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Abstract— We consider unicast equation-based rate con-
trol, where, at some points in time, a sender adjusts
its rate to f(p,r), where p is an on-line estimate of the
loss-event rate observed by this source, r of the average
round-trip time, and f is a TCP throughput formula.
Conventional wisdom holds that such a source would be
TCP-friendly, that is, it would not attain a larger long-
run average send rate than a TCP source under the
same operating conditions. Our goal is to identify the
key factors that determine whether, and how far, this is
true. We point out that it is important to breakdown the
TCP-friendliness condition into sub-conditions and study
them separately. One sub-condition is conservativeness
(throughput not larger than f(p,r)). The conservativeness
is primarily influenced by some convexity properties of the
function f, and a covariance property of the loss process.
In many cases, these conditions result in conservativeness,
in some cases, excessive conservativeness. Another sub-
condition is that the source experiences a loss-event rate
that is not smaller than that of TCP. We show two limit
cases for which the last sub-condition, respectively, does
and does not hold. We show that in the latter situation,
the outcome can be a significant non-TCP-friendliness. The
claims suggested by our analysis are verified by numerical
examples, simulations, Internet and lab experiments. Our
findings should help us better understand when to expect
the source to be TCP-friendly, or in contrast, non-TCP-
friendly. On the basis of our analysis and empirical
evaluations we observe that TCP-friendliness is difficult
to verify, whereas conservativeness is easier.

I. INTRODUCTION

E consider an adaptive sender of packets that

employs unicast equation-based rate control. It
means that the send rate is controlled as follows: The
sender uses the function f(p,r) that maps a loss-event
rate p and an average round-trip time r to a send rate;
the sender computes on-line estimates of the loss-event
rate and the average round-trip time and plugs-in those
estimates into the function f; the sender sets its send
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rate to such computed values primarily at loss-events.
The function f is assumed to be a TCP throughput for-
mula. An example equation-based rate control protocol
is TFRC [7]. Given that the send rate is adjusted at
some points in time by computing the send rate using
the TCP throughput formula, conventional wisdom holds
that equation-based rate control is TCP-friendly. TCP-
friendliness is an axiom that requires adaptive non-TCP
sources to attain a long-run time-average send rate (we
call throughput) not larger than TCP would attain under
the same circumstances [5]. If so, a source is said to
be TCP-friendly. If there were convergence, then the
throughput = of the source would satisfy = f(p,r). In
practice, though, the control is required to be responsive,
so there is no convergence. Thus, the non-linearity of the
function f and the randomness of the estimators of p
and r leave little hope that we have exactly = = f(p,r).
We show when to expect an equation-based rate control
to be TCP-friendly, or non-TCP-friendly. Most of our
results are based on analysis; the claims suggested by
our analysis are verified through numerical examples,
simulations, Internet and lab experiments. Next, we
summarize our main findings.

A. Breakdown into Sub-Conditions

We find that it is important to breakdown the TCP-
friendliness condition into sub-conditions and study them
separately. We give the arguments after introducing the
sub-conditions. There are four sub-conditions whose
conjunction implies TCP-friendliness. The first sub-
condition we term conservativeness; it means that the
source attains a throughput that is not larger than the
TCP throughput formula that is used by the source,
evaluated at the loss-event rate and average round-trip
time as seen by this protocol. Note that conservative and
TCP-friendly are not the same; it is perfectly possible
that our source and TCP would experience different loss-
event rates and average round-trip times. The second sub-
condition is that the loss-event rate as experienced by
our source is not smaller than TCP would experience.
The third sub-condition is that the average round-trip
time as observed by our source is not smaller than
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that of TCP. The fourth, and last, sub-condition is that
TCP attains a throughput that is at least as large as
the TCP throughput formula evaluated at the loss-event
rate and average round-trip time experienced by TCP.
Common practice is to evaluate TCP-friendliness of
a protocol by directly comparing the throughputs of
this protocol and that of a competing TCP. We point
out that this is not a good practice because it may
hide the cause of an observed throughput deviation. It
is thus important for protocol designers to breakdown
the TCP-friendliness condition and study the individual
sub-conditions separately. Failing to do so may lead
a protocol designer to an improper adjustment of the
protocol with the intention to correct for an observed
throughput deviation. We illustrate this by an example.
Suppose that in a set of experiments a protocol designer
observes that her equation-based rate control protocol
attains a larger throughput than TCP. The designer then
adjusts the protocol by choosing a throughput function
that is smaller than the TCP throughput function used in
the experiments for a factor that would compensate for
the observed throughput deviation. Upon repeating the
experiments, the designer may observe that the fix makes
the two protocols attain almost the same throughputs,
and thus the fix solved the problem. Suppose that for
the given set of experiments, the breakdown of the TCP-
friendliness condition would reveal that the throughput
deviation was due to the equation-based rate control
seeing a much smaller loss-event rate than TCP. Now,
suppose that our designer runs another set of experi-
ments, but now for those new experiments the loss-event
rates of the two protocols are fairly near. Having made
the fix, the designer may observe that now her protocol
attains an excessivelly smaller throughput than TCP. The
reason is that the fix has been done in an ad-hoc manner,
by not directly trying to understand and correct for the
deviation of the loss-event rates, which in the example
was supposed to be the major cause of the deviation.

B. Conservativeness

We give conditions under which the control is con-
servative, or not. Before announcing our results, we first
define our source in some more detail. We assume that
our source uses an unbiased estimator of the recipro-
cal of the loss-event rate 1/p. Moreover, we assume
that the estimator is defined as a moving-average of
a fixed number of loss-event intervals as observed by
the source. We call a loss-event interval the number
of packets sent by our source between two successive
loss-events experienced by the source. In particular, the
definition of the estimator accommodates a protocol such

as TFRC. We distinguish between basic and compre-
hensive control. The former adjusts the send rate only
at loss-events, whereas the latter increases the send rate
on time intervals when the loss-event interval becomes
sufficiently large. The comprehensive control reflects
what is implemented in TFRC. Some of our conditions
are on some analytical properties of the function f. We
verify our conditions on the following cases for function
f: (1) the square-root formula (we call SQRT), (2) the
throughput formula (we call PFTK-standard), and (3)
a simplified variant of PFTK-standard (we call PFTK-
simplified). We consider PFTK-simplified because it is
recommended by the TFRC proposed standard [7]. We
also consider PFTK-standard because PFTK-simplified
is a simplification of that function, and SQRT that is the
limit of both PFTK formulae for rare losses. Our analysis
reveals that the properties of the long-run behavior is
indeed influenced by the chosen throughput function. We
did not consider TCP throughput formulae for short-lived
transfers, e.g. [4], given that our focus is on long-run
behavior of long-lived connections.

In our analysis of the conservativeness, we assume
the estimator of the expected round-trip time is fixed
to the mean round-trip time; we account for variability
of the round-trip times in our empirical evaluations. For
the basic control, we find fairly exhaustive results. First,
conservativeness is strongly influenced by the convex or
concave nature of two functionals of f and the joint
probability law of the loss-event intervals. If (C1) the
loss statistics is such that the estimator 6,, of the expected
loss-event interval and the next loss-event interval 6,
are slightly positively or negatively correlated, then the
control is conservative. We find empirical evidence in
[18] that suggests (C1) in practice to be true; we also
show later our own empirical confirmation. Further, the
larger the variability of the loss-event interval estimator,
the more conservative the control is. Both of these effects
are more pronounced for PFTK formulae than for SQRT.
With PFTK, this causes the control to be excessively
conservative for a large loss-event rate. This explains
the throughput-drop with the loss-event rate, which was
empirically observed for TFRC [6], [17], [2], the cause
of which was so far unknown. Second, if the covariance
condition (C1) does not hold, then the results may be
radically different, and strongly depend on the nature
of the function f. We identified one case of practical
importance that results in non-conservativeness. If (C2c)
the correlation of the send rate just after a loss-event
and the time it takes until the next loss-event is non-
negative, then for PFTK and a large loss-event rate,
the control is systematically non-conservative. For PFTK
with a small or moderate loss-event rate, this does not
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occur. The effect is due to the convexity property of
the function f, that holds differently in these cases. An
example protocol that may conform to the foregoing
assumptions is an audio source that has a fixed packet
send rate and adjusts its send rate by varying the packet
lengths [3]. These findings are exact for the basic control;
for the comprehensive control, we pose them as claims
and verify them by experiments.

