
A Test-Bed for Misbehavior Detection in Mobile Ad-hoc
Networks — How Much Can Watchdogs Really Do?

EPFL IC Technical Report IC/2003/72

Sonja Buchegger, Cédric Tissières, and Jean-Yves Le Boudec
EPFL-IC-LCA

CH-1015 Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract: Several misbehavior detection and repu-
tation systems have been proposed for mobile ad-hoc
networks, relying on direct network observation mech-
anisms, so-called watchdogs. While these approaches
have so far only been evaluated in simulations and re-
stricted to selfish packet dropping, we are interested in
the capabilities of a watchdog detection component in
a real network. In this paper we present our test-bed
implementation of misbehavior detection. Following an
evaluation of both the feasibility and detectability of at-
tacks on routing and forwarding in the Dynamic Source
Routing (DSR) protocol, we present the design of our
test-bed. In order to add detection capabilities, we ex-
tend the concept of passive acknowledgment by mech-
anisms for partial dropping, packet modification, and
fabrication detection. We combine DSR with Netfilter
and APE to enable detection. We implement both at-
tackers and detection and show their feasibility and lim-
itations.

1 Introduction

We are interested in the attacks on routing and forward-
ing in mobile ad-hoc networks. Specifically, we want to
determine whether and how attacks can be mounted and
detected by observation in a real network environment.

Several reputation-based systems to deal with misbe-
havior in mobile ad-hoc networks have been proposed,
all relying on some component to detect misbehavior in
the neighborhood of a node. To the best of our knowl-
edge, so far, the evaluation of detection has been re-
stricted to simulations and only to the misbehavior type

of not forwarding packets not destined to one self. Even
for the detection of this simple attack, some concerns
have been raised [10] whether it is unambiguously fea-
sible to classify it as such.

Our approach is to build a test-bed that can be used
to test attacks as well as whether they can be detected,
and thus study the practicality and feasibility of several
reputation-based misbehavior detection systems.

The main contributions of this paper can be summa-
rized as follows.

� We provide a systematic list of attacks on DSR and
evaluate the effort and gain for mounting them as
well as whether and how they can be detected.

� We extend the notion of passive acknowledgment
to enable the detection of attacks.

� We built and present here a test-bed that enables
researchers to assess the feasibility and detectabil-
ity of attacks.

� We implemented and tested several attacks and
showed their detection.

� We compared the performance of DSR enhanced
by our extended passive acknowledgment detec-
tion mechanism to regular DSR. We found that it
performs at least as well as explicit acknowledg-
ment, but mitigates the problem of duplicates due
to lost acknowledgments.

The remainder of the paper is organized as follows.
First, in Section 2 we give some brief background in-
formation on Dynamic Source Routing (DSR) and pas-

1



sive acknowledgment, since we investigate attacks on
DSR and detect them by means of an enhanced pas-
sive acknowledgment. Then we discuss related work in
Section 3. In Section 4 we discuss the feasibility and
detectability of attacks on DSR. We describe the design
and architecture of our test-bed in Section 5, followed
by our detection mechanism by enhanced passive ac-
knowledgment in Section 6 and a description of the at-
tacks we implemented in Section 7. We discuss the use
of our test-bed and further work in Section 8, and Sec-
tion 9 concludes the paper.

2 Background

2.1 Dynamic Source Routing

Dynamic Source Routing is a protocol developed for
routing in mobile ad-hoc networks and was proposed
for MANET by Broch, Johnson and Maltz [6]. In a nut-
shell, it works as follows: Nodes send out a ROUTE
REQUEST message, all nodes that receive this message
forward it to their neighbors and put themselves into the
source route unless they have received the same request
before. If a receiving node is the destination, or has a
route to the destination, it does not forward the request,
but sends a REPLY message containing the full source
route. It may send that reply along the source router in
reverse order or issue a ROUTE REQUEST including
the route to get back to the source, if the former is not
possible due to asymmetric links. ROUTE REPLY mes-
sages can be triggered by ROUTE REQUEST messages
or gratuitous. After receiving one or several routes, the
source picks the best (by default the shortest), stores it,
and sends messages along that path. In general, the bet-
ter the route metrics (number of hops, delay, bandwidth
or other criteria) and the sooner the REPLY arrived at
the source (indication of a short path - the nodes are
required to wait a time corresponding to the length of
the route they can advertise before sending it in order to
avoid a storm of replies), the higher preference is given
to the route and the longer it will stay in the cache. In
case of a link failure, the node that cannot forward the
packet to the next node sends an error message toward
the source. Routes that contain a failed link, can be ‘sal-
vaged’ by taking an alternate partial route that does not
contain the bad link.

2.2 Passive Acknowledgment (PACK)

During packet forwarding every node is responsible
confirming that the packet was received by the next hop.
There are three ways to get this acknowledgment, as
specified in the DSR draft [6]:

� Link-layer acknowledgment: this is supplied by
the MAC layer.

� Passive acknowledgment: this confirmation comes
indirectly by overhearing the next node forward
the packet.

� Network-layer acknowledgment: this is when
nodes explicitly request a DSR acknowledgment
from the next hop.

PACK can be used for Route Maintenance when orig-
inating or forwarding a packet along any hop other than
the last hop. PACK cannot be used with the last hop
since it will never retransmit a packet destined to itself.
PACK needs two conditions to be applied: nodes have
their network interfaces in promiscuous mode, and net-
work links operate bidirectionally.

PACK works as follows. When a node receives a
packet to be forwarded to a node other than last hop,
the node sends the packet without requesting a network-
layer acknowledgment (ACK). If it doesn’t overhear
the retransmission of the next node within a timeout,
the node retransmits the packet again, without network-
layer ACK request. After a certain number of trials,
a network-layer ACK request must be used instead of
PACK for all remaining attempts for that packet.

