Triune Continuum Paradigm and Problems of UML Semantics

Andrey Naumenko, Alain Wegmann
Laboratory of Systemic Modeling,
Swiss Federal Institute of Technology — Lausanne.
EPFL-IC-LAMS, CH-1015 Lausanne, Switzerland
andrey.naumenko@epfl.ch ; alain.wegmann@epfl.ch

Abstract

We present the results of our research that is
positioned in the domain of system modeling. In
particular, we present an object-oriented paradigm that
provides a logically rigorous and complete theoretical
base for various existing object-oriented frameworks. The
strong points of the paradigm are presented by
demonstrating how the paradigm can resolve a number of
existing problems of the Unified Modeling Language
(UML). The analysis of these problems and the proposed
paradigm-based solutions represent an original research
approach towards software systems modeling; the
research approach is based on Russell’s theory of types
and on Tarski’s declarative semantics theory. The paper
advances the current state of research in software systems
modeling frameworks in general and the state of UML
research in particular.

1. Introduction

This paper targets two principal goals. The first goal is
to introduce to readers the Triune Continuum Paradigm.
This paradigm was originally defined in [7]; essentially it
is a logically rigorous, internally consistent, complete and
formally presented theoretical base for the conceptual
organization of modern object-oriented frameworks that
are used for system modeling in different contexts (e.g. in
software development, in business modeling, enterprise
architecture etc). This paradigm is an important
contribution to the system modeling domain because
currently none of the prevailing system modeling
frameworks has a satisfactory formal theoretical
foundation.

Considering the evolution of the software systems
modeling languages, methodologies and tools through the
last decade, among the numerous existing modeling
techniques we may single out the Unified Modeling
Language (UML). UML is a proposition of the Object
Management Group (OMG) that emerged from the

integration of different industrial practical experiences
and became an influential phenomenon in the system
modeling. As a matter of fact, due to the multiple efforts
of different interested parties, UML has gained a relative
domination over the other modeling techniques in the
current industrial practices. This is why we decided to
introduce the Triune Continuum Paradigm by positioning
it in relation with UML, namely by noting and analyzing a
number of UML problems and by explaining their
concrete solutions, which are based on the proposed
Triune Continuum Paradigm.

Thus the second goal of this paper is to advance the
current state of the UML research, in particular of the
research that concentrates on UML semantics.

The Triune Continuum Paradigm [7] is an original
research finding that is based not only on solid logical
foundations (such as Russell’s theory of types [11] and
Tarski’s declarative semantics theory [12]) but also on the
philosophical and natural science foundations (e.g. it
features an extension of the traditional Minkowski’s
spatiotemporal reference frame [4] for the case of general
system modeling). Thus with the aid of the paradigm we
can present a non-traditional for software engineers view
on the software systems modeling. We consider the
originality of the paradigm-based view on software
systems modeling to be a particularly important
contribution of our research, because such an original
view makes a difference in relation with the traditional
views; it complements them, expanding the possibilities
for the constructive evolution of software modeling
languages, methodologies and tools.

In particular, as it will become clear from the analysis
presented in this paper, our view on UML is
complementary to the activities of OMG and different
workgroups (such as U2 Partners, pUML, 3C UML)
collaborating with OMG and submitting proposals for
UML specifications (in particular for the specifications of
UML 2.0 [1], [2], [13]). This is a real complementarity
because UML interests us from a different perspective that
is predefined by our goals which differ from the goals of

all known to us UML contributors. In particular, as we see
it, all the aforementioned groups have one common
characteristic: they are trying to contribute to the
definition of the next version of the language. The results
of our work are complementary because we do not intend
to design a new version of UML, instead we are
presenting a paradigm that can serve to different existing
modeling frameworks (and, in particular, to UML) by
providing its rigorous theoretical foundations to support
the conceptual organizations of these frameworks.

Obviously, a paradigm (like Triune Continuum
Paradigm) should not be a part of the specification of a
modeling language; instead the language definitions can
either conform to the paradigm or not conform to it. In the
case when a language conforms to a paradigm, the
paradigm would assure the theoretical soundness of the
language. In the case when a language does not conform
to any theoretical paradigm, there is no assurance for the
language users; and any success or failure resulting from
the language use is a matter of chance rather then a matter
of founded reason.

Different languages may conform to the same
paradigm. Hence in the particular case of Triune
Continuum Paradigm, UML is just one of the modeling
frameworks to which it can be related. So our work is
absolutely independent from OMG or any other interested
party. And our results, relating the paradigm with UML,
are based on the independent analysis of the UML
specifications.

To avoid the potential influences of “non-official”
research results (the results of UML-related research that
were not approved by OMG and those that are not a part
of UML), in this paper we analyze the official UML
specifications and nothing but the UML specifications that
are interpreted as they are written in the latest official
version of UML [9]. With our research results we do not
intend to change UML; our intention is to attract the
software engineering and business modeling communities’
attention to some of the UML-related facts that otherwise
pass unnoticed.

Our research approach is justified by the fact that in its
current state UML does not conform to any theoretical
paradigm. The explained complementarity of our work
with respect to the dominating UML research threads
makes our results particularly interesting for the attention
of UML modeling community.

This paper is organized as following. Section 2 will
present a summary of the Triune Continuum Paradigm
including an overview of its advantages for system
modeling and a presentation of its fundamental features.
Section 3 will introduce three of the crucial problems of
UML metamodel. Section 4 will analyze these problems
and demonstrate their negative impact on the current
UML terminology. Section 5 will present the three
respective solutions, which are based on the Triune

Continuum Paradigm, and explain the potential impact of
these solutions on the future versions of UML
terminology. Section 6 will present the conclusions which
follow from our research experience with UML
specifications, with their problems, and with the
respective solutions that are based on the Triune
Continuum Paradigm.

2. Summary of Triune Continuum Paradigm

This section will introduce the Triune Continuum

Paradigm, in particular:

- the overview describing its most important
functionalities that can be advantageous to the
paradigm users;

- its main features, namely the most fundamental of the
theoretical foundations which contribute to the
internal organization of the paradigm;

- the context of its applications, namely the domain in
which the paradigm is defined and can be used.

2.1. Overview of advantages

For the sake of presentation let us repeat here the first
paragraph from the introduction. As it was said, the
Triune Continuum Paradigm [7] is a logically rigorous,
internally consistent, complete and formally presented
theoretical base for the conceptual organization of modern
object-oriented frameworks that are used for system
modeling in different contexts (e.g. in software
development, in business modeling, etc). We see this
paradigm as an important contribution to the system
modeling domain, because currently none of the
prevailing system modeling frameworks has a satisfactory
formal theoretical foundation.

The absence of theoretical foundation for modeling
frameworks leads to the practical application experiences
where modelers are constrained to be guided by chance
and not by understanding of the fundamentals of systems
analysis. And sometimes the chance fails them, which
leads to the incorrect project specifications and in the end
to the project failures. The Triune Continuum Paradigm
fixes this problem of theoretical foundation.

The paradigm defines a rigorous and at the same time
flexible metamodeling structure. This structure allows the
definition of formal ontologies for various specific object-
oriented frameworks, for example, as it is presented in [7],
for UML or for RM-ODP [3] (RM-ODP stands for
“Reference Model of Open Distributed Processing”,
which is an ISO/ITU standard for modeling of distributed
systems). Thus different existing frameworks, like UML
or RM-ODP, can benefit from the logical rigor, internal
consistency, interpretation coherency, formal presentation
and solid theoretical foundations of the defined paradigm.

Adoption of this paradigm allows the resolution of crucial
problems existing in these different object-oriented
frameworks.

Some of the existing system modeling frameworks (e.g.
UML) appeared as an integration of the best modeling
practices. The paradigm doesn’t repudiate the practical
experience that was gathered by these different
frameworks, but fixes its inconsistencies and complements
it supporting with logically rigorous theoretical
foundations. Therefore the paradigm brings a significant
constructive potential to the evolution of modern system
modeling frameworks. This potential could be realized if
people responsible for the design of modeling languages
and tools would heed the proposed paradigm.

A concrete case of the paradigm application is formally
presented and realized in a computer-interpretable form in
[7] on the example of ontology describing the RM-ODP
conceptual framework. This particular application of the
paradigm realizes an important result that was officially
targeted by the ISO/ITU standardization but was never
achieved previously: a single consistent formalization of
the RM-ODP standard conceptual framework. This
formalization presents a concrete example of formal
ontology for general system modeling.

2.2. Main features

In its essence the Triune Continuum Paradigm is an
original research finding, which is constructed as a
synthesis of the three theoretical foundations: of the
Tarski’s declarative semantics theory, of the Russell’s
theory of types and of an innovative solution defining a
special observer-relational frame of reference based on the
original notion of Triune Continuum.

Let us briefly present the roles that each of these three
theoretical foundations plays in the internal organization
of the paradigm.

