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Abstract

In multi-hop wireless networks, every node is expected to forward packets for the benefit of
other nodes. Yet, if each node is its own authority, then it may selfishly deny packet forwarding
in order to save its own resources. Some researchers have proposed to introduce an incentive
mechanism in the network that motivates the nodes to cooperate. In this paper, we address the
question of whether such an incentive mechanism is necessary or cooperation between the nodes
exists in the absence of it. We define a model in a game theoretic framework and identify the con-
ditions under which cooperative strategies can form an equilibrium. As the problem is somewhat
involved, we deliberately restrict ourselves to a static configuration.

1 Introduction

By definition, in multi-hop wireless networks, every node is expected to forward packets for the benefit
of other nodes. This is probably the most important difference of this family of networks with respect
to those that are more conventional, such as the Internet or cellular networks.

As long as the whole network is under the control of a single authority, as is usually the case in
military networks or for rescue operations, this situation is not problematic because the interest of the
mission by far exceeds the vested interest of each participant. However, if each node is its own au-
thority, the situation changes dramatically: In this case, the most reasonable assumption is to consider
that each node will try to maximize its benefits by exploiting the network, even if this means adopt-
ing a selfish behavior. This selfishness can mean not participating in the unfolding of mechanisms
of common interest (e.g., route setup, packet forwarding, or mobility management), notably to spare
resources, including batteries.

∗The work presented in this paper was supported (in part) by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322 (http://www.terminodes.org)
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Over the last few years, several researchers have proposed incentive techniques to encourage nodes
to collaborate, be it by circumventing misbehaving nodes [MGLB00], by making use of a reputation
system [BL02], or by relating the right to benefit from the network to the sense of the common interest
demonstrated so far [BH03]. To the best of our knowledge the only paper that focuses on cooperation
conditions without any incentive mechanism is [SNCR03], where the authors build up a theoretical
framework based on different energy classes.

In this paper, we study the problem of cooperation for the most basic mechanism, namely packet
forwarding. In order to do so, we define a model in a game theoretic framework and identify the
conditions under which an equilibrium based on cooperation exists. As the problem is somewhat
involved, we deliberately restrict ourselves to a static configuration.

The rest of the paper is organized in the following way. In Section 2, we show how packet
forwarding can be modelled in a game theoretic framework. In Section 3, we analyze the model
introduced in Section 2. We provide our main results, stated as theorems in Section 4 along with
our simulation results. In Section 5, we present the related work. Finally, we conclude the paper in
Section 6.

2 Modelling packet forwarding as a game

Connectivity graph. Let us consider an ad hoc network ofn nodes. Let us denote the set of all nodes
by N . Each node has a given power range and two nodes are said to be neighbors if they reside
within the power range of each other. We represent the neighbor relationship between the nodes
with an undirected graph, which we call the connectivity graph. Each vertex of the connectivity graph
corresponds to a node in the network, and two vertices are connected with an edge if the corresponding
nodes are neighbors.

Routes.Communication between two non-neighboring nodes is based on multi-hop relaying. This
means that packets from the source to the destination are forwarded by intermediate nodes. Such a
chain of nodes (including the source and the destination) is represented by a path in the connectivity
graph, which we call a route. We assume that one of the shortest paths is chosen randomly as a route
for each source-destination pair and it remains the same for the entire duration of the game.

Time. We use a discrete model of time where time is divided into slots. We assume that both
the connectivity graph and the set of existing routes remain unchanged during a time slot, whereas
changes may happen at the end of each time slot. We assume that the duration of the time slot is much
longer than the time of a packet relaying from the source to the destination. This means that a node is
able to send several packets within one time slot.

Forwarding game. We model the packet forwarding operation as a game, which we call the
forwarding game. The players of the forwarding game are the nodes. In each time slott, each nodei
chooses a cooperation levelpi(t) ∈ [0, 1], where 0 and 1 represent full defection and full cooperation,
respectively. Here, defection means that the node does not forward traffic for the benefit of other
nodes and cooperation means that it does. Thus,pi(t) represents the fraction of the traffic routed
throughi in t that i actually forwards. Note thati has a single cooperation levelpi(t) that it applies
to every route in which it is involved as a forwarder. We preferred not to require the nodes to be
able to distinguish the packets that belong to different routes, because this would require identifying
the source-destination pairs and applying a different cooperation level to each of them. This would
probably increase the computation significantly.

Let us assume that in time slott there exists a router with source nodes and` intermediate nodes
f1, f2, . . . , f`. The normalized value of the throughputτ(r, t) experienced by the sources onr in t is
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defined as the fraction of the traffic sent bys onr in t that is delivered to the destination. Since we are
studying cooperation in packet forwarding, we assume that the main reason for dropping packets in
the network is the non-cooperative behavior of the nodes. In other words, we assume that the network
is not congested and that the number of packets dropped because of the limited capacity of the nodes
and the links is negligible. Hence,τ(r, t) can be computed as the product of the cooperation levels of
all intermediate nodes:

τ(r, t) =
∏̀

k=1

pfk
(t) (1)

The payoffξs(r, t) of s on r in t depends on the normalized throughputτ(r, t). In general,ξs(r, t) =
u(τ(r, t)), whereu is some non-decreasing function. In this paper, we assume thatu is linear and has
the following form:u(x) = (G + L) · x− L = G · x− L · (1− x), whereG = u(1) > 0 represents
the gain thats obtains if all its traffic sent onr in t is delivered to the destination, and−L = u(0) < 0
represents the loss thats suffers if nothing is delivered int to the destination. Thus, we get that

ξi(r, t) = (G + L) · τ(r, t)− L (2)

For simplicity, we assume that every node in the network uses the same functionu and the same
parametersG andL, which we assume to be independent ofr andt.