When a node receives a new packet, it considers it as
a PACK if the following checks succeed:

� Source address, destination address, protocol iden-
tification and fragment offset fields in the IP
header of the two packets must match.

� If either packet contains a DSR Source Route
header, both packets must contain one, and the
value in the Segments Left field (it indicates the
number of hops remaining until the destination) in
the DSR Source Route header of the new packet
must be less than that in the first packet.

2



3 Related Work

3.1 Detection

In this section we describe several approaches that build
on the detection of misbehavior in mobile ad-hoc net-
works and could thus benefit from our test-bed to eval-
uate the effectiveness of attacks and their detection.

Watchdog and path rater components to mitigate
routing misbehavior have been proposed by Marti,
Giuli, Lai and Baker [10]. They observed increased
throughput in mobile ad-hoc networks by complement-
ing DSR with a watchdog for detection of denied packet
forwarding and a path rater for trust management and
routing policy rating every path used, which enable
nodes to avoid malicious nodes in their routes as a reac-
tion.

Intrusion detection for wireless ad-hoc networks
has been proposed by Zhang and Lee [19] to com-
plement intrusion-prevention techniques. The authors
argue that an architecture for intrusion detection
should be distributed and cooperative, using statis-
tical anomaly-detection approaches and integrating
intrusion-detection information from several network-
ing layers. They use a majority voting mechanism to
classify behavior by consensus. Responses include re-
authentication or isolation of compromised nodes.

CONFIDANT proposed by Buchegger and Le
Boudec [5] detects misbehaving nodes by means of
observation or reports about several types of attacks
and thus allows nodes to route around misbehaved
nodes and to isolate them from the network. Nodes
have a monitor for observations, reputation records for
first-hand and trusted second-hand observations, trust
records to control trust given to received warnings, and
a path manager for nodes to adapt their behavior ac-
cording to reputation.

CORE, a collaborative reputation mechanism pro-
posed by Michiardi and Molva [11], also has a watch-
dog component; however it is complemented by a rep-
utation mechanism that differentiates between subjec-
tive reputation (observations), indirect reputation (posi-
tive reports by others), and functional reputation (task-
specific behavior), which are weighted for a combined
reputation value that is used to make decisions about
cooperation or gradual isolation of a node.

A context-aware inference mechanism has been
proposed by Paul and Westhoff [14], where accusations
are related to the context of a unique route discovery
process and a stipulated time period. A combination is
used that consists of un-keyed hash verification of rout-
ing messages and the detection of misbehavior by com-
paring a cached routing packet to overheard packets.

OCEAN by Bansal and Baker [4] relies exclusively
on first-hand observations for ratings. If the rating is be-
low the faulty threshold, the node is added to the faulty
list. This faulty list is appended to the route request by
each node broadcasting it to be used as an avoid list.
A route is rated good or bad depending on whether the
next hop is on the faulty list. In addition to the rating,
nodes keep track of the forwarding balance with their
neighbors by maintaining a chip count for each node.

Cross-feature analysis is proposed by Huang, Fan,
Lee, and Yu [7] to detect routing anomalies in mobile
ad-hoc networks. They explore correlations between
features and transform the anomaly detection problem
into a set of classification sub-problems. The classifiers
are then combined to provide an anomaly detector. A
sensor facility is required on each node to provide statis-
tics information.

3.2 Test-Beds and DSR implementations

We evaluated several existing test-bed environments
and implementations of DSR in view of what they pro-
vide to enable the detection of misbehavior. The criteria
were that it had to be a real network, support promiscu-
ous mode, support DSR, support passive acknowledg-
ment, preferably have logging and scripting facilities,
and it had to work on current off-the-shelf hardware
such as available network cards.

Specifically, we considered APE [2], MobiEmu [20],
the Monarch DSR implementation [9], Click [8] and
the pecolab DSR implementation [15], and the piconet
DSR implementation [17].

In comparison to the alternatives, the APE testbed
combined with the piconet implementation of DSR ful-
filled the largest range of our requirements. We inte-
grated them and added capabilities as described in Sec-
tion 5.

3



4 Attacks on DSR

In the following we give examples of attacks on DSR
and classify them as dropping, modification, fabrica-
tion, or timing attacks. We also state their potential de-
tectability.

4.1 Dropping Attacks

Drop all packets not destined to itself or perform only
partial dropping. Partial dropping can be restricted to
specific types, such as only data packets, or route con-
trol packets that contain it, or packets destined to spe-
cific nodes. The attacker can also decide to drop only
some of the packets listed above. The previous hop can
detect dropping by use of passive acknowledgment.

Avoid sending a ROUTE ERROR when having de-
tected an error, to prevent other nodes from looking for
alternative routes. Thus, the source of the data packet
will not know that this route is disrupted and will not
initiate a Route Discovery to find another route. By us-
ing fake data packets sometimes, the initiator could con-
firm the validity of the route if it receives a reply to this
fake packet from the destination which cannot interpret
the data. To the previous hops using passive acknowl-
edgment this looks like dropping packets and can thus
be detected as misbehavior.

4.2 Modification Attacks

By sending forged routing packets, an attacker can cre-
ate a so-called black hole, a node where all packets are
discarded or all packets are lost. If the attacker itself is
the black hole and then just drops the packets, this can
be detected by the neighbors using passive acknowledg-
ment. If the black hole is a virtual node or outside the
network, it is hard to detect. The attacker could also
cause the route at all nodes of an area to point into the
black hole area when the destination is outside the net-
work. This could be done by sending forged ROUTE
REPLY messages for example. The attack of using an
unreachable node as a black hole is not easily detectable
since the last node on the route that could not reach the
destination will send a ROUTE ERROR back. If the at-
tacker drops the ROUTE ERROR, this can be detected.

Otherwise, the source node will initiate another route
discovery process and the attacker will go undetected.