2.2.1. Tarski’s declarative semantics. The Tarski’s
declarative semantics theory [12] was proposed by Alfred
Tarski in 1935. It is used in the paradigm to define formal
relations between the subject that needs to be modeled and
the possible models of this subject. The relation between
the subject of modeling interest and its model is done by
the modeler, who has the modeling interest with regard to
the subject and who produces the model. The Tarski’s
theory suggests modelers to adopt an unambiguous way of
the definition of this relation: an explicit one-to-one
mapping between the modeler’s perceived
conceptualization of the subject of modeling and the
representation of this conceptualization in the model. In
this way the theory defines Tarski’s declarative semantics.
The Tarski’s theory shows that:
- If'the declarative semantics are adopted then:

= if different modelers agree on the
conceptualization of a subject of modeling then:
- the modelers can formally compare their
respective models representing this subject.
= if different modelers do not agree on the
conceptualization of a subject of modeling then:
- the modelers cannot compare their models
in a logically rigorous way.
- If'the declarative semantics are not adopted then:
= the modelers cannot compare their models in a
logically rigorous way.

Thus, as assured by the Tarski’s theory, modelers have
a possibility to argue formally about their models in their
community. And this possibility exists only in the case
when the modelers both adopt the declarative semantics
and agree on the conceptualization of subjects of their
modeling interests.

Principles of Tarski’s declarative semantics make an
integral part of the Triune Continuum Paradigm, thus in a
concrete application of the paradigm (e.g. a concrete
modeling language) the paradigm assures the coherency in
different interpretations of subjects of modeling interest.

2.2.2. Russell’s theory of types. The Russell’s theory of
types [11] was defined by Bertrand Russell in 1908. This
theory is used in the Triune Continuum Paradigm to
ensure the internal consistency of the metamodeling
structure proposed by the paradigm.

The metamodeling structure is one of the important
features of the paradigm; its importance is explained by
the fact that this structure should shape the metamodels of
concrete system modeling frameworks that would adopt
the Triune Continuum Paradigm for their concepts.
Because of this importance the metamodeling structure
needed a solid theoretical support. Thus the purpose was
to determine an appropriate theory; and so, several
structural constraints were defined from the outset of the
paradigm definition. In particular:

- the metamodeling structure should have been
rigorous — to thoroughly define the precise
application contexts for the different concepts that
could potentially make use of this structure;

- at the same time, the structure should have been
[flexible — to give a possibility for its adoption by the
diverse range of already existing system modeling
frameworks.

A solution for the theory that would obey these defined
requirements was found in the Russell’s theory of types.

The Russell’s theory of types defines a structure of
propositions that can be used in the logically rigorous
constructions in a language to avoid the famous Russell’s
paradox [5]. The metamodeling structure of the Triune
Continuum Paradigm was defined in [7] adhering to the
structure of propositions introduced by Russell. In

particular for the construction of logically rigorous

statements in a language Russell introduced (see [11]):

- individuals: “We may define an individual as
something destitute of complexity; it is then obviously
not a proposition, since propositions are essentially
complex.”

- first-order propositions: “Elementary propositions
together with such as contain only individuals as
apparent variables we will call first-order
propositions.”

- higher-order propositions (the second-order
propositions, the third-order propositions, etc.): “We
can thus form new propositions in which first-order
propositions occur as apparent variables. These we
will call second-order propositions.”

For the metamodeling organization of concepts used in
a model, in correspondence with the Russell’s theory, [7]
defines:

- Model Elements (MEs) — direct analogs of the
Russell’s individuals. Model Element is the most
general term referring to any element of the model.
As well as the Russell’s individuals, MEs are
“destitute of complexity”. This means that Model
Elements, considered without the propositions
associated to them, do not exhibit any particular
information.

- Basic Modeling Concepts (BMCs) — direct analogs of
the Russell’s first-order propositions. In a model
BMCs characterize Model Elements in the same way
as the first-order propositions characterize the
individuals in the Russell’s theory of types.

- Specification Concepts (SCs) — direct analogs of the
Russell’s higher-order propositions. In a model SCs
characterize BMCs in the same way as the higher-
order propositions characterize the first-order
propositions in the Russell’s theory of types.

Thus the Russell’s theory assures the necessary rigor of
the paradigm’s metamodeling structure. Also this structure
is potentially flexible, because no particular constraint is
given for the definitions of concrete BMCs and SCs.

2.2.3. Triune Continuum. To realize the potential
flexibility of the defined metamodeling structure it was
decided to define a minimal set of BMCs; the set which
would be necessary and sufficient for a complete
representation of the general system modeling scope on
the most abstract level. Such a solution would allow
different existing system modeling frameworks to place
their modeling concepts as specializations of these BMCs
(that is, as the concrete SCs) in the Triune Continuum
Paradigm, and hence to adopt the paradigm with its solid
theoretical foundations.

An original innovative solution was designed [7] to
define and justify this minimal necessary and sufficient set
of Basic Modeling Concepts. The solution provides to

modelers a special observer-relational frame of reference.

This frame of reference is one of the most important

foundations of the paradigm; it is defined in [7] as a

philosophically supported generalization of fundamental

frameworks of natural science. In particular:

- in the classical (Newtonian) mechanics the observer-
relational reference frames exhibit the relational
nature in space, while time and material objects
remain invariant for different observers;

- in the relativistic mechanics the observer-relational
reference frames exhibit the relational nature in space
and in time, while material objects remain invariant
for different observers;

- in the Triune Continuum Paradigm the observer-
relational reference frame exhibits the relational
nature in space, in time, and in constitution of models
that represents different subjects of modeling
(including material objects) in the models. So,
representations of material objects are observer-
relational here.

The defined frame of reference is based on the original
notion of Triune Continuum. This name owes to the triune
essence of three continuums which, as shown in [7], are
necessary and sufficient to represent the general system
modelmg scope. The three defined continuums are:

the spatiotemporal continuum (introducing the space-
time in the models);

- the non-spatiotemporal continuum (introducing the
constitution of models);

- the information continuum (emerging as the
information about the mutual relation of the space-
time and the constitution of models).

The three continuums predetermined the necessary and
sufficient set of Basic Modeling Concepts. The essential
BMCs are: space and time intervals (belonging to the
spatiotemporal continuum), object and its environment
(belonging to the model constitution continuum), state and
action (belonging to the information continuum and
representing respectively static and dynamic information
about objects and their environments in space-time).

2.3. Context of the paradigm application

The Triune Continuum Paradigm was defined as a
General System Modeling theory!. This means that the
paradigm is relevant and useful for modeling in all the
different contexts of General System Modeling, and, in
particular, in the context of software systems modeling.
Hence different software systems modeling frameworks
(and, in particular, UML) can benefit from the advantages
of the paradigm that were presented in Section 2.1.

! The readers can see [7] for the formal definition of the General
System Modeling domain.

3. Identification of problems in UML

metamodel

When developing any modeling language, the language
designer needs to define a scope of the language
applications and then to define a set of modeling concepts
that would be necessary to represent the defined scope.
For the language to be useful in modelers’ community
practices, the modeling concepts need to have clear,
logically structured and consistent semantics. In other
words, the better structured the semantics are, and the less
internal inconsistencies they have — the more useful the
language for the modelers that are interested in
representing the identified modeling scope.

Unified Modeling Language (UML) was designed by
the Object Management Group (OMG) as “a language for
specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business
modeling and other non-sofiware systems” ([9] section
1.1). This identifies the scope of UML applications.

The experience of modeling practices in modern
industries shows that UML is found useful by modelers.
The amount of modeling projects that use UML, the
amount of books written about UML and the number of
software tools that support UML are large in relation with
the analogous practical achievements of other modeling
languages. This proves that UML in its current state is
more practical then other modeling solutions, although it
doesn’t mean that there are no problems with the current
state of UML.

Consistently with the scenario explained in the first
paragraph of this section, the UML specification [9]
introduces a set of modeling concepts to represent the
identified modeling scope. Section 2 of the specification
defines UML semantics for these concepts.

The first problem we can identify is that these UML
semantics are considered to be complex and difficult to
understand by many modelers. OMG itself in its article
“Introduction to OMG's Unified Modeling Language
(UML™)” [10] confirms this, saying that the UML
specification [9] is “highly technical, terse, and very
difficult for beginners to understand”. This situation can
be improved by analyzing the current state of UML
semantics, understanding the reasons that cause its
complexity and by proposing a better organization of
semantics for modeling concepts. In particular, we will
show that the Triune Continuum Paradigm, by introducing
a logically precise and internally consistent semantics
structure that is based on Russell’s theory of types [11],
makes a positive difference in relation with the absence of
such a structure in the current UML semantics. The
explicit presence of such a structure helps to understand
how the modeling concepts should be used in practice,

whereas its absence creates numerous possibilities for
confusions in practical applications of modeling concepts.
While performing the analysis of the current UML
semantics we can localize the second problem.
Specifically that current UML semantics are very
ambiguous in presenting relations between models
constructed using the language on one side and the subject
that is being modeled on the other side. This is an
important problem, because even an internally consistent
model will not have much of practical sense when its
relations with the subject that it is supposed to represent
are undefined. This situation with UML can be improved
with the aid of the Triune Continuum Paradigm through
the introduction of a coherent and unambiguous set of
modeling concepts definitions expressing a kind of
Tarski’s declarative semantics [12] for the mentioned
relations between the model and the subject of modeling.
The third problem of the UML semantics, which we
will consider in this paper, is the absence of any
justifications in the UML specification that would explain
why the presented set of UML modeling concepts is
necessary and sufficient to represent the UML modeling
scope. Without these justifications, the UML theoretical
value is significantly diminished, since in this situation the
language cannot prove the reasonableness of its ambitions
to represent its modeling scope. In the Triune Continuum
Paradigm, the introduction of the set of modeling concepts
is supported by solid philosophical and natural science
foundations providing such kind of justifications.

