider a wireless ad-hoc network with n nodes. Let
n = m2. Assume that every node is a source, that wants to
broadcast information to all n nodes. The nodes are placed
on the vertices of a rectangular grid and each node can suc-
cessfully broadcast information to its four nearest neighbors.
We are interested in a transmission scheme that minimizes the
total expended energy.

Lemma 3: For the rectangular grid network it holds that:

1) without network coding 7°, > %

2) with network coding T, > n?

Proof: Each broadcast transmlssmn can contribute one
unit of information to at most four receivers. However, when
forwarding we have an overlap of at least one receiver,
i.e., each broadcast transmission can contribute one unit of
information to at most three receivers. [ |

Lemma 4: There exist schemes that achieve the lower
bounds in Lemma 3 and thus lim,,_ T"C =3,

Proof:  For the case of forwardmg, we can simply
use flooding along one horizontal line (direction), and along
perpendicular lines.

For the case of network coding, we extend the proof idea in
Lemma 2. We partition the square lattice into sub-lattices A
and B, such that the four closest neighbors for an element in A
belong to B (and vice-versa). Let nodes A be sources. We will
describe a scheme that transmits one information unit from all
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Fig. 2. A rectangular grid confi guration.

sources in A to all nodes in A and B. Again consider steps
divided in two phases, where in the first phase the nodes in A
transmit, while in the second phase, the nodes in B transmit.
To avoid edge effects, assume that the square grid envelopes
the surface of a torus. Fig. 2 depicts an example network with
64 nodes enveloping the surface of a torus. For example, the
closest neighbors of the node Bsy are the nodes Asg, Asp,
A31 and A32.

We now make the connection with the circular network
proof. By “distance” between two nodes we refer to the
number of hops that separate them. For any node x( in the
circular network, the number of neighbors at distance & from
2o is two, independent of k& (with a possible exception for
k = 3, i.e., when wrapping around, where we may have only
one new neighbor). Thus, at step & in the proof of Lemma 2,
it is sufficient for x¢ to receive two new information units, to
learn the information of the neighbors at distance 2k.

In contrast, in an infinite square lattice, the number of
neighbors N at distance k is Ny = Np_1 + 4, Ny = 4,
k > 2 (called the coordination sequence of the square lattice.)
In the case of a grid with m?2 points placed on the surface of
a torus, the number of new neighbors increases up to a point,
and then, because of overlap when wrapping around, starts de-
creasing. (We assume hereafter that m is even, but very similar
arguments hold for m odd.) Similar to the circular network,
our algorithm for the rectangular grid case consists of steps.
In each step, every node collects information from sources
that are at an increasing distance from it. However, since in
this case, unlike the circular network, the number of neighbors
depends on the distance, the number of transmissions per node
at each step is not constant.

In the following, we first work out in detail the example in
Fig. 2, and then formally present our algorithm. As can be seen
from Table I, anode b € B has 4, 12, 12, and 4 (new) neighbor
sources at distances 1, 3, 5 and 7 respectively. (Because the
network is symmetric, these numbers are the same for all a €

A and b € B.) Fig. 2 depicts with dashed rectangles how
during each step a node in B collects information from an
increased distance.

Sep 1

o Each B; receives the information from its four direct
neighbors in A. For example, B; receives the information
from sources A, As, A3, Ay

o Each B; transmits two linear combinations of the four
information units he receives. Each A; receives 8 linear
combinations, and solves a system of linear equations to
retrieve the information from all sources at distance two.
For example, A, has the information from the sources
Al, A4, Ag, AlO: Ag, As, A7, and AG-

Sep 2:

o Each A; transmits three linear combinations from the
8 information units it previously received. As a result,
each B; is able to decode the information from the 12
sources at distance three. For example B; receives the
information from the sources in the second larger dashed
rectangular in Fig. 2.

o Each B, transmits four linear combinations from the 12
sources it received. Each A; receives 16 linear com-
binations and decodes 14 variables (here we transmit
some redundant linear combination, but their number is
negligible.)