Attempt to make routes that go through oneself ap-
pear longer by adding some virtual nodes to the route.
Thus, a shorter route will be chosen avoiding this node.
When the attacker receives a ROUTE REQUEST, it
replies with a ROUTE REPLY as if the route were al-
ready in its route cache, but it adds some virtual nodes
to make the route longer. It could also modify (add some
virtual nodes) and forward the ROUTE REQUEST. As
the ROUTE REPLY comes back, it removes the virtual
nodes and forwards the packet. By use of enhanced pas-
sive acknowledgment to detect tampering, adding nodes
can be detected. In the same way, an attacker can re-
move itself to be avoided, this can also be detected by
passive acknowledgment.

Change the Last Hop External flag in the ROUTE
REPLY to make this route less interesting for the ini-
tiator of the route discovery. This modification can be
detected by enhanced passive acknowledgment.

Salvage routes that are not broken and redirect a data
packet to consume bandwidth and energy, or to devi-
ate traffic for malicious purposes. When the attacker re-
ceives a data packet, it changes the route of the packet
and also sends a ROUTE ERROR to the source to in-
dicate the change of route. Thus, the source will delete
the original route of its cache and will use the new route
next time. It can potentially be detected when the next
hop overhears the ROUTE ERROR containing itself.

To create a routing loop, an attacker could send
forged routing packets that cause packets traversing
nodes in a cycle without reaching their destination, con-
suming bandwidth and power. This could be detected if
nodes check for loops in the source route not only when
forwarding a ROUTE REQUEST. If, however, the at-
tacker manages to use two different addresses for one
node, it is not detectable from inspecting the header.

Modify the nodes list in the header of a ROUTE RE-
QUEST or a ROUTE REPLY to misroute packets and
to add incorrect routes in the route cache of other nodes.
The attacker could add, remove or change any node in
the header of the packet, disturbing route discovery and
causing nodes to misroute packets. This attack could be
detected by the previous node by means of enhanced
passive acknowledgment.

4



Decrease the hop count (TTL) when receiving a
packet, so that the packet will never be received by the
destination. This attack could be detected by the pre-
vious node in route by enhanced passive acknowledg-
ment.

4.3 Fabrication Attacks

An attacker could forge ROUTE ERROR packets caus-
ing nodes to incorrectly remove working routes from
their route cache. In the worst case, this attack could
prevent a node from being able to route any packets.
Every time a node receives a ROUTE ERROR, it must
remove this route from its route cache and broadcast
this information to its neighbors. The difficulty for the
attacker is to emit a ROUTE ERROR for a route that
exists in the Route cache of the victim. The attacker
must take part to the route too, otherwise it could not
send this ROUTE ERROR without suspicion. This at-
tack is difficult to detect for the nodes that are not men-
tioned in the ROUTE ERROR, since it is not possible
distinguish a normal gratuitous ROUTE ERROR from
a forged ROUTE ERROR.

Send spoofed ROUTE REQUESTs with subsequent
sequence query id, so that the next ROUTE REQUESTs
from the spoofed node will be discarded by the nodes
since they already saw them. No ROUTE REPLY will
come back since the destinations do not exist. Thus,
when the victim will initiate new ROUTE REQUEST,
nodes will discard them because they have already seen
the same originating adress associated with the same id.
Its detection is limited to the spoofed node when it re-
ceives a ROUTE REQUEST supposedly originated by
itself and to nodes appearing in the route that have not
received the request before.

Forge ROUTE REPLY packets causing nodes to mis-
route packets and to add incorrect routes in their route
cache. The nodes that overhear it must update their
route cache. Thus, they will misroute packets and con-
sume energy and bandwidth. This is hard to detect.

Initiate frequent ROUTE REQUEST to consume
bandwidth and energy and to cause congestion. The at-
tacker could initiate ROUTE REQUEST for the same
destination or for another destination every packet.
Since ROUTE REQUEST are broadcast, it costs a lot of
bandwidth and energy. In the first case, the event cannot

be seen as a normal event. In the second case, there is
an uncertainty over the behavior of the node.

4.4 Timing Attacks

Send route replies with a time not proportional to the
length of the route. This can give more priority to long
routes thus attracting routes to the attacker, or less prior-
ity to short routes thus avoiding the attacker. It is easy to
mount. It can be observed when nodes wait for several
routes to arrive and checking their length before adding
them to the route cache.

5 Test-Bed Design

5.1 Overview

Our test-bed consists of several components. Whenever
possible, we used components that are already publicly
available and serve at least part of our purposes. We
then proceeded to integrate the components by means
of utilities that we modified to provide the functionali-
ties we need and to glue the parts together.

The resulting architecture can be seen from Figure 1.
We describe the use and integration of the main compo-
nents in more detail in the subsequent sections and just
list them briefly in the following.

� A Linux kernel module implementation of DSR
called piconet [17] for routing. We modified by
adding mechanisms to provide regular passive ac-
knowledgment, our enhanced PACK for detection,
and several attacks.

� The APE testbed [2] for scripting and mobility, and
to integrate our distribution to be booted from CD.

� Netfilter [16] for capturing packets in promiscuous
mode. We patched it so that it could handle packets
promiscuously received using a new hook.

� PCMCIA card drivers pcmcia-cs for Linux, which
we patched to enable promiscuous mode.

The setup for our experiments consists of 3 Pen-
tium II laptops, 233 MHz, Linux kernel 2.4.19, APE

5



Kernel space

User space

Hardware

Orinoco driver (modified)

NETFILTER (with promiscuous support)

Wireless Network Interface (ORINOCO Classic)

Piconet (DSR module)

Hooks

init and cleanup

APE Testbed

Shell script

Scenarios files

/proc filesystem

logging facilities

logging

iwtool

enables
promiscuous

mode

sends
and 

receives
packets

Figure 1: Test-bed Architecture

0.4, Redhat 7.2, and 1 Pentium IV laptop, 2.20 GHz,
Linux kernel 2.4.20, Debian 3.0r1(woody). For all lap-
tops we used Orinoco Classic Gold 802.11b cards, 11
Mb/s, driver pcmcia-cs-3.2.1 (orinoco 0.11b driver in-
cluded).