The payoffηfj (r, t) of the j-th intermediate nodefj on r in t is non-positive and represents the
cost for nodefj to forward packets on router during time slott. It depends on the fractionτj(r, t)
of the traffic sent by the source onr in t that is forwarded byfj . The valueτj(r, t) is the normalized
throughput onr in t leaving nodej, and it is computed as the product of the cooperation levels of the
intermediate nodes fromf1 up to and includingfj :

τj(r, t) =
j∏

k=1

pfk
(t) (3)

Let−C < 0 represent the forwarding cost for the first forwarder if it forwards all the traffic sent by
the source onr in t. The payoffηfj (r, t) of thej-th intermediate node is then defined as follows:

ηfj (r, t) = −C · τj(r, t) (4)

Again, for simplicity, we assume that forwarding one unit of traffic costs the same for every node in
the network and that the parameterC is independent fromr andt.

By definition, the payoff of the destination is 0. In other words, we assume that only the source
has a benefit if the traffic reaches the destination (information pushing). We note however, that our
model can be applied and all of our results hold in the reverse case when only the destination benefits
from receiving traffic; an example for this scenario would be a file download.

The total payoffπi(t) of nodei in time slott is then computed as

πi(t) =
∑

r∈Si(t)

ξi(r, t) +
∑

r∈Fi(t)

ηi(r, t) (5)

whereSi(t) is the set of routes int wherei is source, andFi(t) is the set of routes int wherei is an
intermediate node.

Strategy space.In every time slot, each nodei updates its cooperation level using a strategy
function σi. In general,i could choose a cooperation level to be used in time slott based on the
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information it obtained inall preceding time slots. In order to make the analysis feasible, we assume
that i uses only information that it obtained in the previous time slot. More specifically, we assume
thati chooses its cooperation level in time slott based on the normalized throughput it experienced in
time slott− 1 on the routes where it was a source. Formally:

pi(t) = σi([τ(r, t− 1)]r∈Si(t−1)) (6)

where[τ(r, t− 1)]r∈Si(t−1) represents the normalized throughput vector for nodei in time slott− 1,
each element of which being the normalized throughput experienced byi on a route where it was
source int − 1. The strategy of a nodei is then defined by its strategy functionσi and its initial
cooperation levelpi(0).

Note thatσi takes as input the normalized throughput and not the total payoff received byi in the
previous time slot. The rationale is thati should react to the behavior of the rest of the network, which
is represented by the normalized throughput in our model.

There are an infinite number of strategy functions; we highlight three special cases (in Table 1) that
we will encounter later in the analysis [Axe84]. If the output of the strategy function is independent
of the input, then the strategy is called anon-reactive strategy(e.g., always defecting and always
cooperating in Table 1). If the output depends on the input, then the strategy isreactive(e.g., Tit-For-
Tat in Table 1).

Table 1: Three special strategies. Here, we assume thatσi takes as input a one dimensional vector
(i.e., a scalar)

Strategy Initial move Function
AllD (always defect) 0 σi(x) = 0
AllC (always cooperate) 1 σi(x) = 1
TFT (Tit-For-Tat) 1 σi(x) = x

Our model requires that each source be able to observe the throughput in a given time slot on
every route. We assume that this is made possible with high enough precision by using some higher
level control protocol above the network layer.

3 Meta-model

In this section, we introduce a meta-model in order to formalize the properties of the packet forwarding
game defined in the previous section. Thus, we study the behavior of the model through the analysis
of the meta-model (i.e., a model of the model). Unlike in the model presented in the previous section,
in the meta-model and in the rest of the paper, we will assume that routes remain unchanged during
the lifetime of the network. In addition, we also assume that each node is a source on only one route.

Dependency graph.Let us consider a router. The normalized throughput experienced (hence
the payoff received) by the source onr depends on the cooperation levels of the intermediate nodes
on r. We represent this dependency relation between the nodes with a directed graph, which we call
the dependency graph. Each vertex of the dependency graph corresponds to a network node. There
is a directed edge from vertexi to vertexj, denoted by the ordered pair(i, j), if there exists a route
wherei is an intermediate node andj is the source. Intuitively, an edge(i, j) means that the behavior
(cooperation level) ofi has an effect onj. The concept of dependency graph is illustrated in Fig. 1.
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Figure 1:Example of dependency graphIn (a), the arrows represent the routes (e.g., there is a route
between nodes 1 and 4 passing through nodes 6 and 5). The corresponding dependency graph is
shown in (b)

Game automaton.Now we define the automatonA that will model the unfolding of the forward-
ing game. The automaton is built on the dependency graph. We assign a machineMi to every vertex
i of the dependency graph and interpret the edges of the dependency graph as links that connect the
machines assigned to the vertices. Each machineMi thus has some input and some (possibly 0) output
links.