Sep 3

o Each A; transmits three linear combinations from the 14
it received. Each B; decodes 12 information sources that
are at distance five.

o Each B; transmits two linear combinations. Each A;
receives 8 linear combinations and decodes the 8 sources
at distance six.

Sep 4

o Each A; transmits transmits one linear combination. Each
B; decodes the four sources at distance seven. Each B;
has now all the sources.

e« The A;’s have all the sources but for one source. For
example, A5 does not have the information of source Ass.
A subset of the B;’s transmits one linear combination that
brings the missing information to all A,.

The general algorithm can be described as follows. In the
general case, the number of (new) sources at different steps
k (and corresponding distances) for nodes in A and in B are
described in Table I.

TABLE |
NUMBER OF NEW SOURCES AT NC2.

neighbors Ny, _1 | neighbors Nog

step k forae A forbe B
k= 4 8
1<k<%—1 Nop_o +4 Nop_1+4

=7 Noj_o +4 Nojp—1 +2
k=7+1 Nop_o —2 Nop_1 —4
% 1<k<% Nop_o—4 Nop_1—4
k= % 4 1




Algorithm NC2
Sep 1:

o Phase 1: The nodes in set A transmit their information
to their four nearest neighbors. Each node in A trans-
mits once. Each node in B receives four messages.

o Phase 2: Each node in set B broadcasts two linear
combinations of the four new messages it has. Each
node in A receives eight linear equations, that it
can solve to retrieve the information from the eight
distance-two neighbors.

Sep k, 1 <k <3

« Phase 1: Each node in A transmits [%1 linear com-
binations from the Noi_o information units it received
in phase 2, step & — 1. Each node in B receives the
information units from all sources at distance 2k — 1.

« Phase 2: Each node in B transmits (%] from the
Ny information units it received in phase 1, step k.
Each node in A receives the information units from all
sources at distance 2k.

Thus, for k = 1,... %, each node collects the information
from a constantly increasing area.

Finally, the only remaining point to prove is, that there
exist linear combinations such that each receiver is able to
decode. With a centralized scheme, we are asking for vector
coefficients such that a product of determinants is nonzero. We
can address this problem using algebraic tools as for example
in [13]. Indeed, it is clear from the min-cut max-flow theorem
that no determinant is identically zero. Using Lemma 2 in [13]
the result follows.

Alternatively, we can use randomized coding, where each
node transmits random linear combinations of the information
symbols he received in the previous phase. Each receiver at
every step receives N linear combinations of V variables, and
with high probability has a full rank system of equations. Note
that with randomized coding, this scheme becomes decentral-
ized: at each step, each node transmits linear combinations
independently of what the neighbors transmit. Moreover, the
number of transmissions at every step is a function exclusively
of the step number. [ ]

In analogy to Theorem 1, Algorithm NC?2 can be extended
to a radio range that covers more than four neighbors. We are
currently investigating coding schemes for this case.

I11. ALGORITHMS FOR GENERAL NETWORKS

In the previous section we formally proved the optimality of
two low-complexity network coding algorithms. In this section
we present further algorithms that have even lower complexity,
achieve the same performance in square grid networks, but are
also well suited for random topologies.

Algorithm NC3

« Each node maintains a send counter s that determines
the number of broadcasts a node is allowed to send.
Each broadcast reduces s by 1 and a node is not eligible
for sending if s < 1. These broadcasts contain linear
combinations of all the information available at a node.
Initially, s = 0.

« An information unit that originates at a node increases
s by one. The information is broadcasted uncoded (i.e.,
not combined with any other information).

« For each innovative packet a node receives, s is incre-
mented by d.

The parameter d determines the ratio of sent packets to re-
ceived innovative packets. Algorithms NC1 and NC2 distribute
information with the smallest possible d. In real wireless
networks with irregular topologies and packet loss, it is helpful
to use a larger d for additional robustness. For example, with a
very low value for d, a node that has fewer than the necessary
number of neighbors may also prevent other nodes from being
able to decode by not sending out enough broadcasts himself.