5.2 Adding PACK to Piconet

The first problem to solve was to put the network in-
terface in promiscuous mode. We use an hack of the
orinoco cs driver provided within the APE test-bed
source files [2]. Using this modified driver, we could
put the ORINOCO Classic card in promiscuous mode
with the help of the iwtool command. We also try to
use our implementation using the monitor mode with
the ORINOCO card, but it fails because of two prob-
lems: we could not send any packets when the interface
is in monitor mode and the captured packets do not acti-
vate the NF_IP_PROMISCUOUS hook in our modified
netfilter. For more details on monitor mode, see [1] and
[12].

When the interface is in promiscuous mode, it keeps
all the packets it could overhear on the network. But,
netfilter drops the “promiscuous” packets before they
could be caught by any hook, so that it was impossi-
ble to process these packets within the netfilter frame-
work. Since keeping the same global architecture was
the easiest solution, we patched [18] netfilter to make
it able to handle promiscuous traffic. This patch adds
a NF_IP_PROMISCUOUS hook that catches all pack-
ets promiscuously received. With this improvement at

hand, it was feasible to implement PACK over piconet.

We first add prom_handlerwhich is called when-
ever the NF_IP_PROMISCUOUS catches a packet.
After a check that ensures the originator belongs to
the same subnet, proc_pack_check is called. This
function parses the packet in order to find if it has a
source route option, and in this case, retrieves the value
of the segs left field. Then, it looks for a packet that ful-
fills the tests for a packet to be a passive acknowledg-
ment, as described in the previous section (i.e. source
address, destination address, etc. must correspond). If it
finds one, the packet is removed from the PACK queue.
The packet promiscuously received is then dropped
since it was not destined to the node itself.

When a packet is forwarded or originated, there is a
check to know whether the next hop is the destination.
In this case, the explicit network-layer acknowl-
edgment is used with the function ack_q_add.
Otherwise, we use the function pack_q_add instead
the previous one, taking care to change the size of
the packet when building it since it has no more ack
request option in the header. pack_q_add is used
when a node sends a normal packet (dsr_send),
a fragmented packet (dsr_fragment_send),
a route reply (send_rt_reply), a route er-
ror (send_rt_error) and when forwarding
a packet that includes a source route option
(proc_sr_rt_opt).

The function pack_q_add first retrieves the
segs left field from the header if it exists, so that this
value can easily be found later when parsing the queue
looking for a PACK. Then, it builds a clone of the
packet that will be kept and sets a timer that expires af-
ter PASSIVE ACK TIMEOUT ms. When this occurs,
pack_timeout is called. This function first checks
if the maximum number of retransmissions is reached.
If not, it resends the packet. Else, it adds an ack re-
quest option in order to use network-layer acks instead
of PACK. To do that, the packet is first expanded using
skb_copy_expand, then we fill the ack request op-
tion and add this packet to the ack queue. The packet
is then processed as described in the initial implemen-
tation of piconet. The older packet waiting in the queue
to be PACKed is removed.

6



[1] [ROUTE] [3] [4]

[5][2]

[ROUTE]

Figure 2: Netfilter architecture

5.3 Netfilter

Netfilter [16] provides a set of hooks in various points
in the IPV4 protocol stack as shown in Figure 2.
Packets enter on the left side of the diagram. They
first pass some sanity checks (i.e. not truncated, IP
checksum correct) and then are passed to the netfilter
NF_IP_PRE_ROUTING [1] hook.
Next they enter the routing code, which decides whether
the packet is destined for another interface, or a local
process.
If the packet is destined for the machine itself,
the netfilter framework is called again for the
NF_IP_LOCAL_IN [2] hook, before being passed to
the process (if any).
If it is destined to pass to another interface instead, the
netfilter framework is called for the NF_IP_FORWARD
[3] hook.
The packet then passes a final netfilter hook, the
NF_IP_POST_ROUTING [4] hook, before being put
on the network again.
The NF_IP_LOCAL_OUT [5] hook is called for pack-
ets that are created locally.

Now, we can see when each hook is activated. Kernel
modules can register to listen to these hooks by using
the nf_register_hook function. The module must
define the priority of function within the hook, so that
each function listening to this hook are called by order
of priorities. When a function is called, it could then
interact with the packet and manipulate it. The module
can then tell netfilter to do one of these five things:

1. NF_ACCEPT: continue traversal as normal.

2. NF_DROP: drop the packet.

3. NF_STOLEN: we have taken over the packet;

don’t continue traversal.

4. NF_QUEUE: queue the packet.

5. NF_REPEAT: call this hook again.

NF_ACCEPT is used whenever we need to let a
packet continue its way as if the module were not
loaded: for example, if a node sends a packet that
is addressed to a node that is not on its subnet (e.g.
on a wired LAN). We use NF_ACCEPT to let the
packet follow the standard kernel routing rules. When
a node receives a packet that is destined to itself, it
processes it and removes the DSR header, then it uses
NF_ACCEPT to let the packet follow its way to the
upper layers. NF_DROP is used quite often. for exam-
ple, when a node receives a bad packet, it simply dis-
card it by returning this NF_DROP, or, when it gets a
packet promiscuously, it processes it and then releases
it with NF_DROP since this packet is not destined
to itself. NF_STOLEN is only used one time: when
the kernel sends a packet, a node intercept it in the
LOCAL_OUT HOOK and modifies its routing if needed.
At the end, it uses NF_STOLEN to tell the kernel that it
will send the packet itself and so, the kernel has nothing
more to do with it. NF_QUEUE and NF_REPEAT are
never used in our implementation.

