Adaptive Load Sharing for Network Processors

Lukas Kencl, Jean-Yves Le Boudec

Abstract—A novel scheme for processing packets in a router is presented,
which provides for load sharing among multiple network processors dis-
tributed within the router. It is complemented by a feedback control mech-
anism designed to prevent processor overload. Incoming traffic is scheduled
to multiple processors based on a deterministic mapping. The mapping for-
mula is derived from the robust hash routing (also known as the highest
random weight - HRW) scheme, introduced in K.W. Ross, IEEE Network,
11(6), 1997, and D.G. Thaler et al., IEEE Trans. Networking, 6(1), 1998. No
state information on individual flow mapping needs to be stored, but for each
packet, a mapping function is computed over an identifier vector, a prede-
fined set of fields in the packet. An adaptive extension to the HRW scheme
is provided in order to cope with biased traffic patterns. We prove that
our adaptation possesses the minimal disruption property with respect to the
mapping and exploit that property in order to minimize the probability of
flow reordering. Simulation results indicate that the scheme achieves sig-
nificant improvements in processor utilization. A higher number of router
interfaces can thus be supported with the same amount of processing power.

I. INTRODUCTION
A. Router Architecture

ITH recent developments in transmission technologies,

more demanding performance characteristics are being
sought when designing routers. The previously centralized
router devices with a single general-purpose processor could not
cope with the ever-increasing workloads and are being replaced
by routers of more effective architectures, distributed or parallel
[6].

In the case of a distributed architecture [5], most of the packet
processing load is shifted to special-purpose processors, often
called network processors or forwarding engines, typically lo-
cated directly at the router inputs. Such an architecture has
the drawback of poor utilization because all the processors are
hardly ever saturated, as the load is almost never evenly dis-
tributed over the inputs and does not always reach the nominal
rate. Parallel router architectures [2], [9] are based on a pool
of parallel processors, located remotely from the inputs, with all
of the processors being able to perform the data path processing
tasks. Packets may be buffered at the inputs, and relevant fields
of the packet (for example, the packet header) are being sent
to the pool for resolution. Such an architecture does not suffer
from under-utilization because loads of all the inputs are com-
bined at the pool. Instead, the pool interconnect tends to become
a major bottleneck. Another drawback is that if load balancing
is performed over the pool, the load balancing device is a single
point of failure for the entire router.

Other successful designs [16], [18] seek to combine both ap-
proaches by containing remotely located (at a different switch
port than the input line cards) network processors or forwarding
engines, which serve a certain predefined set of inputs to carry
out the packet processing tasks on packets arriving at a these in-
puts. Again, the traffic may not be evenly distributed over these

L. Kencl is with the IBM Zurich Research Laboratory, Riischlikon, Switzer-
land. E-mail: lke @zurich.ibm.com .

J.-Y. Le Boudec is full professor at the Department of Communication Sys-
tems (DSC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland. E-mail: jean-yves.leboudec @epfl.ch .

sets, which leads to less efficient utilization.

We present a novel packet processing scheme, which seeks to
maximize the number of router interfaces that can be supported
with a fixed amount of network processors of given processing
power while keeping the advantages and avoiding the drawbacks
of the aforementioned router architectures. Our basic premise is
that a router which provides for load sharing among the net-
work processors is able to support a greater number of inter-
faces, while upholding the performance guarantees.

The packet processing tasks are carried out by multiple dis-
tributed processors, and packets are scheduled among them ac-
cording to a mapping computed at run-time. Thus, the total load
of the router system is shared among the multiple processing
units. The subsequent increase in processor utilization lowers
the total system cost and the electricity power consumption. In
addition, router fault tolerance is improved.

B. Load Sharing

For a general survey of load sharing algorithms, see [19]. A
widely accepted taxonomy of load sharing algorithms has been
presented by Casavant and Kuhl [4]. Eager, Lazowska and Za-
horjan [7] have studied specific adaptive load sharing policies,
consisting of a transfer and a location policy. Their work shows
that simple adaptive load sharing policies yield significant per-
formance improvements relative to the no load sharing case and,
at the same time, performance very close to complex adaptive
policies. In addition, a threshold-based location policy is shown
to bring substantial improvements over a random selection loca-
tion policy.

The task of determining a processing unit on which a specific
processing job should be executed so that a system-wide func-
tion is optimized has been shown to be NP-complete in general
(see [8]). A heuristic, which produces the answer in less time,
but not necessarily an optimal one, is thus typically used. Such
a global task scheduling heuristic usually takes some kind of
dynamic processor workload information as input. The most ef-
fective representation of the workload index has been a topic of
intensive research. Kunz [14] has demonstrated that a single,
one-dimensional workload descriptor yields better results than
more complex descriptors.

In the networking domain, particular interest in load shar-
ing has recently been raised in the areas of Web servers, Web
caching and clustered digital libraries [3], [10], [17], [23]. The
CARP distributed caching scheme, which uses the highest ran-
dom weight (HRW) algorithm [17] by Ross, is a popular choice
for Web servers and is implemented in products offered by Mi-
crosoft [3]. Although the algorithm provides load balancing
over the request object space, it is not adaptive and therefore
potentially vulnerable to traffic locality.

IBM Network Dispatcher [10] is a software tool that routes
TCP connections to multiple servers that share their workload,
based on a monitored load metric. The algorithm contains an
adaptive control loop, but it is required to maintain state infor-

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

mation where each TCP connection has been mapped.

Other research ([12], [20]) has concentrated on exploring the
possibilities of parallel implementations of the TCP/IP packet
processing within routers. In these studies, functional decompo-
sition of individual packet processing tasks has been determined
and various possible forms of parallelism have been categorized:
spatial parallelism, pipelining or concurrent operation.