4. Problems analysis based on the
foundations of UML semantics

As we can see from Section 3, all three identified
problems are related to the non-optimal semantics
definition. Let us look at foundations of the UML
semantics in order to localize the chapters in
specifications from where the mentioned problems
originate. The UML specification [9] in section 2.4
introduces the semantics Foundation package: “The
Foundation package is the language infrastructure that
specifies the static structure of models. The Foundation
package is decomposed into the following subpackages:
Core, Extension Mechanisms, and Data Types.”
Analyzing the specification further we see for these three
packages:

— Core: “The Core package is the most fundamental of
the subpackages that compose the UML Foundation
package. It defines the basic abstract and concrete
metamodel constructs needed for the development of
object models.” [9], section 2.5.1.

— Extension Mechanisms: “The Extension Mechanisms
package is the subpackage that specifies how specific
UML model elements are customized and extended

with new semantics by using stereotypes, constraints,

tag definitions, and tagged values. A coherent set of

such extensions, defined for specific purposes,

constitutes a UML profile.” [9], section 2.6.1.

— Data Types: “The Data Types package is the
subpackage that specifies the different data types that
are used to define UML. This section has a simpler
structure than the other packages, since it is assumed
that the semantics of these basic concepts are well
known.” [9], section 2.7.1.

Thus we can conclude that the three identified
problems originate from the Core package of UML.
Consequently it is on this package that we will focus our
further consideration.

4.1. Problem 1:
semantics

Structural chaos of UML

Let us now concentrate on the first of the identified
problems: the absence of a consistent structural
organization of UML metamodel that leads to practical
difficulties in understanding semantics for particular
modeling concepts, as well as to the difficulties in
understanding semantically allowed application contexts
for a particular modeling concept.

As it is presented in Figure 2-5 from the Core package
specification [9], the most general concept in the UML
metamodel is called “Element”. It is defined ([9], section
2.5.2.16) as following: “An element is an atomic
constituent of a model. In the metamodel, an Element is
the top metaclass in the metaclass hierarchy. It has two
subclasses: ModelElement and PresentationElement.
Element is an abstract metaclass.” Thus any atomic
constituent of a UML model can be called as UML
element.

As it is presented in the diagrams 2-5,6,7,8,9 of the
UML specifications [9], all the other modeling concepts
are specializations of “Element”. This defines a flat
structure for the UML metamodel, where any of the
concepts can be used as UML elements. And even if the
elements obviously belong to different semantic
categories (for example, “Operation” and “Class”), there
is no explicit categorization defined to help a modeler to
understand which concepts should be used in which
context.

We may notice an introduction of “abstract” and
“concrete” constructs categories in section 2.5.1 of the
UML specification: “Abstract constructs are not
instantiable and are commonly used to reify key
constructs, share structure, and organize the UML
metamodel. Concrete metamodel constructs are
instantiable and reflect the modeling constructs used by
object modelers (cf. metamodelers). Abstract constructs
defined in the Core include ModelElement,

GeneralizableElement, and Classifier. Concrete
constructs specified in the Core include Class, Attribute,
Operation, and Association.” However, this
categorization becomes quite confusing if it is compared
with the actual terms’ definitions presented in the UML
specifications. For example, “Association” is defined ([9],
section 2.5.2.3) relative to “Classifier”, which means that
“Association” can be considered as both the abstract and
the concrete construct. To summarize, the categorization
of concepts into the abstract and the concrete constructs
does not have a consistent implementation in the current
UML specifications and cannot help modelers who would
like to understand the possible application context for a
particular modeling concept.

An approximate sketch of another possible
categorization can be found in section 2.5.2 of UML
specifications. The section introduces the figures 2-
5,6,7,8,9 as following: “Figure 2-5 on page 2-13 shows
the model elements that form the structural backbone of
the metamodel. Figure 2-6 on page 2-14 shows the model
elements that define relationships. Figure 2-7 on page 2-
15 shows the model elements that define dependencies.
Figure 2-8 on page 2-16 shows the various kinds of
classifiers. Figure 2-9 on page 2-17 shows auxiliary
elements for template parameters, presentation elements,
and comments.”

So a reader could guess that “Backbone”,
“Relationships”, “Dependencies”, “Classifiers” and
“Auxiliary Elements” are probably different categories of
the modeling concepts. Unfortunately these pseudo-
categories are neither defined in the relations between
each other, nor in some other theoretical or practical
application context. In addition, if we check the described
figures, we see that the same modeling concepts (e.g.
“Classifier” or “Relationship”) are present at the same
time in several of the diagrams. Thus a potential
differentiation between the pseudo-categories is
particularly difficult to understand.

We can conclude that the current UML specification of
the Core fails to introduce a practically useful
categorization of concepts that would define different
application contexts for different conceptual categories.
Unfortunately this problem cannot be solved by a simple
adoption of some categorization for the currently existing
UML concepts. This is due to the absence of any
explicitly mentioned consistent strategy of concepts
introduction by UML. In fact, judging from the
specification, for us the strategy for the introduction of
particular concepts remains obscure even on an implicit
level. Surprisingly some concepts seem to appear without
a significant justification whereas other conventional
object-oriented terms are omitted.

For example, let us look at definitions of
“ModelElement” and ‘“PresentationElement”, which are
the two subclasses of UML element. We see that

“PresentationElement” is defined ([9], section 2.5.2.33) as
“a textual or graphical presentation of one or more model
elements.” Thus essentially a “PresentationElement” is a
“ModelElement” presented in a textual or a graphical
form. Here we may mention that, in general, a
“ModelElement” from inside a model doesn’t make sense
to anybody or to anything if it is not presented in some
form to somebody or to something who perceives the
model in this form of presentation. Thus we may affirm
that, in general, a “ModelElement”, as soon as it is of
interest to somebody or to something, is necessarily a
“ModelElement” presented in some form. Thus, in fact,
“PresentationElement” is a specialization of
“ModelElement” where the forms of a possible
presentation are known concretely (namely a textual and a
graphical form). This specialization is the only value that
is added to the semantics of “ModelElement” to obtain the
semantics of “PresentationElement”. Because of this
minor significance of the added value, we may consider
“PresentationElement” as not important enough to be a
separate concept inside the UML metamodel. The
elimination of “PresentationElement” if it is accompanied
by the addition of the descriptions of possible ways of
presentation inside the definition of “ModelElement”,
would simplify the metamodel without diminishing its
value.

4.2. Problem 2: Absence of the declarative
semantics in UML.

After having studied the complete UML metamodel,
we can note that the UML specifications define explicitly
only two concepts whose definitions are made by referring
(relating) to the subject (system) that is being modeled.
The first concept is “ModelElement”, it is defined ([9],
section 2.5.2.27) as “an element that is an abstraction
drawn from the system being modeled.” The second of the
two concepts is “Component”, it is defined ([9], section
2.5.2.12) as following: “A component represents a
modular, deployable, and replaceable part of a system
that encapsulates implementation and exposes a set of
interfaces”. All the other concepts that constitute the
metamodel are defined as parts of a UML model, only in
the relations with each other and with the two mentioned
concepts. That is, the definitions of all the UML
metamodel concepts, with exception of the two
mentioned, do not make reference to the subject that is
being modeled. This semantics definition is not optimal.

Indeed as we said, only two concepts used in UML
models are defined by a reference to the subject being
modeled. More than that, the UML metamodel doesn’t
define why these two concepts and why only these two
(and not some other) were designated for this purpose.
This means:

a. that this choice of these two concepts does not
have a tenable reason defined in the UML
specification;

b. that UML specification does not define a tenable
relation between a subject that needs to be
modeled and its model.

The conclusion ‘b.” is particularly important, because it
means that for the UML concepts the specification does
not define any kind of formal declarative semantics that
were introduced by Alfred Tarski [12]. Indeed, Tarski’s
declarative semantics for concepts used inside models are
supposed to introduce mappings between the agreed
conceptualizations of a subject that is being modeled and
the concepts inside its model. The UML metamodel never
presents an agreed conceptualization of the subject of
modeling. Thus the specification has no choice but to
define modeling concepts exclusively in their
interrelations inside the model. In the general case, this
approach is not an optimal one for the following two main
reasons:

1. The overall complexity of the relations between
concepts in the UML metamodel is greater than
it would have been if part of the concepts were
defined in the relations with the subject of
modeling. Indeed, the quantity of concepts is the
same in both cases, but in the latter case some
concepts would be defined in a self-sufficient
way, whereas in the former, the corresponding
concepts for their definitions will need relations
to other concepts from the metamodel.

