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Abstract

The traditional layered networking approach is not efficient in ad-hoc net-
works. We are interested in finding a jointly optimal scheduling, routing and
power control that achieves max-min fair rate allocation in a multi-hop wireless
network. This is a highly complex non-convex optimization problem and it has
been previously solved only for small networks. We restrict ourselves to symmet-
ric networks with ring and line topologies, and we numerically solve the problem
for a large number of nodes. We model point to point links as single user Gaussian
channels. This type of channel approximates the performance of CDMA networks
and performs better than the equivalent 802.11 network.

We show that for smaller transmission powers it is optimal to relay over other
nodes whereas for high powers it is optimal to send data directly to a destination.
We also show when this transition occurs. We analyze the optimal schedule and
find that if a node is active, it should send at the maximum power. Furthermore, in
large networks the distance between nodes sending at the same time is never larger
then five.

1 Introduction

It has recently become evident that a traditional layering network approach, separating
routing, scheduling, flow and power control, is not efficient for ad-hoc wireless net-
works [1]. This is primarily due to the interaction of links through interference, which
implies that a change in power allocation or schedules on one link can induce changes
in capacities of all links in the surrounding area and changes in the performance of
flows that do not pass over the modified link.

There are several papers that study variations of the joint optimization problem.
In [12] the joint scheduling and power control problem is considered in networks with
QoS constraints, where a minimum signal to noise ratio is defined for every link. Given
these set of constraints, they find an optimal scheduling and power allocation that satis-
fies constraints and minimizes dissipated power. A similar model with a minimum SIR
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constraint is analyzed in [5]. In [7], the authors find optimal scheduling and power con-
trol that maximizes total throughput of a network, given the power constraints for each
user. They solve the problem for small networks and they demonstrate a distributed al-
gorithm that finds an approximate solution for large networks based on hierarchy. Joint
routing and scheduling is considered in [3], where a total throughput of a network is
maximized when given a set of links that cannot be active at the same time.

In [10] the authors define a very general model of a wireless network that covers
both routing, scheduling and power control. They take the total network capacity as a
performance measure. However, the complexity of the model is such that even with the
linear objective it can handle less then 10 nodes.

Per-link utility fairness in multi-hop wireless networks is discussed in [13] and
is achieved by different scheduling. A similar approach for max-min fairness can be
found in [4, 14].

In this paper we focus on best-effort networks, and we want to find scheduling,
power allocation and routing that achieves the max-min fair rate allocation. This is a
highly complex non-convex optimization problem for a general network topology. A
similar framework in [10] has been solved for up to 10 nodes. It is thus difficult to draw
a general conclusion about network design from such small networks.

In order to obtain results for larger networks, we focus on one-dimensional network
topologies, where all nodes are aligned on a straight line. These topologies represent a
large class of existing networks, from car networks on highways to networks on coasts
or mountain valleys. If a network has a finite size we replace a line with a ring in order
to avoid border effects.

We also assume that a network is symmetric, that is, all nodes are equally spaced
and each node has data to send to its

�
hop away neighbor on the right. This simplifica-

tion allows us to immediately identify the optimal schedule, as will be shown later. The
symmetry argument is not always realistic, but we think it gives us an important insight
into design of homogeneous networks. We model a link between two nodes as a point
to point single user Gaussian channel with deterministic fading and a unique power
limit for all nodes. This model closely approximates CDMA networks and performs
better than the equivalent 802.11 network.

Finally, we allow the two most common routing policies. One is that each node
sends data directly to its destination (DIR), hence there is no relaying. The other is that
each node forwards data to the destination by relaying it over all intermediate nodes,
thus using minimum energy path (MER). There are clearly other relay routing policies
that might perform better than minimum energy routing. However, minimum energy
routing is frequently used, simple to implement, and performs comparably to direct
routing.

The first question we answer in this paper is, in a given network, should it relay
packets or not. In other words, which is better for optimal scheduling and power al-
location, minimum energy routing or direct routing? We also characterize the optimal
scheduling and the optimal power allocation for a given routing. From these character-
izations we can derive heuristics that can be applied on homogeneous one-dimensional
networks.