The internal structure of the machine is illustrated in Fig. 2. Each machineMi consists of a
multiplication gate

∏
followed by a gate that implements the strategy functionσi of nodei. The

multiplication gate
∏

takes the values on the input1 links and passes their product to the strategy
function gate2. Finally, the output of the strategy function gate is passed to each output link ofMi.

Π

σi

Mi

...

...

Figure 2: Internal structure of machineMi

The automatonA works in discrete steps. Initially, in step 0, each machineMi outputs some
initial valuexi(0). Then, in stept > 0, each machine computes its outputxi(t) by taking the values
that appear on its input links in stept− 1.

1The multiplication comes from the fact that the experienced throughput for the source is the product of the cooperation
levels of the forwarders on its route.

2Note that hereσi takes a single real number as input, instead of a vector of real numbers as we defined earlier, because
we assume that each node is source on only one route.
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Figure 3: The automaton that corresponds to the dependency graph of Fig. 1

Formally, the operation ofA can be described by a set of equations, where each equation cor-
responds to a machineMi. As an example, let us consider the automaton in Fig. 3, which is the
automaton that corresponds to the dependency graph of Fig. 1. Its operation is described by the fol-
lowing set of equations:

x1(t) = σ1(x5(t− 1) · x6(t− 1))
x2(t) = σ2(x1(t− 1))
x3(t) = σ3(x4(t− 1))
x4(t) = σ4(x2(t− 1) · x3(t− 1))
x5(t) = σ5(x4(t− 1))
x6(t) = σ6(x1(t− 1))

It is easy to see that by iteratively substituting the appropriate equations into each other, the value of
any output in any step can be expressed as a function of the initial valuesxi(0). For instance:

x1(3) = σ1(x5(2) · x6(2))
= σ1(σ5(x4(1)) · σ6(x1(1)))
= σ1(σ5(σ4(x2(0) · x3(0))) · σ6(σ1(x5(0) · x6(0))))

Note that ifxi(0) = pi(0) for all i, then in stept, each machineMi will output the cooperation
level of nodei in time slot t (i.e., xi(t) = pi(t)), as we assumed that the set of routes (and hence
the dependency graph) remains unchanged in every time slot. Therefore, the evolution of the values
on the output links of the machines (which, in fact, represent the state of the automaton) models the
evolution of the cooperation levels of the nodes in the network. It also follows that the cooperation
level pi(t) of any nodei in any time slott can be expressed as a function of the initial cooperation
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levels of the nodes. For instance:

p1(3) = x1(3)
= σ1(σ5(σ4(x2(0) · x3(0))) · σ6(σ1(x5(0) · x6(0))))
= σ1(σ5(σ4(p2(0) · p3(0))) · σ6(σ1(p5(0) · p6(0))))

In order to study the interaction of nodei with the rest of the network, we extract the gate that
implements the strategy functionσi from the automatonA. What remains is the automaton without
σi, which we denote byA−i. A−i has an input and an output link; if we connect these to the output
and the input, respectively, ofσi (as illustrated in Fig. 4) then we get back the original automatonA.
In other words, the automaton in Fig. 4 is another representation of the automaton in Fig. 3, which
captures the fact that from the viewpoint of nodei, the rest of the network behaves like an automaton:
The input ofA−i is the sequencexi = xi(0), xi(1), . . . of the cooperation levels ofi, and its output is
the sequenceyi = yi(0), yi(1), . . . of the normalized throughput values fori.

σiA-i

xi

yi

Figure 4: Model of interaction between nodei and the rest of the network represented by the automa-
tonA−i

By using the system of equations that describe the operation ofA, one can easily express any
elementyi(t) of sequenceyi as some function of the preceding elementsxi(t−1), xi(t−2), . . . , xi(0)
of sequencexi and the initial valuesxj(0) (j 6= i) of the machines withinA−i. We call such an
expression ofyi(t) thet-th input/output formulaor shortly thet-th i/o formulaof A−i. It is important
to note that the i/o formulae ofA−i may involve any strategy functionσj wherej 6= i, but they never
involve σi. Taking the automaton of Fig. 3 again, and extracting, for instance,σ6, we can determine
the first few i/o formulae ofA−6 as follows:

y6(0) = x1(0)
y6(1) = σ1(x5(0) · x6(0))
y6(2) = σ1(σ5(x4(0)) · x6(1))
y6(3) = σ1(σ5(σ4(x2(0) · x3(0))) · x6(2))

. . . . . .

Dependency loops.Nodei has a dependency loop if there exists a sequence
(i, v1), (v1, v2), . . . , (v`−1, v`), (v`, i) of edges in the dependency graph. The existence of dependency
loops is important: If nodei has no dependency loops, then the cooperation level chosen byi in a given
time slot has no effect on the normalized throughput experienced byi in future time slots.
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We define two types of dependency loops depending on the strategies played by the nodes on the
dependency loop. If all nodesj (wherej 6= i) on the dependency loop ofi play reactive strategies,
then we talk about areactive dependency loopof i. If, on the other hand, there exists at least one node
j (wherej 6= i) on the dependency loop ofi that plays a non-reactive strategy, then the loop will be a
non-reactive dependency loopof i.