According to this classification, the specific kind of paral-
lelism employed in the load-sharing algorithm presented here
would best be characterized as spatial parallelism, i.e., packets
are scheduled to multiple processors, which are all capable of
carrying out the same tasks (although they do not necessarily
possess homogeneous processing capacity). A mapping is es-
tablished between flows and processors. It is based on the CARP
HRW [17] mapping, extended by an adaptive control loop. As
in the Network Dispatcher concept [10], flows are mapped to
processors, yet no state information on particular flows is stored.
The HRW mapping is hash-based and is thus easily computable
at high speeds (as opposed to, for example, a table-based lookup
or classification). The mapping possesses several advantages
over other hash-based load balancing schemes - it allows to split
the hashed objects into hash buckets of arbitrary size, as deter-
mined by predefined weights, and, as we prove in this work, a
specific method for the weights’ adaptation can be found, which
results in only a minimum disruption of the mapping. Optimiza-
tion and adaptation of the mapping is the subject of this work.

The mapping adaptation procedure aims to prevent individual
processor overload. The design is complicated by the need to
minimize the probability of packet reordering within one flow.
Due to the nature of networking transport protocols, it is often il-
legal, or at least extremely undesirable, to allow packet reorder-
ing within a packet flow [13]. Although the widely used TCP
protocol attempts to tackle this problem by correct reordering at
the destination, reordering slows down data delivery, increases
receiver buffer size and still may not prevent some undesirable
retransmissions and subsequent network congestion.

If packets from the same flow are to be processed by different
processors, packet reordering can easily occur. Therefore, pack-
ets belonging to a particular flow should be processed by the
same processor. As it is not possible to monitor the full traffic
characteristics in a router, including per-flow state, nor to solve
the NP-complete mapping problem at run-time due to perfor-
mance limits of the current devices, a fully optimal mapping is
not achievable. However, we show that the heuristic presented
here, which uses aggregate traffic monitoring as feedback, stays
within small bounds from the optimal solution.

C. Outline

The paper is organized as follows: in Section II, we describe
the environment and the related assumptions. In Section III,
we present the scheme for load sharing among network proces-
sors and in Section IV we lay the theoretical basis for the dy-
namic adaptation of the scheme by proving the minimal disrup-
tion property of our adjustments and then describe the adapta-
tion in detail. In Section V, we present results of our simulations
and discuss the optimality issues. Section VI deals with aspects
of practical implementation of the load sharing scheme within
a router. Finally, in Section VII, we present some concluding
remarks.

II. NOTATION AND ASSUMPTIONS

We consider a router model where different processors are
dedicated to the data plane and to the control plane. We use the
term Network Processor (NPU) to denote the device perform-
ing the packet processing tasks (such as address lookup, classi-
fication, filtering, etc.), that means, the processor dedicated to
the data path within a router. In contrast, we denote as Control
Point (CP) a processor that performs the router control func-
tions such as shortest path computation, topology information
dissemination or traffic engineering. Our work concentrates on
issues primarily related to the data path within a router.

The router consists of n input-output line cards, m NPUs and
at least one CP. With respect to NPUs we consider a heteroge-
neous router model, where each processor may have different
processing power. Thus, by ; we denote the processing power
of NPU j, that is, the maximum number of packet processing
units an NPU j is able to carry out per time unit At. We denote
L the total system processing power, that is, ;1 = ZT -

By A, (t) we denote the actual packet processing load of NPU
J, that is, the amount of packet processing units carried out at
NPU j during the interval (¢ — At,t). By A(¢) we denote the
total processing load of the system within the time interval, that
is, A(t) = >_7" Aj(t). By p;(t) we define the utilization of each
NPU, that is, p;(t) = A;(t)/p;, and by p(t) the total system
utilization, p(t) = A(t)/p.

By ~;(t) we denote the amount of packets that arrived at line
card 4 in time interval (¢ — At,t). The maximum transport ca-
pacity of each link is 4, thus, Vi, 4 > v;(¢).

As the packet information vector ¥ = (w1, wa, . .., wy,,) We
define the set of k,, packet fields that are examined, processed
or altered within a router and that carry the information based on
which the subsequent next-hop of the packet and the treatment
applied to the packet within a router are determined (i.e., for ex-
ample, the destination address, the source port, TTL, URL, la-
bel, etc.). We denote as W the packet information vector space,
i.e. the vector space consisting of all possible values of packet
information vector w € W.

A packet containing an information vector W consumes [()
processing units at an NPU. We define as arrival vector a(t) =
(@, (), - .., aq,,, (t) a vector of size ||, where the element
ag(t) denotes the number of packets containing the information
vector o that arrived at a router during a time interval (¢t —At, t).
Thus 37 7i(8) = 3 aas(t) and A(8) = 3 5 as(t) (D).

We denote as flow identifier vector v = (v1,va,..., v,) aset
of predefined packet fields that do not change within a particular
flow. Each v; represents a piece of data within the packet and the
integer k,,, k, > 1, represents the number of fields contained in
vector v. Typically, but not necessarily, ¢’ is composed of some
fields contained within the packet header. For our purposes, any
predefined set of fields (or just one of them) that remain con-
stant within a flow can serve as the identifier vector. In this
work we assume that & C «J. By V' we denote the vector space
corresponding to all the possible values of the identifier vector
¥ (once the format of the identifier vector is established).

A typical example of an identifier vector would be the tradi-
tional flow ID, consisting of a 5-tuple of protocol number (prot),
source and destination ports (SP, DP) and source and destina-
tion addresses (SA, DA), that is, in such a case, k, = 5 and ¥ =

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

(prot, SP, SA, DP, DA). Alternatively, one could use the desti-
nation address as a unique parameter, thus ¥ = (v1) = (DA). In
the first case, V' would represent a set of all possible flow IDs,
whereas in the second case, V' would be equal to the protocol
address space.

Let us define as identifier persistence vector A(t) =
Ay, (1), .., Az, (1), Az(t) € {0,1} a vector that moni-
tors the persistence of certain flow (determined by an identi-
fier vector) within a time interval (¢ — 2At,¢). We consider a
flow persistent if in each of the two consecutive time intervals
(t —2At,t — At) and (¢t — At, t) a packet belonging to the flow
arrives.