This paper is organized as follows: In section 2 we present a general model and
its simplification in the case of a symmetric one dimensional network. In section 3 we
analyze the proposed model. In section 4 we present numerical results and in section 5
we conclude and give directions for future work.
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2 Assumptions and Modeling

2.1 MAC Model

Let us consider a wireless network on a plane represented by a set of nodes �������������
	�� ,
and their positions. Let us denote by

��
�� ����� distance between nodes
�

and � . Let ��
represent a vector of powers allocated to each of the 	 nodes, where power ��� of each
node is limited by a maximum power � � . We use a deterministic fading model where
fading between two nodes depends only on their distance. A signal emitted at power �
from node

�
is received by node � at power ������� � �"! � where � � � � �#
$� �%�&�('*) , and+ is a constant fading factor.

We further assume noise from others sources as well as background noise to be
Gaussian, hence the total interference at a receiver is also Gaussian. Given a power
allocation �� , we have that the SIR ratio at a link


$� �%�&� is

,&�-� 
 �� �.� � �-�/�#�0214365879 � � 5 � � 5 �
where

0
is a background noise.

Furthermore, data is separately encoded on each hop, and we assume that a receiver
cannot decode third party communications, hence it treats it as noise. Then each hop
can be modeled as a single user Gaussian channel. The Shannon capacity bound for
this type of channel can be achieved using contemporary CDMA technology. It is also
higher then the rate achieved by 802.11 since 802.11 has zero throughput if SNR is
lower then the threshold and has constant throughput if SNR is above the threshold.
From the information theoretic point of view, hop by hop coding is clearly not the
optimal solution. However, it is used in most of today’s wireless networks. Also, the
capacities of more advanced relay or broadcast Gaussian channels are known only in
some special cases [11], and these cases are not applicable in our model. Finally, we
assume that a destination can receive data from or send data to only one source at a
time, and it cannot send while receiving.

Given the above assumptions, the maximum achievable rate between nodes
�

and
� given a fixed power allocation �� is : �-� �2; � � 
 �� �<�=�?>�@�ACB8D 
 � 1 , �-� 
 �� �/� bits/s/Hz,
and we denote by �:E� �; 
 �� � a vector of rates on each point to point link achieved
with a fixed power allocation �� . Finally, we observe that for any two feasible power
allocations ��*F and ��#G and corresponding rate allocations �: F and �: G , we can also achieve
a convex combination of corresponding rates �:H� + �: F 1 
 �JI + ���: G by time-divisioning.
Assuming that this time-divisioning is averaged on a long term, a set of feasible link
rate allocations is K

� Hull

#L
MN?OQP

�; 
 �� �
��R

2.2 Routing

Among a given set of nodes, we define a set of sources that feed data to corresponding
destinations. This communication can be done by letting each source transmit data
directly to its destination. We call this routing policy direct routing (DIR), and it rep-
resents a single-hop network where each source sends data directly to its destination
without relaying.

As mentioned in the introduction, the main question is whether one can improve
performance by relaying data over intermediate nodes. Since in this setting each node
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can communicate to every other node, there is an exponential number of possible re-
laying paths. Additionally, each source can use several paths in parallel, depending on
the load on each path.

In this paper we focus on a minimum energy routing (MER) as a relay routing
policy. This is a single-path routing policy where each source uses the path that mini-
mizes the sum of fadings over each hop; this is indeed the path that minimizes energy
consumption of nodes. Although other relay routing policies might yield a better per-
formance, we analyze this one in order to simplify the model, because it is the most
straightforward to implement, and because it outperforms direct routing in large num-
ber of cases. When MER performs better than DIR we say that it is beneficial to relay.

2.3 Topology

The above problem is difficult to solve in the general case (discussion for arbitrary
networks with up to 6 nodes are given in [10]). In order to analyze networks with a
larger number of nodes, we restrict our attention to ring and line topologies with a high
level of symmetry, depicted on fig 1.

ϕ=2π/n

1

2

0

n−1
R

l

l−1 0 1l

Figure 1: Analyzed topologies: ring and line.

Ring topology represents an 	 -sided regular polygon with distance � between nodes.
Line topology is a limiting case when the number of nodes in a ring tends to infinity
while � remains fixed. Each node sends data to its

�
hop away neighbor on the right,

where
��� 	 >�@ . The maximum power for all nodes is the same, and equal to � . We see

immediately that with a minimum energy routing, each node will send all data only to
its one-hop neighbor on the right. We also assume that all nodes use the same routing,
either MER or DIR.

2.4 Performance objectives

In most of the papers concerning optimal performance of wireless networks, such as
[12, 5, 7, 3, 10], the authors maximize total throughput of the network. This ap-
proach can lead to gross unfairness, where users with worse channels might not get
any throughput. Per-link utility fairness per link has been considered in [13], and per-
link max-min fairness in [4, 14]. However, this still doesn’t guarantee per-flow fairness
for long flows.