4 Results

Our goal, in this section, is to find possible Nash equilibria [Nash50] and investigate the conditions
for them. The existence of a Nash equilibrium based on cooperation would mean that there are cases
in which cooperation is “naturally” encouraged, meaning without using incentive mechanisms. In the
following, we use the model presented in Fig. 4. In Section 4.1, we present analytical results that
define the best strategies for a node under specific network conditions. In Section 4.2, we present the
results of simulations that we performed to estimate the probability that these conditions are satisfied
by the network.

4.1 Analytical Results

The aim of the nodes is to maximize the payoff that they accumulate over time. We compute this
cumulative payoff by applying the standard technique used in the theory of iterative games [Axe84]:
The cumulative payoffπi of a nodei is computed as the weighted sum of the payoffsπi(t) that i
obtains in each time slott:

πi =
∞∑

t=0

[πi(t) · ωt] (7)

where0 < ω < 1, and hence, the weights exponentially decrease witht. The valueω is often called
thediscounting factor, as it represents the degree to which the payoff of each time slot is discounted
relative to the previous time slot.

Recall thatSi(t) denotes the set of routes wherei is the source, andFi(t) denotes the set of routes
wherei is an intermediate node. Since we assumed that the routes remain static,Si(t) andFi(t) do
not change in time, and we will simply writeSi andFi instead ofSi(t) andFi(t). In addition, since
we assumed that each node is source on exactly one route,Si is a singleton. We denote the single route
in Si by ri. The cardinality ofFi will be denoted by|Fi|. Let us assume that nodei is an intermediate
node on router. We denote the set of intermediate nodes onr upstream from nodei including node
i in time slott by Φ(r, i). If node i has a reactive dependency loop with some of its sources, then
we consider the shortest loop for each source. We denote the length of the longest of such reactive
dependency loops minus one by∆i.

Theorem 1. If a nodei does not have any dependency loops, then its best strategy is AllD (i.e., to
choose cooperation level 0 in every time slot).

Proof. Nodei wants to maximize its cumulative payoffπi defined in (7). In our case,πi(t) can be
written as:

πi(t) = ξi(ri, t) +
∑

r∈Fi

ηi(r, t)

= [(G + L) · yi(t)− L]− C ·
∑

r∈Fi

∏

k∈Φ(r,i)

xk(t)
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Given thati has no dependency loops,yi(t) is independent of all the previous cooperation levels of
nodei. Thus,πi is maximized ifxi(t) = 0 for all t ≥ 0.

Theorem 2. If a nodei has only non-reactive dependency loops, then its best strategy is AllD.

Proof. The proof is similar to the proof of Theorem 1. Since all dependency loops ofi are non-
reactive, its experienced normalized throughputyi is independent of its own behaviorxi. This implies
that its best strategy is not to forward.

Corollary 1. If every nodej (j 6= i) plays AllD, then the best response ofi to this is AllD. Hence,
every node playing AllD is a Nash equilibrium.

In order to illustrate the case in which some nodes have no dependency loops, we modify the
network of Fig. 1. In the modified network, shown in Fig. 5, nodes 2 and 5 have no dependency loops.

(a) connectivity graph
and routes 
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(b) dependency graph
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Figure 5: A network with routes where nodes 2 and 5 have no dependency loops

If the conditions of Theorems 1 and 2 do not hold, then we could not determine the best strategy
of a nodei in general, because it very much depends on the particular scenario (dependency graph) in
question and the strategies played by the other nodes. However, in certain cases, the best strategy can
be determined, as shown by the following theorem:

Theorem 3. The best strategy for nodei is TFT, if:

1. Nodei has a reactive dependency loop with at least one of its sources. In addition, for each of
its sourcess, either nodei has a reactive dependency loop withs or i is the first forwarder for
s,

2. every other nodej (j 6= i) plays TFT, and

3. (G + L) · ω∆i > |Fi| · C.

The expression(G+L) ·ω∆i > |Fi| ·C means that the possible benefit for nodei must be greater
than its maximal forwarding cost considering every source node with which nodei has a reactive
dependency loop.

We provide here an outline of the proof as follows. The complete proof is presented in the ap-
pendix. Considering any nodei we introduce the first two conditions in the theorem to ensure that
the behavior of the node possibly affects itself. In the next step, we show that the behavior of the
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node is an upper bound for its experienced normalized throughput in a given number of time slots.
We explicitly define this number. Then we give an upper bound for the total payoff of the node using
the previous idea of the behavior feedback. Finally, we show that the node playing TFT reaches the
maximum payoff defined by the upper bound.

Corollary 2. If Theorem 3 holds for every node, then all nodes playing TFT is a Nash equilibrium.

As an example, let us consider Fig. 1 again. If the third condition of Theorem 3 holds for each
node, then all nodes playing TFT is a Nash equilibrium for this network.