We assume that only persistent flows are vulnerable to re-
ordering, if packets of these flows are processed by different
processors. If no packet of a flow arrives during the time inter-
val (t — At,t), we assume that processing a subsequent packet
from the flow at any processor does not lead to reordering.

In our scenario, we assume that any processor j € {1,...,m}
is able to process any packet.

III. LOAD SHARING FOR NETWORK PROCESSORS
A. Requirements

With the above router model in place, our objectives pre-
sented in Section I-A can be reformulated as follows: given a
router containing a set of m network processors of processing
powers £i; and given a maximum line card speed 4, maximize
the number of interfaces n that such a router can support with
a performance constraint P (packet drop) < ¢, where ¢, is a
given constant.

Definition 1 provides a useful reference point for achieving
the objective.

Def. 1: Let us define as acceptable load sharing a scheme
distributing the interfaces’ load among the network processors
with the following properties:

o if A(t) < p, then Vj, A;(t) < pj, ie., if the system is
not overloaded, then none of the individual processors is over-
loaded,

o if A(t) > p, then Vj, A;(t) > pu;, ie., if the system is over-
loaded, then all of the individual processors are overloaded.
Generally, P (packetdrop) = >>72, P (A\;(t) > py). In
the case of acceptable load sharing, a single processor is over-
loaded if and only if the entire system is overloaded, thus
P' (packetdrop) = P (A(t) > p) = P (321, \(t) >
Z;"’Zl u). Clearly, P’ (packet drop) < P (packet drop) and
P’(packet drop) is the minimal achievable packet drop proba-
bility.

In addition to performance guarantees, a load sharing system
among parallel NPUs should possess the following properties:

Flow order preservation—packet reordering could occur if
packets belonging to the same flow were processed by differ-
ent NPUs. Thus, the assignment of packets to processors should
either be fully deterministic with respect to flows, or should at-
tempt to minimize the probability of packets belonging to the
same flow being treated by different processors.

Absence of state information—keeping state information on as-
signment of concurrent flows is extremely costly in terms of
memory and processing overhead. Therefore, it is highly de-
sirable that the assignment of flows to processors can be carried

out without the state information being stored.

Support for heterogeneous processors—the system must be
able to support heterogeneous architectures, that is, where there
are processors with various processing capacities present or
where preference should be given to some processors as to the
amount of requests processed.

Fault tolerance—the system must be able to adjust to a proces-
sor failure quickly and gracefully, i.e. without great disruption.

B. Packet-to-NPU Mapping

The basis of our load-sharing scheme is that the load of each
input (ingress traffic arriving at a line card) is distributed for pro-
cessing among the NPUs using a deterministic mapping f (see
Figure 1). The mapping f is computed over the identifier vector
¥. The computation f(¥) = j determines the particular NPU
j to which the packet is mapped for processing. The function
f@), f:V —{1,2,...,m}, splits the vector space V into m
exclusive subspaces V. Packets from a particular subspace are
all mapped to the same processor.

Upon arrival of a packet at an input, the packet is parsed to
extract the fields relevant for packet processing, i.e., the identi-
fier vector ¥ and the packet information vector w. The packet
is buffered, the mapping f(?¥) is computed and the packet infor-
mation vector 0 is then sent for resolution to NPU j, f(¢) = j.

At NPU j, the packet information vector 0 is processed and
the resolution information about the treatment to be applied to
the packet (next hop, outgoing switch port, QoS applied) is re-
turned to the requesting unit. Then, the packet is switched to the
correct outgoing port and the corresponding packet alterations
or manipulations, based on the resolution results, are applied
(this may mean, for example, applying certain QoS, attaching
an MPLS label or splicing with another TCP connection).

The mapping f we propose for such a purpose is based on the
robust hash mapping scheme (alternatively called highest ran-
dom weight (HRW) mapping) presented in [21] and extended in
[17].

Def. 2: Packet-to-NPU (HRW) Mapping f: Let g(?,7)
be a pseudo-random function g : V' x {1,2,...,m} — (0,1),
i.e., we assume g(¥, j) to be a random variable in (0, 1) with
uniform distribution. Let a packet arrive at an input ¢, carrying
an identifier vector ¥ € V. The mapping f(¥) is then computed

Multiple (N) Multiple (M)
Input/Output Network Processors
Line Cards (Forwarding Engines)
Incoming Packet —[
1.parse 2. f(v,x)=3
s | pall
EI:I v 3. request (w)
w
_ 5. return (4) 4. NextHop
o
== packet fields ~——[@q 6. switch to 4
contained in the .
identifier vector v, : .
vcw . .
[additional packet
fields contained in —[N 1] IEI

the information
vector w

Fig. 1. Load sharing scheme abstraction.

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

as follows:

f(@) (1

¢

r;9(v,5) = vy g(U, k), ()

where z; € R is a weight multiplier assigned to each NPU.

The weights £ = (x1,...,%,), as described in [17], are
in a 1-to-1 correspondence with the partitioning vector p =
(p1,--.,DPm), which determines the fraction of request object
space (the identifier vector space V, in our case) assigned for
processing to each NPU, i.e., p; = |V;|/|V].

The HRW mapping possesses the following properties, which
are particularly useful for the purpose of flow-to-processor map-
ping [17], [21]:

Load balancing—the robust hash mapping provides load bal-
ancing over the request object space, even for the heterogeneous
case. That is extremely useful for the ability to support proces-
sors of heterogeneous processing capacities because the map-
ping weights allow the fraction of load mapped to a particular
processor to be controlled.

Minimal disruption—it has been shown in [21] that in the case
of a processor failure, removal or addition, the number of re-
quest objects that are re-mapped to another destination is min-
imal. This property is useful for providing fault tolerance (if a
particular processor fails, only flows mapped to that processor
are affected).

However, we observe that the minimal disruption property is
not limited to these special cases. In Section IV we show that by
a similar line of proof as in [21], the minimal disruption prop-
erty holds as well for certain special kinds of adjustments of
the mapping weights. We exploit that fact when carrying out
the mapping adaptation in order to minimize the amount of flow
re-mappings caused by the adaptation.

