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Abstract—We consider a large-scale wireless network, but
with a low density of nodes per unit area. Interferences are
then less critical, contrary to connectivity. This paper stud-
ies the latter property for both a purely ad-hoc network and
a hybrid network, where fixed base stations can be reached
in multiple hops. We assume here that power constraints are
modeled by a maximal distance above which two nodes are
not (directly) connected.

We find that the introduction of a sparse network of base
stations does significantly help in increasing the connectivity,
but only when the node density is much larger in one dimen-
sion than in the other. We explain the results by percolation
theory. We obtain analytical expressions of the probability
of connectivity in the 1-dim. case. We also show that at a low
spatial density of nodes, bottlenecks are unavoidable. Re-
sults obtained on actual population data confirm our find-
ings.

I. INTRODUCTION

Early enthusiasm for large-scale ad-hoc networks,
which would eliminate the need for any fixed infrastruc-
ture, has been recently dampened by their reduced capac-
ity when the density of nodes per area unit [5], which we
denote here by λ, becomes large. Interferences and con-
tention for medium access are the cause of this fundamen-
tal limitation. The introduction of base stations can over-
come this limitation, and fortunately, most highly popu-
lated areas, such as cities, are covered by cellular wire-
less networks. Another approach is to rely on multi-user
diversity, such as mobility, which can improve substan-
tially the capacity of the network [7]. Connectivity on the
other hand is not a problem: when λ→∞, and when the
distance r(λ) below which nodes can connect, decreases
at a rate slower than

√
log λ/λ, Gupta and Kumar have

proven that all nodes are almost surely connected [6].
The situation is reversed when the nodes density λ be-

comes small. Power constraints become then a serious
impediment [11]. If the maximal radius r ensuring direct
communication between two nodes is too small, some
nodes will be disconnected. Unfortunately, those geo-
graphical areas, such as rural areas which are not much
populated, tend to be poorly covered by cellular technol-
ogy, because of cost limitations. One is therefore lead
to investigate whether the much more economical solu-
tion where nodes connect to a base station in more than

one hop, using other relaying nodes, is feasible when the
number of these nodes per unit area, λ, is small, and when
power limits the maximal radius r ensuring connectivity
in one hop.

This paper does address this question, for the Poisson
Boolean model, which is described in more detail in Sec-
tion II.

We begin with a purely ad-hoc network. We first ex-
amine the probability that a pair of arbitrary nodes are
connected. This problem is strongly related to the field
of percolation theory, which was already applied in the
proof in [6], in a different context. The percolation prob-
ability is the probability that an arbitrary node belongs
to a cluster of infinite size. The main result of perco-
lation theory is that there exists a finite, positive value
λc of λ, under which the percolation probability is zero
(sub-critical phase) and above which it is non zero (super-
critical phase). We compute (analytically in 1-dim and
numerically in 2-dim) the connection probability in Sec-
tion III for three geometries of the domain on which nodes
are scattered: a line, a plane and an infinite strip of finite
width.

Although in the super-critical phase, there are almost
always a large number alternate paths between two dis-
tant nodes belonging to the infinite cluster, we find in Sec-
tion IV that the size of the minimal cut-set encircling an
arbitrary node may be reached far away from the node,
unless λ is quite large. We formalize the resulting struc-
ture of the network, which appears as a set of islands
connected by a few links. Nodes within each island are
connected via multiple routes, but links between islands
form ”hot spots” limiting the number of alternate paths
between two nodes located in different islands.

We then move to a hybrid network, and investigate the
benefit of having a sparse network of base stations reg-
ularly placed in the network in Section V. Base stations
are supposed to be all connected to each other by a wired
network, so that two nodes connected to base stations can
always communicate, no matter the distance that sepa-
rates them. Because of percolation, we will see that there
is no benefit in terms of connectivity in the super-critical
case. We also show that the benefit in the sub-critical case
remains marginal, unless the nodes spatial distribution is
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close to 1-dim. In the latter case, we obtain a bound on the
distance between base stations guaranteeing a prescribed
probability of connectivity for any node.

Finally, Section VI shows that the above results hold
not only for a Poisson point process, but for more general
point processes as well. We show on real data from the
Swiss population density, that base stations are needed
to guarantee connectivity in elongated geographic areas
where population is concentrated in a narrow space, such
as Alpine valleys, and not in wide areas where population
is well scattered in 2-dim, such as the city and suburbs of
Zurich.