C. Comparison of the Loss-event Rates

We analyze two limit cases under which the sub-
condition on the order of the loss-event rates, respec-
tively, does and does not hold. The former limit case is
for a source that has a negligible effect on the state of
the network, and it is driven by a congestion process
that captures the network dynamics. In this situation,
the problem boils down to the analysis of the sampling
of the congestion process by the source. Given that our
source is expected to be more sluggish in adaptation and
to have a smoother send rate than TCP, our analysis
suggests that the source would observe a larger loss-
event rate than TCP. The latter limit case is when a
small number of equation-based rate control and TCP
sources compete for a bottleneck. We consider perhaps
the simplest model whereby our source and a TCP-like
source each run alone over a link with a fixed capacity.
Our analysis yields that the TCP-like source observes
a loss-event rate that is 1.7 times larger than the loss-
event rate observed by the equation-based rate controlled
source. This suggests that, in general, our source would
see a smaller loss-event rate than TCP when a few
equation-based rate control and TCP sources compete for
a bottleneck. We verify this by simulations and Internet
measurements, and find a fairly good agreement with
the suggestion of our simple model. We emphasize that
in the present situation, the deviation of the loss-event
rates is the major cause of the throughput deviation that
makes equation-based rate control be significantly non-
TCP-friendly.

D. Other Sub-Conditions

We study through empirical evaluations only, the sub-
conditions on the comparison of the average round-trip
times and obedience of TCP to the throughput formula.
We did observe some deviation of the average round-trip
times of TFRC and TCP in our experiments, but in most
cases we observed this not to have a major influence on
TCP-friendliness. We observed cases when TCP attained
a smaller throughput than given by PFTK formulae. In
particular, we observed a tendency of this to hold for a
few sources competing for a bottleneck.

E. TCP-friendliness is Difficult to Verify

On the basis of our analysis and empirical evaluations,
we find that TCP-friendliness is difficult to verify. There
are several factors that determine whether the control is
TCP-friendly, or not. The different factors may lead to
different directions. In contrast, and on a more positive
side, our analysis and empirical results suggest that
conservativeness is easier to analyze and verify. The
conservativeness condition allows us to study a source
that uses equation-based rate control in isolation for a
driving loss process, and come up with simple conditions
on analytical properties of the throughput function and
statistics of the loss process that imply conservativeness
Or non-conservativeness.

F. Organization of the Paper

The paper is organized as follows. Section Il describes
our assumptions and notations. Section Il gives our
analysis results that tell when the control is conservative,
or non-conservative. We summarize our findings in the
form of two claims in Section IlI-C. Section IV dis-
cusses the other sub-conditions of the TCP-friendliness
breakdown. Firstly, we give analytical arguments that in
a limit case lead us to conclude that equation based rate
control would not see a smaller loss-event rate than TCP.
Secondly, we pose a claim that describes a different
situation in which the order of the loss-event rates is
opposite. In Section V we validate our findings by
designed numerical experiments, ns-2, lab, and Internet
experiments. Section VI concludes. All the proofs are
given in the appendix.

I1. ADDITIONAL ASSUMPTIONS AND NOTATIONS

We consider an adaptive sender with the send rate
at time t equal to X(t). We assume that X (¢) can
be described by a stationary ergodic process, and thus
equate the time-average with the expected value

t

z=lim — [ X(s)ds =E[X(0)].

t—oo t 0

Index n refers to the nth loss-event. We use the following
additional notation. 7T;, is the instant at which a loss-event
labeled n is detected by the sender. S, = T\, 41 — T, IS
an inter loss-event time. X,, = X (7,,) is the rate set at
the nth loss-event. 6,, is the number of packets sent in
[T, T+1). Following TFRC, we call 6,,, the loss-event
interval. Think of both S,, and 6,, as of the loss-event
intervals, however, the former measured in seconds, and
the latter in packets.

We study the long-run behavior of the control, and
hence, it is more convenient to work under the conven-
tion ...T_ 1 < Ty <0 < T; < .... The instant 0 is
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an arbitrary point in time. We assume the point process
of loss-events has a finite non-null intensity A\. The
guantity A is the loss-event rate, the expected number
of loss events on an arbitrary unit time interval. With
E9, we denote the expectation with respect to the Palm
probability P, associated to the points of loss-events.
This is the expectation as seen at an arbitrary loss event
instant T,,, as opposed to the standard expectation E,
which is as seen at an arbitrary point in time.
The loss-event rate as observed by the source is

1

P= B @
The quantity p is also a loss-event rate. Informally
speaking, it is the fraction of loss-events one would
observe in a number of packets sent over a long time
interval. Let 6,, be an estimator of the expected loss-
event interval in packets, computed at 7,,. We assume,
as is done in TFRC:

(E) 6, is an unbiased estimator of 1/p.

Moreover, we assume that én is defined as a moving-
average of the loss-event intervals, for some positive-
valued weights (w1, wa, ..., wr),

L
én = Z wlen—l- (2)
=1

Note that, by (E), the weights sum up to unity. TFRC
uses this type of loss-event interval estimator, for a
particular setting of the weights, with w; all equal for
1 <1< L/2, else w; linearly decreases with .

In our analysis we assume the round-trip times are
fixed to their mean value. Hence, for convenience of
notation, we re-define f(p) be a positive-valued non-
increasing function of the loss-event rate p.

A. Basic control

The basic control is defined as follows. For ¢t &
[Tn,Tn+1), n € 7,

X() = f (_> | 3)

B. Comprehensive control

We add an additional control law to the basic control
(3), and call the resulting system the comprehensive
control. The mechanism reflects the send rate increase
in absence of loss-events, as found in TFRC [7].

!As an aside, note that E[1/6] > p, and thus 1/, is a biased
estimator of p. This follows as a direct application of Jensen’s
inequality and (1).

Let 6(¢) be the number of packets sent since the last
loss-event observed at ¢. Then we define the comprehen-
sive control as follows, for t € [T},, T},41), n € Z,

1
En)
L—1
0t) = (wib(t) + Y wig10n-1)1a, + (1= 14,)0,.
=1
Here
1 . L-1
A= {9(15) > w—1[9n - sz+19n—l]} ;
=1

where 14, =1, if A; is true, else 14, = 0.

In other words, at an instant ¢, the loss-event interval
estimator 6(t) is updated with 6(¢), if that increases the
value of the estimator. If this is not the case, then 6(¢)
is fixed to 6,,. Note that if the condition A, is true, that
is O(t) is sufficiently large, the control (4) increases its
send rate.