For the load-sharing purposes in general, there is no need for
the mapping f to be identical at all line cards. In fact, a different
mapping can be used at each line card, for example, at line card
i, a mapping f;(¥) could be computed using function g; of the
form g, (¥, j) = g(¥,7 + j). However, our scheme does require
that the weights vector & be identical at each card.

IV. ADAPTATION THROUGH FEEDBACK
A. Problem Statement

Load sharing among multiple processors can become very in-
efficient if attention is not paid to keeping the individual pro-
cessor load under control. The goal of the adaptation is to pre-
vent undesirable effects, mainly, processor overload and a con-
sequent packet drop. It may not be obvious how such effects
can occur when, as claimed, the HRW mapping provides load
balancing. However, it is important to note that it provides load
balancing over the request object space, i.e., in our case, the
identifier vector space V. In contrast, the loads due to the actual
traffic received at the router input ports may by no means be
distributed uniformly over this request object space, but rather
will exhibit certain locality patterns. That means that in spite
of the load-balancing property, mapping f can potentially lead
to grossly imbalanced load distributions. For such cases, the

Control Point
3. compute new 2. check trigger for

X = (Xt weey X} P) =(pa(t), pa(t), ..., pm(t))

4. upload new x, 1. utilization (j) = pi(t)
x () :=x
Multiple (n) 4 Multiple (m)
Input/Output _|__|_| IE' 1 Network Processors
Line Cards _2I—_l-| (Forwarding Engines)
3 2
—{
4 3
4 EI
L]
L]
L[]
N
—[

|;||v|

Fig. 2. Load sharing with feedback.

mapping must be adjusted to account for the non-uniform load
distribution in the received traffic.

The objective of the control loop is to prevent over-utilization
of a single processor when the system is under-utilized or, vice-
versa, to prevent under-utilization of a single processor when the
system is over-utilized. At the same time, we aim to minimize
the amount of packet-to-NPU re-mappings. Thus, the objective
can be formulated as the following optimization problem:

Def. 3: NPU load-sharing optimization problem:

max Z Az(t)

> Ypa-an@=i Lrm@=: 3

TeV jEM

with constraints:
ifp(t) <1 = X(t) < py, V5, 4
ifp(t)>1 = Xi(t) >y, V5, ®)

where

= lywe= a}

vev

ag () (). (©)

B. Adaptation Algorithm

The adaptation scheme works in the following general way
(see Figure 2): periodically, the CP gathers information about
the utilization of the NPUs. If an adaptation threshold is ex-
ceeded, the CP adjusts the weights of the mapping f. The new
multiplicative weights vector & is then downloaded to the NPUs.

As the mapping f now changes with time, we define f(¢) :
V — {1,2,...,m} as the instance of f at time ¢ and Z(¢) as the
instance of weights’ vector Z used to compute f(¢).

In order to evaluate the status of individual processors, we
need a processor utilization indicator. For that purpose, we in-
troduce a smoothed, low-pass filtered processor utilization mea-
sure p; (t) of the form

r—1

_ 1 _
pit) =~ pi(t) + pi(t — At), ©)
where 7 is an integer constant. A similar filtered measure for to-
tal system utilization is introduced as p(t) = L p(t)+ =L p(t —
At). The filtering is done to reduce the influence of short-term

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

Start

!

Wait time At

!

Compute
filtered processor utilization p (t)

A\ 4

A

¥

No Trigger Yes ' Acfapt
adaptation weights' vector x
? and upload

Triggering Policy Adaptation Policy

Fig. 3. Adaptation algorithm.

load fluctuations and to obtain information about the trend in
processor utilization.

The adaptation algorithm consists of two parts (see Figure 3):
the triggering policy, which specifies the conditions to act, and
the adaptation policy, which specifies how to act. A trigger is
periodically evaluated and, based on the result, specific action is
taken.

B.1 Triggering Policy
We introduce a dynamic utilization threshold €,(t) defined as
(1-p() ®)

(1+p () ©

ept) =

Thus the dynamic utilization threshold is positioned midway be-
tween the current filtered total system utilization 5(¢) and uti-
lization of 1. The closer the total system utilization approaches
1, the higher the likelihood of violating the acceptable load shar-
ing bounds and therefore the tighter the threshold follows the
total system utilization.

During time intervals when the total system utilization p(t)
remains in the vicinity of 1, the value of the utilization thresh-
old may be too close to p(t) to provide a meaningful thresh-
old for adaptation. To prevent such cases, we introduce a form
of hysteresis into the threshold computation by defining a fixed
threshold in the close vicinity of 1.

Let €, > 0 be a fixed hysteresis bound, which prevents
adaptation from being carried out within the interval ((1 —
en) p(t), (14 €n) p(t)). The ey is typically set to a value close
to 0, for example 0.01, thus preventing adaptation when the load
stays within 1 percent of the total system utilization.

A dynamic triggering threshold €,(t), which combines the
utilization threshold €/, (¢) with the hysteresis bound, is thus set
for determining the amount of over- (or under-) utilization al-
lowed at one processor:

Def. 4: Triggering Threshold €,(¢): Let the dynamic uti-
lization threshold €},() and the hysteresis bound e, be defined
as above. Then the triggering threshold is defined (according to

whether the system in total is over- or under-utilized) as follows:

ep(t) = max (€,(t), (1 +en)p(t)),
ep(t) = min (e, (t), (1 —en)p(t)),

p(t) <1,
p(t) > 1.