5.4 Initial Piconet Implementation

5.4.1 Sending a packet

Piconet uses the netfilter framework to intercept the
packets and manipulate them to implement the DSR
protocol. Referring back to Figure 2, piconet uses the
PRE_ROUTE [1] and the LOCAL_OUT [5] hooks. Ad-
ditionally, the POST_ROUTE [4] hook is used for the
DSR to IP gateway. In the next subsections, we explain
the internals of piconet by following the journey of a
packet through the whole implementation.

When we send a packet, this packet is intercepted
by the LOCAL_OUT hook of our module. The func-
tion local_out_handler is called. Some prelim-
inary tests check if the packet is destined to our subnet
or if it is not a multicast for example. Then, the function
tries to build a route entry that can be add to the packet.

The route table is first parsed using

7



lookup_route. If no route is found, then we
send a route request by using send_rt_req. First,
this function interacts with the route request cache (i.e.
set the timer,...). Then, finish_send_rt_req is
called.

Like all the other functions that output packets, that
function first allocates some memory to have enough
place to build our packet. Then, it matches the IP header
struct and fills IP fields. Next, it adds a DSR header
struct and fills the common DSR header. Now, it is time
to add the DSR options to the packet. In this case, we
only add a dsr_rt_req_opt, but if we send a nor-
mal data packet, we could add a dsr_src_rt_opt
or maybe a dsr_ack_req_opt if we want network-
layer acknowledgments. The important point is to be
sure to allocate the right amount of memory for the
packet.

When the packet is built, there are two different pos-
sibilities. Maybe, we do not receive a route reply for the
moment and send_q_add is called to add the packet
to the skb queue and we set a timer, so that the request
could stop after a timeout expires. If we have already a
route to send the packet, dsr_send is called.

This function adds the DSR header and builds the
packet in the same way we did for the route request
above. In this implementation, an explicit network-layer
ack was used since it was the easiest solution. There-
fore, we add an ack request option to every packet built
in dsr_send. We also add the packet in an ack queue,
that keeps a clone of all the packets waiting to be ac-
knowledged, by using ack_q_add.

This function builds a clone of the packet, sets a
timer and adds the clone to a list. If the timer expires,
ack_timeout is called. That function manages the
number of timeouts and retries.

5.4.2 Receiving a packet

When a packet enters the stack, the PRE_ROUTE hook
calls pre_route_handler. It first checks if the
packet implements the DSR protocol. Next, it parses
the header in order to find all the options. Each
time an option is found (PAD1, PADN, ROUTE REQ,
ROUTE REPLY, ROUTE ERROR, ACK REQ, ACK,
SRC ROUTE), a corresponding function is called.

proc_rt_req_opt is called for a route request
option. This function adds the reverse route to the orig-
inator in the route cache and then determines if we
are the destination of the route request. If yes, it sends
a route reply with send_rt_reply. Else, it checks
whether we are not already in the route to avoid loops
and if it is the first time we process this route re-
quest. In this case, the route request is rebroadcast using
rebcast_rt_req.

proc_rt_reply_opt is called for a route reply
option. This function only adds the route contained in
the packet to the forward route cache.
proc_rt_error_opt is called for a route error op-
tion. It only removes the route from the route cache us-
ing remove_route.
proc_ack_req_opt is called for an ack request op-
tion. It sends an ack reply.
proc_ack_reply_opt is called for an ack reply op-
tion. This function first adds the neighbor address to the
forward route to speed up the route discovery. Then, it
finds and remove the packets from the ack queue.

Finally, proc_src_rt_opt is called when a
source route option is found. It begins with some checks
to determine if we are the destination of the packet or
the gateway. In this case, no more processing is done.
Else, it decreases the segs left field and adds route to
source and to destination to the forward and reverse
route table. After the forward address is determined, it is
time to route the packet correctly. It bypasses the kernel
routing with ip_route_input, otherwise the kernel
will send it directly to the destination address of the IP
header since this node is on the same subnet.

When all the options are processed, the function
pre_route_handler removes the DSR header
from the packet if the packet is destined to us and passes
it to the upper layer (through LOCAL IN).

5.5 Our Use of the APE Test-Bed

The APE Test-Bed provides some facilities to lead real
world multi-hop wireless tests:

� Deployment of the tests is facilitated by the possi-
bility to use a bootable CD-ROM or a package on
a Linux or Windows machine.

� Scripted scenarios enable people to physically

8



carry out the experiments without prior instruction.
Instructions are displayed on the laptops so that the
tests could be easily reproducible.

� Possibility to add more routing protocols using
scripts that initialize and cleanup sessions.

� Centralization of logs is done in a Master/Slaves
architecture. This simplifies the post-analysis of
the logs (e.g. synchronization).

� Visualization of node placements and movements
can be done using a Java interface. This tool uses
the radio signal strength (superspy) to build the
map of nodes.

� Analysis tools are also provided to retrieve some
basics metrics like virtual movement, data loss rate
or path optimality.

� Mobility can be emulated by the mackill function
which blocks out MAC addresses.

� It is extensible and based on a Linux environment.

More details can be found in [13].

We were able to build a personalized APE distri-
bution quite easily to add the functionalities we re-
quire. First, we need to combine the sources of APE,
a new kernel (2.4.19 in our case), and the sources of
PCMCIA-CS (3.2.1 in our case). Then, we apply a
patch for the kernel, so that it is able to use the mackill
module which we use to disable the communication be-
tween two nodes at the MAC layer. This way, we can
also emulate a loss of connection without having to
move the nodes. Then, we apply a patch for the pcmcia-
cs package that adds the so-called superspy and the
promiscuous mode to the orinoco driver, as a prereq-
uisite for the PACK function.