II. MODELS

A. Mathematical model

To describe the random network, we use a Poisson
Boolean model B(λ, r), where the positions of the nodes
are distributed according to a Poisson point process of
constant, finite intensity λ in Rd, with d = 1 or 2. We
associate to each node a closed ball of fixed radius r/2,
as shown in Figure 1. The plane is thus partitioned into
two regions: the occupied region covered by the balls,
and the vacant region V , which is the complement of the
occupied region.
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Fig. 1. The Boolean model (left) and the associated graph (right).

Two nodes are directly connected or immediate neigh-
bors if the intersection of their associated balls is non-
empty. In other words, we assume in this model that two
nodes are able to communicate together through a wire-
less channel if the distance between them is less than a
characteristic range r. A cluster is a connected compo-
nent of the occupied region. Finally, two nodes are said
to be connected together if they belong to the same clus-
ter.

Furthermore, one can associate with the random model
B(λ, r) the graph G(λ, r) by associating a vertex to each
node of B(λ, r) and an edge with each direct connec-
tion in B(λ, r). G(λ, r) is called the associated graph
of B(λ, r).

In this paper, we consider the simple case where r is
fixed (it is the maximal radius allowed by power con-
straints). The case where r is randomly chosen for each
node would be interesting as it leads to small-world type
of associated graphs [13]. Most of the present results ex-
tend to this case, but we leave them for further work.

B. Simulation model

As an infinite network cannot be handled by a com-
puter, simulations were performed on a finite domain of
65536× 65536 pixels. The maximal range r is measured
in pixels, whereas the density λ of the Poisson process
is measured in pixels-2. For practical reasons, we vary
sometimes the range r instead of varying λ. Indeed, each
realization of the model B(λ, r) can be scaled by a ra-
tio r/r′ in the d-dim space, to coincide with a realization
of model B(λ′, r′) with λ′ = (r/r′)dλ, so that their as-
sociated graphs are identical: G(λ, r) = G(λ′, r′). All
connectivity properties can be reformulated by a suitable
scaling ([9] pp 30-31).

In the various plots in the paper, the experimental av-
erage value of the quantity of interest is plotted together
with vertical bars delimiting the 99% confidence interval.

III. CONNECTIVITY OF A PURE AD-HOC NETWORK

We begin with the connectivity of the Poisson Boolean
model. More specifically, our goal is to evaluate the prob-
ability Pc(x) that two arbitrary nodes A and B, whose
Euclidean distance in Rd is denoted by d(A,B) = x, are
connected to each other, as a function of λ, r and x.

A. One-dimensional case : line

We begin with the 1-dim. case, where two nodes at
a distance x of each other are connected if the entire in-
terval between them is occupied. If there is a vacant re-
gion, the information cannot be relayed from a node to the
other. A hole appears if the interval between two consec-
utive nodes is longer than r. As λ < ∞, the probability
for a vacant interval to occur between two consecutive
nodes is strictly positive, whatever the value of λ and r.
Since there is an infinite number of intervals, and since
their lengths are independent, the probability of having
no hole is zero. Hence limx→∞ Pc(x) = 0.

Related results include the computation that a given
number of nodes on a finite interval are all connected to
each other [12]. A recursive formula giving the average
number of hops between two connected nodes is given in
[3].

Here we compute the probability distribution Pc(x) for
an infinite domain. Clearly, Pc(x) = 1 if 0 ≤ x < r.
When x ≥ r, Pc(x) is the probability that there is another
node between A and B, located at a distance ξ from B,
with 0 ≤ ξ < r, and that this node is connected to A.
We use this argument to condition Pc(x) recursively on
Pc(x−ξ), with 0 ≤ ξ < r, and we establish the following
result.

Theorem 1: The probability Pc(x) that two nodes dis-
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tant of x space units are connected is

Pc(x) =




1 if 0 ≤ x < r∑�x/r�
i=0

(−λe−λr(x−ir))i

i!

−e−λr
∑�x/r�−1

i=0
(−λe−λr(x−(i+1)r))i

i!
if x ≥ r

(1)

with 
x/r� denoting the largest integer smaller than or
equal to x/r.

Proof: If x ≥ r, Pc(x) is the probability that (i)
the next node towards Node A is located at a distance ξ
from Node B, with 0 ≤ ξ < r, and that (ii) this new node
is connected to A. This second event occurs with proba-
bility Pc(x− ξ). The interval separating two consecutive
nodes has an exponentially distributed length, whose pdf
is thus λe−λξ for 0 ≤ ξ < x. Therefore

Pc(x) =
∫ r

0

Pc(x − ξ)λe−λξdξ (2)

= λe−λx

∫ x

x−r

Pc(y)eλydy.