(10)
(1)

The result of the comparison of the filtered utilization to the
threshold then acts as a trigger for the adaptation to start. An ap-
propriate trigger is again chosen according to whether the sys-
tem in total is over- or under-utilized:

p(t) <1 = if (e,(t) < maxp;(t)) then adapt
J

p(t) >1 = if (e,(t) > min p;(t)) then adapr.
J

B.2 Adaptation policy

We propose a simple scheme for the periodic adaptation, op-
erating directly on the weights’ vector Z. Propositions 1 and 2
provide the theoretical basis:

Proposition 1: Let o € RT, a # 1. Let A, B be two
nonempty, mutually exclusive subsets of M = {1,...,m},
M = AU B. Let f, f’ be two HRW mappings using identi-
cal pseudo-random function g(¥, 5), but differing in the weight
vectors & = (z1,...,2y,)and ' = (2],...,2},) as follows:

JEA,
j€B.

(12)
(13)
Let p; and p;-, denote the fraction of request object space

mapped to node j using the HRW mapping with weights Z and
T ', respectively. Then, if a < 1,

T, = oy,

Sl s

xTr; = Zj,

p; < pj, jEA (14)

p; > pj, jEB. (15)
and, conversely, if a > 1,

p; > pj, jEA (16)

p; < pj, jEB. (17)

Proof: We first prove the inequality (14) by contradiction.
Assume that 3j5 € A such that p}o > pj,- 1t means that there
exists at least one identifier vector ¥y, for which f'(%h) = jo.
yet f(¥o) # jo-

As f'(U) = jo, wehave ' g(¥io, jo) = maxgenm 7} g(vo, k).
But then:

S 1 L
3,9(Vo, Jo) o 553-09(?107]0)

1 .
2 _CL‘;CQ‘(’U(),]C)
Q
= a:kg(f)’g,k), Vk € A,
Lo 1 Lo
z5,9(Vo, jo) = aw}og(vwo)
1
> Z 2 g(Un. k
= amkg(vo,)
~ 21g(T0, k)
= — x,9(v
o k9\Vo,
> l‘kg(ﬁo,k), Vk € B.

Therefore, xj,9(Uo, jo) = maxpem xrg(To,k) and thus
f(To) = jo, which is a contradiction to our assumption.

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

Inequality (15) can be proved in a symmetrical way, as well
as the case of @ > 1. o

Equality in inequalities (14)-(17) is an extreme case, which
can only take place if « is so close to 1 that the weights & change
so little that the change does not affect any single identifier vec-
tor.

Note that given the complex relationship among vectors & and
P (see [17]), it is hard to say more in general about the effects of
direct adjustments of .

Proposition 2 (Minimal disruption) Let « € R7T. Let
A, B be two nonempty, mutually exclusive subsets of M =
{1,...,m}, M = AU B. Let f, ' be two HRW mappings
using identical pseudo-random function g(¥, j), but differing in

the weight vectors & = (z1,...,%m) and &' = (2],...,2),) as
follows:
) azj, jeEA, (18)
) zj, j€B. (19)

Let p; and p;» denote the fraction of request object space mapped
to node j using the HRW mapping with weights & and &/, re-
spectively. Then, the fraction of request object space mapped to
two different nodes by the two mappings is equal to % > j lp; —
p; |, or, in other words, the amount of request objects mapped by
the two mappings to different destinations is minimal.

Proof: The case of o = 1 is trivial. Let « < 1. We prove that

for each node j, exactly |p; — p| [V'| objects have changed the
mapping. The proof is divided into two parts:
1. j € A: from Proposition 1 we know that p;. < p;. Let
us show that all objects mapped to j by f’ are also mapped to
j by f by contradiction: assume that there exists at least one
identifier vector ¥y, for which f’(¥y) = j, yet f(¢h) # j. But,
if f'(vo) = j, it means that z’; g(, j) = maxy), g(vo, k) and
therefore

Lo 1, . .
jg(vo,5) =~ 2;9(%,]) (20)
1 .
> > 3.9(To, k) (21)
> arg(fo,k), ke M. (22)

Thus, z; g(¥p, j) = maxy xx g(Uo, k) and f(Ty) = j, which is
a contradiction to our assumption. As all objects mapped to j by
/! are also mapped to j by f, the amount of request objects in
which the two mappings differ at node j is equal to the fraction
Ip; — pj;| of request object space.

2. j € B: from Proposition 1 we know that pg- > pj. Let
us show that all objects mapped to j by f are also mapped to
j by f’ by contradiction: assume that there exists at least one
identifier vector ¥, for which f(vp) = j, yet f'(0y) # j. But,
if f(¥h) = j, it means that z; (¥, j) = maxy i g(¥o, k) and
therefore

> azrg(vo, k) (24)
> z39(V0, k), Vke M. (25)

Thus ; g(vo, j) = maxy, xj, g(vo, k) and f'(vip) = j, which is
a contradiction to our assumption. As all objects mapped to j by
f are also mapped to j by f’, the amount of request objects in

which the two mappings differ at node j is equal to the fraction
Ip; — ;| of request object space.

Thus, the two mappings differ by [p; —p/;| V| vectors at each
node, which leads to a fraction of 3 > ; Ip; — p}| difference in
total.

The proof for o > 1 is symmetrical. O

It is important to note that the minimal disruption property
would not generally hold for the adaptation if the weights’ ad-
justment were not carried out by a single constant multiplier, as
then the inequalities (21) and (24) would not necessarily hold
for all K € M. As the minimal disruption property is crucial
for minimizing the amount of re-mappings, Propositions 1 and
2 serve as a background for designing the adaptation of vector &
to be carried out by a single, constant multiplier:

Def. 5: Weights-Vector & Adaptation: Let p(t) < 1. As-
suming that the trigger condition (e,(t) < max; p;(¢)) is satis-
fied, let

_ ep(t) 1/m
lt) = (rmn FOIG) >ep<t>}> -0
Then
5l = Oait-A0,) >0, @D
zi(t) = xi(t—AL), pi(t) <eplt). (28)

Conversely, the adaptation for the case of p(t) > 1 is performed
in a symmetrical manner.

Thus, in the case that the system is under-utilized, the pre-
sented adaptation lowers the weights for the exceedingly (with
respect to a threshold) over-utilized processors, whereas weights
for others remain unchanged. Conversely, if the system in to-
tal is over-utilized, the adaptation raises the weights for the ex-
ceedingly (with respect to a threshold) under-utilized proces-
sors. The lowering or raising of weights is carried out propor-
tionally, either to the minimal utilization p;(¢) which exceeds
the threshold €,(t), or to the maximal utilization p;(t) which
remains below the threshold €, (¢).