We want to find a scheduling, routing and power allocation such that long term
average flow rates will have max-min fair rate allocation. This means that not one
rate of a single flow can be increased without decreasing an already smaller flow rate.
Since the feasible region is a convex set, if follows from [2] that the max-min fair rate
allocation exists.
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3 Analysis

In this section we present several analytical findings for our model.

3.1 Max-Min Fairness

The first proposition is about a property of the max-min fair rate allocation.

Proposition 1 In the above defined wireless network, if a rate allocation is max-min
fair then each source - destination pair has the same rate.

Proof: Suppose this is not true, and that for some flows
�

and � we have � ��� � � . Let� � and
� � be sets of bottleneck links of flow

�
and � respectively. Then there exists a

time slot where ������� for each ��	 � � . By decreasing each �
� � ��	 � � by � �
� , we
will decrease rate � � to a smaller � �� . We do the same for other flows that share the same
bottlenecks, hence they will all have the same new rate ���� . This in turn increases rates
of links in

� � , hence we can increase � � as well. If � is sufficiently small, we obtain
a new feasible rate allocation where we increased a rate of a flow without decreasing
a rate of an already smaller flow, which contradicts with the definition of max-min
fairness.

q.e.d.

Since all flow rates are the same, we can write � ��� � . Due to symmetry in routing,
one can easily verify that all link rates are the same, hence we can also write : � ��: .
For the direct routing, a link capacity corresponds to the rate of a flow, hence the rate
of flow � � : . For the minimum energy routing we have

�
flows sharing the same link,

hence � � : > �
.

3.2 Scheduling

We next analyze scheduling and describe the feasible link rate allocation set
K

. In the
case of MER routing, we have 	 one-hop links, and in the case of DIR routing we
have 	 �

-hop links. According to the Carathéodory theorem, every point �: in the set of
feasible link rate allocations set

K
can be expressed as a linear combination of 	 1 �

points in � MNQOQP �; 
 �� � ,

�:H�
��� F�
� 9 F + � �; 
 ��#� ��R (1)

Vectors ���� represent power allocations within slots, and vector + describes frequencies
of these slots.

Let us call � � 
 �� � a rotation of �� such that for all � 	 � ����� 	 I � ,


 � � 
 �� �/� � � 
 � � 
 �� �
��� � � ��������� � R
For the ring topology, we have the following proposition:

Proposition 2 In the above depicted scenario, the optimal schedule consists of 	 ro-
tationally symmetric power vectors �� � ��� � 
 �� � that are equally frequent, that is+ � � � >?	 .
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Proof: Let �: be the vector of the optimal link rates. From proposition 1 we know that
all links have the same rate, that is for all

�
and � ,


 �:*� � � 
 �: � � .
Since �: is rotationally symmetric we can achieve the same rate by rotating each

power allocation by an arbitrary � , hence from (1):

�:H�
��� F�
� 9 F + � �; 
 � 5 
 ���� �
��R

Now, if �: � �E�?>?	 3 � 5 9 F �; 
 � 5 
 �� � �/� then all �: � are also rotationally symmetric. Since

�: �
��� F�
� 9 F + � �: ���������� �: � �

we conclude that for some �� we can represent a max-min fair allocation as

�:H� �
	
��

5 9 F �; 
 � 5 
 �� �
��R

q.e.d.

Since all link rates are the same, we can also write

: 
 �� � � �
	
��

5 9 F ; F
	 ��� � F � 
 � 5 
 �� �
��� (2)

and we see that vector �� that maximizes : 
 �� � is the optimal power allocation that
achieves per-flow max-min fair rate allocation.

3.3 Power Allocation

In the previous section we showed that the optimal scheduling strategy is to allocate
equal time to each rotation of a single power allocation vector �� . We now want to
characterize the optimal allocation �� . We noticed that for an arbitrary feasible power
allocation �
 , if we fix 
 G ��������� 
 � , the rate is maximized if 
?F is either � or � . We were
not able to formaly prove this statement. However, we found empirically that the rate
is a quasi-convex function [9] of the power 
 F , which implies the � > � property:

Claim 1 Let us consider : 
 
 F � as a function only of the first component of vector
�
 . Then, for arbitrary values of components 
 G ������� � 
 � of �
 , function : 
 
 F � is quasi-
convex.