The first two theorems state that if the behavior of nodei has no effect on its experienced nor-
malized throughput, then defection is the best choice fori. In addition, Corollary 1 says that if every
node defects constantly, it is a Nash equilibrium. The condition of Theorem 2 implies that it would
be a näıve approach to program all devices with the strategy that always forwards (AllC), because this
would make the network exploitable by selfish participants. Instead, manufacturers should program a
reactive strategy into the devices. Theorem 3 and its corollary mentions the existence of a cooperative
equilibrium (each node playing TFT). Yet, the conditions for this existence are extremely stringent.

4.2 Simulation Results

In this subsection our goal is to determine the likelihood that a cooperative equilibrium exists (i.e.,
the conditions of Theorem 3 hold). To this end, we performed simulations in randomly generated
scenarios. We summarize the parameters in Table 2.

Table 2: Parameter values for the simulation
Parameter Value
Number of nodes 100
Area type Torus
Area size 1500 m2

Radio range 250 m
Route length 4 hops

In our simulations, we randomly placed nodes in a toroid3 area. Then, for each node, we randomly
chose a destination at a fixed distance (in hops) from the node and we determined a route to this
destination using any shortest path algorithm. If several routes existed, then we randomly chose a
single one. From the routes, we built up the dependency graph of the network. On this dependency
graph, we performed a search for reactive dependency loops while varying the fraction of nodes that
played non-reactive strategies. All the results presented in the following subsections are the mean
values of 100 simulations with a 95% confidence interval.

Figure 6 shows the proportion of nodes that (a) can play reactive strategies (i.e. are not pro-
grammed to play non-reactive strategies), (b) are forwarders at least on one route, (c) have at least one
reactive dependency loop and (d) fulfill the first condition of Theorem 3.

The nodes that cannot play reactive strategies are irrelevant to our investigations because they
follow a fixed packet forwarding strategy, thus they do not make a decision about packet forwarding
at all. Additionally, there is a fraction of nodes that are not forwarders in any of the routes, thus

3We used this area type to avoid border effects. In a realistic scenario, the toroid area can be considered as an inner part
of a large network.
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Figure 6: The proportion of nodes that (a) can play reactive strategies (i.e. are not programmed to
play non-reactive strategies), (b) are forwarders at least on one route, (c) have at least one reactive
dependency loop and (d) fulfill the first condition of Theorem 3

they have no effect on other nodes. The nodes in this situation are also irrelevant to our study. In
Fig. 7 we show the same results as in Fig. 6 excluding these two types of nodes. We can see that if
initially every node can play reactive strategy, the proportion of nodes that fulfill the first condition of
Theorem 3 is about 50 percent. This proportion decreases as we increase the proportion of nodes that
play constantly non-reactive strategies.

If there exists at least one node that needs an incentive mechanism to cooperate, then we say that
an incentive mechanism must be applied for the whole network. Since the proportion of such nodes is
always around or above 50 percent, we can conclude that in general an incentive mechanism is almost
always needed under the assumption we have considered.

5 Related work

Energy-efficient cooperation in ad hoc networks.Srinivasanet al. [SNCR03] provide a mathemat-
ical framework for cooperation in ad hoc networks, which focuses on the energy-efficient aspects of
cooperation. In their solution, the nodes are classified in different energy classes. The nodes differ-
entiate between the connections based on the energy classes of the participants and apply different
behavior according to the type of the connection. This framework relies on an ideal mechanism that
distributes class information. We introduce a game theoretic model that does not rely on an addi-
tional mechanism, thus our investigations are more generic. Similarly to our framework, Srinivasan
et al. define time slots as an operating unit. But, they generate only one communication session in
the network in each time slot. They choose the participating nodes for this session uniformly. In our
model we take the constitution of the network also into account, which is in our opinion an important
factor. Finally, we develop a model for the nodes where they can make decisions based only on local
information.
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Proportion of nodes playing non−reactive strategies

Figure 7: The proportion of nodes (c) have at least one reactive dependency loop and (d) fulfill the
first condition of Theorem 3

Incentive mechanism in ad hoc networks. Marti et. al. [MGLB00] consider an ad hoc network
where some misbehaving nodes agree to forward packets but then fail to do so. They propose a
mechanism, calledwatchdog, in charge of identifying the misbehaving nodes, and a mechanism,
called pathrater, that deflects the traffic around them. But, misbehaving nodes are not punished,
and thus there is no motivation for the nodes to cooperate. To overcome this problem, Buchegger
and Le Boudec [BL02] and also Michiardi and Molva [MM02] define protocols that are based on a
reputation system. In both approaches, the nodes observe the behavior of each other and store this
knowledge locally. Additionally, they distribute this information in reputation reports. According to
their observations, the nodes decide how to behave with each other (e.g., nodes may deny forwarding
packets for misbehaving nodes). Another solution presented by Buttyan and Hubaux [BH00, BH03]
that gives an incentive for cooperation is based on a virtual currency, callednuglets or credits: If a
node wants to send its own packets, it has to pay for it in credits, whereas if the node forwards a packet
for the benefit of another node, it is rewarded with credits.