Taking the derivative of this expression with respect to x,
we obtain

dPc

dx
(x) = −λe−λrPc(x− r) (3)

for x ≥ r. This is a first order linear delay differential
equation, with initial condition defined on interval [0, r].
We know that Pc(x) = 1 for 0 ≤ x < r. At x = r
however, Pc(x) has a discontinuity: indeed, solving (2)
for x = r, we find Pc(r) = 1 − e−λr. Integrating (3)
with this initial condition on [0, r], we obtain, after some
manipulations, (1).

The following bounds on Pc(x) will be needed in Sec-
tion V.

Theorem 2: If x ≥ 2r,
(
1− e−λr

)
e−λ(x−2r)e−λr − λe−λr ≤

Pc(x) ≤ (
1− e−λr

)
e−λ(x−r)e−λr

. (4)

Proof: Since Pc(x) is a decreasing function of x,
Pc(x) ≤ Pc(x−r) for any x ≥ r. Inserting this inequality
in (3), we get

dPc

dx
(x) ≤ −λe−λrPc(x) (5)

for x ≥ r. Since Pc(r) = 1 − e−λr, we have from the
theory of Gronwall-type differential inequalities (see e.g
[8], Chap. 1) that the solution of (3) is upper bounded by
the solution of the linear ode (5), (with the inequality sign
replaced by an equality sign), which is

Pc(x) ≤ (
1− e−λr

)
e−λ(x−r)e−λr

(6)

for all x ≥ r. This is the upper bound in (4).
To obtain a lower bound, let us note that (6) provides

an upper bound on Pc(x − r), by replacing x by (x − r)
in this expression. Inserting it in (3), we get

dPc

dx
(x) ≥ −λe−λr

(
1− e−λr

)
e−λ(x−2r)e−λr

which we integrate for x ≥ 2r to obtain

Pc(x) ≥ −λre−λr +
(
1− e−λr

)
e−λ(x−2r)e−λr

using the fact that Pc(2r) = 1− e−λr − λre−λr because
of (1). This is the lower bound in (4).

We can thus conclude that in one dimension, the net-
work is almost surely divided into an infinite number of
bounded clusters, between which no communication is
possible. A large-scale ad hoc network will therefore not
work in this scenario.

B. Two-dimensional case : plane

The picture is very different in 2 dim. For example,
the existence of an unbounded cluster does not imply full
connectivity. The following result from percolation the-
ory is our starting point.

Theorem 3—[9] pp 45-68: Consider a Poisson
Boolean model B(λ, r) in R2. There exists a critical
density λc > 0 such that

• in the sub-critical case, defined by λ < λc, all clus-
ters are bounded almost surely (a.s.)

• in the supercritical case, defined by λ > λc, there
exists a unique unbounded cluster U a.s.

In terms of networking, this means that the sub-critical
case is similar to the 1-dim. case, where the network is
partitioned in an infinite number of bounded clusters. In
the supercritical case however, the result is much more
encouraging, because of the existence of an unbounded
cluster.

In the supercritical phase, one can divide the nodes into
two categories: those belonging to the unbounded cluster
U , and the others. The first ones can communicate with
nodes located arbitrarily far away, whereas the others are
restricted to a finite area. Thus, the quality of the con-
nectivity is related to the fraction θ of nodes belonging to
the first category. Note that θ is most frequently defined
as the probability of an arbitrary node to belong to the
unbounded cluster, and is called percolation probability.
Because of the spatial invariance of the Poisson process,
the position of this node can be taken, without loss of gen-
erality, at the origin. One easily shows that Pc(x) ≥ θ2.
Moreover, infx>0 Pc(x) = θ2.

To date, there is unfortunately no explicit expression of
θ, nor of λc. Bounds on λc have been obtained in [4],
[10], [9], whereas θ can be evaluated by simulation. Fig-
ure 2 shows θ as a function of λ.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1081 IEEE INFOCOM 2002



1.5 2 2.5 3 3.5
x 10-5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

node density λ

pr
ob

ab
ili

ty
 θ

Fig. 2. Percolation probability θ in 2 dim. for a fixed ball radius
r/2 = 125 pixels. The critical density λc is roughly 2.26 · 10−5 node
per square pixel. The presence of a tail below λc is due to the finiteness
of the domain, a simulation artifact.

C. Two-dimensional case : strip

The last geometry we consider is an strip of infinite
length and of fixed, finite width d. We set the density of
the Poisson point process to λ = λ1

d + λ2. For d = 0,
we have λ = ∞, but the surface of the strip is zero; we
obtain therefore a 1-dim. network with density λ1 on R.
For d → ∞ we obtain a 2-dim. network with density
λ = λ2 on R2.