2. Since there is no tenable relation defined
between a subject that needs to be modeled and
its model and since there is not any agreed
conceptualization of the subject, there cannot be
a formal proof (such as in the case of Tarski’s
declarative semantics) that a given modeler’s
interpretation (that is a model) represents the
subject of modeling in a logically consistent
way’. In other words, in this case several
mutually contradicting models can represent the
same subject of modeling and all of them may be
confirmed as adequate; or, from the other side,
one single model may be related with the same
degree of adequateness to different mutually
incompatible subjects of modeling.

To illustrate the second point let us take Tarski’s
original example [12] for declarative semantics definition:

2 Here we mean the logical consistency in an interpretation of
subject of modeling. The internal consistency of a model (the
model being a result of the interpretation) is a different
subject. The internal consistency of a model can be ensured by
the consistency of the UML metamodel, and to ensure the
logical consistency of the interpretation, a kind of consistent
Tarski’s declarative semantics is necessary.

‘It snows’ is true (in the model) if and only if it snows (in
the subject of modeling). So if we decide to take the
subject of modeling where it snows, without the
declarative semantics, then both ‘It snows’ and ‘It does
not snow’ can be considered true in the model if it snows
in the subject of modeling. From the other side, without
the declarative semantics the model where “‘It snows’ is
true” may represent equally well both the subject of
modeling where it snows and the subject of modeling
where it does not snow.

In the case of UML specification, as we said, there are
only two concepts that make the direct relation to a
subject of modeling: “ModelElement” and “Component”.
Parts of their definitions can be considered as introducing
the declarative semantics. For example, according with
[9], sections 2.5.2.27 and 2.5.2.1 we can write for
“ModelElement”: ‘A ModelElement exists’ is true in the
model if and only if a subject of modeling (“system being
modeled”) is. And for “Component” according with [9],
section 2.5.2.12 we can write: ‘A Component exists’ is
true in the model if and only if there is a modular,
deployable, and replaceable part of the subject of
modeling (“of system”). But as we see, these definitions
are too abstract: they do not give a possibility for a
differentiation of modeling concepts, thus the choice of
only these two concepts to be defined using the
declarative semantics is not practical.

4.3. Problem 3: Absence of theoretical
justifications for the UML metamodel to
represent the targeted modeling scope

As we said, the third problem of UML semantics is the
absence of any justifications in the UML specification that
would explain why the presented set of UML modeling
concepts is necessary and sufficient to represent the UML
modeling scope. This problem can be considered as
natural for the current state of UML because, from its
outset, the language was constructed by OMG as a result
of the integration of the best existing industrial modeling
practices, but these practices were never really linked with
the existing scientific theories. Although the “best
practices” strategy can be considered as an attempt at
practical justification of UML, the theoretical justification
was never defined in the language specifications and still
needs to be provided.

Thus as we can see, this third problem of the UML
metamodel is a theoretical problem, compared to the first
two identified problems that are practical. So the third
problem is important as soon as UML would pretend to be
a well founded modeling technique. This can increase the
social impact of UML and can be useful, for example, for
the language standardization by some international
standardization committee, which would normally assume

solid scientific foundations rather then just results of
practical experience to support the language.

4.4. Impact of the reviewed problems on the
UML terminology

To emphasize the importance of the three reviewed
metamodeling problems, in this subsection we will
demonstrate their consequences on concrete examples.
When talking about consequences of the metamodeling
problems, we differentiate two levels of argumentation:
metamodel and its realization. Indeed, for a generic
metamodeling problem its produced effects become
visible in a concrete realization of the metamodel. That is,
in our case, to see the consequences of the three reviewed
metamodeling problems we have to check the concrete
definitions of concepts within the UML modeling
framework.

A single metamodeling constraint can be relevant for a
big number of modeling concepts, thus, naturally, a single
metamodeling problem can cause multiple cases of
problems with definitions of concrete concepts. The
primary interest of this paper is UML metamodel and not
a concrete realization of the UML terminology. So for our
interests here we will just show a couple of examples that
will demonstrate typical flaws of the UML terminology,
the flaws that are effects of the three reviewed
metamodeling problems. And the primary goal of this
presentation is not to argue the concrete concepts of
UML, but to show that the consequences of the reviewed
problems are important and thus the problems should not
be neglected by the UML modelers.

After having explained our inducements let us proceed
with the presentation. Through the examples in this
subsection we will see the following two problems of the
UML terminology:

- Terminology Problem 1: Some of the fundamental
UML terms are questionable, the reasons for their
introduction are unclear (this problem is a direct
consequence of the absence of theoretical
justifications for the UML metamodel reviewed in
Section 4.3 of this paper);

- Terminology Problem 2: The semantics of the UML
terminology are undefined (this is the consequence of
the two general problems of the UML metamodel
reviewed in Sections 4.1 and 4.2, namely, of the
structural chaos of UML semantics and of the
absence of declarative semantics in UML).

4.4.1. Example: “Association” and “Classifier”. This
example will illustrate the first problem of the UML
terminology, which is the questionable nature of some of
the fundamental UML concepts. As we already mentioned
this problem owes to the absence of theoretical

justifications for the UML metamodel reviewed in Section

4.3 of this paper. Because of this absence the reasons for

introduction of the UML terminology are unclear and in

some cases the currently existing terminology [9] can be
easily challenged.

In the Core package of UML Semantics (see section
2.5 of [9]) UML specifications define, among others, two
fundamental UML terms: “Association” and “Classifier”.
These two terms are relatively significant in the UML
conceptual framework; this is why we decided to choose
them for the presentation of our example.

In the UML metamodel, “an Association is a
declaration of a semantic relationship between
Classifiers, such as Classes” (see section 2.5.2.3 of [9]).
Analyzing this definition as a general case definition of
“Association”, we can differentiate the following two
cases as possible specializations of the general case:

- Case 1: Association is a declaration of a semantic
relationship between classifiers done (seen) from the
point of view of a classifier that participates in this
relationship;

- Case 2: Association is a declaration of a semantic
relationship between classifiers done (seen) from the
point of view of a classifier that does not participate
in this relationship.

Obviously, these two cases cover completely the
possible classifier-related contexts in which the
“Association” can be considered. Indeed, as “Association”
is defined as “a declaration of a semantic relationship
between Classifiers”, a “Classifier” may either participate
in the relationship or not participate in the relationship.
The case where “Classifier” is irrelevant with regard to the
relationship is excluded by the quoted definition. From the
other side, under this definition a semantic relationship is
always associated with one or more classifiers. The case
when the relationship is associated with several classifiers
can be seen as a specialization of Case 1 (we will present
this specialization further as Case 1.1). Thus Case 1 and
Case 2 are not only two possible specializations of the
general case, but also one of the two cases is always
necessary realized.

Of course, the two cases may have
specializations; for example, the following case:
- Case 1.1: Association is a declaration of a semantic

relationship between classifiers done (seen) from the
classifiers’ supra-system point of view, when all the
classifiers participating in the relationship belong to
the supra-system.

Case 1.1 is a specialization of Case 1, where the

participating classifier from Case 1 participates in the

relationship by means of its internal sub-classifiers (and
thus the participating classifier is called “supra-system” in

Case 1.1). Thus Case 1.1 presents a supra-system

viewpoint and also presents the situation where different

further

sub-classifiers share the same declaration of the semantic

relationship.

In fact, the different possible specializations of Case 1
and Case 2 are not important for our discussion. The
important thing is that both in Case 1 and in Case 2
“Association” is a feature (property) that belongs to some
concrete single classifier: in the first case — to the
classifier that participates in the relationship; in the
second case — to the classifier that does not participate in
the relationship. Because Case 1 and Case 2 cover
completely all the possible contexts in which the
“Association” can be considered, we can affirm that in the
general case “Association” is a feature of some concrete
single classifier.

Let us turn our attention to the definition of
“Classifier”: “<...> In the metamodel, a Classifier
declares a collection of Features, such as Attributes,
Methods, and Operations” (see section 2.5.2.10 of [9]).

Looking at the definition of “Feature” we see (section
2.5.2.21 of [9]): “A feature is a property, like operation or
attribute, which is encapsulated within a Classifier. In the
metamodel, a Feature declares a behavioral or structural
characteristic of an Instance of a Classifier or of the
Classifier itself. Feature is an abstract metaclass.”

Other definitions relevant in the context of Classifier’s
definition include “Attribute”, “Method” and “Operation”:
- For “Attribute” in section 2.5.2.6 of [9]: “<...> In the

metamodel, an Attribute is a named piece of the
declared state of a Classifier, particularly the range
of values that Instances of the Classifier may hold.”