Note that the send rate dynamics is such that, if
Ons1 < O, then X(¢) = f(1/6,), all t € [T, Thy1).
Else, for 6,1 > 6, the send rate is X () = f(1/6,,), for
t € [T, T, + Uy,], and then the rate increases according
to (4) for t € (T, + Uy, Tr,11). Here, from the definition
of A,

1 . L-1
Un = ) [9n - Z wl—i—len—l] .
=1

wi f (ei

C. Some functions = — f(x) used in the Internet

We use the following loss-throughput formulae. We
first display the simplest one (“the square-root”) which
we refer to as SQRT [10]

1
flp) = /B’ (5)

where ¢; is a positive constant, r is an event-average of
the round-trip time; the event-average by sampling the
round-trip times once in a round-trip time round.

We next display another well-known function f
(Equation (30) in [12]); we refer to as PFTK-standard

1
) c17y/p + gmin[l, ea\/p](p + 32p?)
for a positive constant cs. The parameter ¢ is a value of
the TCP retransmit timeout parameter. We also consider
a simplified version of the last formula; we call, PFTK-
simplified

1
= . 7
(») c1ry/p + qea(pP/? + 32p7/2) ")
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x=>f(1/x)
Xx=>1/f(1/x)

PFTK-simplified w0

Fig. 1. Functions of interest (Left) + — f(1/x) and (Right) x —
1/f(1/x), for SQRT, PFTK-standard, and PFTK-simplified, with r =
1, ¢ = 4r; the curves for PFTK formulae overlap. Values of x close
to 0 correspond to heavy losses. The plots on the right side indicate
that the convexity condition (F1) in Theorem 1 would be satisfied
in all three cases, but this is strictly true only for SQRT and PFTK-
simplified; it also illustrates that convexity is much more pronounced
for PFTK-simplified than for SQRT. The left plots illustrate that the
concavity condition (F2) of Theorem 2 is true for SQRT; for PFTK-
standard and PFTK-simplified it holds only for small loss-event rates;
for heavy loss (z small), the curves are convex and thus the opposite
condition (F2c) holds.

In the formulae, ¢; = \/2b/3 and c2 = 3/24/3b/2. b

is the number of the packets acknowledged by a single
acknowledgment; in practice, typically b = 2.

PFTK formulae are de-facto standard. PFTK-
simplified is the formula recommended in TFRC stan-
dard proposal [7]. (With ¢ = 4r, as a recommendation.)
Note that, for p < 1/c2, (7) is equal to (6), else, it is
smaller.

We use the above particular formulae in our examples.
Note that most of our findings apply to other functions
f as well.

I1l. WHAT MAKES THE CONTROL CONSERVATIVE OR
NOT

We first give a throughput formula on which we build
our analysis.

A. Throughput formulae

Proposition 1: The throughput of the basic control (3)
is
E[6o]
0(] :
Bl

0

E[X(0)] = (8)

Comment: We believe it is instructive to re-write the

throughput expression (8) as
EIXO) = =— T

[—11 + cov[0o,f(1/00)]
(%) ElBIf(/00)
The expression reveals that, in part, it is the convexity
nature of + — 1/f(1/x) that would determine conser-
vativeness. The second term in the above display may or
may not have a significance. In a particular case, when
the loss-event interval estimator and the next sample
of the loss-event interval are stochastically independent,
then the second term in the above display is equal to
one. In this particular case, it is the convexity nature
of v — 1/f(1/x) that entirely determines whether the
control is conservative, or not.

For the comprehensive control, we have a bound.

Proposition 2: The throughput of the comprehensive
control (4) is such that

_Elbo]
El705)
The bound implies, if we know the’basic control is non-
conservative, then we know the comprehensive control
is non-conservative, as well. The converse is not true.
An exact throughput expression may be obtained for
the comprehensive control for particular functions f. We
obtain exact throughput expression for SQRT and PFTK-
simplified functions f, as given next.
Proposition 3: Let f be either SQRT (co = 0) or
PFTK-simplified. The throughput of the comprehensive
control is

E[X(0)] =

E[0
B[X(0)] = — 100 0O
E[f(%)] - E[%lél>éo]
where
Vo= & [m2ar(Bi, - 00) + 20000, Fy — 6 )+

+%¢2q(6,2) — 00 ) + (g1 — 9n)ﬁ :

Note that, in view of the above propositions and
the definition of 4, (2), the throughput of both basic
and comprehensive control is expressed in terms of the
expected values of some functions of a sequence of
L + 1 loss-event intervals, 6y,60_1,...,0_;. Therefore,
knowing the joint probability law of 6y,0_1,...,0_p
would, at least in theory, enable us to compute the
throughput, and explain how the “correlation structure”
of the loss process plays a role.

B. Conditions for the basic control to be conservative

Consider the basic control. We give exact sufficient
conditions for conservativeness, or non-conservativeness.
The results have interest of their own; they suggest the
key factors that may cause conservativeness.
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1) Sufficient conditions for the basic control to be
conservative:
Theorem 1: Assume that

(F1) z— % is convex,

(C1) cov|by, bo] < O0.

Then the basic control (3) is conservative.

Interpretation: The convexity condition (F1) is sat-
isfied by the SQRT loss-throughput formula, and by
PFTK-simplified; it is not satisfied by PFTK-standard,
but almost (we will come back to this in a few lines).
This is straightforward to demonstrate and can also be
seen in Figure 1. The figure also shows that convexity
is much more pronounced for PFTK formulae, and thus,
we should expect stronger conservativeness with PFTK
than with SQRT formula (this is confirmed numerically
later).

Condition (C1) is true in particular when the covari-
ance is 0, which happens when successive loss-event
intervals are (stochastically) independent. There are in-
dications in [18] that this may be true, and the theorem
says that this would lead to a conservative behavior. We
show later, in Section V, some experimental evidence
that indicate (C1) to be mostly true in today’s Internet
(see Figure 10).

We give the following more explicit statement, which
gives a bound on the throughput, for cov[@o,éo]p2 <

—f)/(f'(p)p),
E[X(0)] < f(p) !

1 L0 cou o, dolp?

This shows that, in most cases, if the covariance is
positive but small, there cannot be a significant non-
conservativeness of the basic control.

The theorem says more. Remember that 6, is an
incremental estimator of the Palm expectation of the
loss-event interval, 1/p, built on the past information
available up to the loss-event n, whereas 6,, is the true
next loss-event interval. Both have the same expectation,
as we assumed that 6,, is unbiased. However, this does
not mean that 6,, is a good predictor of 6,,. This depends
on the joint statistics, in particular the autocovariance of
the loss process. The covariance of 6,, and 0, reflects
how good a predictor 6, is. Condition (C1) means that
6,, is a bad predictor, and, maybe surprisingly, the theo-
rem suggests that this leads to a conservative behavior.
Conversely, consider now a hypothetical case where the
loss process goes into phases, with slow transitions. Then
the loss-event interval becomes highly predictable; the
theorem does not say that this alone will make the control
non-conservative. However, this may really happen; we
gave an example in [16], Section 3.4. We give a perhaps
more realistic example in Section 111-B.2.

(10)

/3.4493

325 33 3.35 3.4 3.45 35 X
1.003
1.0025 )
_ 1.002
=
"21.0015
3 r=1.0026
< 1.001
1.0005
1 ‘ ‘
325 33 3.35 34 3.45 35 X

Fig. 2. The top figure shows g(z) := 1/f(1/x) when f() is PFTK-
standard and its convex closure (dotted line). On the interval shown in
the top figure, g** is equal to the tangent common to both ends of the
graph. Outside the interval it is equal to g. g() is not strictly speaking
convex, but almost. The bottom figure shows the ratio g/¢**, which
is bounded by » = 1.0026.

Note that 6, is the moving-average estimator in (2),
and thus
L
covl[by, ég] = Z wycov[by, 0. (12)
=1
In other words, it is a weighted sum of the autocovari-
ance of the loss-event intervals at lags 1 to L.

