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Abstract

Some of the known results for delivering deterministic bounds on end-

to-end queuing delay in networks with constant packet sizes and constant

link rates rely on the concept of Route Interference. Namely, it is required

to know the number of �ows joining on any output link in the whole

network. In this paper we extend the existing results for the more generic

cases of connection-oriented networks consisting of links with di�erent

capacities, carrying di�erent tra�c classes and packets of di�erent sizes.

1 Introduction and related work

In the quest for delivering deterministic end-to-end delay guarantees in general
networks it has been shown [2] that it is feasible to deliver deterministic bounds
for queuing delay in networks using FIFO queuing but the bound is dependent on
complex network conditions. Speci�cally, by strictly controlling the number of
times �ow paths join on output links and by performing ingress tra�c shaping
in accordance with these metrics, it is possible to compute tight bounds on
queuing delay and required bu�er capacities. However, the results presented
in [2] are limited to very speci�c network setups i.e. to connection-oriented
networks carrying packets of �xed size (ATM networks), with all links having
same capacity and where time is considered to be divided in equal slots that
are synchronized network-wide. Moreover, nodes were assumed to be globally
FIFO and have zero internal propagation and processing delays.

Later results [3, 4] relaxed the requirement for synchronized time slots and
improved the bounds on required bu�er capacities and end-to-end queuing delay.
However, they maintained the limiting requirement for equal packet sizes and
equal capacity links.

In this paper we present an extension of the proofs in [1] that relaxes these
requirements and generalizes the results to generic connection-oriented networks
with links of di�erent speeds and carrying di�erent types of tra�c with di�erent
packet sizes.

The outline of this paper is as follows: In the next subsection we state
the assumed tra�c, network, and time models. In Section 2 we introduce the
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concept of route interference, the source rate condition and we state the main
result of this paper � the theorem for bounded bu�er and delay. The proof of
the theorem is given separately in Section 3 as it involves a detailed analysis of
the mechanics of �ow aggregation and queue busy periods along a �ow path.
Section 4 outlines how to compute the required bu�er capacity (i.e. maximum
amount of queue backlog) and the queuing delay. In addition to the algorithmic
steps necessary to compute these values, the results are also given as closed form
approximation formulas.

1.1 Assumed network, tra�c and time models

Tra�c model For the purpose of this paper we assume that transmission of
delay-sensitive data is performed in a connection-oriented manner, with tra�c
organized in �ows whose routes are pre-established before data transmission.
Inside each �ow data is transmitted in packets having a �nite set of possible
packet sizes.

Network model We consider that the network consists of nodes which o�er
service guarantees in the form of generic rate-latency service curves [1]. However,
for the sake of clarity we will consider only the special case of non-preemptive
schedulers performing strict priority FIFO queuing. Speci�cally, we will consider
that nodes have a single FIFO queue per tra�c class and that delay sensitive
tra�c has the highest priority in the network. Under these assumptions the
node serves the delay-sensitive tra�c with a rate-latency service curve βr,τ with
rate r = the physical link rate and latency τ = MTUL

r , where MTUL is the
maximum packet size for lower priority tra�c classes.

Also, we will assume that network links are unidirectional, with variable
rates and propagation delays. Without the loss of generality we will consider
that the (bounded) internal processing and transmission delays at network nodes
are included in the upstream link propagation delays. As such for the rest of
this paper we will assume that node internal delays are negligible.

Time model Time is assumed to be continuous and relevant network events
have a time index sequentially numbered starting from time 0, when the network
is in an idle state. In other words we assume that all packet receptions and
transmissions time ordered, network-wide.

2 The Source Rate Condition and the theorem

for bounded bu�er and queuing delay

In order to present the main result of this paper � the theorem for bounded bu�er
and queuing delay � we �rst de�ne the concept of �ow joins and introduce the
source rate condition as a requirement for ingress tra�c shaping.
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De�nition 1 (Flow joins, Interference Event) Two �ows F and G are said
to join on link1 j if both �ows share link j but do not share the link upstream
from j in their respective paths.