Good values for d depend on the network topology and in
particular on the node density. For example, a node that has
a neighbor which has no other neighbors needs to forward
each innovative packet to this neighbor. While determining the
optimal value of d for a node requires global knowledge, it is
easy to find values for d that work reasonably well for all nodes
in the network, solely based on the average node density. The
smaller the value of d, the lower the total number of broadcasts
and the higher the probability, that nodes in sparsely populated
areas of the network will not be able to decode all packets.

When no information about the average node density is
available or nodes have to be able to decode with a high
probability, it is necessary to choose a large value for d. In
random networks, the major part of the protocol overhead
then comes from non-innovative packets in dense parts of the
network, where few broadcasts would suffice. Algorithm NC4
reduces the number of such useless broadcasts.

Algorithm NC4

« In addition to the send counter as in Algorithm NC3,
nodes use a receive counter. For each ¢ non-innovative
packets a node receives, the send counter s is decre-
mented by one.

This algorithm effectively adapts d to the local node density.
It limits the number of non-innovative broadcasts per neigh-
borhood while sacrificing little reliability.

Since we are interested in low-complexity algorithms,
we compare our protocols against probabilistic broadcasting
schemes [4], [6]. We consider three algorithms.



Algorithm FL1

« An information unit that originates at a node is broad-
cast to the neighbors.
« A node rebroadcasts a new packet with probability d.

Algorithm FL2

o As Algorithm FL1, but when a node overhears ¢
duplicate transmissions of the same packet, it removes
the corresponding broadcast from the interface queue.
(if it has not yet been sent).

These first two are in analogy to Algorithms NC3 and
NC4. For the last flooding algorithm, we assume that a
node has additional information about the current state of
its neighborhood (and that there is no cost associated with
obtaining this information).

Algorithm FL3

o As Algorithm FL1, but when all the neighbors of a
node have received a given information unit, the node
removes the corresponding broadcast from the interface
queue. (if it has not yet been sent).

A node thus avoids unnecessary broadcasts which reduces
the overhead required for the same packet delivery ratio.

IV. SIMULATION RESULTS

We have implemented the decentralized network coding
and flooding algorithms using a network simulator. A packet
transmission takes exactly one time unit. We assume that a
node can either send or receive and it can only send or receive
one packet at a time. Nodes have a nominal radio range of
250m. Transmissions are broadcasted and are received by all
neighbors (i.e., all nodes within transmission range). The MAC
layer is an idealized version of IEEE 802.11 with perfect
collision avoidance. At each time unit, a schedule is created
by randomly picking a node and scheduling its transmission
if all of its neighbors are idle. This is repeated until no more
nodes are eligible to transmit. The simulation area has a size of
1500mx1500m. The number of nodes is 144 which, for the
regular grid, results in exactly 12 neighbors per node. Each
node has one information unit to send to all nodes. For the
network coding, we use a fixed field size of 26 and transport
the encoding vectors in the packet header as suggested in [14].

We ignore edge effects by placing the nodes on a torus. All
the simulations were also performed without this assumption,
which reduces the average node density within a node’s
neighborhood and increases the average path length. Apart
from that, the findings of the simulations remain unchanged
and we therefore omit these results.

A. From Grids to Random Networks

We first investigate the impact of the send count increment d
on protocol performance in regular and random networks. We
vary d from 0 to 1 and show the resulting average number of

transmissions 7" and the packet delivery ratio in Fig. 3. Each
point in the curves corresponds to a specific value of d. Note
that d(n — 1) + 1 is an upper bound on the transmissions per
node, if each node has a packet to send. The lower the packet
delivery ratio, the further 7" will be from this upper limit.