The following corollary was shown in the discussion
above.

Corollary 1: If the convexity condition (F1) holds and
the loss-event intervals are stochastically independent,
then the basic control (3) is conservative.

When convexity is almost true: The convexity condi-
tion (F1) is not true for PFTK-standard (because of the
min term), but almost, as we see now. For a function
x — g(x), we quantify its deviation from convexity by
the ratio to its convex closure

avarell

The convex closure g**(z) is the largest convex function
that lower bounds g(z); it is obtained by applying convex
conjugation twice [14]. Figure 2 shows g(x) = 1/f(1/x)
for PFTK-standard and its convex closure; here, we have
r = 1.0026.

Proposition 4: Assume that the loss-throughput for-
mula f is such that 1/f(1/z) deviates from convexity
by a ratio r, and that (C1) holds. Then the basic control
(3) cannot overshoot by more than a factor equal to r.
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Thus, considering that a fraction of a percent is more
than reasonably accurate, we can conclude that for any
practical purpose, we can act as if PFTK-standard would
satisfy the convexity condition (F1).

2) When the sufficient conditions do not hold: We
give a different set of conditions, that provide additional
insights. This new set of conditions applies to some cases
where Theorem 1 does not apply.

Theorem 2: Assume that

(F2) x — f(x) is concave,

(C2) cov|[Xy,Sy] <0.

Then the basic control (3) is conservative.

Conversely, if

(F2¢) = — f(x) is strictly convex,

(C2c) cov|[Xy,So] >0,

(V) the loss-event estimator ,, has non-zero vari-

ance.
Then the basic control (3) is non-conservative.

Interpretation: The concavity condition (F2) is true
for the SQRT formula. In contrast, the PFTK-standard
and PFTK-simplified are such that concavity (F2) is true
for rare losses, but convexity (F2c) is true for frequent
losses; see Figure 1, left graph. The covariance condition
(C2) is between X, the send rate at the occurrence of the
nth loss-event, and .S,,, a time until the next loss-event. If
the loss process is memory-less and independent of the
activity of our source, then the duration S,, of the loss
interval is negatively correlated with the send rate X, in
the given interval (since S,, is counted in real time, not
per packet); in such cases, condition (C2) is true, and
the basic control is conservative, as long as losses are
rare to moderate (or if the SQRT formula is used). This
part of Theorem 2 complements Theorem 1.

Consider now the second part of Theorem 2. Assume
that {5, }», a sequence of loss-event intervals counted
in real time, is independent of the send rate. This may
happen for example for an audio source that modu-
lates its send rate with a fixed packet send rate, but
varying the packet lengths, and if the packet dropping
probability in routers is independent of packet lengths;
for instance, with RED operating in the packet mode.
Then (C2c) holds, with equality. Now assume also that
PFTK-standard is used, and the network setting happens
to be such that the loss-event interval 6,, is mostly
in the region where PFTK-standard is convex (that is,
heavy losses). The theorem says that the basic control
is non-conservative, except in a degenerate case where
there is no randomness in the system, i.e. the loss-event
interval estimator has converged to a fixed value. We
show simulations that illustrate this case in Section V.

Another example is for a more traditional sender such
as TFRC, but when the loss process goes through phases

(for example, the network paths used by the connection
oscillate between congestion and no congestion), and the
send rate roughly follows the phases; that is to say, it is
responsive at the timescale of the loss process. Then,
when the network is in a congestion phase, X, is most
often small, and because of congestion, S,, is small. In
such a case, condition (C2c) may be true and the basic
control may not be conservative. In Section V-C we show
such cases.

Viewpoint matters: The first part of Theorem 2 illus-
trates well the importance of the Feller paradox-type of
arguments used in this paper; also known as “bus stop”
paradox. The send rate X (¢) is updated only at loss-event
instances. Consider an observer who picks a point in time
at random. This observer is more likely to fall in a large
inter loss-event interval S,,. Given that S,, is negatively
correlated with X,,, it is thus more likely that on average
our observer will see a smaller rate than another observer
that would sample the send rate at loss-event instants.
From this we conclude E[X(0)] < E%/[X(0)]. Now,
the concavity assumption (F2), by Jensen’s inequality,
shows in turn that E;[X (0)] < f(p). Finally, it follows
E[X(0)] < f(p), the control is conservative.

Note that the correlation condition (C2) in Theorem 1
is implied by the condition that the conditional expected
duration S,,, given the send rate X,,, decreases with X,.
That is

(C3) E[Sy|Xo = «] is non-increasing with .

This is a direct consequence of Harris’ inequality? that
(C3) implies the negative correlation condition (C2). A
result based on the above conditional expectation found
in [15] is a special case of the first part of Theorem 2.

Of course, we should expect that the combination of
(C2c) and (V) implies that (C1) does not hold. This is
shown to hold in [16], Appendix A.l therein.

It is legitimate to wonder whether Theorem 1 is
derived from Theorem 2 or vice versa. This does not
seem to be the case; see [16], Appendix A.l. Note,
however, if the concavity condition (F2) holds, then
the convexity condition (F1) necessarily also holds. The
converse is not true.

C. What this tells us

The analytical results in the previous section are for
the basic control. We expect the comprehensive control
to give a slightly higher throughput, since it differs by
an additional increase during a long loss-event interval.

2Harris’ inequality says that if f(x) and g(x) are non-decreasing
functions, and X is one random variable, then the covariance of f(X)
and g(X) is non-negative. See, for example [1], p. 225.



IC TECHNICAL REPORT [C/2003/70, HTTP://IC2.EPFL.CH/PUBLICATIONS/DOCUMENTS/IC_TECH _REPORT _200370.PDF 8

This motivates us to pose as assumptions the following
analysis. We confirm our claims later by experiments.
Claim 1: Assume that the loss-event interval 6,, and
the loss-event interval estimator 6,, are slightly positive
or negatively correlated. Consider the region where the
loss-event interval estimator 6,, takes its values.

o The more convex 1/f(1/x) is in this region, the
more conservative the control is.

e The more variable én is, the more conservative the
control is.

Application: For protocols like TFRC, we expect the
condition to hold in many practical cases (see [18], also,
our experimental evidence in Section V). For the three
functions we consider in this paper, x — 1/f(1/z) is
more convex for small z, that is, for a large loss-event
rate p. Thus, the control should be more conservative
with high loss than low loss. This effect is more pro-
nounced for PFTK-standard (6) and PFTK-simplified (7),
which are convex and very steep for large p, than for
SQRT. This explains the observed drop in throughput
for the control, with PFTK and heavy losses.

The “variability” of 6, depends on the variability
of the loss-event intervals, and can be controlled by
the value of the window of the moving-average esti-
mator, L. With some appropriate setting of the weights
wi,ws, ..., wr, the larger the window of the estimator
L, the smaller the variability of the estimator 6,,. We
should find that for a larger L the control becomes less
conservative.

The second claim concerns a case where the condi-
tions in Claim 1 do not hold.

Claim 2: Assume that the duration in real time of the
loss-event interval S,, and the send rate X, are negatively
or non-correlated.

« If f(1/z) is concave in the region where the loss-

event interval estimator én takes its values, the
control tends to be conservative.

Conversely, assume S, and X,, are positively or non-
correlated.

o If f(1/x) is strictly convex in the region where the
loss-event interval estimator én takes its values, and
{6} is not fixed to a constant, the control is non-
conservative.

In both cases, the more variable 6, is, the more pro-
nounced the effect is.