An interference event is de�ned as a pair ( j,{F,G}) where j is a link and F
and G are two �ows joining at link j. As such the number of �ows joining F on
link j is given by the number of interference events that contain j and F.

De�nition 2 (Source Rate Condition) We say that a �ow F satis�es
the Source Rate Condition if the inter-packet emission time TF satis�es the
inequality:

TF ≥ MTUH

r∗F

dst∑
j=src

Ij+MTUH

dst∑
j=src

Sj

(
1
rj

− 1
rprevF (j)

)+

+
MTUH

r∗F
+

dst∑
j=src

MTUL

rj

where:
j - node along the path of �ow F, starting from source node and ending with

destination node.
rj - the rate of the link outgoing from node j along the �ow path. If j is the

last node then rj is assumed to be in�nite.
prevF (j)- The link previous to j along the path of �ow F i.e. the link up-

stream to j along the route of �ow F. If node j is the �rst node along the �ow
path, then rprevF (j) is in�nite.
r∗F - The minimum capacity link along the path of �ow F i.e. r∗F = minj rj

.
Ij - number of �ows that join �ow F at link j i.e. the number of interference

events that contain both j and F.
Sj - number of all �ows except F that share both link j and prevF (j).
MTUH - the maximum packet size for the delay-sensitive, high priority traf-

�c.
MTUL - the maximum packet size of lower priority tra�c classes.

In the above formula � as well as for the rest of this paper � the expression+

notation is a shorthand for max(expression, 0).

Theorem 1 (Theorem for bounded bu�er and delay) Provided that the
source rate condition holds for all �ows, then:

• The network is stable i.e. the maximum amount of backlog at any queue
and the corresponding required bu�er capacity are bounded.

1We will alternatively use the expression �node� or �link� as meaning the same thing
i.e. the corresponding network event occurring at the named/implied outgoing link of the
named/implied node immediately upstream of that link.
Also, unless explicitly noted otherwise, when referring to ��ows�, �tra�c�, �packets� or

�interfering segments� we implicitly refer to the high-priority tra�c for which delay guarantees
must be delivered.
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• The queuing delay at any node is bounded.

The proof of the theorem � presented in the next section � involves a complex
analysis of the queue busy periods and the relations between queue backlogs
and interference events. The net result of the theorem are the bounds for the
maximum backlog and maximum queuing delay. The bounds are given both as
a description of the algorithmic steps necessary to compute them and as closed
form approximation formulas.

3 Proof for bounded bu�er and delay theorem

Before delving into the theorem proof proper we introduce some technical de�-
nitions that express the concept of chained busy periods i.e. queue busy periods
at successive nodes along a �ow path.

De�nition 3 (Delay operation) For two packets p and q and for some link
j we say that p ≺j q if p and q are in the same busy period of the queue for
high-priority tra�c at j and p is transmitted on j before q. Also by p �j q we
say that p leaves on j no later than q (or, alternatively, q leaves on j no earlier
than p).

It must be noted that, since we refer to packets belonging to highest priority
tra�c class and since nodes perform priority queuing, the delay relationship
between two packets implicitly states that there are no low-priority packets
being transmitted between them on the output link.

De�nition 4 (Super-Chain, Super-chain path) Consider a sequence of
packets p = (p0......pi....pk) and a sequence of nodes f = (f1.......fk). We say
that ( p,f) is a super-chain if:

• f1, ...., fk are all on P - the path of packet2 p0, not necessarily consecutive
but distinct.

• pi−1 ≺fi pi for i = 1 to k.

• The path of packet pi from fi to fi+1 is a sub-path of P.

The path of the super-chain is de�ned as the sub-path of p0 that spans from f1
to fk.

De�nition 5 (Relevant network events, arrival and departure time)
For the purpose of this paper we de�ne a relevant network event as the enqueuing
or dequeuing of a packet at a link/node. Also, we will denote the time index of
these events as ak

j for the arrival of packet number k at link j (de�ned as the

time index when the last bit of packet k is received) and, respectively, dk
j for

2For simplicity we refer to �the path of a packet� as meaning the network route of the �ow

the said packet belongs to.
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the corresponding departure time (de�ned as the time index when the last bit
of packet k is transmitted).