The factor 1/m in the exponent of ¢(t) represents the effects
of the number of processors present—less aggressive adjustment
is needed in the case of more processors.

V. NUMERICAL RESULTS
A. Trace Driven Simulations

We have used the MATLAB v.5 environment on an IBM RS
6000 machine to simulate a model of a router with multiple
NPUs and line cards.

For router input, we have used pre-generated traffic traces.
Each trace corresponds to network traffic received at one line
card. The parameters for generating the traces were approxi-
mated from OC-3 traces statistics gathered in [1], [15] and [22]
and approximated to OC-192 speed by shortening the time inter-
vals proportionally, i.e., 1 second of the monitored OC-3 traffic
corresponds to 15 ms in our OC-192-like traces. Note that this
transformation is a simplification from reality, since the scaled
traces would differ not only along the time dimension, but the
per-flow data volume, the multiplexing effects and the packet
inter-arrival times would have to be taken into account as well.

The following parameters characterize the traces:

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

o Number of flows existent in a time interval-a discrete time
homogeneous Markov chain, attaining values in the interval
of [8000, 240000] with uniform transition probability to states
within a neighboring interval, the step of change limited within
[—5500, 5500] flows of difference at each iteration every 15 ms.
o Number of packets arrived per time interval-a discrete time
homogeneous Markov chain, attaining values in the interval
of [3000, 22000] with uniform transition probability to states
within a neighboring interval, the step of change limited within
[—4000, 4000] packets of difference at each iteration every
15 ms. The direction of change (increase or decrease) in the
number of packets is correlated with the direction of change in
the number of flows (number of packets grows when number of
packets grows and vice versa), as shown in [22] to hold.

o Flow length—the amount of packets in a flow. Based on [22]
and on the analysis of [1], we have used exponential distribution
with mean 4 to generate the individual flow lengths.

o Identifier vector values—for the distribution of identifier vec-
tor values, we have approximated a typical distribution of IP
source and destination addresses in networking traffic, as de-
scribed in [15]. The prevalence of class C addresses, which oc-
cupy a relatively small portion of the address space (12.5%) and
yet account for approximately 65% of the packets in network
traffic, led us to consider a normal distribution of identifier vec-
tors within a 32-bit integer space, with parameters fitted to those
measured in [15]. Thus, the identifier vectors of flows are gen-
erated with a truncated normal distribution A (0, 1) out of the
32-bit integer space.

In our simulations we have simplified the problem by having
each packet require an identical, constant amount of processing
at the NPU. The unit of load at each NPU is equal to 1 packet.
We assume a homogeneous router model, where all the NPUs
have equal processing capacity, corresponding to a full load of
a single router interface, which amounts to p; = 1466 packets
per ms. Note that, in reality, the amount of processing units a
packet would consume would most likely vary. For example,
in the case of a prefix lookup using a tree search, the tree en-
tries would be located at various tree depths. Simulating such
a load distribution would require to match the traces against a
correspondent lookup table.

The low-pass filter constant r is set to 7 = 3 and the hysteresis
bound € to €, = 0.01. Evaluations of the adaptation trigger
are carried out at a time interval At = 1 ms. The number of
links n and processors m in the simulations have been chosen
such that the total system utilization remains close to 1, where it
makes sense to investigate the performance with respect to the
acceptable load-sharing bounds.

B. Load Sharing

Figures 4 and 5 show the effects of load sharing in general.
A load of n = 26 links is processed by a router equipped with
m = 16 processors. If no load sharing is deployed, the entire
load of each link is assigned to a particular processor. This is
compared to a case where load sharing is deployed using a static,
non-adapted mapping f and to load sharing with dynamically
adapted mapping f(t).

Figure 4 depicts the maximum and minimum processor uti-
lization using each of the schemes, as well as the total system
utilization p(t), which is the same in all three cases. Clearly,

Max and min processor utilization

— p(t), system in total
Max, min pj(t), no LS
251 Max, min pj(t), static LS
— Max, min pj(t), adaptive LS

Utilization

e

o} 100 200 300 400 500 600 700 800 900 1000
Time

Fig. 4. Processor utilization, n=26, m=16.

Number of packets dropped

6000

— System in total
No LS
Static LS H
— Adaptive LS

5000

4000 B

@
<]
8
)
T
1

Packets dropped

1000 B

o} 100 200 300 400 500 600 700 800 900 1000
Time

Fig. 5. Number of packets dropped, n=26, m=16.

individual processor utilization remains within close vicinity of
the total system utilization when load sharing is deployed.

Figure 5 shows the amount of packets dropped under the three
scenarios (assuming that as many packets have to be dropped,
as exceed the processor capacity). Again, the load-sharing cases
closely follow the total load curve, which represents the global
minimum.

The traces used consisted of such identifier vectors that led
to relatively balanced distribution of traffic to processors in the
static case and therefore the small difference between the static
and dynamically adapted load sharing.

C. Adaptation

Figures 6 and 7 show the benefit of dynamic adjustment. In
this simulation, special traces with identifier vector patterns that
result in bias towards one processor have been used. The identi-
fier vectors in these traces have been generated such that all the
traffic is mapped to one processor by the static mapping, thus
being the worst case for the static mapping. The router load al-
ternates between the biased and non-biased (same as in Section
V-B) traces using weights among the two sets of traces.

In this experiment, a load of n = 10 links is processed by a
router equipped with m = 6 processors.

Again, Figure 6 depicts the maximum and minimum proces-
sor utilization using each of the schemes, as well as the total
system utilization p(¢). We observe that processor utilization
stays within close vicinity of total system utilization in the case
of the dynamically adapted load sharing, whereas it oscillates

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

Max and min processor utilization

3

— p(t), system in total
Max, min pj(t), no LS H
Max, min pj(t), static LS

— Max, min pj(t), adaptive LS

~
T

)
T

Utilization

©
L

n
L

Fig. 6. Processor utilization, n=10, m=6.