Application: We expect to have a close to zero corre-
lation for adaptive audio applications such as [3] when
packet losses in RED routers are independent of packet
length. Thus, depending on which convexity condition
holds, we will find one or the other outcome. For SQRT,
the control should always be conservative. The same

holds for PFTK with light to moderate losses. The
opposite holds for either PFTK formulae with heavy
losses.

IV. OTHER CONDITIONS FOR TCP-FRIENDLINESS
A. Comparison of the Loss-Event Rates

We first consider how the loss-event rates seen by an
equation-based rate control and TCP would compare.
Unlike the problem of conservativeness, this problem
does not allow us to conclude about the order of the loss-
event rates, unless some further assumptions are made.
Note that the relation of the loss-event rates seen by
two different protocols would depend on the interaction
of the protocols sharing a network. Yet, a claim can be
made in a limit case.

1) Many-Sources Limit: Assume that senders in a
network are driven by a congestion process Z(t) that
evolves in real time, ¢ € R. This is an approximation that
fits with the case of a sender with negligible influence on
a global network. Assume the congestion process takes
values on E, a countable state space. The state transitions
are clocked by a point process ... < T, <T; <0 <
T} < .... We assume this point process to be stationary
and has a finite non-null intensity \. Let N’ be the
associated counting process. Let m; := P[Z(0) = i| be
the steady-state probability that the congestion process
is in the state ¢ € E. Define

1

B [00]2(0) =]

This is the loss-event rate, given the congestion process is
in the state 7 € E. Let, also, z; = E[X(0)|Z(0) = 4] be
the time-average send rate, given the congestion process
is in the state 7. We show in the appendix

Y icr bipiTim;
~— 7 —
Y icp biTim

Di

pi = (12)

where
b — EX [ ez 0000 (T)|Z(0) = 1]
Z E [foF X (s)ds| Z(0) = d]

In the limit case, as ﬁ— — 0, forall i € E, b; — 1. Here,
by definition, \; = 1/EQ[So|Z(0) = 4] is the intensity
of the loss-events in real-time, given the congestion
process is in the state ¢ € FE. The limit corresponds
to a separation of timescales; we assume the congestion
process evolves more slowly than the timescale of the
control (remember that the control is clocked by the loss-
events). We base our further discussion on the loss-event
rate, in the foregoing limit case,

> ick PiTiT;
diep TiTi

p—)

(13)
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If our source is non-adaptive (Poisson) then z; = =
is independent of 7. The resulting loss-event rate p” =
> icp Tipi can be thought of as the time-average of
the “network” loss-event rate. Except for some possible
aliasing effects, it should be close to what a constant
bit rate (CBR) source would experience. Now if, like
TCP, our source is very responsive, that is, follows the
congestion process closely, then z; depends on i in
the following way: z; is large for “good” states (p;
small) and small for bad states (p; large). Thus, we
should have a smaller p. For TCP, this is confirmed by
measurements in [13]. The more responsive the source
is, the more pronounced this should be. TCP is expected
be more responsive than our adaptive sender, whose
responsiveness depends on the averaging window L.
We summarize this as follows; see Figure 7 for an
illustration.

Claim 3: In the many-sources regime, the loss-event
rates of TCP (p’), an equation based-rate control source
(p), and a non-adaptive source (Poisson) (p”) should be
in the relation

p/ <p< p//'
The more responsive an equation-based rate controlled
source is, the closer p should be to p'.

2) A Few Competing Senders: Consider a setting
when a few TCP and equation-based rate control senders
compete for a bottleneck.

Claim 4: In a situation when a few senders compete
for a bottleneck, TCP may experience a larger loss-event
rate than a competing equation-based rate control sender.

We support the claim by simple analysis that goes as
follows; the claim is also verified by our experiments.
Consider a link of a fixed capacity ¢ > 0. Suppose the
link is used by one sender that exercises a send rate
control. Assume the round-trip time of the source is fixed
to 1. A loss-event is experienced by the sender, whenever
its send rate exceeds or it is equal to the link capac-
ity. First, consider an additive-increase/multiplicative-
decrease (AIMD) sender with additive-increase and
multiplicative-decrease parameters oo > 0 and 0 < 8 <
1, respectively. It is well-known that the loss-throughput
function of our AIMD sender is equal to

a(l+p) 1
0=\ aa—s v
The loss-event rate can be computed to be
, 2a
Pra—-me

Now, consider the link is used by an equation-based
rate control sender that adjusts its send rate by the

comprehensive control with the function f(-) as defined
above. Assume the send rate of the sender converges to
the fixed-point r, then, we have

a(l+3)
2(1—pB)c?
The final outcome is
P4
p (1-p?%

For a TCP-like setting (5 = 1/2), the ratio of the loss-
event rates is equal to 16/9 (about 1.7778), which is a
significant deviation. Our numerical simulations of one
AIMD and one equation-based rate control competing
for a link of a fixed capacity (not displayed due to space
limitations) indicate that the deviation of the loss-event
rates does hold, but it is somewhat less pronounced.

B. Obedience of TCP to its Throughput Formula

TCP throughput may not always conform well to a
TCP throughput formula. The reason is at least twofold:
TCP throughput formulae are derived under various
simplifying assumptions, and a TCP implementation
may not verify all the assumptions made in deriving a
formula. In particular, we claim that when a TCP sender
competes for a bottleneck with a few other senders, TCP
may attain a smaller throughput than given by PFTK
throughput formula. The claim is entirely based on our
experimental work. Our conjecture is that when TCP
compete for a bottleneck and the TCP window takes
large values, the window increase over time is typically
sub-linear. This is in contrast to the modeling assumption
of the throughput formulae considered in this paper that
the window increase is linear with time.

V. EXPERIMENTAL RESULTS
A. Setup of the Experiments

1) Numerical Experiments: We designed numerical
experiments with the objective to validate Claim 1 (the
validation results given below). We take the loss-event
intervals {6,, },, as an independent, identically distributed
sequence of random variables. The probability density
function of 6, is chosen to be u(z) = aexp(—a(z—x0)),
x > xg9 > 0. (In other words, 6 is equal in distribution
to a sum of the constant xy, and a random variable
with exponential distribution (a).) It can be checked that
the expected value of 6y is 1/p = z9 + 1/a and the
coefficient of variation cv[fg)? = (1/a)/(xzo + 1/a).
The chosen distribution has two degrees of freedom z
and a, which allows us to fix the coefficient of variation
and vary p, and the other way around, fix p, and then
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Fig. 3.  Normalized throughput Z/f(p) versus p, for the basic
control with cv[6o] fixed to 1—1/1000. (Left) SQRT, (Right) PFTK-
simplified with ¢ = 4r. The estimator weights are as of TFRC,
with length L. The same qualitative results remain to hold for the
comprehensive control, but the effects are less pronounced; we omit
to show this due to space limitations, see [16], Figure 4.

vary the coefficient of variation. A desirable feature is
that some higher-order statistics remain intact to the
value of (zg, a), for instance, the skewness and kurtosis
parameters are equal to 2 and 6, respectively.> We
consider SQRT and PFTK-simplified functions f. Note
that our numerical experiments are designed such that
both hypotheses of Theorem 1 hold (also of Claim 1).

2) ns-2 Experiments: We designed packet-level simu-
lations in ns-2, with TFRC as implemented in ns-2. The
ns-2 implementation of TFRC is with the control law of
the comprehensive control as defined in this paper. The
setup of our ns-2 experiments is as follows. We consider
a link shared by TFRC and TCP Sackl connections. The
link runs RED active queue management with a rate of
15 Mbf/s, the buffer length, minimum buffer threshold,
and maximum buffer threshold set to 5/2, 1/4, and 5/4
times the bandwidth-delay product, respectively. Other
RED parameters were set to their ns-2 default values.
The round-trip time is about 50 ms.