It is to be noted that since the set of possible packet sizes was assumed to be
�nite we cannot have an in�nite number of network events occurring in a �nite
time interval.

De�nition 6 (Segment interfering with a super-chain) For a given
super-chain we call segment an ordered pair ( s,P) where P is a sub-path of
the path of the super-chain, s is a packet whose path has P as a sub-path and P
is maximal (namely we cannot extend P to be a common sub-path of both s and
the super-chain).

We say that the segment ( s,P) is interfering with the super-chain ( p,f) if
there is some node fi on P such that s ≺fi pi.

The proof of the theorem is organized as follows: First, based on the number
of segments interfering with a super-chain, we will derive an expression for the
delay experienced along a super-chain path. Second, we will prove the non
intra-�ow property i.e. show that, if the source rate condition is imposed for all
�ows, then there cannot be two packets from the same �ow in a super-chain.
Finally, using the formula for the delay along a super-chain path and the non
intra-�ow interference property, we show that bu�er requirements and queuing
delay at any node in the network are bounded, thus concluding the proof.

3.1 Delay along a super-chain path

Let (p,f) be a super-chain and consider the fj node on the super-chain path
(see Fig. 1). Let vj be the beginning of the busy period (for the queue for

high-priority tra�c) that aj−1
j is in, i.e. vj = an

j for some packet number n
with n ≤ j − 1. Assume without the loss of generality that packet pj−1 arrives
on input link i (by necessity belonging to the super-chain path) and packet pj
arrives on input link k, not necessarily distinct from i. De�ne Bj as the set
interference segments (s,P) such that s is arriving at the node no earlier than
time vj on a link other than input link i (i.e. on a link incident to the super-
chain path), s �fj pj and P is the maximal common sub-path for s and the path
of the super-chain. De�ne B0

j in the same manner but with packet s arriving
on the same input link as packet pj−1 i.e. on the path of the super-chain. Also
de�ne A0

j as the subset of B0
j that contains only the packets that depart no

earlier than pj−1 i.e. pj−1 �fj s . Let Bj (resp. B0
j , A

0
j) be the number of

elements in Bj (resp. B0
j , A0

j ). Please note that by de�nition pj /∈ Bj

⋃ B0
j

and3 pj−1 ∈ A0
j .

With rji and rj being the rates of input link i and, respectively, link j � the

3By an abuse of notation we will write packet pj /∈ Bj as meaning segment (pj , P ) /∈ Bj

for any path P and, respectively, packet pj ∈ Bj as meaning segment (pj , P ) ∈ Bj for some
path P.
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Figure 1: Node fj on super-chain path and notation used in section 2.

link on the super-chain path outgoing from fj , we have:

aj−1
j − vj ≥ 1

rji

∑
n∈B0

j
\A0

j

ln

dj
j − vj ≤ 1

rj

∑
n∈Bj∪B0

j

ln +
lj

rj
+
MTUL

rj

where ln is the length of packet n, lj is the length of packet pj, l
j/rj is the

transmission time for packet pj and MTUL/rj is the maximum node latency
due to non-priority cross-tra�c. Subtracting the two we obtain:

dj
j − aj−1

j ≤ 1
rj

∑
n∈Bj∪B0

j

ln − 1
rji

∑
n∈B0

j
\A0

j

ln +
lj

rj
+
MTUL

rj

or, since Bj and B0
j are disjoint and A0

j ⊆ B0
j :

dj
j −aj−1

j ≤ 1
rj


∑

n∈Bj

ln +
∑

n∈B0
j
\A0

j

ln +
∑

n∈A0
j

ln


− 1

rji

∑
n∈B0

j
\A0

j

ln +
lj

rj
+
MTUL

rj

dj
j − aj−1

j ≤ 1
rj


∑

n∈Bj

ln +
∑

n∈A0
j

ln


+

∑
n∈B0

j
\A0

j

ln

(
1
rj

− 1
rji

)
+

1
rj

(lj +MTUL)
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Since dj
j − aj−1