- For “Method” in section 2.5.2.26 of [9]: “<...> In the
metamodel, a Method is a declaration of a named
piece of behavior in a Classifier and realizes one
(directly) or a set (indirectly) of Operations of the
Classifier.”

- For “Operation” in section 2.5.2.6 of [9]: “<...> In
the metamodel, an Operation is a BehavioralFeature
that can be applied to the Instances of the Classifier
that contains the Operation.”

From these definitions we see that “Feature” in general,
and “Attribute”, “Method” and “Operation” in particular,
are the concepts whose concrete definitions are essentially
a declaration of semantic relationship between some
classifiers. Indeed:

- For “Attribute” to have “the declared state of a
Classifier, particularly the range of values that
Instances of the Classifier may hold” we need to
specify a relationship to those mentioned values; and,
according to the “Classifier” definition, values should
be considered as classifiers because they also
“declare a collection of Features”.

- For “Method” to have “a named piece of behavior”
we need to define a relationship to the specification
of constraints (e.g. spatiotemporal, structural, etc) that
define this behavior; and, according to the

“Classifier” definition, these constraints should also
be considered as classifiers because they also
“declare a collection of Features”.

So, essentially “Feature” is a declaration of semantic
relationship between some classifiers, and thus
“Classifier” is essentially a collection of “Associations”.

We showed that “Association” is always a feature of
some concrete “Classifier”, and that “Classifier” is
essentially a collection of “Associations”. Thus we can
challenge the existence of any reason to differentiate
“Classifier” and “Association” as two fundamentally
different concepts.

This result of our analysis of UML specifications is not
surprising, because in conceptual modeling®, in general,
all concepts matter in relations. It is impossible to define
any concept without defining a relationship. To define
some concept one needs to define its relations to
something else, to something that is not this concept. The
set of relations defining a concept automatically defines
the context in which it is relevant to consider the concept.
Any concept makes sense in a context, without a context it
just cannot be defined: cannot be differentiated because
there is nothing to differentiate it from. So from the
general point of view every concept is a relation.

Thus in conceptual modeling the term of relationship is
too general to represent a meaningful modeling concept.
So, from the conceptual modeling point of view it is not a
good choice for UML to take “Association” as one of its
basic modeling concepts. As we already mentioned,
unfortunately, UML specifications do not provide the
reasons for introduction of the defined UML terminology.
Thus it is not clear whether these reasons exist or not at
all; and therefore it is not possible to analyze such
hypothetic reasons for their theoretical soundness, internal
consistency and logical rigor. So, in its present state [9]
UML terminology can be considered as baseless.

Obviously, this terminological problem would not exist
if the necessity of the UML terms and their sufficiency for
the UML scope representation were justified on the
metamodeling level. Thus the problem of absence of
theoretical justifications for the UML metamodel (that we
analyzed in Section 4.3) has concrete negative impact on
the current state of UML terminology and should not be
neglected.

As it will be explained in Section 5 of this paper, the
Triune Continuum Paradigm resolves the problem of
theoretical justifications, and thus, it allows to define
terminologies that are destitute of the presented problem
of the UML terminology. For example, RM-ODP
terminology [3], which obeys terminological requirements
of the Triune Continuum Paradigm [7], doesn’t have a
modeling term that would be analogous to the UML

3 For the formal definition of the conceptual modeling domain
see for example [7].

“Association”. While the RM-ODP “Object” can be
considered analogous to the UML “Classifier”.

4.4.2. Example: semantics of “Object”. In this
subsection we will present an example that will illustrate
the second fundamental problem of the UML terminology,
which is the fact that for the vast majority of UML terms
the semantics remain undefined by UML specifications
[9]. In many cases the existing in [9] terms definitions
hinder a meaningful consistent logical interpretation of the
terms semantics. As we already mentioned in the
beginning of Section 4.4, this is the consequence of the
two general problems of UML metamodel reviewed in
Sections 4.1 and 4.2, namely, of the structural chaos of
UML semantics and of the absence of declarative
semantics in UML.

Here we represent the most sorrowful of our research
experiences with UML: after having done a detailed study
of UML specifications [9] we have to affirm that with the
UML terminology in its current state of definitions it is
impossible to construct a reasonable modeling framework.
Unfortunately, the definitions for terminology from the
Core package of UML semantics as they are currently
presented contain multiple logical contradictions that can
only be resolved either with the complete absence of the
terms interpretation or with a free meaningless
interpretation for the terms.

As the concrete example we will present one of the key
confusions in the UML terminology definitions from the
Core package of UML specifications; this confusion is
related with the word “object”. Definitions of terms like
“Class” ([9], section 2.5.2.9), “Flow” ([9], section
2.5.2.22), “Node” ([9], section 2.5.2.29), “Operation”
([9], section 2.5.2.30) are referring to “object”, while
“object” itself is not defined in the Core package, and
what exactly was meant by “object” in these definitions
remains impossible to deduce.

Let’s look for instance on the definition of “Class™: “4
class is a description of a set of objects that share the
same attributes, operations, methods, relationships, and
semantics. <...>”. From this phrase we can understand
that “object” for the UML specifications is something that
is supposed to have some semantics. Omitting for the
moment the question about these concrete semantics
definition, from the fact that some semantics are defined
we may conclude that “object” is a modeling construct.
That is, “object” is something which exists in the model
and controlled by a modeler with the aim to represent in
accordance with the defined semantics something from a
universe of discourse, namely from the universe of
discourse that is a subject (system) being modeled.

Further in the definition of “Class”: “In the metamodel,
a Class describes a set of Objects sharing a collection of
Features, including Operations, Attributes and Methods,
that are common to the set of Objects. <...> A Class

defines the data structure of Objects, although some
Classes may be abstract; that is, no Objects can be
created directly from them. Each Object instantiated from
a Class contains its own set of values corresponding to
the StructuralFeatures declared in the full descriptor.
<...>”. The first phrase from the last quote still supports
the vision that object is a modeling construct, that is a part
of model. However, the last part of the quote assumes that
“Object” can be “created” or “instantiated from a Class”.
Referring to the definition of semantics for “Instantiation”
([9], section 2.5.4.5), we see: “The purpose of a model is
to describe the possible states of a system and their
behavior. The state of a system comprises objects, values,
and links. Each object is described by a full class
descriptor. The class corresponding to this descriptor is
the direct class of the object. <...>”. Here in opposition to
the previous conclusions we may clearly see that “object”
is a part of the system that is represented by a model (as
well as “value” and “link”, which would have analogous
interpretation problems by the way).

So, in which domain “object” is?! The first half of the
“Class” definition suggests that “object” is in the model,
while the second half of the “Class” definition as well as
the “Instantiation” definition suggests that “object” is in
the system which is modeled. These are clearly two
different domains, and they cannot contain the same
constructs: the model is under the complete modeler’s
responsibility and control (which allows for the modeler’s
definitions of concrete formal semantics for the modeling
constructs), while the system that is modeled is not under
the modeler’s control (which only allows for an
experiential conceptualization of the system).

Thus the references to “object” in the analyzed
definitions introduce contradiction. This concrete
contradiction makes impossible a logical interpretation of
the concerned definitions. Unfortunately this is just one of
many negative examples that can be found in the UML
specifications.

Let us return to the concrete definition of semantics for
“object”. Such definition cannot be found in the chapter 2
of UML specifications that is called “UML Semantics”
and that as defined ([9], section 2.1.1) “provides complete
semantics for all modeling notations described in UML
Notation Guide (Chapter 3)”. However, surprisingly, a
semantic definition for “Object” can be found in UML
Notation Guide ([9], section 3.39.1). It defines: “An object
represents a particular instance of a class. It has identity
and attribute values. <...>” Which when put in the same
context with the previously quoted ([9], section 2.5.2.9)
“A class is a description of a set of objects that share the
same attributes, operations, methods, relationships, and
semantics. <...>” makes the following construction: “An
object represents a particular instance of a description of a
set of objects that share the same attributes, operations,
methods, relationships, and semantics.” Does this pretend

to be a tautology? We cannot know the answer since
semantics of “instance” that is heavily used as a modeling
concept in UML were never defined in UML
specifications.

We may also note the question on whether “object”
and “Object” from ([9], section 2.5.2.9) and “run-time
physical object” from ([9], section 2.5.2.29) are three
identical things or not; and if not, what the differences
between them are...

These are just few of many analogous problematic
cases. Other examples, such as the analogous analysis that
would try to examine what UML specifications see by
“instance” would show even more of despair. All these
things make a very unpleasant research experience that
practically shows that UML specifications in their current
state present terms definitions which are self-contradictory
and contain many baseless relations.

This terminological problem would not exist if UML
metamodel had a well organized structure and, in
particular, if the terms’ declarative semantics were defined
coherently, while preserving the logical differentiation
between the subjects of modeling interest and the models
of these subjects. Thus the two problems of UML
metamodel that we analyzed in Sections 4.1 and 4.2 have
concrete negative impact on the current state of UML
terminology and they should not be neglected.