Percolation never occurs for a finite width d. This
can be shown by projecting the network on the horizon-
tal axis. One obtains a 1-dim. Poisson point process of
density λ = λ1 + dλ2. As the distances are smaller in
the projected space, for a constant ball radius, the exist-
ing connections are preserved, while others are created.
However, percolation never occurs in 1 dim, as we have
seen above. This implies that percolation never occurs on
the strip. The existence of an unbounded cluster requires
the domain to be infinite in both dimensions.

IV. NUMBER OF PATHS AND BOTTLENECKS

In the previous section, we discussed the existence of
at least one path between two nodes. In order to study
the reliability of such a network, and to identify possi-
ble bottlenecks, we now examine the number of alternate
paths, which do not share any link with each other, in the
super-critical phase. This amounts to compute the size of
the minimal cutset in the associated graph, between both
nodes.

A. Number of alternate paths between two nodes

Clearly, the more distant two nodes, the lower the size
of the minimal cutset in the associated graph G(λ, r) be-
tween them. In fact, we will first consider one of these

two nodes, call it A. Suppose that A ∈ U . We denote
by NA(p) the size of the minimal cutset within a circle of
radius p centered on A, that separates A from the nodes
located outside of this circle.

More formally, denote by CA(p) the set of the closed
curves surrounding a node A, and which are included in
the disk of radius p centered on A. For each curve C ∈
CA(p), denote by E(C) the set of the edges of G(λ, r)
intersected by C. Function NA(p) associated with each
node A ∈ U is therefore given by

NA(p) = min
C∈CA(p)

card (E(C)) (7)

This function is clearly decreasing in p because
CA(p1) ⊆ CA(p2) if p1 < p2. Furthermore, NA(p) > 0,
because A ∈ U . Therefore, NA(p) admits a limit when
p→∞, which we denote N∞

A :

lim
p→∞ NA(p) = inf

p>0
NA(p) = N∞

A . (8)

This number can be seen as the size of the minimal cutset
separating A from what we call the “rest of the network”,
i.e. nodes located far away from A.

Figure 3 shows typical values of NA(p) (scaled to the
number of immediate neighbors of A, which is clearly
equal to limp→0 NA(p)).
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Fig. 3. Average ratio between NA(p) and the number of neighbors of
A for sub- and super-critical densities. For sub-critical densities, NA(p)
goes to zero, because A belongs a.s. to a bounded cluster. For supercrit-
ical densities, NA(p) tends to a limit NA(∞) noticeably smaller than
limp→0 NA(p).

Thanks to this number, we can now compute the size
of the minimal cutset between two nodes A,B ∈ U . But
we need first the following result.

Lemma 1: In the supercritical case, any unbounded1

curve C crosses an infinite number of edges of the as-
sociated graph.

1A curve C ⊂ R2 is unbounded if for any two points a,b on the
curve, supa,b∈C d(a, b) = ∞ where d(a, b) is the Euclidean dis-
tance in R2 between a and b.
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Proof: Consider a portion D of the curve C that
does not cross any edge. Denote by W the occupied re-
gion, and by V the vacant region of R2. Take a point a
on D. Either a ∈ V , or a ∈ W . If a ∈ W , it can be
included in the ball of a node placed on either side of the
curve, but not on both, as otherwise, there would be an
edge that crosses the curve. Denote by d be the distance
between this node and a. We are then sure that there is a
vacant region on the other side of the curve at a distance
r/2 − d from a. Therefore, there is always a vacant re-
gion at a distance smaller than r/2 from any point of the
curve.

One can thus draw a new curve D̃ such that for any
point b of D̃, d(b, D) ≤ r/2 and b is in a vacant region.
D̃ is thus included in a single vacant region. However,
there is no unbounded vacant region in the supercritical
case (see [9] pp 108-116). Hence, D̃ must be bounded.
As every point of D is at a finite distance of D̃, D must
also be bounded.

One can then conclude that the portion of curve be-
tween two crossings must be bounded. As the curve C is
unbounded, there are infinitely many crossings.

We can now compute the following lower bound on
the size of the minimal cutset, and thus the number of
alternate paths, between two nodes A and B belonging to
the unbounded cluster.

Theorem 4: The number of alternate paths be-
tween two nodes A and B is lower-bounded by
min{N∞

A , N∞
B }.

Proof: We can assume without loss of generality
that N∞

A ≤ N∞
B . Suppose that there are less than N∞

A

paths from A to B. Then there exists a curve dividing R2

into two parts, one including A and the other including B,
and that intersects less than N∞

A edges. This curve is ei-
ther closed and surrounds A, either closed and surrounds
B, or unbounded. The two first cases are excluded by as-
sumption. The third possibility is excluded by Lemma 1.