3) Lab Experiments: The design of the experiments
is to some extent similar to the previously-described ns-
2 experiments. We designed a network of two Linux
PCs acting as routers through which the same number of
TCP and TFRC connections is established. We ran one

3Skewness and kurtosis parameters of a probability distribution
quantify its skewness and sharpness.
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Fig. 4. Normalized throughput Z/ f (p) of the basic control versus the
coefficient of variation of {6,,} ., with p fixed to (Left) 1/100, (Right)
1/10. Function f is PFTK-simplified with ¢ = 4r. The estimator
weights set as of TFRC.

TCP and one TFRC test sender on two separate Linux
PCs. Other senders were run on a third Linux PC. All
connections terminated at a single receiver Linux PC.
The first router on the forward path was connected to
the second router via a 10 Mb/s hub, whereas the other
connections were through 100 Mb/s Ethernet switches.
Hence, the first router was configured to be a bottleneck.
On the outgoing interface in the forward path of the
first router we configured the queue discipline to be
either DropTail or RED. We considered DropTail with
the buffer length 64 and 100 packets. For RED, we
fixed configuration parameters to match, respectively, the
buffer length, minimum and maximum buffer thresholds
of 5/2U, 3/20U, and 5/4U, where U = 62500 B. The
constant of the queue exponential smoothing was tar-
geted to 0.002, and the drop probability at the maximum
buffer threshold to 1/10. The RED was configured not
in the “gentle” mode, because this was not possible with
the traffic control module of the Linux kernel. On the
second router we ran NIST Net network emulator [11],
solely for the purpose to adding a fixed propagation
delay of 25 ms, in both forward and backward direction
to all connections. We used TCP as implemented in
Linux kernel 2.4.18.x, and an experimental user-space
implementation of TFRC [9], which we adjusted to
conform to the latest TFRC specification, and also to
conform to most of the hypotheses of our analysis.
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Fig. 5. The upper graph shows the normalized throughput z/ f(p)
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covlfo, 0o]p® versus p. Function f is PFTK-standard. For SQRT,
and PFTK-simplified, the results are qualitatively similar, for the
benefit of space we do not show them in this paper, see [16] for
the corresponding plots.

In the lab experiments, we disabled the comprehensive
control element in TFRC. The function f is PFTK-
standard, L = 8. The measurement data was collected
by direct probing in the TFRC implementation, for TCP,
the quantities of interest were inferred from a tcpdump
output. Lab experiments enabled us to run the system
over a wide range of the loss-event rates, which would
be impractical in the Internet. Given that our goal was
to evaluate long-run behavior, we fixed the duration of
an experiment in order to have a reasonable number of
loss-events, in order to expect empirical estimates to
converge close to the respective expected values. We
fixed an experiment duration to 2500 s. We truncated
the data collected for the initial 200 s, and computed
some empirical estimates over a consecutive sequence
of 6 bins over the remainder interval of an experiment.
The expected inter loss-event time was roughly 2.5 s.
We ran a sequence of 11 designed experiments with the
same number of TCP and TFRC connections, equal to
(1,2,4,6,9,12, 16, 20, 25, 30, 36).

TABLE |
SOME FACTS ABOUT OUR RECEIVER HOSTS AND CONNECTIONS
TO THEM FROM EPFL.

Receiver | Mb/s Hops RTT SACK (OF]
INRIA | 100 13 30 n FreeBSD 4.1
UMASS 100 15 97 y Linux 2.4.19
KTH 10 20 46 y Linux 2.4.19
UMELB 10 24 350 y Linux 2.2.14-tsc

The second column shows access rates of the receivers.
The RTT’s are rounded estimates in ms by traceroute [8].

4) Internet Experiments: We designed our Internet
experiments by setting up the senders in the same
manner as with our lab experiments. All the senders were
running Linux kernel 2.4.19.x, connected to a 100 Mb/s
Ethernet at EPFL. The receivers were setup at either
100 Mb/s or 10 Mb/s Ethernet, all on the university
campus networks. Some facts about the receivers are
summarized in Table 1. We also ran some Internet
experiments with a receiver at EPFL connected by a 56
kb/s cable-modem. We made sure TCP window scaling
was enabled and tuned TCP write and read socket buffer
lengths to prevent TCP being limited by its receiver
advertised window. Our Internet experiments were with
the comprehensive control element of TFRC enabled.
The function f is PFTK-standard, L = 8. We fixed the
duration of our experiments as follows: (INRIA) 3600 s
(12 bins), (KTH) 2 replicas of 1800 s (1 bin), (UMASS)
2 replicas of 1800 s (6 bins), and (UMELB) 3600 s
(6 bins). The respective expected inter loss-event times
were roughly 1's,40s, 5s, and 10 s. We ran 6 designed
experiments with the same number of TCP and TFRC
connections, equal to (1,2,4,6,8,10).

B. Validation of Claim 1

1) Numerical Experiments: First, we fix cv[fy] =
1 — 1/1000, and vary p. See Figure 3, which shows
the normalized throughput z/f(p) versus p, for the
basic control. Recall the first statement of Claim 1-
the more convex the function 1/f(1/z) is in the region
where the loss-event estimator takes its values, the more
conservative the control is. Now, recall that for SQRT
and PFTK-simplified (see Figure 1, right graph), z —
1/f(1/x) is convex and becomes steeper for smaller
x (the smaller the x, the larger the loss-event rate p).
Hence, the first statement of our Claim 1 tells us that
the larger the p, the more conservative the control is.
We verify this to be true for the basic control with
PFTK-simplified, see Figure 3. The same result, but for
the comprehensive control (not showed, see [16], Figure
4), is qualitatively the same, but the conservativeness is
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packet lengths. The connection traverses a loss module, with a fixed
packet drop probability—Bernoulli dropper. L = 4. (Bottom) the
squared coefficient of variation of 6.
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Also, the smoother the TFRC flows (larger L), the larger the loss-
event rate.

somewhat less pronounced. For SQRT, in Figure 3, we
observe that the normalized throughput is invariant to the
value of p. It can be shown that for SQRT function f,
if the distribution of pdy does not depend on p, then the
normalized throughput does not depend on p. The last
property holds for the probability density function of 6,
taken in our example, which we omit to show due to the
space limitations.

Second, we fix p, and vary cv[fy]. We show the nor-
malized throughput of the basic control versus cv (6] in
Figure 4, for (Top graph) p = 1/100, and (Bottom graph)
p = 1/10. The results validate the second statement
of Claim 1; the larger the variability of the loss-event
interval estimator, the more conservative the control
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is. The second statement of Claim 1 is, in fact, also,
confirmed by the results in Figure 3, where we notice,
the smaller the value of the L, the more conservative the
control is. (Smaller value of L means smaller smoothing
of the loss-event interval estimator.)

2) ns-2 Experiments: We now give more realistic
experiments to validate our Claim 1. We show the esti-
mated normalized throughput in Figure 5. The results are
gualitatively the same as with our numerical experiments
discussed earlier, and thus, they confirm our Claim 1.

3) Lab Experiments: See Figure 18 and Figure 19, the
leftmost graph. The empirical results indicate, the larger
the loss-event rate, the stronger the conservativeness.
Note that the covariance condition in Claim 1 seems
to hold, as indicated in Figure 10, the leftmost graph,
for lab experiments. As an aside, note that the observed
estimates compare well to the results obtained by the
ns-2 simulation (Figure 5). Recall that, for TFRC in our
lab experiments, L = 8.

4) Internet Experiments: For the Internet experi-
ments, see Figure 12-Figure 15, the conservativeness or
non-conservativeness is mostly negligible. Note that this
is to be expected, given that the loss-event rates are
small.