One way to prove that : 
 
 F � quasi-convex is to show that if �������� � � then neces-

sarily �
�
����
�
�
� � R We numerically tested this claim for rings with 	 up to 6. We also

observed that for large 	 , when a ring can be approximated with a line, only a few
of the closest neighbors significantly contribute to the interference. Specifically, if we
take the most dense power allocation where every second node is sending at maximum
power, and we take + � I�� , then nodes further then 3 hops away from a destination
contribute to the overall interference 0.47%, and for + ��I @ , it contributes about 15%.
Using this approximation we numerically verified this claim for large 	 as well.
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Figure 2: Illustration of claim 2. On the top, the optimal scheduling for the two routing
policies is given, for ����� , ����	 , 
��
������� . Dashed arrows depict flows, and solid
arrows depict active links. Numbers below are time slot numbers. Each link is either
inactive, or active at the full power. There are 8 allocations in total, but the first 4 are
exactly the same as the last 4, for both routing policies. These 8 allocation repeat in a
row, each taking the equal time slot, and each one is a rotation of the previous one. In
MER routing, distance � between active nodes is 2. In DIR routing, there are 2 groups
of ����	 active nodes and distance between them is ����� .

Proposition 3 If claim 1 is true, then in the optimal power allocation �� each power ���
is either 0 or � .

Since claim 1 is true for arbitrary 
 G ��������� 
 � , it is also valid for ��G ��������� � � , hence
we conclude �*F in the optimal allocation �� has to be either 0 or � . The same reasoning
applies to all coordinates of �� .

q.e.d.

Restricting ourselves to power allocations where all nodes either send at the full
power or not send at all, we have the following claim:

Claim 2 Optimal power allocation �� consists of several groups of adjacent active
nodes. Each group has a size from 1 to

�
, and the differences in sizes of any two

groups is at most 1. The difference in distances between two adjacent groups of active
nodes for any two pairs of groups is at most 1. Especially, in case of MER routing, the
size of all active groups is one.

An example of the optimal power allocation is illustrated on fig. 2. We numerically
tested this claim and found it true for networks of up to 20 nodes. According to claim 2
we can than define � as an average size of a group of active nodes, and � as an average

7



	 ��� , � �6@ , � ��� � ' G
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Figure 3: Short representations of the optimal policies policies for � � � and � � ��� :
one rotation of the optimal power allocation is given, each link denoted with 0 if inactive
and 1 if active. The left case � � � is the one depicted on fig. 2. In MER routing, every
second node is active. In DIR routing, for � � � there are 2 groups of 2 active nodes,
and distance between them is 4. For ������� , there are 4 groups of 2 active nodes and
distances between them are 4 and 5.

distance between the first active nodes of two adjacent groups. Since these parameters
vary for at most one, they depict well the optimal power allocation, especially in large
networks, and thus in the line case. Note that for MER routing � will always be 1, and
for DIR we have � � �

.

4 Results

In this section we present numerical solutions to the joint optimization problems for
various values of parameters. These parameters are a number of nodes 	 , a distance
to the destination

�
, a relative maximum power � �
' ) > 0

and a fading coefficient + .
Again, the two main questions that we seek to answer are when it is beneficial to relay
(i.e. when is MER routing better then DIR), and what is the optimal power allocation,
for various values of system parameters.

In order to obtain numerical solutions we used different techniques. We first solved
the problem over all possible power allocations, using eq. (2) as a rate equation. Since
; F 	 ��� � F � 
 :�� � A B�D 
 � 1 :�� � it is easy to show that this optimization problem is a d.c.
programming problem [8]. Although we solved this problem with a branch and bound
approach, the solution was too complex to be applied for networks larger then a few
nodes. These solutions however verified claim 1. We next used claim 1 and we solved
the problem by searching over @ � possible power allocations for networks with up to
20 nodes. Finally, we used claim 2 to solve the problem for a line and an arbitrary
large ring (since a very large ring can be approximated with a line). In the following
sections, we present numerical results and conclusions. Where it is not explicitly stated,
we assume + �EI�� .

4.1 The Ring Case

We first consider an 	 � � � node ring. We search over @ � possible power allocations
to find the optimal one for both MER and DIR routing. The results are depicted on fig.
4. On the left we see the rate per flow, and on the right we see the rate per distance per
flow, as defined in [6]. For small enough powers it is better to use minimum energy
routing, hence to relay, and for large power it is optimal to use direct routing.