Application of game theory to networking. Game theory has been used to solve problems both
in fixed and cellular networks. Ji and Huang [JH98] apply the game theory for uplink power con-
trol in cellular networks. In [XSC01], Xiaoet.al. describe an utility-based power control framework
for a cellular system. In [GM01], Goodman and Mandayam introduce the concept of network as-
sisted power control to equalize signal-to-interference ratio between the users. Koriliset.al. [KLO95]
address the problem of allocating link capacities at routing decisions. In [KO99], they suggest a
congestion-based pricing scheme. Roughgarden [Rou02] quantifies the worst-possible loss in net-
work performance arising from non-cooperative routing behavior. In [YMR00], Yaı̈cheet.al. present
a game theoretic framework for bandwidth allocation. They study the centralized problem and show
that the solution can be distributed in a way that leads to a system-wide optimum. Marbach [Mar01]
applies the game theory for pricing in differentiated services networks.
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Cooperation studies in other areas of science. The emergence of cooperation has also been stud-
ied in a biological [Daw76], a sociological [Ols65] and an economical [Sim55] context. Most of these
studies use theIterated Prisoner’s Dilemma (IPD)game as their underlying model (see e.g., Axelrod
[Axe84, CRA99], Rapaport and Chammah [RC65] or Trivers [Tri71]). The simplicity of the IPD
makes it an attractive model, but it is not appropriate for modelling packet forwarding because it in-
volves only two players that, in addition, have symmetric roles. Consequently, in this paper, we define
a multi-player, asymmetric game that better suits our purposes. In [Axe84], Axelrod identifiesTit-
for-Tat (TFT)as a robust strategy that performs surprisingly well (in terms of maximizing the player’s
payoff) in many situations. TFT begins with cooperation in the first round and then repeats the pre-
vious move of the other player. Wahl and Nowak [WN99] study theContinuous valued Prisoner’s
Dilemma (CPD)game, where the nodes can choose a degree of cooperation between full cooperation
and full defection. Our model is, similarly to their model, based on a continuous valued game.

6 Conclusion

In this paper, we have proposed a theoretical framework to study the possible existence of cooperation
for packet forwarding in multi-hop wireless networks. We have introduced the concept of dependency
graphs, based on which we were able to prove several theorems. As a main result, we proved the
existence of a cooperative equilibrium of packet forwarding strategies. But, our simulation results
show that, in general, at most half of the nodes can have TFT as the best strategy. Thus, the likelihood
that the condition for Corollary 2 holds (i.e., every node has TFT as the best strategy) is extremely
small.

It is important to notice that our approach does not require a node to keep track of the individual
behavior of other nodes: indeed, the considered node is served simply in a way that reflects the way
it served others. As we have shown, this concept is captured by the game in which a given node
perceives itself as playing with the rest of the network. In this way, the node does not even need to
know the identity of the nodes forwarding (or deciding to not forward) its packets.

In this paper, we have assumed the routes to be static; this drastic decision was motivated by the
complexity of the problem and by our willingness to provide formal results. In terms of future work,
we intend to study the impact of mobility; we expect mobility to have beneficial effects, as it will
increase the dependency between the nodes. In this work, we focused on the possibleexistenceof
equilibria; in the future, we will also investigate the possibleemergenceof such equilibria. Finally,
we intend to relax the assumption of linearity of the utility function.
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A Proof of Theorem 3

In this proof, we consider the total payoff for a given nodei discounted with the factorω in future
time slots. We give an upper bound for this value and show that if nodei plays TFT, then it reaches
this upper bound. We conclude that TFT is the best possible strategy for nodei.

Theorem 3. The best strategy for nodei is TFT, if:

1. Nodei has a reactive dependency loop with at least one of its sources. In addition, for each of
its sourcess, either nodei has a reactive dependency loop withs or i is the first forwarder for
s,

2. every other nodej (j 6= i) plays TFT, and

3. (G + L) · ω∆i > |Fi| · C.

Proof. Nodei is an intermediate node on a given router. src(r) stands for the source of this route.
We denote the set of intermediate nodes onr upstream from nodei, including nodei in time slott
by Φ(r, i, t). Moreover, we denote byΦ(r, t) the set of all forwarder nodes on router in time slott.
Applying the notation of the meta-model, (1) can be written as follows:

ysrc(r)(t) =
∏

k∈Φ(r,t)

xk(t) (8)

Nodei participates in several routes as a forwarder. According to the first condition of the theorem,
nodei either has a reactive dependency loop with one of its sources or it is the first forwarder for that
source. Thus, we can split up the set of routesFi into two subsets. The first subset, denoted byF

′
i ,

contains the routes where nodei has a reactive dependency loop with the source. The second subset,
denoted byFi\F ′

i , contains the routes where nodei is the first forwarder and is therefore the set .
For anyr ∈ F

′
i , we can give a lower bound for the cooperation level of nodei as:

xi(t) ≥
∏

k∈Φ(r,i,t)

xk(t)
1)

≥
∏

k∈Φ(r,t)

xk(t)
2)
= ysrc(r)(t)

3)

≥ yi(t + δi,src(r)) (9)

1) This means that we give a lower bound for the cooperation level of some nodes on router with the product of all nodes
on router.

2) Using (8).

3) The inequality holds, because every node is playing TFT (the identity function in Table 1), so thet-th i/o formula that

gives the value ofysrc(r)(t) is a product that involvesyi(t + δi,src(r)).