Note that with network coding, a node might not be able to
decode all the innovative packets it receives. For the regular
grid and d < 1/12, the algorithm stops very early due to the
low number of packets, while the flooding algorithms already
achieve delivery ratios of up to 14%. As soon as d > 1/12,
the delivery ratio of network coding jumps to 100%, while
flooding is still below 20%. To deliver all packets in the
regular grid, Tycs = nd = 144/12, which confirms the
analysis of Section 1l. Flooding and idealized flooding achieve
100% delivery ratio for Tr;1 = Trrz = 108, although
idealized flooding gets very close to 100% delivery ratio with
significantly fewer transmissions than normal flooding.

Generally, a higher number of transmissions is required
to achieve these packet delivery ratios in random topologies.
Nevertheless, network coding again clearly outperforms both
flooding algorithms. For intermediate packet delivery ratios,
network coding incurs roughly half the overhead of flooding
and 2/3 of the overhead of idealized flooding. This gap widens
for high delivery ratios. With flooding, almost every newly
received packet is rebroadcasted, which requires close to 144
transmissions. The assumption of additional information for
idealized flooding allows to achieve the same performance for
Trrs = 50 packets. Even without this information, network
coding remains below 40 transmissions per node.

We also performed the same simulations using Algo-
rithm NC4 and FL2 with a receive count limit of ¢ = 5.
The results (not shown here) show a slight improvement in
the number of transmission of network coding in random
topologies in the regime of high delivery ratios. Here, 100%
delivery ratio is achieved for Tv¢cy4 = 33 instead of 40.
Improvements are similar for flooding, the most significant
being a 100% delivery ratio for Trro = 94 instead of
144. Since idealized flooding is in fact a more intelligent
version of a receive count limit, its performance remains
unchanged. Nevertheless, the large difference in performance
between network coding and the flooding algorithms remains
unchanged.

B. Impact of Packet Loss

Here we examine the impact of random packet loss often
prevalent in wireless networks due to fading, interference, etc.
We drop packets at receiving nodes with a fixed probability
between 0 and 100%. We further use a send count increment
of d = 0.5 and a receive count limit of ¢ = 5.

The corresponding simulation results are shown in Fig. 4.
Network coding is insensitive to packet loss rates of up to 40%
and continues to achieve high delivery ratios for drop rates of

IFlooding requires d = 1 to achieve a packet delivery ratio of 1,
independent of the network topology. Otherwise, there is a certain (small)
probability, that all neighbors of a node decide not to forward a specifi c
packet and the node will therefore not receive it.
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Fig. 4. Packet delivery ratio (left) and number of transmissions (right) for different packet drop rates in a random network with 144 nodes

up to 75%. Both flooding mechanisms have the same packet
delivery ratio which drops to O significantly earlier than that
of network coding. The difference is most apparent for drop
rates between 70% and 80%, where network coding achieves
delivery ratios that exceed those of flooding by a factor of 5
to 8. The same simulations on a regular grid yield an even
higher performance advantage for network coding. Here, the
delivery ratio remains at 100% for drop rates of up to 75%.

The graph with protocol overhead shows an increasing
number of transmissions Tyc2 up to a drop rate of about
80%, where the delivery ratio sharply drops to 0. This is due
to the fact that more and more packets have to be sent in
order to receive 5 non-innovative packets (and thus suppress
an own broadcast). In contrast, the number of transmissions of
flooding decreases gradually, because the low packet delivery
ratio does not leave more packets to be rebroadcasted.

The usefulness of the receive count limit for network coding
in random topologies becomes apparent when comparing
Tnes With Ty (again not shown here). For Algorithm NC3
without receive count limit, Txc3 is constant at 72 packets,
until it drops of to O for packet drop rates higher than 80%.
That is, for low drop rates Algorithm NC4 achieves the same
delivery ratio for roughly half the number of transmissions.
(The packet delivery ratios do not change significantly.)

From these simulations we can see that network coding
indeed outperforms flooding by a very significant margin
for similar complexity algorithms and a random MAC layer
schedule.
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