Here let us summarize Section 4 of the paper. The
examples and their analysis that we presented in Section
4.4 demonstrate a regrettable situation with the UML
terminology. As we explained, this regrettable situation
owes to the three problems of UML metamodel that were
analyzed in sections 4.1-4.3. Thus, by solving the three
metamodeling problems we eliminate the source of the
terminological flaws. The next section will present
concrete solutions for the three metamodeling problems
that we analyzed in sections 4.1-4.3.

5. Solutions for the identified problems of
UML metamodel

In Section 4 we analyzed three crucial problems of
UML metamodel. Here we present the three respective
solutions that are provided by the Triune Continuum
Paradigm. These solutions shape an alternative metamodel
that being destitute of the analyzed problems allows to
define a successful terminology and thus demonstrates the
potential for improvement for the current state of UML.

5.1. Solution to problem 1: Categorization of
concepts based on the Triune Continuum
Paradigm

As we explained in Section 4.1, UML doesn’t define
any explicit logically consistent strategy for the

introduction of modeling concepts. In order to solve the
problem of the structural chaos of UML semantics we can
use a theoretical framework that defines such kind of
strategy, for example the Triune Continuum Paradigm.

To define the metamodeling structure the Triune
Continuum Paradigm takes the basic conceptual structure
of the RM-ODP [3] standard (part 2: Foundations) and
reinforces it by means of the strong theoretical
foundations of Russell’s theory of types [11], as well as by
means of the structural principles of Tarski’s declarative
semantics [12].

As it was proposed in RM-ODP part 2 clause 6 that
defines “Basic Interpretation Concepts” conceptual
category, in the paradigm we call the subject of modeling
(which is the subject that has some modeling interest to a
modeler) as “Universe of Discourse”. In RM-ODP,
“Universe of Discourse” was constituted by entities
(defined in [3] 2-6.1 as “any concrete or abstract thing of
interest”) and propositions that can be asserted or denied
as being held for entities (defined [3] 2-6.2).

This notion of the “Universe of Discourse”
organization is compatible with Russell’s theory of types
[11] defined by Bertrand Russell in 1908, that introduces
individuals and propositions over individuals. In
particular, [11] explains:

“We may define an individual as something destitute of
complexity; it is then obviously not a proposition, since
propositions are essentially complex. Hence in applying
the process of generalization to individuals we run no risk
of incurring reflexive fallacies.

Elementary propositions together with such as contain
only individuals as apparent variables we will call first-
order propositions. We can thus form new propositions in
which first-order propositions occur as apparent
variables. These we will call second-order propositions,
these form the third logical type. [while individuals form
the 1st logical type and the first-order propositions form
the 2nd logical type] Thus, for example, if Epimenides
asserts "all first-order propositions affirmed by me are
false,” he asserts a second-order proposition; he may
assert this truly, without asserting truly any first-order
proposition, and thus no contradiction arises.

The above process can be continued indefinitely. The
(n + 1th logical type will consist of propositions of order
n, which will be such as contain propositions of order n -
1, but of no higher order, as apparent variables. ”

Analogously, in the Triune Continuum Paradigm we
have “entity” corresponding to Russell’s “something
destitute of complexity”, because the only intrinsic
meaning of an entity in the RM-ODP definition is to be
“something” that can be qualified by means of
propositions. An entity has no other meaning without the
propositions associated with it. Thus, by mapping
Russell’s “individual” and “proposition” to the RM-ODP
“entity” and RM-ODP “proposition”, respectively, the

Triune Continuum Paradigm uses Russell’s suggestion in

the context of the universe of discourse. This allows us to

differentiate the propositions with regard to their subject

of application:

— if a proposition is applied to an entity it is considered
as the first-order proposition;

— if a proposition is applied to a proposition it is
considered as the higher-order proposition.

Of course, in an application of these propositions there
may be a situation when a higher-order proposition is
applied on another higher-order proposition, which in its
turn is applied on yet another higher-order proposition and
so on, until the overall structure of the higher-order
propositions is finally applied on the first-order
proposition. Hence for simplification, we will refer to the
combination of several higher-order propositions, which is
applied on a first-order proposition, as a single higher-
order proposition.

So the paradigm orders the entities and propositions
that constitute a universe of discourse in agreement with
the Russell’s theory of types. Now we can look at models
that should represent an arbitrary universe of discourse. A
model is the place where modeling language constructs
should be applied. Thus it is for the model part of the
metamodel that the paradigm provides a useful structure
of the categorization of concepts, which would explain the
different contexts of practical applications for the
concepts from different categories.

The paradigm suggests organizing the modeling
concepts structure in such a way that there would be a
straightforward correspondence between the model and
the corresponding represented universe of discourse. That
is, it suggests constructing a structure of concepts in the
model in agreement with Russell’s theory of types, which
would correspond directly to the universe of discourse
organization we presented earlier.

According to this suggestion, within the model we will
be able to identify “Model Elements” that will be
analogous to the Russell’s “individuals” defined “as
something destitute of complexity”. Also, under this
assumption, in the model we will have some concepts that
are analogous to the Russell’s “first-order propositions”
(the paradigm calls them “Basic Modeling Concepts”),
and some concepts — analogs of the “higher-order
propositions” (called “Specification Concepts”). With this
approach to the construction of a model it would be
necessary to qualify “Model Elements” with the aid of
“Basic Modeling Concepts”, which in their turn could be
qualified by means of “Specification Concepts”.

Thus it is possible to define the correspondence
between the conceptual categories from within the model
and the entities and propositions that form the universe of
discourse that should be modeled. The correspondence is
defined as follows:

assocProposition‘ \l/ > \L *

Higher Order

First Order

i . Entity
Proposition assocProposition Proposition assocProposition
1. corresponds n‘llé).dels T models
Universe of
Discourse
! del
Application of Application of Application of models
Russell's Russell’'s Russell’'s
theory of types theory of types theory of types
. modeledBy | *
Application of Tarski's Model
declarative semantics
o1 modeledBy modeledBy |0..1 modeledBy |0..1
specifies 0.1 1
Specification higherOrderProposition Basic Modeling | firstOrderProposition Model Element
Concept * Concept

specifiedBy specifies

representedBy represents

specifiedBy ‘* /P * /‘\ *

Fig. 1. Categorization of concepts in the metamodel proposed by the Triune Continuum
Paradigm (UML diagram)

— Entities from the Universe of Discourse are modeled by
Model Elements in the Model.

— First-order Propositions from the Universe of
Discourse are modeled by Basic Modeling Concepts in
the Model.

— Higher-order Propositions from the Universe of
Discourse are modeled by Specification Concepts in
the Model.

Hence, model elements are defined in the model as one
to one counterparts to entities from the universe of
discourse. Let us consider more closely the two other
conceptual categories from within the model. As we
explained, in correspondence with Russell’s definitions,
basic modeling concepts (essentially the first-order
propositions) contain model elements as “apparent
variables”; and specification concepts (the higher-order
propositions) contain the basic modeling concepts as
“apparent variables”.

In fact, these two conceptual categories were
introduced by RM-ODP specifications ([3] part 2, clauses
8 and 9); up to this point in our presentation we only saw
that the Triune Continuum Paradigm reinforced logical
justifications for this categorization with the support of
Russell’s theory of types and with explicit definitions of
the application contexts for concepts from the two
categories. For further explanation of the difference
between concepts from the two conceptual categories in
the paradigm we will use the principal structure of
relations between a universe of discourse from one side
and its model from the other side; this structure was
defined by Alfred Tarski in 1935 for the introduction of
his formal declarative semantics [12].

The basic modeling concepts set, as it aims to model
the first-order propositions from the universe of discourse,
should contain the concepts expressing the qualities that
are considered as primary and intrinsic for the universe of
discourse entities. This fundamental nature of the primary
qualities belonging to the universe of discourse doesn’t
allow their modeling representations to be defined
exclusively within the model. Hence the only possibility
for a definition of the basic modeling concepts is to define
them using Tarski’s declarative semantics [12]: the
semantics that define equivalence of an agreed
conceptualization of the universe of discourse to a
concrete concept in the model. The set of basic modeling
concepts constructed in this way is the necessary,
sufficient and limited set representing a limited amount of
intrinsic qualities from the universe of discourse.

The set of specification concepts contains all the other
concepts that can be found in models. These concepts aim
to model the higher-order propositions from the universe
of discourse; thus they do not represent the primary
qualities of the universe of discourse entities and hence
they do not need to have Tarski’s declarative semantics
for their definitions. So these concepts will be defined
only in the relations between themselves and in the
relations with the basic modeling concepts, but not in the
relations with the universe of discourse. In a general case,
the set of specification concepts is not limited because of
the same quality of the higher-order propositions set. As
new higher-order propositions can be constructed by
applying one higher-order proposition on another, new
specification concepts can similarly be constructed by
applying one specification concept on another.