A routing protocol has to be implemented as a kernel
module in order to be integrated in the APE test-bed, we
do this with the piconet DSR module. Then, we define a
script used to initiate and cleanup the module. This ar-
chitecture makes APE very extensible and modular. We
also add some new scenarios and modify the configura-
tion file to match our requirements. Finally, after com-
piling the whole package (kernel and pcmcia-cs and our
own modifications included), we make a bootable CD-
ROM and a zip package.

If we use the zip package, the installation is very sim-
ple. We just need to extract it in the root directory/, and
there is a script file that must be run to modify our boot-
loader. More details can be found in [3].

After installing APE and booting with this distri-
bution, we start experiments by using the command
start_test. It opens a menu in which we choose
the scenario, the node representing the machine, and
the protocol we want to use. When the experiments are
completed, data gathering is done using a script.

6 Enhanced Passive Acknowledg-
ment: More Watchdog Capabil-
ities

In addition to the normal use of PACK, we benefit from
the promiscuous mode to add more tests to detect at-
tacks. Since the packets sent are logged in a queue wait-
ing to be acknowledged by PACK, it is straightforward
to check some additional fields to detect misbehavior in
the flow of packets.

Thanks to the bi-directionality of the link-layer
(IEEE 802.11b), a node is able to find out whether the
next node forwards its packet if both nodes are still in
the range of one another. This is possible because the
node receives the packet in promiscuous mode when
the next node forwards it. If it does not overhear the
packet forwarded, it means that the next hop either did
not forward it or that it did forward it but it was not over-
heard because the next-hop node moved out of range
just after receiving the packet to be forwarded. With the
PACK retransmission mechanism, the node waiting for
the PACK resends the packet. If it does not get acknowl-
edged, it emits a route error claiming that the next node
is unreachable.

When a node promiscuously overhears the forwarded
packet, it can additionally check whether it has been
modified, and if so, whether the modifications result
from a normal behavior or not.

The DSR draft [6] gives the fields we must check in
order to consider the packet we receive as a PACK. By
checking the four fields of the IP header, we can identify
a packet uniquely so that we are sure we overheard one
retransmission of the packet we forward. Next, the DSR

9



draft requires that if both packets have a source route
option, then the segments left value in the overheard
packet must be less than in the logged packet. This last
check assures that the overheard packet is fresher than
the logged one.

In practice, however, most Linux versions now some-
times set the IP identity field to zero for security rea-
sons. This means for the use of passive acknowledg-
ment, that if we want to identify packets uniquely, we
have to use other pieces of information. We propose two
solutions to this problem. The first is to generate a ran-
dom identity number in the case when it has been set
to zero. The second is to use the data contained in the
packet to uniquely identify it, without modifying the IP
identity. We only need to identify the packet uniquely
if there is a need for retransmission and there would be
several packets eligible. For our purpose of detection of
partial dropping, it suffices to know that a packet was
dropped that belonged to a particular path, regardless of
which packet it was exactly in the sequence.

In order to implement the added watchdog capabili-
ties to detect some attacks or events, we enhanced the
passive acknowledgment we added to piconet so that
every packet is completely checked for changes when
we identify it as a passive acknowledgment. Thus, if
the attacker changes one of the four IP fields we use to
identify a PACK the regular PACK was not able to use
our detection capabilities. We check the following fields
and log if one of them changes:

� IP header: The TTL value must be decremented by
only one.

� Route reply option(s): All fields.

� Route error option(s): All fields.

� Source route option: If the Salvage value is un-
changed, all fields except Segs Left (we only
check that this value decreases). If the Salvage flag
changed, we only check Type, Last Hop External,
First Hop External and Segs Left (must have de-
creased).

� Forged route error: a node can detect it, if the un-
reachable address in the route error option is its
own.

This new functionality detects the changes well. It

detects all the attacks we implemented that are based
modifications in the header, as described in Section 7.

7 Attacks Implemented in the
Test-Bed

7.1 Choice

After testing the PACK implementation we added to pi-
conet, we focused our attention on attacks that could be
detected by adding more watchdog capabilities in our
implementation. We kept three types of attacks: header
modification, partial dropping, and sending forged route
error messages.

7.2 Header modification

7.2.1 Selfish attacks

First, we modify the PACK piconet in order to imple-
ment some selfish attacks that will help the attacker sav-
ing power. We keep three different modifications.

1. Last Hop External: We change this flag in the route
reply option to make this route less interesting for
the initiator of the route discovery. If it receives
more than one route, it must prefer the ones that
have this flag set to zero. This is done just by
changing the value of rtreply->lasthopx in
the proc_rt_reply_opt function if we are
not the destination of the packet. We do the same
for the Last Hop External and First Hop External
fields in the source route option.

2. Removing itself from the route reply option: If a
node removes its own address from the route reply
option, it will not take part of the route and save
power. To implement this, we add some code in
the proc_rt_reply_opt function that looks
for the address of the node itself, removes it and
appends the addresses following it. It changes the
blank line at the end of the route reply option to a
PADN option.

3. Route error modification: If a node finds a route
error option in the header, it modifies it in a self-

10



ish way. It changes the error source address to the
address of the next-hop and the address of the un-
reachable node to its own, so that the next hops
will remove it from their route cache. We add this
attack in proc_rt_err_opt since it will mod-
ify a packet that includes a mandatory source route
option.

We investigate how these modifications work in a real
environment:

1. Last Hop External: Since piconet does not deal
with this flag when determining the best route, this
attack has no effect on the routing.

2. Removing oneself from the route reply option:
This attack works in our simple test environment.
Every time the source receives the modified route
reply, the data packet it sends does not reach its
destination because of the false route. If another
route to the destination exists, then the route is
changed to avoid the attacker.

3. Route error modification. The modification works
and the receiver has to delete the route, thus avoid-
ing the attacker.

7.2.2 Malicious attacks

Then, we add some others attacks that can be mounted
by altering the header. These attacks will not help the
attacker saving power, but only disrupting routes. We
test the following:

1. Source route option altering: a node changes
its address in the source route option so that
the next hops will add an incorrect route in its
route cache. This attack is implemented in the
proc_src_rt_opt function.