j ≥ lj+lj−1

rj
, the right hand side of the inequality must be

equal or greater than this quantity for any combination of rates rj and rji . As
pj−1 ∈ A0

j , the inequality above becomes:

dj
j −aj−1

j ≤ 1
rj


∑

n∈Bj

ln +
∑

n∈A0
j

ln


+

∑
n∈B0

j
\A0

j

ln

(
1
rj

− 1
rji

)+

+
1
rj

(lj +MTUL)

As ln ≤MTUH for any packet n (including pj) and
∑

n∈Bj
ln ≤MTUH Bj

(with the corresponding inequality also holding for, respectively, B0
j , A0

j and

B0
j\A0

j) we obtain:

dj
j−aj−1

j ≤MTUH

Bj +A0
j

rj
+MTUH(B0

j−A0
j)

(
1
rj

− 1
rji

)+

+
1
rj

(MTUH+MTUL)

(1)

By iterative use of relation 1 along the super-chain path (i.e. along the
subscripts) and packet numbers (superscripts) we obtain:

dk
k − a01 ≤ MTUH

fk∑
j=f1

Bj +A0
j

rj
+MTUH

fk∑
j=f1

(B0
j −A0

j )

(
1
rj

− 1
rji

)+

+

+(MTUH +MTUL)
fk∑

j=f1

1
rj

+ τ1,k

dk
k − a01 ≤ MTUH

r∗f

fk∑
j=f1

(Bj +A0
j) +MTUH

fk∑
j=f1

(B0
j −A0

j )

(
1
rj

− 1
rji

)+

+

+(MTUH +MTUL)
fk∑

j=f1

1
rj

+ τ1,k (2)

where r∗f = minj rj corresponds to the smallest capacity link along the super-
chain path, τ1,k is the propagation time along the links in the super-chain path
and the penultimate term denotes the transmission times and node latencies,
cumulated along the path.

We now show that all the sets in the collection {Bj

⋃ A0
j}j=1 to k are two-

by-two disjoint: First if (s, P ) ∈ Bj then fj is the �rst node of P and thus (s, P )
cannot be in some Bj′ with j

′ �= j. Thus Bj are two-by-two disjoint. Second, if
(s, P ) ∈ Bj and (s, P ) ∈ A0

j′ it is obvious from their de�nition that for a �xed j,

Bj and A0
j are disjoint, so we must have that j

′ �= j. Since fj is the �rst node on
P and j′ is on P then by necessity j < j′. From the de�nition of Bj and A0

j′ we
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have that s ≺fj pj and pj′−1 �fj′ s, which contradicts the FIFO assumption.

Thus Bj and A0
j′ are two-by-two disjoint. The same type of reasoning leads us

to show that A0
j and A0

j′ are two-by-two disjoint, thus proving the proposition.

By de�nition every element in {Bj

⋃ A0
j} is an interfering segment, so given

that {Bj

⋃ A0
j}j=1 to k are two-by-two disjoint we have that

∑fk

j=f1
(Bj +A0

j) ≤
I1,k where I1,k is the number of interfering segments along the super-chain path.
Thus relation 2 becomes:

dk
k − a01 ≤ MTUH

r∗f

fk∑
j=f1

I1,k +MTUH

fk∑
j=f1

(B0
j −A0

j)

(
1
rj

− 1
rji

)+

+

+(MTUH +MTUL)
fk∑

j=f1

1
rj

+ τ1,k (3)

3.2 The non intra-�ow interference property

Assume that the source rate condition holds. Let (p,f) be a super-chain.

1. For every interference event of packet p0 there is at most one segment
interfering with the super-chain.

2. B0
j is upper bounded by the number of �ows that share the same input

link as packet pj−1 and same output link as packet pj .