Number of packets dropped

— System in total
9000 - No LS n
Static LS
8000~ — Adaptive LS
T 7000 ~
[}
&
e 6000 1
o©
ﬂ 5000 1
L
O 4000 4
<
o 3000 —
2000 1
1000 ”A ~
L

o] 100 200 300 400 500 600 700 800 900 1000
Time

Fig. 7. Number of packets dropped, n=10, m=6.

according to which traces are input to the system in the case of
the static system.

Figure 7 shows the amount of packets dropped under the three
scenarios (assuming that as many packets have to be dropped, as
exceed the processor capacity). Again, the adaptive case closely
follows the total load curve, which represents a global mini-
mum, whereas the static load sharing exhibits a large number
of packets dropped in response to the overload of the single pro-
cessor (the target of the “worst-case” traces).

D. Optimality

Figure 8 and Table I show the number of persistent flows and
the number of flows that are re-mapped in the iterations of the
adaptation. The results are obtained from the same simulation
as in Section V-C. As the adjustment of the mapping possesses
the minimum disruption property, only a small fraction of the
request object space, and, consequently, of the persistent flow
identifier vectors, is re-mapped.

The minimal amount of flow-to-processor re-mappings
needed to keep the system within the bounds of acceptable load
sharing can indeed be determined ex-post by solving the lin-
ear optimization problem in Def. 3 using the knowledge of flow
identifier vectors ¢’ that have arrived during the intermediate
time interval (t — At, t). We consider the mapping f(¢) within
the time interval (¢ — A¢,¢) to be unknown. In Def. 3 of the
optimization problem, the mapping f(t) is represented by the
term 1y ¢(4) (7=, Which we denote as an unknown ygz ;. As
Listy@)=53 € {0, 1}, the optimization is an integer linear pro-
gramming problem, which is known to be NP-complete. How-

Persistent flows and remappings
2ol — Remapped flows

60 B

FRRTIRIY! FY YV T m L L L L L
o 100 200 300 400 500 600 700 800 900 1000

Time

Fig. 8. Number of flows, persistent and remapped, n=10, m=6.

TABLEI
NUMBER OF FLOWS, ALL, PERSISTENT AND REMAPPED

| | All | Persistent | Remapped |

Simulation total

of flows 7°022°982 25’896 74
% of all 100.00 0.37 0.0011
% of persistent - 100.00 0.29
Per iteration

Max, # of flows 10°062 73 32
Max, % of all 100.00 0.82 0.40
Max, % of pers. - 100.00 55.17

ever, we can attempt to relax the problem by bounding our un-
known y; ; € [0, 1]. The solution of such optimization can be
interpreted rather as a probability of ¥ being mapped to node j
by f(t).

In all the iterations of the presented simulation, the relaxed
linear optimization problem yielded a solution that would re-
quire 0 flow re-mappings, showing that there is potentially room
for improvement in the heuristics. However, the actual amount
of re-mappings carried out by the adaptation remains close to
the optimal, zero re-mapping, solution.

VI. IMPLEMENTATION ISSUES
A. Router Architecture

An implementation of a router combining the distributed
router architecture with the load-sharing scenario is depicted in

Figure 9.
Incoming
Packet 1.parse 2.f(v,x)=5¢ Line Card with NP
— L=
v 1 ‘request (w) 6
w 4. NextHop

—h 0 ="

= packet fields 2 5. return(4 5

contained in the
identifier vector v,
vcw

1 additional packet
fields contained in
the information
vector w

6. switch to 4
3| 4

Fig. 9. Load sharing within a distributed multiprotocol router.

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

Incoming Packet

2.f(v,x)=3

1. parse 1 3. StorePayload (1, v)

- 4. Request (3, w)

1/0 Line

mm packet fields
P Cards 4

contained in the
identifier vector v,
vcw

[additional packet
fields contained in
the information
vector w

op (w) =N

Input & Output Switch
/ Shared Memory

Fig. 10. Multiprotocol router, consisting of an input- and output switch/shared
memory and multiple network processors, sharing the load of IV line cards.

Another potentially fruitful implementation is shown in Fig-
ure 10. It is a load-sharing extension of the concepts of the
highly successful products of Juniper Networks [18], where
the header and the payload-processing paths are separated by
two switches, input and output. The control information in the
packet header is processed in a remote NPU, while the payload
is temporarily stored in a distributed shared memory coupled to
the input switch. Sharing the load among the NPUs would again
bring significant utilization benefits.

B. Packet-to-NPU Mapping

The major implementation issue related to load sharing is how
to provide a fast computable pseudo-random function g for com-
puting the mapping f, with the properties required in the map-
ping definition (Def. 2).

A good candidate seems to be the hash function based on the
Fibonacci golden ratio multiplier ¢~ = (1/5 — 1) /2, presented
in [11]. The Fibonacci hash function leads to the “most random”
scrambling of sequences [11]. It is defined as follows:

hg-1(z) = (¢~ " z)mod 1. (29)

Such a function can be fit into the mapping scheme as follows:

9(F,5) = hy-1 (7 XOR hy1(5)). (30)

As the values h -1 (j) could be precomputed, the actual compu-
tation per vector ¢ would only require 4m basic operations and
m comparisons (to find the maximum).

We have used Fibonacci hashing to compute ¢ in our experi-
ments.

C. Load Indicator

Another open implementation issue is how to actually mea-
sure the load of the processors or the amount of processing units
spent per time interval. A good measure can be the number of
memory accesses or of processing cycles an NPU has performed
during the time interval At¢. A counter value is then periodically
accessed by the CP.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a scheme for sharing the packet process-
ing tasks over multiple network processors within a router. The

scheme is based on an adaptive deterministic mapping of flows
to processors. The proposed load-sharing scheme requires no
flow state information to be stored within a router. The mapping
itself is derived from the robust hash routing presented in [17]
and [21]. We have extended the mapping with an adaptation
discipline aimed at keeping the processor load below a dynam-
ically derived threshold. The threshold reflects the total system
utilization.