Fig. 5 shows at what power limit the transition from MER to DIR occurs, for
different network sizes and flow lengths. The larger the network is and the shorter the
flows are, the more spacial reuse and more incentive to relay there is. We also see that
transition power is log-linear with respect to the size of the network 	 and is super
log-linear with respect to the flow length

�
.
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Figure 4: On the left maximum rate and on the right maximum rate per distance
achieved for direct (DIR) and minimal energy routing (MER), for a ring of 18 nodes
and a variable flow length is on the left.
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Figure 5: The two figures depicts at which power constraint a transition from minimal-
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Figure 6: Optimal scheduling for different power limits, for both MER and DIR (n=18,
d=3). The first column gives the power limit. The second gives the optimal schedule
for MER routing, where 1 means a node is on and 0 means a node is off, and � is the
average distance. The third column gives the optimal schedule for DIR and the average
distance between adjacent active groups � and average size of an active group � ( � is
always 1 for MER). The last column tells which routing performs better. The optimal
joint scheduling and routing policy is shown in boldface.
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Figure 7: Number of nodes active in one time slot. Since the emitting powers or all
active nodes are the same, and the number of active nodes is the same in all slot, this
number is directly proportional to dissipated energy.

Another interesting question to consider is the optimal power allocation, given the
system parameters. An example is given on figure 6, for an 18 node ring with flow
length of 3. We see that for very small powers, as many nodes as possible are active at
the same time, because the interference is small. In MER this means every second node,
hence � � @ . A group cannot be larger then one, since link size is 1, hence � � � . In
DIR, it means first

�
nodes are active and the next

�
nodes are receiving, hence inactive,

and so on, leading to � � �
and � � @ �

. When power grows, the distance between
active groups � grows, and group size � shrinks. Eventually, for very large powers,
we will have only one active node at a time for both routing policies. We than have
a log-linear increase of rate with power in both policies, since now power allocation,
scheduling and topology are fixed and a change in power limit directly increases rate.
It is also interesting to notice that DIR is never better then MER when � � � since the
interfering node is closer to the destination then the sender.

The number of active nodes can be seen on fig. 7. This number is the same for
all slots, and since all active nodes use the same power, it is directly proportional to
the dissipated energy. We see that for smaller powers, both routing policies dissipate
approximately the same energy. When the power gets larger, DIR uses only 1 active
node while MER uses 4, hence MER dissipates 4 times more energy at a lower rate
(see fig. 4). For even larger powers, energy dissipation is the same since only one node
is active at a time.

4.2 The Line Case

Next, we consider an infinite line with nodes equally spaced on a distance � . Since
this is the limiting case of rings when 	 tends to infinity and distance � between nodes
remains constant, these results also apply to rings with a large 	 . On the left of fig. 8
we see maximum rates for the two routing policies. We first note that DIR routing is
never better then MER (it is actually only slightly better, and the reason for this lies
in the optimal power allocation, as is discussed later). This is in accordance with fig.
5, where we see that a transition power constraint grows exponentially with a number
of nodes. From fig. 8 we see that for smaller rates, MER performs better, and when
power constraint is sufficiently high, DIR and MER performs the same. The same is
observed for different values of + . The transition when DIR becomes as good as MER
is depicted on the right of fig. 8. We see that the transition function is log-log linear
with respect to

�
, where the slope depends on + (the higher + is, the more spacial reuse
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is possible, and transition occurs later).
The fact that DIR is never better then MER in the line case is somewhat different

from the ring case. In the ring case (fig. 4), each node was given a fixed time slot
of a positive length. When transmitting power was high, optimal power allocation
contained only one active node, and by increasing the transmission power it was able
to increase arbitrary its rate. This was true for both MER and DIR, whereas the DIR
rate in that case grew faster since relaying was expensive. In the line case, this scenario
is no longer possible, since we always have more than one node active at the same time
and the increase in the transmission powers will eventually be canceled by interference.

Similar phenomenon can be observed on a transition diagram for the line (fig. 8
on the right) and for the ring (fig. 5 on the right). For the line case, as the flow length
increases, a transition power increases, whereas for the ring this dependency is inverse.
This is again because for finite rings and DIR routing, the higher

�
is, the smaller the

power for which optimal power allocation has only one active node is, and the higher
the derivative of the rate over transmitting power is (as can be seen on fig. 4). As it is
not possible to have only one active node in an infinite network, the transition diagram
changes and relaying becomes cheaper (a transition power grows with

�
).