3. pk does not belong to the same �ow as packet p0.

Proof: De�ne the time of the super-chain as the time index for the exit of
packet pk from the last node fk.We use a recursion4 on time t.

At time index t = 1 the proposition is true because any �ow has transmitted
at most one packet. Assume now that the proposition holds for any super-chain
with time index ≤ t− 1 and consider a super-chain with time index t.

First, we associate an interference event to any segment (s,P) interfering
with the super-chain as follows: The paths of s and p0 may share several non
contiguous sub-paths and P is one of them. Call f the �rst node of P. To s
we associate the interference event (f,{j0,j}), where j0 (resp. j) is the �ow of
packet p0 (resp. s).

We now show that this mapping is injective i.e. di�erent s packets corre-
spond to di�erent interference events. Assume that another segment (s′, P ′) �=
(s, P ) is associated with the same interference event (f,{j0,j}). Without the loss
of generality we can assume that s was emitted before s′. Since s and s′ both
belong to �ow j and since P and P ′ are maximal, we must have P = P ′. By
hypothesis we have an interference with the super-chain at some node on P. Let

4Please note that this is permissible in this case since we have no accumulation point along
time indexes.
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fl be a node on the super-chain and on P such that s ≺fl
pl. Assume that s′

leaves node fl before pl. Since s was emitted before s′ we have s ≺fl
s′ and thus

((s, s′), (fl)) is a super-chain. Since s′ is an interfering packet it necessarily must
leave fl before t, thus the proposition is true for the super-chain ((s, s′), (fl)),
which contradicts item 3. Thus s′ must leave fl after pl. But there is some index
m ≤ k such that s′ ≺fm pm, thus packet s′ leaves node fm before pm. De�ne l′

the smallest index with l < l′ ≤ m such that s′ leaves node fl′ after packet pl′−1

and before pl′ . Then ((s, pl, .....pl′−1, s
′), (fl, ...., fl′)) is a super-chain with time

index ≤ t− 1 which would again contradict item 3. Thus in all cases we have a
contradiction, the mapping is injective and item 1 is proven for the super-chain.

For item 2, consider an interfering packet s ∈ B0
j . Assume there exists

another interfering packet s′ ∈ B0
j , with s

′ belonging to the same �ow as s.
Consider without the loss of generality that s was emitted before s′. Since
by de�nition s ≺fj pj and s′ ≺fj pj , then we must have that s ≺fj s

′ and
((s, s′), (fj)) is a super-chain with exit time ≤ t − 1, which contradicts item 3.
As such we cannot have two packets in the same �ow in B0

j , which proves item
2.

For item 3, let us compute a bound on maximum queuing delay for packet
p0. Consider u0 its emission time, P0 the sub-path of p0 from its source up to,
but excluding, node f1, and T the total propagation and transmission time for
p0 along P0 and the super-chain path. Consider that the component of T along
the super-chain path is T1,k. Applying relation (3) along P0 and separating the
summation terms for packet transmission times from node latencies, we have:

a01 ≤ d01 ≤ u0 + (T − T1,k) +
MTUH

r∗F

prevF (f1)∑
j=src node

I0,1 +

+MTUH

prevF (f1)∑
j=src node

(B0
j −A0

j)

(
1
rj

− 1
rji

)+

+
prevF (f1)∑
j=src node

MTUL

rj

where F is the �ow the packet p0 belongs to, rji is in�nite for j=source node
and I0,1 is the number of interference events for F along P0. From item 2 above
B0

j ≤ number of �ows sharing both link j and prevF (j). Since pj−1 ∈ A0
j we

have that A0
j ≥ 1 and thus B0

j − A0
j ≤ Sj, where Sj is the number of �ows

sharing link j, minus 1 (i.e. the number of �ows sharing links prevF (j) and j,
except the �ow pj−1belongs to). As such we can re-write the above expression
as:

a01 ≤ u0 + (T − T1,k) +
MTUH

r∗F

prevF (f1)∑
j=src node

I0,1 +

+MTUH

prevF (f1)∑
j=src node

Sj

(
1
rj

− 1
rprevF (j)