C. Validation of Claim 2

1) ns-2 experiments: We consider a sender that sends
packets at regular time intervals, periodically each 20 ms.
The sender runs equation-based rate control by varying
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packet lengths. The sender has a connection established
through a loss module that drops a packet with a fixed
probability p (Bernoulli dropper). For such a sender, we
have that the covariance of the send rate at a loss-event
instant, and the time it takes until the next loss-event
is equal to zero. Hence, by Claim 2, we expect our
sender to be conservative for + — f(z) concave, and
conversely, non-conservative for = — f(x) convex. We
confirm the claim to be true, see Figure 6. The results
in Figure 6 are for L = 4; for L = 8 the results are
qualitatively the same, but the effects are less pronounced
because of the larger smoothing of the loss-event interval
estimator (a plot was shown in [16]).

D. Validation of Claim 3

1) ns-2 experiments: We come back to our ns-2
experiments in Section V-B. We evaluated the loss-event
rates as seen by TFRC, TCP, and Poisson senders in
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Fig. 12. INRIA. Breakdown of the TCP-friendliness condition into:
(Left-to-Right) the ratio of z and f(p,r); the ratio of p’ and p; the
ratio of v and r; the ratio of z’ and f(p’,r’).
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Fig. 13. KTH. Same as in Figure 12.

the experiments, see Figure 7. The experiments validate
Claim 3.

E. Validation of Claim 4

1) ns-2 experiments: See in Figure 17 that TCP
experiences a larger loss-event rate than TFRC.

2) Internet experiments: See Figure 12 and Figure 14,
the second graph in the row.

F. Breakdown of the TCP-friendliness Condition

1) ns-2 experiments: We review the ns-2 experiments
in Section V-B to check whether TFRC is TCP-friendly.
From Figure 8, we reveal that the answer is negative.
Note that in some of the experiments, TFRC is non-
TCP-friendly despite the fact that we observed it is
conservative (Figure 5) and it sees larger loss-event rate
than TCP (Figure 7). From Figure 9, we observe that
the TCP in the experiments does not conform well to
PFTK-standard formula. In some cases, TCP a attains
smaller throughput than given by the formula.
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2) Internet Experiments: Check whether TFRC is
TCP-friendly in Figure 11. For INRIA, KTH, and
UMASS, the answer is negative. More specifically, for
small loss-event rates (which corresponds to a few
competing TCP and TFRC senders), TFRC can be
significantly non-TCP-friendly. We find the causes of
the observed non-TCP-friendliness in the breakdown of
the TCP-friendliness condition, see Figure 12, 13, 14.
One cause is that the loss-event rate of TCP, p’, can be
significantly larger than the loss-event rate of TFRC, p.
See the second plot from the left in Figure 12, 13, 14.
Another cause is that, in the regime of a few senders
competing, TCP attains smaller throughput than given by
the formula, see the rightmost plot in Figure 12, 13, 14.

In summary, upon our Internet and lab experiments,
we observe:

« Inour experiments, the loss-event rate is a dominant
factor that determine TCP-friendliness, or non-TCP-
friendliness.

VI. CONCLUSION

Our study should help designers of equation-based
rate controls better understand the trade-offs that have

Fig. 17. The ratio of the loss-event rates as observed by TCP and
TFRC over a DropTail bottleneck with a buffer length of b packets:
(Left) Either one TCP or one TFRC in isolation over the bottleneck,
and (Right) One TCP and one TFRC over the bottleneck. Evidently,
TFRC experiences smaller loss-event rate than TCP.

to be made. First, it is important to separately verify the
four factors: (1) conservativeness, (2) TCP loss-event rate
versus this protocol’s loss-event rate, (3) TCP average
round-trip time versus this protocol’s average round-trip
time, (4) TCP’s obedience to its throughput formula.
Failing to do so blurs the cause of an observed excessive
TCP-friendliness or non-TCP-friendliness, and may lead
a protocol designer to an improper protocol adjustment.
Second, we should be aware of the strong dependency on
the nature of the function f; SQRT behaves differently
than PFTK. If PFTK is used, under the conditions of
Claim 1, a very pronounced conservativeness should
be expected for heavy loss. Under some very specific
conditions (rate modulated by variable packet length),
the opposite may hold (Claim 2). It still remains to
know whether there exists in practice a loss process
statistics that would drive the control to a significant
non-conservativeness.

Our analysis and experiments demonstrate that TCP-
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friendliness is difficulty to verify, in contrast to con-
servativeness, which is easier. Conservativeness as a
design objective is less restrictive and would allow for
the design of more effective controls. It would not
constrain the controls to be TCP-friendly in the cases
where TCP performs poorly (few connections in a single
bottleneck), while guaranteeing a safe behaviour and fair
sharing in the presence of congestion. Exploring the full
implications of such a design alternative is for further
study.

ACKNOWLEDGMENTS

Chadi Barakat (INRIA), Gunnar Karlsson, Ignacio M.
Ivars (KTH), Daniel R. Figueiredo (UMASS), Darryl
Veitch (UMELB), generously provided us accounts at
hosts at their sites, and offered us support. We thank
them all. We thank Chadi Barakat for allowing us to use
his code to analyze a tcpdump output and Jorg Widmer
for discussions on the TFRC experimental implementa-
tion. Marc-Andre Luthi and BoZidar Radunovi¢ helped
us with setting up our lab and Internet measurements
at EPFL. We acknowledge the assistance of Christian
Latesch and Thorsten Miiller.

REFERENCES

[1] Francois Baccelli and Pierre Brémaud. Elements of Queueing
Theory, volume 26. Applications of Mathematics, Springer-
Verlag, 1991.

[2] Deepak Bansal, Hari Balakrishnan, Sally Floyd, and Scott
Shenker. Dynamic behavior of slowly-responsive congestion
control algorithms. In Proc. of ACM Sgcomm' 01, San Diego,
California, USA, August 2001.

[3] C. Boutremans and J.-Y. Le Boudec. Adaptive delay aware error
control for internet telephony. In Proc. of 2nd |P-Telephony
Workshop, pages 81-92, Columbia University, New York, April
2001.

[4] Neal Cardwell, Stefan Savage, and Thomas Anderson. Model-
ing TCP latency. In Proc. of the IEEE INFOCOM'’ 2000, Tel-
Aviv, Israel, March 2000.

[5] Sally Floyd and Kevin Fall. Promoting the use of end-to-
end congestion control in the Internet. IEEE/ACM Trans. on
Networking, 7(4):458-472, August 1999.

[6] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer.
Equation-based congestion control for unicast applications. In
Proc. of the Sgcomm’ 00, pages 43-56, 2000.

[7] Mark Handley, Jitendra Padhye, Sally Floyd, and Jorg Wid-
mer. TCP Friendly Rate Control (TFRC) Protocol Spec-
ification, IETF internet-draft, Janunary 2003. RFC 3448,
ftp://ftp.isi.edu/in-notes/rfc3448.txt.

[8] V. Jacobson. ftp://ftp.ee.Ibl.gov/traceroute.tar.z, 1989.

[9] Page maintaned by Jorg Widmer. Implementation of the TCP-

Friendly Congestion Control Protocol (TFRC), February 2000.

http://www.icir.org/tfrc.

Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis

Ott. The Macroscopic Behavior of the TCP Congestion Avoid-

ance Algorithm. Computer Communication Review, 27(3), July

1997.

Network  Emulation  Package

http://is2.antd.nist.gov/itg/nistnet.

Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose.

Modeling TCP Reno Performance: A Simple Model and its Em-

pirical Validation. IEEE/ACM Trans. on Networking, 8(2):133-

145, 2000.