The lower bound in Theorem 4 is tight. Indeed, since
NA(p) is an integer-valued function, the infimum in (8) is
reached for a finite p, which we denote by LA. In other
words,

LA = inf{p > 0 such that NA(p) = N∞
A }. (9)

If the distance between A and B is larger than
max{LA, LB}, then the number of alternate paths is ex-
actly equal to min{N∞

A , N∞
B }. It follows that the num-

ber of paths between two nodes is limited by two local
values (N∞

A and N∞
B ), which depend exclusively on their

respective neighborhoods.

B. Bottlenecks

In this section, we now analyze the structure of graph
G(λ, r). In particular, we would like to identify the possi-
ble bottlenecks that can form in the network.

Parameter LA is important for locating hot spots and
bottlenecks. Indeed, it is the smallest distance from Node
A at which the minimal cutset (which has size N∞

A ) with
“the rest of the network” is reached. A small value of
LA means that the number of alternate paths between A
and a node located far away is approximately equal to the
number of paths between A and its close neighbors. As a
result, the number of paths is simply limited by the num-
ber of immediate neighbors of end-nodes. On the con-
trary, if LA is large, then long-distance communications
are constrained by bottlenecks located far way from the
end nodes.

As we can see on Figure 4, LA is in average non zero.
In other words, N∞

A is in average less than the number of
immediate neighbors of A (what we had already observed
on Figure 3). Nevertheless, LA tends to zero when the
density λ increases, for a fixed r. This means that for high
densities, the number of paths is simply limited by the
number of immediate neighbors of end-nodes, and that
”hot spots” do not occur, as already pointed out in [5].
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Fig. 4. E[LA] as a function of λ. We see that LA goes to zero when the
density increases, meaning that N∞

A tends to the number of neighbors
of A

The case where λ is just above the critical density is
the situation where bottlenecks will appear. The network
appears then as a set of ”islands”, inside which nodes are
well connected. Islands are however connected by a few
links only, those forming the minimal cutsets. Nodes be-
longing to different islands are thus connected by a num-
ber of alternate paths given by Theorem 4. These links
are the bottlenecks of the network.

The rest of this section is devoted to a formal definition
of the concept of island. We begin first by that, more
general, of a domain of a node.

Definition 1: For each node A, consider the closed
curve CA ∈ CA(LA) with card (E(CA)) = N∞

A that sur-
rounds the minimum number of nodes. We call domain
of A the set SA of nodes surrounded by CA.

For all B ∈ SA we have N∞
B ≤ N∞

A , because CA
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surrounds also B. In other words, all the elements of the
domain SA of Node A share the same N∞

A paths to the
“rest of the network”.

Domain SA of Node A is called an island if no other
domain contains SA. In other words:

Definition 2: Let A ∈ U . Then SA is an island if there
exists no node B ∈ U such that SB ⊃ SA.

Islands are disjoint, and form a partition of the un-
bounded cluster U . It is a consequence of the following
lemma.

Lemma 2: Consider two nodes A and B ∈ U . Then
either SA ∩ SB = ∅, either SA ⊆ SB , or SB ⊆ SA.

Proof: We discuss first the case where B ∈ SA. If
SB � SA, as illustrated in Figure 5, CA and CB have
two intersection points X and Y .

X

Y

CA

CB

B

SA

SB

Fig. 5. CurvesCA andCB when B ∈ CA

If the number of edges cut by CA between X and Y is
less or equal to the number of edges cut by the portion of
CB located between X and Y and inside SA, then we can
construct a new curve C ′

B surrounding B by replacing
in CB the latter portion between X and Y by the former
one. This new curve cuts fewer edges or surrounds fewer
nodes, which is impossible by definition of CB .

If the number of edges cut by CA between X and Y is
strictly more than the number of edges cut by the corre-
sponding portion of CB , then one could construct a new
curve C′

A surrounding A in the same way as above. This
new curve cuts fewer edges than CA, what is impossible
by definition.

Therefore, the situation represented in Figure 5 is not
possible, and Curve CB is always surrounded by CA.
This implies SB ⊆ SA. Similarly, A ∈ SB implies SA ⊆
SB .

Let us discuss now the case where A /∈ SB and B /∈
SA. Suppose that SA∩SB �= ∅. U is therefore partitioned
into four disjoint sets, N = SA ∩ SB , A = SA \ SB ,
B = SB \ SA and Ũ = U \ (SA ∪ SB). Denote by nAB
the number of edges between elements ofA and elements
of B, by nAN the number of edges between element ofA
and elements of N , and so on (see Figure 6).