)+

+
prevF (f1)∑
j=src node

MTUL

rj
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Using the same reasoning, along the super-chain path we have that:

dk
k ≤ a01 + T1,k +

MTUH

r∗F

fk∑
j=f1

I1,k +

+MTUH

fk∑
j=f1

Sj

(
1
rj

− 1
rprevF (j)

)+

+
fk∑

j=f1

MTUL

rj

Combining the last two inequalities we obtain:

dk
k ≤ u0 + T +

MTUH

r∗F

fk∑
j=src node

Ij +MTUH

fk∑
j=src node

Sj

(
1
rj

− 1
rprevF (j)

)+

+

+
fk∑

j=src node

MTUL

rj

Assuming that pk and p0 belong to the same �ow and uk is the emission time
of packet pk , since the source rate condition holds (including for the sub-path
of F from the source node to node fk), by applying the Source Rate Condition
we have that (with k > 0):

uk ≥ u0 +
MTUH

r∗F

fk∑
j=src node

Ij +MTUH

fk∑
j=src node

Sj

(
1
rj

− 1
rprevF (j)

)+

+

+k


MTUH

r∗F
+

fk∑
j=src node

MTUL

rj




which � by adding on both sides T, the transmission and propagation times
for packet pk from its source to node fk � translates at node fk into (since
dk

k ≥ uk + T ):

dk
k ≥ u0 + T +

MTUH

r∗F

fk∑
j=src node

Ij +MTUH

fk∑
j=src node

Sj

(
1
rj

− 1
rprevF (j)

)+

+

+
fk∑

j=src node

MTUL

rj
+ k


MTUH

r∗F
+

fk∑
j=src node

MTUL

rj




which contradicts the relation above. As such pk and p0 cannot belong to
the same �ow, which proves item 3 of the non intra-�ow interference property.

3.3 Bounded bu�er requirements and queuing delay

Given the non intra-�ow interference property it follows immediately that, if
the all �ows rates satisfy the source rate condition, at any output queue for
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delay-sensitive tra�c there can be at most one packet from each �ow during
any busy period. As such the total amount of tra�c that transiently shares
the queue during any period is upper bounded by the number of �ows sharing
that link multiplied the maximum packet size. Consequently, at any node the
amount of queue backlog at any instant is bounded and the network is stable.
Since the nodes perform FIFO queuing and o�er service guarantees in the form
of rate-latency curves to the delay-sensitive tra�c, the amount of queuing delay
at any node is bounded. This completes the proof for the theorem of bounded
bu�er and delay.

4 Bu�er requirements and queuing delay compu-

tation

Without the loss of generality, consider a single-node with I fan-in links to the
same output link i.e. for a given output link consider the input links carrying
�ows which join on that output link. Let ri be the rate of fan-in link i and Ni

be the number of �ows that share both input link i and the output link. Let
θi = Ni−1

ri
MTUH ≥ 0 (since Ni ≥ 1) and assume, without the loss of generality,

that input links are numbered in the increasing order of θi, from 1 to I.
Since during any busy period there can be at most one packet from each �ow

in the queue, due to packetization e�ects [1] the envelope for the input link i is
αi(t) = min(NiMTUH, rit +MTUH). As a result the envelope for the tra�c
aggregate at the output link queue is:

α(t) =
I∑

i=1

αi(t) =
I∑

i=1

min
t

(NiMTUH, rit+MTUH) =

=
I∑

i=1

(
MTUH + min

t
((Ni − 1)MTUH, rit)

)
=

= I MTUH +
I∑

i=1

ri min
t

(θi, t) = I MTUH + α′(t)

where

α′(t) =
I∑

i=1

ri min(θi, t)