2. Error destination address altering: A node changes
the Error Destination Address in the route error op-
tion to discard route errors. When the destination
of the route error will receive the packet, it will not
be processed and the route will not be deleted.

How these modifications work in a real environment:

1. Source route option altering: This attacks works
in our simple test environment. The answer of the
destination of the modified packet never arrives. So
that, this node must initiate a new route discovery
process since he has no other route to destination.

7.3 Partial Dropping

This attack consists of dropping an arbitrary packet at a
constant rate. The attacker will drop this packet when-
ever it is resent. To implement this attack, we add a new
drop_q that keeps a log of the packet we drop. When-
ever a packet is caught by the NF_IP_PRE_ROUTING
hook, we first check if this packet has already been
dropped using the check_drop function. In this
case, we drop it again. Then, the packet enters the
drop_packet function that checks if the packet must
be dropped or not. In this case, we add the packet in the
drop_q queue so that we could identify it later when
it is resent.

This attack works well in our tests. We use a rate of
one drop every ten packets. The previous hop detects
the drop when the PACK timeout expires. It resends
the packet that will be dropped again by the attacker
and emits a route error after the explicit ACK timeout.
Without link-layer acknowledgments, we have no reli-
able way to detect if the packet was lost because the
next hop went out of range or dropped it intentionally.
A heuristic, however, is that if subsequently a packet
originating from the next hop is overheard, the node is
in the range.

7.4 Fabrication of Forged Route Errors

An attacker could forge ROUTE ERROR packets caus-
ing nodes to incorrectly remove optimal routes from
their Route cache. In the worst case, this attack could
prevent a node from being able to route any packets. In
our test implementation, we just emit a forged route er-
ror whenever the identification value in the IP header is
a multiple of 3 and the packet includes a source route
option.

The attack works well in our environment. The
source of the packet removes this route from its route
cache and starts a new route discovery process. This at-

11



tack can be detected when the next hop overhears the
forged ROUTE ERROR that corresponds to a packet
it just received. If the attacker does not forward the
packet, it will be detected by the previous hop using
passive acknowledgment.

8 Test-Bed Discussion and Future
Work

Contrary to concerns raised against the watchdog to cor-
rectly detect packet dropping [10], the attacks we imple-
mented were indeed detected successfully by use of our
enhanced passive acknowledgment. The concerns were
that for instance the partial dropping attack could lead
to false conclusions in the case of ambiguous or receiver
collisions. In all of our experiments, even with very
high traffic load, we never experienced a single colli-
sion. Another potential objection to the effectiveness of
a watchdog for the detection of dropping is that nodes
could use power ranges just large enough to reach the
previous hop but not the intended next hop if it is further
away. This is very difficult to achieve, the power range
adaptation in current off-the-shelf cards is not very pre-
cise, additionally nodes would constantly have to find
out their distance to their neighbors that are potentially
mobile.

Since we rely only on acknowledgments, passive or
explicit, to send error messages and we currently have
no link-layer notification in case a link breaks, a node
moving out of range cannot be distinguished from a
node that drops packets instead of forwarding them.
This has to be taken into account when fixing thresh-
olds for misbehavior detection.

The implemented attacks and their detection worked
in all the experiments, therefore it would make little
sense to show graphs on that. What is more illustra-
tive is the performance of the network with our en-
hanced passive acknowledgment in place and compare
it to the regular implementation with explicit acknowl-
edgment, to see whether it has an impact on through-
put, loss, and delay. The enhanced passive acknowledg-
ment takes more computation due to the effort of over-
hearing, comparing and added checks for modification.
On the positive side, however, passive acknowledgment
does not need to send extra packets for acknowledgment
and thus reduces the traffic. As exemplified by Figure 3

showing small packet size and 4 with large packet size,
we found that the network performance was as least as
good as when using regular explicit acknowledgment,
sometimes even better. Even at very high traffic load,
the computational overhead did not have any detrimen-
tal influence, and using passive acknowledgment miti-
gates the problem of duplicates that arise due retrans-
missions of packets that successfully arrived but the ac-
knowledgments were lost.

count 100 preload 0 count 500 preload 0 count 100 preload 50 count 500 preload 50
0

0.5

1

1.5

2

2.5

3

3.5

4
Loss percentage, size of packets = 108 bytes

Set of parameters

Lo
ss

 (
%

)

Original Piconet
Piconet with PACK
Original Piconet with resend

Figure 3: Percentage of lost packets for a number of
pings (“count”), packet size 100B

count 100 preload 0 count 500 preload 0 count 100 preload 50 count 500 preload 50
0

10

20

30

40

50

60

70

80

90
Loss percentage, size of packets = 1008 bytes

Set of parameters

Lo
ss

 (
%

)

Original Piconet
Piconet with PACK
Original Piconet with resend

Figure 4: Percentage of lost packets for a number of
pings (“count”), packet size 1000B

In the experiment shown, we had the laptops topol-
ogy aligned in a row to enforce multi-hop forwarding.
We varied the packet size, the number of pings, and the
preload, i.e. how many packets are sent in a first burst.

12



The figures show an average over ten runs, the standard
deviation was very small in all cases, the bars are absent
when no loss occurred. We compared the original pi-
conet implementation which uses explicit acknowledg-
ments without retransmission, to versions modified by
us, namely explicit acknowledgments with retransmis-
sion, and passive acknowledgment. Note that the loss
rates might depend on the idiosyncrasies of the ma-
chines and drivers used, so we do not claim generality
of these results. In the same vain, we observed that both
the round-trip time of pings and the total time taken for
batches of pings are reduced using passive acknowledg-
ment, we are currently investigating the reasons for this,
such as the role of the time it takes to send explicit ac-
knowledgments and premature rerouting attempts in the
case of no retransmissions.