Remember that CA surrounds the elements of SA =
A∪N . Consider now a curve that surrounds the elements
of A only. By definition of CA, this curve must intersect

A N B

nNŨ

nAB

nAN nBN

nAŨ nBŨ

Ũ

Fig. 6. Number of edges between sets A, B, N and Ũ .

strictly more edges than CA, because N �= ∅. In other
words, if we count these edges, we must have:

nAŨ + nNŨ + nBN + nAB < nAŨ + nAB + nAN

and thus

nNŨ + nBN < nAN . (10)

Similarly, by considering SB = B ∪N , we obtain:

nNŨ + nAN < nBN (11)

Combining (10) and (11) together, we obtain a contra-
diction, which proves that N = SA ∩ SB = ∅ .

A consequence of Lemma 2 is that for each node B ∈
SA, SB ⊆ SA. It follows then from Definition 2 and
Lemma 2 that islands are disjoint. Moreover, every node
of U belongs to one (and only one) island:

Theorem 5: For each node A ∈ U , there exists a
unique island IA containing A, and which is given by

IA =
⋃

B∈U ,SB�A

SB. (12)

Proof: (i) Existence: We have to prove that the set
defined in (12) is actually an island. Consider B1 and
B2 ∈ U with SBi � A, i = 1, 2. As SB1 and SB2 are not
disjoint, we know from Lemma 2 that either SB1 ⊆ SB2

or SB2 ⊆ SB1 . Thus, the union in (12) is equal to SC for
some node C.

On the other hand, the condition in Definition 2 is ver-
ified by construction. IA is therefore an island.

(ii) Uniqueness. As islands are disjoint, two islands
cannot contain A simultaneously.

Since every node of U belongs to an island, the un-
bounded cluster U can be partitioned into islands. We
can thus define a new simplified graph with islands as
nodes, and connections between islands as edges. This
new graph, with a coarser granularity than G(λ, r), de-
scribes the ”backbone” structure of the unbounded clus-
ter.

The existence of this backbone structure can be intu-
itively explained as follows : below the critical density,
the graph is made of an infinite number of bounded clus-
ters. As the density increases, new connections appear,
making clusters merge together. At the critical density, an
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infinite number of clusters merge to create the unbounded
cluster U . Above the critical density, the islands are more
or less the remnants of the bounded clusters, whereas the
backbone structure is made of brand-new connections.
Figure 7 illustrates this phenomenon.
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Fig. 7. Phase transition : islands and bottlenecks. At sub-critical den-
sity, the graph is divided into many bounded clusters (gray). When the
density becomes supercritical, new edges (in black) appear and connect
the clusters together (they become the islands of the unbounded clus-
ter). The number of paths between two nodes inside an island remains
in average higher than the number of paths between two islands.

V. PLACEMENT OF FIXED BASE STATIONS

The introduction of base stations will allow distant
nodes to communicate through a fixed, wired infrastruc-
ture. It represents a trade-off between today’s cellular net-
works and large-scale ad-hoc networks. In the first case,
every node connects to the nearest base station. To pre-
vent nodes from being isolated from the network, base
stations must therefore cover the whole space. In the sec-
ond case, as we have seen in the previous sections, the
density and radius must be large enough to keep the pro-
portion of nodes which do not belong to U small enough.

In this section we want to evaluate whether the intro-
duction of base stations is helpful in decreasing the prob-
ability that an arbitrary node remains unconnected to the
network, for the three geometries of a line, a plane and
a strip. We assume here that the radius of connectivity
of the base stations is the same as the one of the wireless
nodes.

A. Nodes and base stations on a line

Base stations are placed every L distance units, say
at every nL for n ∈ Z, and therefore define intervals
[nL, (n + 1)L] of length L on the line R.

With no loss of generality, we only consider here nodes
that are located in the first interval [0, L]. Such a node is

connected to the left (respectively, right) base station if
and only if all intervals separating any pair of consecutive
nodes located in [0, x] (resp., [x,L]) have a length less
than r. Because of the Poisson assumption, these inter-
vals are independent, so that the probability that the node
located at position x be connected to both base stations is
the product of Pc(x) (the probability that the node is con-
nected to the left base station) and Pc(L− x) (the proba-
bility that the node is connected to the right base station).
Therefore the probability that an arbitrary node located at
distance 0 ≤ x ≤ L from the origin is connected to a base
station is

Pcb(x) = Pc(x) + Pc(L− x)− Pc(x)Pc(L− x)

where Pc(x) is given by (1).
Of course, the closer we pick a node from a base sta-

tion, the more likely it will be connected. The average of
the connection probability of a node to a base station, over
all positions that this node can have (which are uniformly
distributed over a given interval, because of the Poisson
assumption) is

∫ L

0 Pcb(x)dx/L. A more interesting value
is a lower bound on Pcb, which is valid for the worst pos-
sible location of a node, which is at mid distance between
the base stations:

P+
cb = inf

0≤x≤L
{Pcb(x)} = Pcb(L/2)

= 2Pc(L/2)− P 2
c (L/2). (13)

Using the bounds (4), we obtain the following lower
bound on P+

cb .
Theorem 6: P+

cb is lower bounded by:

P+
cb ≥ 1− (1 + λL/2)2 e−2λr. (14)

Proof: If 0 ≤ L ≤ 2r, then P +
cb = 1, obviously: in

this case, the base stations cover the entire line. If 2r ≤
L ≤ 4r, then Pc(L/2) = 1− e−λr − λLe−λr/2 because
of (1). Inserting this value in (13) yields P +

cb = 1− (1 +
λL/2)2 e−2λr.

Finally, if L ≥ 4r, we insert the bounds (4) in (13),
which becomes

P+
cb ≥ 2

(
1− e−λr

)
e−λ(L−4r)e−λr/2

−2λre−λr − (
1− e−λr

)2
e−λ(L−2r)e−λr

The expansion of the right hand side of this inequality
in Taylor series yields (14) after lengthy manipulations
omitted here for lack of space.

One deduces from (14) the maximal spacing between
consecutive base stations to keep the probability of find-
ing a node not connected to a base station, in an arbitrary
interval, below a given value P +

uc = 1−P+
cb. This spacing

is at least equal to 2r, in which case the base stations do
cover the entire line (P+

uc = 0). Combining this with (14),
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we see that the maximal distance between base stations is
lower bounded by the following expression

(
L

r

)
max

≥ max
{

2,
2
λr

(
eλr

√
P+

uc − 1
)}

. (15)

The distance between base stations can grow exponen-
tially with λr, provided it is large enough to bring the
right hand side of this inequality above 2.

B. Nodes and base stations on a plane

We now place the base stations on the nodes of a square
lattice, with edges of length equal to L. In the 2-dim.
case, Pcb cannot be computed analytically. We compute
it therefore numerically. Figure 8 shows Pcb as a function
of L in both the super- and sub-critical cases.
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Fig. 8. Probability of connection Pcb in 2 dim. with base stations
for a sub-critical density λ = 2.1 · 10−5 and a super-critical density
λ = 2.56 · 10−5.

For sub-critical densities, the probability of connection
is now non-zero, but still far away from one, except in
the limit case where base stations cover almost the whole
space. Connectivity is thus not significantly better than
with a standard cellular network, where only one hop is
allowed between nodes and base stations.

For supercritical densities, we can see that the proba-
bility of connection is slightly better than without base
stations. Furthermore, the probabilities take almost iden-
tical values in both cases for high densities. Let us explain
why.

If λ > λc, there exists a unique unbounded cluster U .
This cluster is in contact with a base station almost surely
(the probability for each base station to be connected to
the unbounded cluster is positive, and there are an infinite
number of them). All nodes in U are thus connected to
the base stations. The situation for this subset of nodes is
actually the same as that of a purely ad hoc network. The
difference comes from nodes that are connected to a base
station through a bounded cluster.

The quantity in which we are interested is then the frac-
tion of bounded clusters connected to a base station. We
know from [9] that the average number of nodes con-
tained in a bounded cluster tends to one when λ → ∞.
Therefore the probability that a bounded cluster is con-
nected to a base station tends to the fraction of space cov-
ered by the base stations, which is πr2/L2. The total
probability that an arbitrary node is connected is thus

Pcb
λ→∞� θ(λ) + (1− θ(λ))

πr2

L2
.

This shows that the gain of connectivity for high densities
grows linearly with the fraction of space covered by the
base stations.

We saw in Section IV that one can divide the un-
bounded cluster into islands, and that the bottlenecks ap-
pear right between them. Inside an island, the connectiv-
ity is better, meaning that if a base station is present inside
an island, the number of paths between the nodes of this
island and the rest of the network will be increased. As
the size of the islands is of order of LA, we can see on
the graph of Fig 4 that this size decreases quickly with an
increasing density, meaning the probability of an island
to contain a base station becomes small. In other words,
for high densities, the benefit (in terms of connectivity
and number of paths) of inserting a fixed infrastructure
of base stations is small. For intermediate densities, the
benefit needs further study. One needs to investigate how
the lattice of base stations covers the islands, following
probably the approach of [1], [2].

C. Nodes and base stations on a strip

The behavior of the network is very different in one and
in two dimensions. It is therefore interesting to explore
the transition between these two behaviors, thanks to the
infinite strip of width d of Section III-C. Remember that
percolation never occurs for d finite: one expects there-
fore to benefit from base stations for connectivity. This
will certainly be the case for very small values of d. On
the other hand, as d → ∞, one gets closer a network on
R2, and the need for base stations to ensure connectivity
should vanish.