The α′(t) function � illustrated in Fig. 2 � is piece-wise linear, with the
linear segment with t ∈ [θk−1, θk] having a slope Rk = rk + rk+1 + ....... + rI ,
for k = 1 to I, with θ0 = 0, RI = rI and RI+1 = 0. The ordinates at

discontinuity points θk are MTUH

∑k
i=1(Ni − 1) + Rk+1θk, with a maximum

value of MTUH

∑I
i=1(Ni − 1) at θI .
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Figure 2: The α′(t) function

Since the node o�ers service guarantees in the shape of a rate-latency curve
βr , τ (t) (with r being the physical rate of the output link and τ = MTUL

r ) the
maximum backlog is:

maxbacklog = max
t

(α(t) − βr , τ (t)) =

= I MTUH + max
t

(α′(t) − βr , τ (t))

The value maxt (α′(t) − βr , τ (t)) depends on two factors: On one hand, on
the relative order between server latency τ and the in�ection points θk, and on
the other hand on the relation between rate r and rates Rk. Since the values for
the rates Rk are decreasing for increasing values of k, we can distinguish three
cases:

1. τ < θk and Rk ≥ r > Rk+1. In this situation the maximum will occur
at discontinuity point θk for the largest value of k for which the three
inequalities are satis�ed. Since the server rate is non-zero at this point,
the maximum is MTUH

∑k
i=1(Ni − 1) +Rk+1θk − r (θk − τ) .

2. τ > θk and r ≥ Rk+1. In this situation the maximum occurs at instant
τ and � since the server rate is zero at that point � it is equal to α′(τ) =
MTUH

∑j
i=1(Ni − 1) + Rj+1θj , where j is the index that satis�es θj ≤

τ < θj+1 (with the convention θI+1 = ∞).

3. If τ > θk and Rk+1 > r, then the maximum occurs at an instant later
than θk . Since RI+1 = 0 and r > 0 one of the be above cases must apply
i.e. it maximum will occur either at instant θi with i > k or at instant τ .

Similarly to backlog, the maximum jitter can be computed as the maximum
horizontal distance between envelope α(t) and the service curve βr , τ (t) (see
[1]).
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These numerical computations can be implemented in an algorithm that
at each link along a �ow path computes the maximum required bu�er capac-
ity and maximum jitter encountered at that link. The computation at a node
simply loops through the values of θk and τ sorted in increasing order and, at
each such envelope/service curve in�ection point, computes the horizontal and
vertical distance from the envelope to the service curve. The maximum back-
log and respectively maximum jitter at the node are these values accumulated
throughout the loop.

Instead of performing the numerical computations described above, we can
use a closed form approximation formula by assuming that the node has as strict
service curve the rate-latency curve βr∗ , τ , with r

∗ = mini (r, ri). In this case

the maximum backlog occurs at θI and has a value of MTUH N − r (θI − τ)+.
In this case the maximum jitter is upper bounded by:

MTUH

(
N

r
− NI − 1

rI

)
+
MTUL

r

Along a �ow path an upper bound for the end-to-end queuing delay is the
sum of the per-node queuing delay bounds along the path. For example in the
case of the closed form approximation the end-to-end queuing delay is upper
bounded by:

MTUH

dst∑
j=src

(
N j

r∗j
− N

j
i − 1
rji

)
+

dst∑
j=src

MTUL

rj

where N j is the number of �ows sharing link j, N j
i is the number of �ows

sharing both output link j and fan-in link i, and r∗j = mini (rj , r
j
i ) is the smallest

capacity among output link j and all its fan-in links.

5 Conclusions

In this paper we presented a method for guaranteeing deterministic worst case
queuing delays bounds. By extending previous results to networks with di�erent
link sizes and carrying di�erent types of tra�c consisting of packets of di�erent
sizes, we showed how � by corespondingly shaping �ows at network ingress �
it is possible to guarantee worst case queuing delays. As both the queuing de-
lay bounds and the �ow shaping parameters depend only on routing topology
metrics (the so called Route Interference metrics) we illustrated the algorith-
mic steps necessary for computing these quantities for each �ow using network
calculus concepts of input tra�c envelope, service curve and known network
calculus bounds for maximum jitter and maximum required bu�er capacity.
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