For the routes where nodei is the first forwarder, we have:
∏

k∈Φ(r,i,t)

xk(t) = xi(t) (10)

becauseΦ(r, i, t) is reduced to the singleton{i}.
Beginning from (5) we express the total payoff of nodei over all time slotst (πi) as:
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πi = G + C (11)

=
∞∑

t=0

∑

r∈Si(t)

ξi(r, t)ωt +
∞∑

t=0

∑

r∈Fi(t)

ηi(r, t)ωt

where the first term represents the total gain for nodei (shortlyG) and the second term stands for
its total cost (C).

Let us give an upper bound for the total gain first:

G =
∞∑

t=0

[((G + L) · yi(t)− L)ωt]

= (G + L)
∞∑

t=0

yi(t)ωt − L
∞∑

t=0

ωt

1)
=

|F ′
i |

|Fi| · (G + L) ·
∞∑

t=0

yi(t) · ωt +
|Fi\F ′

i |
|Fi| · (G + L) ·

∞∑

t=0

yi(t) · ωt − L

1− ω

2)
=

∑

rp∈F
′
i

G + L

|Fi| · (
δi,src(rp)−1∑

t=0

yi(t) · ωt +
∞∑

t=δi,src(rp)

yi(t) · ωt)

+
|Fi\F ′

i |
|Fi| · (G + L) ·

∞∑

t=0

yi(t) · ωt − L

1− ω

3)
=

∑

rp∈F
′
i

G + L

|Fi| · (
δi,src(rp)−1∑

t=0

yi(t) · ωt +
∞∑

t=δi,src(rp)

yi(t) · ωt)

+|Fi\F ′
i | ·

G + L

|Fi| · (
∆i−1∑

t=0

yi(t) · ωt +
∞∑

t=∆i

yi(t) · ωt)− L

1− ω

4)
=

∑

rp∈F
′
i

G + L

|Fi| · (
δi,src(rp)−1∑

t=0

yi(t) · ωt + ωδi,src(rp) ·
∞∑

t=0

yi(t + δi,src(rp)) · ωt)

+|Fi\F ′
i | ·

G + L

|Fi| · (
∆i−1∑

t=0

yi(t) · ωt + ω∆i ·
∞∑

t=0

yi(t + ∆i) · ωt)− L

1− ω
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5)

≤
∑

rp∈F
′
i

G + L

|Fi| · (
δi,src(rp)−1∑

t=0

yi(t) · ωt + ωδi,src(rp) ·
∞∑

t=0

yi(t + δi,src(rp)) · ωt)

+|Fi\F ′
i | ·

G + L

|Fi| · (
∆i−1∑

t=0

yi(t) · ωt + ω∆i ·
∞∑

t=0

xi(t) · ωt)− L

1− ω

=
∑

rp∈F
′
i

(
G + L

|Fi| ·
δi,src(rp)−1∑

t=0

yi(t) · ωt) +
∑

rp∈F
′
i

(
G + L

|Fi| · ωδi,src(rp) ·
∞∑

t=0

yi(t + δi,src(rp)) · ωt)

+|Fi\F ′
i | ·

G + L

|Fi| ·
∆i−1∑

t=0

yi(t) · ωt + |Fi\F ′
i | ·

G + L

|Fi| · ω∆i ·
∞∑

t=0

xi(t) · ωt − L

1− ω

6)

≤
∑

rp∈F
′
i

(
G + L

|Fi| ·
δi,src(rp)−1∑

t=0

ωt) +
∑

rp∈F
′
i

(
G + L

|Fi| · ωδi,src(rp) ·
∞∑

t=0

yi(t + δi,src(rp)) · ωt)

+|Fi\F ′
i | ·

G + L

|Fi| ·
∆i−1∑

t=0

ωt + |Fi\F ′
i | ·

G + L

|Fi| · ω∆i ·
∞∑

t=0

xi(t) · ωt − L

1− ω

=
∑

rp∈F
′
i

(
G + L

|Fi| · 1− ωδi,src(rp)

1− ω
) +

∑

rp∈F
′
i

(
G + L

|Fi| · ωδi,src(rp) ·
∞∑

t=0

yi(t + δi,src(rp)) · ωt)

+|Fi\F ′
i | ·

G + L

|Fi| · 1− ω∆i

1− ω
+ |Fi\F ′

i | ·
G + L

|Fi| · ω∆i ·
∞∑

t=0

xi(t) · ωt − L

1− ω

1) We split up the first term into two parts according to the setsF
′
i andFi\F ′

i . We know that|F ′
i |+ |Fi\F ′

i | = |Fi|.

2) We replace the multiplication withF
′
i with the sum over allrp ∈ F

′
i . Additionally, we rewrite the first term in a way

that the infinite sum is split up into two parts. Recall thatδi,src(rp) stands for the shortest reactive dependency loop
minus one for nodei with its sourcesrc(rp).

3) Now we split up the term that corresponds to the remaining set of routes (Fi\F ′
i ). Here∆i is the largest of allδi,src(rp),

whererp ∈ F
′
i .

4) Changing the index in both first and second term.

5) Using (9) we can give an upper bound.

6) Using thatyi(t) ≤ 1.