Figure 9 confirms our expectation. It shows the max-
imum distance L between base stations, as a function of
the strip width d, in order to achieve a probability of con-
nection larger than 90% (computed by simulation). Since
λ = λ1/d + λ2, with λ2 chosen such that λ2  λc,
the 90% connectivity is achieved without base station for
d = ∞. One can see that L(d) grows regularly, meaning
that there is continuous transition between the 1-dim. and
2-dim. cases.

VI. RESULTS ON SWISS DEMOGRAPHIC DATA

In this section, instead of generating the positions of
the nodes with a Poisson point process, we use node dis-
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Fig. 9. Maximal distance L between the base stations as a function of
the width d of the strip. r = 300 pixels, λ1 = 8 · 10−3 and λ2 =
2.3 · 10−5

tributions that are based on real population data2. We
consider two regions of Switzerland: the Zurich area,
and the Alpine Valley of Surselva (Fig 10). The first re-
gion present a quite uniform population 2-dim. density,
whereas the second one has an almost 1-dim. shape. We
assume that each resident has a probability 0.01 to own a
(turned-on) device, and we simulate the network for dif-
ferent values of r.
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Fig. 10. Swiss population density in 1990. In the frames, the two
considered regions of Zurich (zoom at bottom left) and Surselva Valley
(zoom at bottom right).

Let us discuss the region of Zurich first. In the pure ad-
hoc case, when r increases, we do observe the phase tran-

2Source : Population census 1990, OFS GEOSTAT

sition predicted by the model (see Figure 11). Further-
more, when r is sufficiently large, nodes are connected
with high probability (more than 99.9% for r = 2500m).
From a connectivity point of view, a pure ad-hoc network
would therefore be feasible in this region.
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Fig. 11. Probability of connection in the region of Zurich without base
stations and with base stations every 5km as a function of r.

If we insert base stations every 5km, the gain of con-
nectivity is not significant above r = 1500 m. We actu-
ally obtain full connectivity only for r = 2500 m, as with
a pure ad-hoc network.

In the Surselva Valley, the picture is very different. In
fact, without base stations, we never observe clusters that
spread form one end of the valley to the other. It means
that long range communication is impossible. If we add
base stations every 5km (i.e. 11 units), the probability of
connection then becomes much larger, already for trans-
mission ranges of a few hundreds of meters. However,
a 99 % connection probability is only reached when base
stations cover almost entirely the area. To allow more dis-
tance between base stations, one needs a larger fraction of
active nodes than 0.01 in this little populated region.
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Fig. 12. Probability of connection in Surselva Valley with base stations
every 5km as a function of r.
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We can conclude from these simulations that the qual-
itative behavior of the network remains the same with a
realistic node distribution, as with a Poisson distribution.

VII. CONCLUSION

Connectivity in 1 dim. is limited to short range com-
munications. In 2 dim., a phase transition occurs at a crit-
ical node density. Above this value, the fraction of nodes
being connected to the network grows rapidly. However,
the number of paths between two arbitrary nodes remains
limited by some bottlenecks. The node density has to be
far above criticality in order to have a well connected net-
work with numerous paths form one node to the other.

If we introduce a fixed infrastructure of base stations in
the network, the 1-dim. connectivity improves drastically.
The maximal distance between base stations to secure a
given probability of connection grows exponentially with
the density. On the other hand, in 2-dim, the introduction
of base stations does not significantly modify the behav-
ior of the network; the probability of connection and the
number of paths remains of the same order of magnitude.
If nodes are distributed on a strip of finite width and infi-
nite length, fixed infrastructure improves connectivity, but
this improvement becomes less and less significant as the
width of the strip becomes large. In this case, we observe
thus a smooth transition from 1-dim to 2-dim.

We should insist that these results are focused on the
sole aspect of connectivity. It is clear that the presence
of base stations can be a good answer to the problem of
low capacity at large node density. We conclude that in a
wireless network, a relatively sparse fixed infrastructure is
well suited for very populated regions and valleys (almost
1-dim. networks), whereas pure ad-hoc networking can
be used for areas with a relatively low density of nodes,
but that are well scattered in 2-dim. However, if in some
region the density is sub-critical, only cellular network
can offer an acceptable connectivity.

The dimensionality of the spatial node distribution ap-
pears thus as a key element to require or not a fixed infras-
tructure for connectivity, independently from other con-
siderations of capacity. This is valid for a Poisson distri-
bution, as well as real data, as exemplified by Section VI.
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