The adaptation is performed by adjusting the weights of the
packet-to-processor mapping, thus reducing or increasing the
amount of flows a processor must handle. Thanks to the proved
minimum disruption property of our adjustments of the map-
ping, the adaptation requires only a very small amount of flows
to be re-mapped. The amount is very close to the minimal
amount possible, as shown by comparison with a solution of
the corresponding relaxed linear optimization problem. Thus
the probability of packet reordering within a flow is kept low.

Such a scheme is particularly useful in routers with many
input ports, with packets requiring large amounts of process-
ing. With the proposed scheme, a kind of statistical multiplex-
ing of the incoming traffic over the multiple network processors
is achieved, thus in effect transforming a router into a parallel
computer.

The improvements in processor utilization decrease the total
router cost and power consumption as well as improve fault tol-
erance.

As for future improvements, further study is planned to gain
insight into how various traffic patterns influence the perfor-
mance of the load-sharing scheme. Another topic open for re-
search is the influence of an NPU load sharing on QoS guar-
antees provided by a router. These topics are currently under
investigation.

REFERENCES

[1] National Laboratory for Applied Network Research (NLANR)
AIX - MAE West interconnection at NASA Ames OC-3 trace.
http://moat.nlanr.net/PMA/, March 19, 2000.

[2] A. Asthana, C. Delph, H. V. Jagadish, P. Krzyzanowski. Towards a Gigabit
IP router. Journal of High Speed Networks, Vol. 1, No. 4, pp. 281-288,
1992.

[3] G. Barish, K. Obraczka. World Wide Web caching: trends and techniques
IEEE Communications Magazine, Vol. 38, No. 5, pp. 178-184, May 2000.

[4] T. L. Casavant and J. G. Kuhl A taxonomy of scheduling in general-
purpose distributed computing systems. IEEE Transactions on Software
Engineering, Vol. 14, No. 2, pp. 141-154, February 1988.

[5] Cisco Express Forwarding (CEF). Cisco Systems
http://www.cisco.com, 1997.

[6] H.C.B. Chan, H. M. Alnuweiri, V. C. M. Leung. A framework for opti-
mizing the cost and performance of next-generation IP routers. IEEE Jour-
nal on Selected Areas in Communications, Vol. 17, No. 6, pp. 1013-1029,
June 1999.

[71 D. L. Eager, E. D. Lazowska, J. Zahorjan. Adaptive load sharing in ho-
mogenous distributed systems. IEEE Transactions on Software Engineer-
ing, Vol. SE-12, No. 5, pp. 662-675, May 1986.

[81 H. El-Rewini, H. H. Ali and T. Lewis. Task scheduling in multiprocessing
systems. IEEE Computer, Vol. 28, No. 12, pp. 27-37, December 1995.

[91 G. C. Fedorkow. Cisco 10000 Edge Services Router (ESR) technology

overview, http://www.cisco.com, 2000.

G. Goldszmidt and G. Hunt. Scaling Internet services by dynamic allo-

cation of connections. Proceedings of the Sixth IFIP/IEEE International

Symposium on Integrated Network Management, pp. 171-184, 24-28 May

1999.

D. E. Knuth. The art of computer programming, Vol. 3, Sorting and search-

ing. Addison-Wesley, 1973.

O. G. Koufopavlou, A. N. Tantawy, M. Zitterbart. Analysis of TCP/IP

for High Performance Paralle] Implementations. 17th IEEE Conference

on Local Computer Networks, Minneapolis, September 1992.

white paper,

[10]

[11]

[12]

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

[13] V. P. Kumar, T. V. Lakshman, D. Stilliadis. Beyond best effort: router
architectures for the differentiated services of tommorrow’s Internet, IEEE
Communications Magazine, pp. 152-164, May 1998.

[14] T. Kunz. The influence of different workload descriptions on a heuristic
load balancing scheme. IEEE Transactions on Software Engineering, Vol.
17, No. 7, pp. 725-730, July 1991.

[15] National Laboratory for Applied Network Research (NLANR).
WAN traffic distribution by address size, Fix-West trace,
http://www.nlanr.net/NA/Learn/Class, May 1997.

[16] C. Partridge et al. A fifty gigabit per second IP router, IEEE/ACM Trans-
actions on Networking 6, 3, pp. 237-248, June 1998.

[17] K. W. Ross. Hash routing for collections of shared web caches. IEEE Net-
work, Vol. 11, No. 6, November-December 1997.

[18] Ch. Semeria. Internet backbone routers and evolving Internet design, Ju-
niper Networks white paper, http://www.juniper.net, September 1999.

[19] B. A. Shirazi, A. R. Hurson and K. M. Kavi, editors. Scheduling and Load
Balancing in Parallel and Distributed Systems. IEEE CS Press, 1995.

[20] A. Tantawy, M. Zitterbart. Multiprocessing in high performance IP routers.
Proceedings of the 3rd IFIP WG 6.1/6.4 Workshop on Protocols for High
Speed Networks, Stockholm, Sweden, May 1992.

[21] D. G. Thaler, C. V. Ravishankar. Using name-based mappings to increase
hit rates. IEEE/ACM Transactions on Networking, Vol. 6, No. 1, pp. 1-14,
February 1998.

[22] K. Thompson, G. J. Miller, R. Wilder. Wide-area Internet traffic patterns
and characteristics. IEEE Network, Vol. 11, No. 6, pp. 10-27, November-
December 1997.

[23] H. Zhu, T. Yang, Q. Zheng, D. Watson, O. H. Ibarra, T. Smith Adaptive
load sharing for clustered digital library servers. Proceedings of the Sev-
enth International Symposium on High Performance Distributed Comput-
ing, pp. 235-242, July 1998.

0-7803-7476-2/02/$17.00 (c) 2002 | EEE.