Vern Paxson. End-to-End Internet Packet Dynamics. IEEE/ACM

Trans. on Networking, pages 277-292, June 1999.

Rockafellar R. T. Convex Analysis. Princeton University Press,

Princeton, 1970.

Milan Vojnovit¢ and Jean-Yves Le Boudec. Some observations

on equation-based rate control. In Proc. of ITC-17, pages 173—

184, Salvador, Bahia, Brazil, December 2001.

Milan Vojnovi¢ and Jean-Yves Le Boudec. On the long-run

behavior of equation-based rate control. In Proc. of ACM

Sgcomm 2002, Pittsburgh, PA, August 2002.

Y. Richard Yang, Min Sik Kim, and Simon S. Lam. Transient

Behaviors of TCP-friendly Congestion Control Protocols. In

Proc. of |IEEE Infocom’ 2001, March 2001.

Yin Zhang, Nick Duffield, Vern Paxson, and Scott Shenker. On

the Constancy of Internet Path Properties. In Proc. of ACM

Sgcomm Internet Measurement Workshop, November 2001.

[10]

[11] NIST ~ Net,  2003.

[12]

[13]
[14]

[15]
[16]
[17]

[18]

APPENDIX

A. Proof of Proposition 1
We commence with the Palm inversion formula [1],

T

E[X(0)] = XEY[[ X(s)ds]. (14)

0
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Note that (14), is a mean-value formula. It is a “cycle”
formula, we can interpret it as the expected number of
data sent between two successive loss-events divided
with the expected time between two successive loss-
events. However, it is important to remember the ex-
pected values are with respect to the Palm probability,
that is as seen at the instants of loss-events.
For the basic control this gives

BIX(0)) = e

E[So] (15)

From (3), 6,, = X,,S, and X,, = f(1/6,,). Hence, S,, =
9. Combining the last three identities into (15) we

£(1/0.)°
oé)tgin (8).

B. Proof of Proposition 2

Define Y,, := 0,,/S,, all n € Z. A physical meaning of
Y., is the average send rate over the interval [T}, T),+1),
for some fixed n € Z. Again from Palm inversion
formula

Now, by definition of the comprehensive control, X (t) >
Xy, for all t € [T,,T,+1), and hence, Y,, > X,.
Replacing Y} in the above display with its lower bound
Xo, and recalling that by definition X,, = f(1/6,),
n € Z, recovers the asserted lower bound.

C. Proof of Proposition 3

Case 1: (fpi1 < 6,). In this case 6, = X, S,, and

_ 0,
hence, S,, = TRV

Case 2: (fn41 > 6y,) In this case, for T, <t < T, +
Uy, 0(t) =tf(1/6y,). Else, for T,, + U, < t < T}, + Sy,

t

0(t) =0(T, +U,) + / X(s)ds.

T.+U,

By definition of the comprehensive control ((4)), we
obtain the ordinary differeptial equation, T, + U, <t <
T+ Sn, 0T, + Uyp) = (0, — W) /wy,

diiit) =/ <w19(t)1+ Wn> ’

where W,, = ZlL:_ll wl+19n,l.
Now, we solve 6(T,,+ S, —) = 6,, for S,,. To that end,
we solve (16) for PFTK-simplified formula (7). Plugging

(16)

PFTK-simplified function f into (16), and a simple re-
arrangement, we obtain

TS gg(r)
c1r — 4
To+U, wi0(t) + W,
2

To4U, v/ (w10(t) + Wy)?

Tt S do(t

+3202q/ ) = Sn — U,

1,40, / (w10(t) + W)

Use the substitution y = w;6(t)+W,,. Note that df(t) =
dy/w; and that with this substitution the boundaries of
the integrals, T,, + U, and T, + S,, respectively, are
equal to 4, and 6,,1. We re-write the last display as

ar [T dy | eq [ dy
ek v

32c2q On 1 dy

VT

Solving the elementary integrals, we obtain

Sp = Up+

wl é’”.

+ i
wl 6’7l

2ar 512 p1/2 €24 ,5-1/2
Sy = Up+ w—1(0n+1 — 01/ — 2w—l(en+1 _
,é;1/2) _
R PP Ry
5 w1 (Hn—i-l en )

For convenience of notation, let B,, := S,, — U,,. Recall,

U, = =
wif(3-)

Finally, we have

) 0, — W,
S, = " 1. s+ Bn+u 1- R
f(_éln) Or1<6n ( Uﬂf(_éln)> Frt1>6n

Hn én+1 - én

= B, — 221,

TeoN ( ) ) ot

On

—L -
f(Go)
The last identity follows directly by definitions of V,,
and B,,. It remains only to use Palm inversion formula
E[X(0)] = E[6y]/E[So], and plug-in the expression of
Sy, displayed above to show (9).

nlén+1>én

D. Proof of Theorem 1
Define g(z) := ﬁ Also call m = -, thus E[f] =
E[fy] = m. From Equation (8), conservativeness is
equivalent to

~

E[fg(0o)] > mg(m) (7)
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Function g is convex, thus is above its tangents:

g(x) = (x —m)g'(m) + g(m).

Apply the above to = = 6, multiply by 6, and take
the expectation. After some calculus, this shows Equa-
tion (10).

Now f is decreasing. Since cov®[fy, fo] < 0, it fol-
lows from Equation (10) that the control is conservative.

E. Proof of Proposition 4

Use the same notation as in the proof of Theorem 1.
By Equation (8) the ratio of throughput to f(p) is equal

to
- _mglm) _ (18)

E [909@0)] '
Now we have
97 (z) < g(x) < rg™ ().

and thus p <.

F. Proof of Theorem 2

Use the same notation as in the proof of Theorem 1.
Part 1: By (C2)

E[0g(00)] > {L

xy
9(0o)
is concave, thus by Jensen’s

(19)

now (F2) means that é
inequality:

(20)

9(60) | g(E[fo])
which combined with the previous equation shows that
the control is conservative.

Part 2: By (C2c) and (F2c) we have the reverse
inequalities in Equation (19) and Equation (20), but the
inequality is strict in Equation (20) because convexity is
strict and 6,, is not a degenerate random variable.

G. Derivation of Equation (12)

We begin from Equation (1). Let 7¥ := P%,[Z(0) =
i], i € E. By Neveu’s exchange formula ([1], Sec. 3.3.4)
and simple conditioning

1
E[6o]

EXN [ ez Loy (Th)]
EQ/ [ ez Onlioa (Th)]
>ier BN D nez Lo (Tn)]Z(0) = 1]

T S n BN s On Lo (T 2(0) = 120

p:

We show that the above is equivalent to Equation (12).
As an application of Palm inversion formula to
X (0)17(0)—i, we obtain

xioz10) = = Pl X0 =)

where we also use (obtained by another application of
the Palm inversion formula to 1 y)—;)
E(])V,[T1|Z( ) - Z] 0

B (1]

By a similar argument, from Neveu’s exchange formula
applied to 01 7(g)—;, We have

1 4 E(I)\f’ [ZnEZ gnl[o,T{)(

By | fo

7 =P[Z(0) = i] =

T)|2(0) =

d

S o)8 =1 =
p ~ Enl00lZ(0) =il = —go” [>onez Loy (Tn)|Z(0)

where we use the identity obtained by Neveu’s exchange
formula applied to 1z)—;,

EX (Y nez Loy (Th) Z(0) = ] 0
EX ez Lo (Th)) ’

Finally, by plugging the above expressions for z;, m;,
and p; into Equation (12) we recover Equation (21).

PIZ(0) = i] =

=i’