Time

>

Time Interval

Space Interval

Time
Information Element

| _\
| [Dynamic Information
i Element (Action)

Model
Constitution

Information Element

o

Space]

Fig. 2. Three-dimensional framework with the dimensions of “Space Continuum”, “Time Continuum”
and “Model Constitution Continuum”, which allows for the emergent “Information” continuum.

So, it becomes clear that there is a significant semantic
difference between the two conceptual categories. Basic
modeling concepts are defined using Tarski’s declarative
semantics, but specification concepts are not. This is the
consequence of the differences in their design purposes,
which explains the clear difference in their corresponding
applications within a model.

Additional details on this categorization can be found
in [7]. Here let us present a UML diagram explaining the
structure of the introduced categorization (see Figure 1)*.

5.2. Solution to problem 2: Tarski’s declarative
semantics definitions for basic modeling concepts

The complete analysis of definitions for concepts from
the basic modeling concepts category that was introduced
in the previous subsection can be found in [7]. Here we
will just briefly explain the overall structure of basic
modeling concepts, and present this structure in the form
of UML diagram.

Figure 2 presents the idea of general organization for
the basic modeling concepts category. Essentially the set
of concepts is determined by the consideration of the
spatiotemporal conceptual continuum and the non-
spatiotemporal conceptual continuum. The former

4 In the diagram in Figure 1, in addition to all the explained
particularities of the categorization structure, we also showed
that a specification concept can specify any of the basic
modeling concepts, and a basic modeling concept can be
specified by any of the specification concepts. In fact this is
true only for the generic specification concepts — the
subcategory of specification concepts whose definition is
beyond the scope of this paper and can be found in [7].

represents in the model a space-time from the universe of
discourse, and the latter represents in the model the non-
spatiotemporal conceptual entities that constitute the
universe of discourse. In correspondence with their
ancestors from the universe of discourse, the former is
presented by the Space and the Time dimensions on

Figure 2, while the latter by the Model Constitution

dimension. Being considered in the same context of a

model, the two introduced conceptual continuums

necessarily give birth to the third one that is essentially the

Information about the Model Constitution within Space-

Time. Detailed analysis of this approach can be found in

[7].

By defining limiting points within Space-Time and
Model Constitution dimensions we obtain concepts of
Space Interval, Time Interval for the Space and the Time
and concept of Object with the concept of its Environment
for the Model Constitution. Also, with the definition of
these limiting points we are able to consider Object and its
Environment:

— at a single moment in Time, and thus to define the
concept of Static Information Element (State) within
the Information continuum;

— at an interval between two moments in Time, and thus
to define the concept of Dynamic Information Element
(Action) within the Information continuum.

Thus we obtain the structure of basic modeling
concepts presented in the UML diagram from Figure 3.

In correspondence with the explanations from the
previous section all the basic modeling concepts in the
Triune Continuum Paradigm have formal definitions in
the form of Tarski’s declarative semantics. We
recommend to check [7] for all these concrete definitions.

0.1

Specification Basic

1

Concept higherOrderProposition

Concept

Model Element
firstOrderProposition

Discontinuity
Concept

‘F

Model
Constitution
Concept

Information
Concept

SpaceTime
Concept

timeLimit spaceLimit

Point in Time Point in Space

Time Interval

Space Interval

associatedPointinTime /' associatedPointinSpace

associatedTimelInterval

associatedSpacelnterval

Object

Environment

Action State

objectAction /]\

‘ ‘ objectEnvironment

objectState q\ ‘

Fig. 3. Basic Modeling Concepts: Conceptual Specialization (UML diagram).

The definitions of basic modeling concepts, as well as
the definitions for all the other concepts proposed in the
paradigm, have much in common (and are even identical
in many cases) with the definitions of corresponding
concepts given by RM-ODP. With the aid of the paradigm
we formalized the overall RM-ODP foundations
framework ([7], [8]), including the basic modeling
concepts part, using Alloy [6] formal description
technique. Thus the basic modeling concepts semantics
introducing a coherent set of Tarski’s declarative
semantics for relations between the concepts and the
subject that is being modeled (universe of discourse)
present a formally justified logical structure.

5.3. Solution to problem 3: Philosophical and
natural science foundations of the Triune
Continuum Paradigm

As we explained in the analysis of Problem 2 (Section
4.2), even for the choice of two modeling concepts that
were linked in their definitions with the subject of
modeling, UML specification does not define any tenable
reason. And the set of modeling concepts that are defined
using declarative semantics could be the very source of
justifications for the ambitions to represent a given
modeling scope with the modeling concepts of the
language. Indeed, if the declarative semantics concepts
cover all the possibilities of the agreed conceptualizations
of the modeling scope then, the set of concepts can be
considered as sufficient for the modeling purposes. And
from the other side, the very set of declarative semantics
concepts that would cover all the agreed
conceptualizations of the modeling scope can be

considered as necessary due to the necessity of the scope

representation.

As the previous paragraph shows, the approach to the
solution of the third indicated problem of UML
metamodel is in the scientific justification of an agreed
conceptualization of the modeling scope and in a formally
defined unambiguous and logically consistent
correspondence of the conceptualization to the modeling
concepts that are designated to represent the
conceptualization in the model.

The complete theoretical justifications of the universe
of discourse conceptualization (that was introduced in the
previous section to support the introduction of basic
modeling concepts) can be found in [7]. Here we will just
mention that:

— the possibility to define limiting points and thus
discrete concepts within a conceptual continuum is
justified by mereology that is a branch of philosophy
studying whole-part relationships;

— the possibility to consider the constitution of models as
a conceptual continuum that is independent with regard
to the spatiotemporal continuum is an original idea.
This idea generalizes fundamental foundations of both
classical and relativistic mechanics that study
spatiotemporal characteristics of material objects. In
our case the scope is generalized to include imaginary
conceptual entities. The resulting space-time-
constitution framework can be considered as an
extension of the traditional Minkowski’s space-time
framework;

— the vision of defining information as a continuum
emerging out from the space-time and the model
constitution continuums being considered in the same

context is an original idea that however has an analogy

found in Taoist philosophy.

The important result was to demonstrate that in the
Triune Continuum Paradigm the conceptualization of the
universe of discourse is in agreement with fundamental
philosophical and natural science foundations. This
demonstration (that can be found in [7]) allows us to rely
on the introduced conceptualization and thus to define the
set of Tarski’s declarative semantics for the basic
modeling concepts from the paradigm as not only having
the logical consistency in the interpretation, but also being
justified as a generalization of scientific experience. And
as we explained in the beginning of this section, the
definition of this Tarski’s declarative semantics set for the
limited modeling scope introduced by the
conceptualization provided a straightforward logical proof
that the resulting limited set of basic modeling concepts is
necessary and sufficient for the modeling scope
representation.

5.4. Impact of the proposed solutions on the
UML terminology

In sections 5.1-5.3 we presented solutions for the three
problems of UML metamodel. Thus, unlike the currently
existing UML metamodel [9], the alternative metamodel
that is shaped by the presented solutions would not cause
the problematic effects for the UML terminology (see
Section 4.4 of this paper). Moreover, apart from being
destitute of the destructive metamodeling features found
in the current UML specifications, the alternative
metamodel based on the Triune Continuum Paradigm
exhibits a concrete constructive potential for realization of
different object-oriented terminologies, in particular:

- based on its declarative semantics for the basic
modeling concepts it ensures the coherency in
interpretations of subjects of modeling interest for
any of its conforming terminologies;

- based on the rigorous logical structure of its
organization (supported by Russell’s theory of types)
it ensures:

- internal consistency of any of its conforming
terminologies;

- unambiguity in application contexts for the
concepts of any of its conforming terminologies
(e.g. absence of Russell’s paradoxes);

- based on its scientific foundations it ensures the
theoretical soundness for any of its conforming
terminologies.

Thus the proposed metamodel can be useful not only
for UML but also for other different modeling frameworks
which lack the aforementioned positive features in their
current states.

As for UML, the analysis presented in Section 4.4
shows that not only its current terminology does not
conform to the metamodel proposed by the Triune
Continuum Paradigm, but moreover that the core of the
UML terminology in its current state can be considered as
undefined. Hence, in any case, UML needs a new
terminology (and current efforts of OMG on the definition
of the next version of UML confirm this conclusion).
Thus if this new terminology will be conformant with the
Triune Continuum Paradigm, then UML would benefit
from all the aforementioned advantages.

We are aware of multiple propositions (e.g. [1], [2],
[13]) defining the new terminology for the next version of
UML. In fact any of such propositions can be conformant
with the Triune Continuum Paradigm as soon as it obeys
the following two requirements (see [7] for the
explanations):

- in the definitions of its conceptual framework it
should be destitute of self-contradictions;

- it should allow to reserve the set of eight concepts,
namely the concepts analogous to: Object,
Environment, Point in Time, Point in Space, Time
Interval, Space Interval, Action and State, as
corresponding to the paradigm’s basic modeling
concepts and thus having predefined declarative
semantics.