Now let us give an upper bound for the total cost (C):
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C = −C ·
∞∑

t=0

∑

r∈Fi

∏

k∈Φ(r,i,t)

xk(t) · ωt

1)
= −C ·

∑

rp∈F
′
i

∞∑

t=0

∏

k∈Φ(r,i,t)

xk(t) · ωt − C ·
∑

rq∈Fi\F ′i

∞∑

t=0

∏

k∈Φ(r,i,t)

xk(t) · ωt

2)

≤ −C ·
∑

rp∈F
′
i

∞∑

t=0

yi(t + δi,src(rp)) · ωt − C ·
∑

rq∈Fi\F ′i

∞∑

t=0

xi(t) · ωt

3)
= −C ·

∑

rp∈F
′
i

∞∑

t=0

yi(t + δi,src(rp)) · ωt − C · |Fi\F ′
i | ·

∞∑

t=0

xi(t) · ωt

1) We can split up the cost over all routes as a cost over the sets of routes inF
′
i andFi\F ′

i , respectively.

2) Using (9) and (10) we can give an upper bound.

3) In the second term the sum is independent ofrq.

Now we reexpress (11) by including the values we have just completed forG andC:

πi ≤
∑

rp∈F
′
i

(
G + L

|Fi| · 1− ωδi,src(rp)

1− ω
) +

∑

rp∈F
′
i

(
G + L

|Fi| · ωδi,src(rp) ·
∞∑

t=0

yi(t + δi,src(rp)) · ωt)

+|Fi\F ′
i | ·

G + L

|Fi| · 1− ω∆i

1− ω
+ |Fi\F ′

i | ·
G + L

|Fi| · ω∆i ·
∞∑

t=0

xi(t) · ωt − L

1− ω

−C ·
∑

rp∈F
′
i

∞∑

t=0

yi(t + δi,src(rp)) · ωt − C · |Fi\F ′
i | ·

∞∑

t=0

xi(t) · ωt

=
∑

rp∈F
′
i

(
G + L

|Fi| · 1− ωδi,src(rp)

1− ω
) + |Fi\F ′

i | ·
G + L

|Fi| · 1− ω∆i

1− ω
− L

1− ω

+
∑

rp∈F
′
i

((
G + L

|Fi| · ωδi,src(rp) − C) ·
∞∑

t=0

yi(t + δi,src(rp)) · ωt)

+|Fi\F ′
i | · (

G + L

|Fi| · ω∆i − C) ·
∞∑

t=0

xi(t) · ωt
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1)

≤
∑

rp∈F
′
i

(
G + L

|Fi| · 1− ωδi,src(rp)

1− ω
) + |Fi\F ′

i | ·
G + L

|Fi| · 1− ω∆i

1− ω
− L

1− ω

+
∑

rp∈F
′
i

((
G + L

|Fi| · ωδi,src(rp) − C) ·
∞∑

t=0

ωt)

+|Fi\F ′
i | · (

G + L

|Fi| · ω∆i − C) ·
∞∑

t=0

ωt

=
∑

rp∈F
′
i

(
G + L

|Fi| · 1− ωδi,src(rp)

1− ω
) + |Fi\F ′

i | ·
G + L

|Fi| · 1− ω∆i

1− ω
− L

1− ω

+
∑

rp∈F
′
i

((
G + L

|Fi| · ωδi,src(rp) − C) · 1
1− ω

)

+|Fi\F ′
i | · (

G + L

|Fi| · ω∆i − C) · 1
1− ω

=
∑

rp∈F
′
i

(
G + L

|Fi| − C) · 1
1− ω

+ |Fi\F ′
i | · (

G + L

|Fi| − C) · 1
1− ω

− L

1− ω

2)
= |F ′

i | · (
G + L

|Fi| − C) · 1
1− ω

+ |Fi\F ′
i | · (

G + L

|Fi| − C) · 1
1− ω

− L

1− ω

3)
= (G + L− |Fi| · C) · 1

1− ω
− L

1− ω

=
G− |Fi| · C

1− ω

1) The inequality holds if for all routesrp, whererp ∈ F
′
i the following condition is true:

G + L

|Fi| · ωδi,src(rp) − C > 0

G + L

|Fi| · ωδi,src(rp) > C

(G + L) · ωδi,src(rp) > C · |Fi|

Recall from the theorem that∆i is largest among allδi,src(rp). If the condition is true for this value then it is true for
all δi,src(rp). Thus, the condition for∆i is the third condition for the theorem.

If the condition is true, we can give an upper bound if we substituteyi(t + δi,src(rp)) andxi(t) by 1 (in the last two
terms).

2) The first sum is independent ofrp.

3) Recall that|F ′
i |+ |Fi\F ′

i | = |Fi|.

Let us emphasize the upper bound for the total payoff again:

πi ≤ G− |Fi| · C
1− ω

(12)

If nodei plays the strategy TFT as the others do, then everyone cooperates. In this case,
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πi =
∞∑

t=0

[[(G + L) · yi(t)− L− C ·
∑

r∈Fi

∏

k∈Φ(r,i,t)

xk(t)]ωt]

=
∞∑

t=0

[(G− C|Fi|) · ωt]

=
G− |Fi| · C

1− ω

This value is equal to the upper bound expressed in (12), meaning that there is no strategy for
nodei leading to a higher payoff than TFT. Therefore, TFT is the best strategy for nodei.
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