In our experiments we set the timer for the passive
acknowledgment to 100 ms. The timer is set when send-
ing a packet and expires only if the packet has not been
overheard being sent by the next-hop node. We found
in all our experiments that the actual time to overhear
was below 10 ms, even in the case of high traffic load.
We therefore deem the expiry time of 100 ms more than
sufficient, it can even be reduced if necessary.

We have implemented both attacks and their detec-
tion. In order to render misbehaved nodes harmless, this
detection has to be followed by a response, the most
effective being isolation. Our test-bed can be extended
by mechanisms to disseminate the detection informa-
tion gained by use of our enhanced passive acknowl-
edgment. This information can then serve as an input
to a reputation system to serve as a basis for decision
making on a suitable response. The response itself can
then also be added to our test-bed to evaluate its effec-
tiveness in a real environment.

Although we intend to use the test-bed to implement
our own reputation system based mechanism, we envi-
sion its use also for the community to evaluate different
protocols. We are in the process of making our code and
detailed methodology public, so that the test-bed can be
used to investigate both potential attacks and counter-
measures.

9 Conclusions

In the quest for a real network evaluation, we modi-
fied and integrated several components to form a test-
bed suitable for the investigation of the feasibility of
both misbehavior attacks and their detection on mobile
ad-hoc networks. We built the test-bed, implemented
several attacks, and demonstrated their effectiveness.
We enhanced the passive acknowledgment mechanism,
where nodes overhear the transmission of neighboring
nodes to verify the reception of packets, to allow for the
detection of a range of attacks. We built this extended
passive acknowledgment for detection into the test-bed
and evaluated its capabilities.

Watchdogs, as detection components for mobile ad-
hoc networks have been called, as implemented in our
extended passive acknowledgment mechanism can in-
deed detect a number of attacks on mobile networks
such as packet dropping, and several types of packet
modification and fabrication. The capabilities of watch-
dogs are most limited in the case of packet fabrication.

We propose our test-bed for the use of the community
to evaluate attacks, detection, reputation, and response
mechanisms.

References

[1] Airsnort homepage. http://airsnort.shmoo.com/,
August 2003.

[2] Ad hoc protocol evaluation testbed.
http://apetestbed.sourceforge.net, November
2002.

[3] How to build, install and run the ape testbed.
http://apetestbed.sourceforge.net/ape-testbed.ps,
November 2002.

[4] Sorav Bansal and Mary Baker. Observation-
based cooperation enforcement in ad hoc net-
works. Technical Report, 2003.

[5] Sonja Buchegger and Jean-Yves Le Boudec. Per-
formance Analysis of the CONFIDANT Proto-
col: Cooperation Of Nodes — Fairness In Dy-
namic Ad-hoc NeTworks. In Proceedings of

13



IEEE/ACM Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHOC), Lausanne,
CH, June 2002. IEEE.

[6] Y. Hu D. Johnson, D. Maltz. The dynamic source
routing protocol for mobile ad hoc networks
(dsr). http://www.ietf.org/internet-drafts/draft-
ietf-manet-dsr-09.txt, April 2003.

[7] Y. Huang, W. Fan, W. Lee, and P. S. Yu.
Cross-feature analysis for detecting ad-hoc rout-
ing anomalies. In Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS 2003), Providence, RI, pages 478–
487, May 2003.

[8] Eddie Kohler, Robert Morris, Benjie Chen, John
Jannotti, and M. Frans Kaashoek. The click mod-
ular router. ACM Transactions on Computer Sys-
tems, 18(3):263–297, August 2000.

[9] David A. Maltz, Josh Broch, and David B. John-
son. Experiences designing and building a multi-
hop wireless ad hoc network testbed. Technical
Report CMU-CS-99-116, CMU School of Com-
puter Science, March 1999.

[10] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary
Baker. Mitigating routing misbehavior in mobile
ad hoc networks. In Proceedings of MOBICOM
2000, pages 255–265, 2000.

[11] Pietro Michiardi and Refik Molva. CORE: A col-
laborative reputation mechanism to enforce node
cooperation in mobile ad hoc networks. Sixth IFIP
conference on security communications, and mul-
timedia (CMS 2002), Portoroz, Slovenia., 2002.

[12] Linux and lucent wireless cards.
http://www.goonda.org/wireless/lucent, June
2003.

[13] E. Nordstrom. Ape - a large scale ad hoc
network testbed for reproducible performance
tests. http://www.csd.uu.se/courses/course-
material/xjobb/docs-reports/Nordstrom-2002.pdf,
June 2002.

[14] Krishna Paul and Dirk Westhoff. Context aware
inferencing to rate a selfish node in dsr based ad-
hoc networks. In Proceedings of the IEEE Globe-
com Conference, Taipeh, Taiwan, 2002. IEEE.

[15] Boulder Pervasive Communications Laboratory,
University of Colorado. The click dsr router
project. http://pecolab.colorado.edu/.

[16] H. Welte R. Russel. Linux netfilter howto.
http://www.iptables.org/documentation/HOWTO/netfilter-
hacking-HOWTO.html, July 2002.

[17] A. Song. piconet ii, a wireless ad hoc
network for mobile handeld devices.
http://piconet.sourceforge.net.

[18] S. Zander. http://www.fokus.gmd.de/research/
cc/glone/employees/sebastian.zander/private/netfilter-
prom-patch.tgz, November 2001.

[19] Yongguang Zhang and Wenke Lee. Intrusion de-
tection in wireless ad-hoc networks. In Proceed-
ings of MOBICOM 2000, pages 275–283, 2000.

[20] Yongguang Zhang and Wei Li. An integrated en-
vironment for testing mobile ad-hoc networks. In
Proceedings of IEEE/ACM Symposium on Mobile
Ad Hoc Networking and Computing (MobiHOC),
Lausanne, CH, June 2002. IEEE.

14