So, because of the intrinsic flexibility of the Triune
Continuum Paradigm, any of UML contributors can
benefit from the paradigm’s metamodel that we presented
in this paper. This shows the complementarity of our
research results in the relation to the mainstream research
on definition of the next version of UML. And because of
this complementarity the paradigm-based metamodel is
probably the most interesting of our results.

Another result that we realized ([7], [8]) is a concrete
object-oriented terminology that conforms to the paradigm
and that can serve as an internally consistent solution for
the UML terminology. It is the conceptual framework of
RM-ODP [3] that was reinforced with the aid of
interpretation constraints provided by the Triune
Continuum Paradigm. But this is one of many possible
solutions and in the general case we don’t see any reason
to favor it over other terminologies conformant with the
Triune Continuum Paradigm. This is why this terminology
is not our primary concern in this paper. Though in the
particular case of UML there are some additional reasons
in favor of our RM-ODP-based terminology, in particular
the following facts:

- RM-ODP [3] is an ISO/ITU standard;

- the RM-ODP-based terminology was formalized and
presented in a computer-interpretable form ([7], [8]);

- UML specifications mention RM-ODP as a
framework that has already influenced UML
metamodel architectures ([9] in Preface:

Relationships to Other Models).

5. Conclusions

In this paper we presented an overview of the Triune
Continuum Paradigm [7], reviewing the advantages that
the paradigm brings to modelers and its fundamental
theoretical foundations. Also we demonstrated the
constructive potential that the paradigm may provide for
the Unified Modeling Language (UML). In particular, we
reviewed three important problems of the UML
metamodel. These were the following problems:

- Absence of an explicit structural organization defined
for the UML metamodel;

- Absence of formal declarative semantics in the UML
metamodel;

- Absence of theoretical justifications for the UML
metamodel to represent the modeling scope that is
targeted by UML.

As we showed, the Triune Continuum Paradigm
proposes concrete solutions for these problems. In
particular:

- its proposed metamodel has an internally consistent
structure supported by Russell’s theory of types [11];

- it defines a kind of Tarski’s declarative semantics
[12] for the basic modeling concepts, thus it is
coherent and unambiguous in the interpretations of
subjects of modeling;

- it provides philosophical and natural science
foundations to justify that its proposed modeling
concepts set is necessary and sufficient to represent
its identified modeling scope [7].

So, the paradigm-based solutions define concrete
improvements for the current state of UML metamodel,
and they can have a constructive influence on the
evolution of UML by providing the language designers
with the paradigm’s logical rigor, its formal presentation
and its solid theoretical foundations.

In this paper we also showed that because of the
analyzed problems:

- the UML terminology in its current state does not
have any explicit reason supporting the terminology
introduction;

- the terminology contains self-contradictions and
baseless references (references to undefined
concepts).

We demonstrated that existing UML terminology doesn’t

allow for its logically consistent interpretation. The Triune

Continuum Paradigm was applied on the RM-ODP

conceptual framework realizing a concrete object-oriented

terminology that was formalized in a computer-
interpretable form [7], [8]. This realization is a possible
internally consistent solution for the UML terminology.

The three problems of the UML metamodel and their
subsequent problems of the UML terminology clearly

demonstrate that at the present time from the theoretical
standpoint, UML assimilates itself to the naked Emperor
from the famous story: “The Emperor’s New Clothes” by
Hans Christian Andersen (1805-1875). In the story those
who were not able to see the most magnificent cloth of the
Emperor were considered as either stupid or incompetent.
So everybody, including the Emperor himself, pretended
to be able to see the cloth regardless of its nonexistence.
This continued until people heard the voice of an innocent
child: “But the Emperor has nothing at all on!”. Then the
people began to whisper to one another what the child had
said, till everyone was saying: “But he has nothing on!”.
The Emperor himself understood that the people were
right, but he was not courageous enough to publicly
acknowledge the fault. “So he drew himself up and walked
boldly on holding his head higher than before, and the
courtiers held on to the train that wasn’t there at all.” —
the story ends.

The analogy with UML semantics is straightforward.
Our research results show:

- that the UML metamodel does not exhibit some of the
practically essential metamodeling features (e.g. an
explicit structural organization and formal declarative
semantics definition);

- that the UML metamodel does not have any
theoretical support to justify its claims for an
adequate representation of the identified (by UML)
modeling scope;

- that the UML terminology definitions are not even a
house of cards that can be ruined by a light wind, but
rather the baseless ruins from which it is impossible
to reconstruct a single coherent framework.

All these facts are not surprising. UML, being a widely
promoted solution that occupied a leading position in
modern industrial applications, appeared as an integration
of the best software development practices. That is,
roughly speaking, it is a result of the vast practical
experience: tries, failures and successes that were never
theoretically justified. That’s why it is somewhat natural
that in its current state UML doesn’t propose a formal
definition of its applications scope, that semantics of
UML concepts are contradictory and that the metamodel
of UML does not feature a coherency in modeling
interpretations. But the fact that it is “somewhat natural”,
does not mean that it is good. There are many unfortunate
practical consequences that are caused by these problems.
For example, because of the impossibility to understand
the limits of allowed UML applications scope, the
adequacy of UML modeling inevitably suffers in those
multiple cases when the language is not applicable or
when it is applicable with additional constraints.

We acknowledge the comparative practical domination
of UML in the current industrial modeling practices. We
do not call in question the relatively successful definition
of constraints for practical applications of UML

formulated in section 3 (“UML Notation Guide”) of UML
specifications [9]. But, as we showed, from the theoretical
standpoint UML “has nothing at all on!”. And obviously,
even successfully promoting UML will not eliminate this
very important problem. “The Emperor” may keep
“walking boldly on holding his head higher than before”,
pretending that “the most magnificent cloth” is “very
difficult for beginners to understand” [10] but the
theoretical “cloth” for UML will not appear by itself.

The Triune Continuum Paradigm [7], which was
presented in Section 2, provides concrete solutions for the
problems of UML that were reviewed in this paper. The
concreteness of these solutions and the fact that they are
formally implemented [7], [8] on the example of RM-
ODP (the framework that was mentioned by UML
specifications as influential for the UML metamodel
architectures, see [9] in Preface: Relationships to Other
Models) are two strong points that may attract the system
modeling community’s attention to our research results.

6. References

[1] 3C UML: “OMG Unified Modeling Language Specification
(revised submission)”, Version 2.0.11, Revised Infrastructure
Submission, June 2002.
http://www.community-ml.org/docs/3C_Infra_ Revised.pdf

[2] Clark, T., Evans, A., France, R., Kent, S., Rumpe, B.:
“Response to UML 2.0 Request for Information”, Submitted
by the precise UML group, December 1999.
http://www.cs.york.ac.uk/puml/papers/RFIResponse.PDF

[3] ISO, ITU.: ISO/IEC 10746-1, 2, 3, 4 | ITU-T
Recommendation X.901, X.902, X.903, X.904. “Open
Distributed Processing - Reference Model”. 1995-98.

[4] Einstein, A., Lorentz, H. A., Minkowski, H., Weyl, H.:
“Principle of Relativity”; a collection of original memoirs on
the special and general theory of relativity. Dover
Publications, New York, 1952.

[5] Frege, G., 1903, "The Russell Paradox", in Frege, G., The
Basic Laws of Arithmetic, Berkeley: University of California
Press, 1964, pp. 127-143.

[6] Jackson D.: “Alloy: A Lightweight Object Modelling
Notation”. ACM Transactions on Software Engineering and
Methodology. Volume 11, Issue 2. April 2002, pp. 256-290.

[7] Naumenko, A.: “Triune Continuum Paradigm: a paradigm
for General System Modeling and its applications for UML
and RM-ODP”. Ph.D thesis 2581, Swiss Federal Institute of
Technology - Lausanne, June 2002.
http://lamswww.epfl.ch/people/naumenko/Naumenko-PhD-
Thesis.pdf

[8] Naumenko, A., Wegmann, A., Genilloud, G., Frank, W. F.:
"Proposal for a formal foundation of RM-ODP concepts".
Proceedings of ICEIS 2001, WOODPECKER 2001, 1.
Cordeiro, H. Kilov (Eds.), Setubal, Portugal, July 2001, pp.
81-97

[9] OMG: Unified Modeling Language Specification. Version
1.4, September 2001.

[10] OMG: Introduction to OMG's Unified Modeling Language
(UML™). January 2002,

http://www.omg.org/gettingstarted/what_is_uml.htm

[11] Russell, B.: “Mathematical logic as based on the theory of
types”. American J. of Mathematics, 30, 1908, pp. 222-262.

[12] Tarski, A.: “Logic, Semantics, Meta-mathematics.” Oxford
University Press 1956.

[13] U2 Partners: “Unified Modeling Language 2.0 Proposal.”
Version 0.671; Revised submission to OMG RFPs ad/00-09-
01 and ad/00-09-02, January 2002.
http://www.u2-partners.org/artifacts.htm