Since in the line case MER is always optimal, we conclude that rate per distance
is constant, regardless of the flow length. This in turn means that network transport
capacity is roughly

� 
 	�� compared to the transport capacity
� 
�� 	�� of an arbitrary

network on a unit disk, as in [6]. This is due to the fact that in our networks traffic
is distributed locally (

��� 	 ) whereas in [6] sources and destinations are distributed
uniformly throughout the network.

Finally, we analyze the optimal power allocation for the line case. On fig. 9 we see
how it evolves as 	 grows, for MER. For small powers we have �<� @ . We see that as
	 grows, a power for which we have only one active nodes grows. For powers slightly
lower than this transition one, we see that � is approximately 4.5. In the line case, we
also have � � @ for small powers, and it converges to around 4.5 as the power goes
to infinity, as can be seen on the left of fig. 10. Since we allow only integer average
distances in our approximate model (that is, all adjacent groups of active nodes are
equally spaced), this limiting � is approximated with 5. We also see from fig. 10 that
the same phenomenon occurs for + ��I @ , hence it is not sensitive to the fading factor.

In the case of DIR routing, a similar behavior can be observed. For very small
powers, the distance between groups of active nodes is �H� @ �

, �<� �
and with this

allocation each node either sends or receives data. As the power grows, � increases and

11



Number of active nodes for MER, α=-4

0

20

40

60

80

100

n
10-10

10-5

100

105

1010

1015 P R-α / N

0

10

20

30

40

50

#active

Figure 9: Number of nodes transmitting at the same time (inverse of � ) for MER. For
large � it converges to between 4 and 5 nodes. Since distance between active nodes
grows with power, DIR will have the same scheduling behavior for large powers. Note
that the flow length does not change scheduling policy for minimal energy routing, but
only total rate.

�
decreases. As the power tends to infinity, � becomes 1 and � becomes �#R � ! �

. There-
fore, for very large powers we can approximate a line


 � � � � with a line

 � � ��� � . Here

we also see why there is a difference between rates on the left of fig. 8. Specifically,
optimal � is 4.5 and in the MER case this is approximated with 5; it is thus obvious that
in the DIR case, the error of the integer approximation of the optimal � � �JR�� ! �

will
be smaller then in the MER case, hence the rate will be higher. Again, the conclusions
are the same for + ��I @ .

In the line case, as in the ring case, we can analyze the energy dissipated by a node
by counting a fraction of active nodes in the same slot. On the right of fig. 10 we see the
fraction of nodes active in one slot. Since all active nodes sends with the same power
and since this fraction is constant in all slots, it is directly proportional to the energy a
node dissipates. Optimal power allocation for MER does not depend on flow length

�
,

hence neither does energy dissipated. The total rate however decreases as
�

increases
due to relaying. On the other hand, for high powers DIR can achieve the same rates
as MER, but using

�
times less energy. For low powers DIR achieves lower rates then

MER with approximately the same energy dissipation.

5 Conclusions and Future Work

We have given a general model for a joint scheduling, power allocation and routing op-
timization problem. We solved the problem for symmetric one-dimensional networks,
for both direct and minimum energy routing policies. We found that for small power
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Figure 10: On the left is the average distance � between adjacent groups of active
nodes. For small powers, � is 2 for MER and 	 � for DIR. It converges to approximately
��� � for MER and ��� � � for DIR. On the right is the fraction of nodes that are active in the,
same slot, which is directly proportional to dissipated energy.

constraints it is better to relay, and for large power constraints it is better to send data
directly to destinations. We also describe for which power constraints this transition
occurs. In the case of an infinitely large network, minimum energy routing is always as
good as direct routing. However, in contrast with their names, direct routing dissipates
less energy then minimum energy routing for large power, while achieving the same
rate.

We characterized optimal scheduling and power allocation for both routing policies,
and we found that due to the symmetry, an ideal schedule consists of 	 equal time slots,
and in each time slot we use a rotation of a single power allocation. We further show
that in this single optimal power allocation, each node either sends at the full power
or does not send at all. Nodes that send at the same time are grouped in equally sized
sets of adjacent nodes. Distances between two adjacent groups is the same for all pairs
of adjacent groups. The groups’ sizes and spacing depends on the power constraint,
and for large networks and large power constraints group sizes converge to 1 and the
distance between groups converges to 4.5 times the size of a used link (1 for MER,

�

for DIR).
In the future, we intend to study the sensitivity of presented results to the model

assumptions, in particular the symmetry in topology and traffic matrix, and to see if
and how much can scheduling, power allocation and routing strategies suggested in
this paper improve performance of an arbitrary network. We would also like to extend
this analysis to two dimensional networks.
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