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ABSTRACT

Aliasing artifacts in images are visually very disturbing.
Therefore, most imaging devices apply a low-pass filter be-
fore sampling. This removes all aliasing from the image,
but it also creates a blurred image. Actually, all the image
information above half the sampling frequency is removed.
In this paper, we present a new method for the reconstruc-
tion of a high resolution image from a set of highly under-
sampled and thus aliased images. We use the information
in the entire frequency spectrum, including the aliased part,
to create a sharp, high resolution image. The unknown rel-
ative shifts between the images are computed using a sub-
space projection approach. We show that the projection can
be decomposed into multiple projections onto smaller sub-
spaces. This allows for a considerable reduction of the over-
all computational complexity of the algorithm. A high res-
olution image can then be reconstructed from the registered
low resolution images. Simulation results show the validity
of our algorithm.

1. INTRODUCTION

Known for more than fifty years, the Shannon sampling the-
orem states that a signal can be perfectly reconstructed from
its samples if the sampling frequency is larger than twice
the maximum signal frequency. If the signal is sampled at a
lower frequency, the sampled signal is aliased, and the orig-
inal signal can generally not be reconstructed. However, all
the frequency content is still present in the sampled signal.
It would therefore be interesting to use all this frequency in-
formation to reconstruct the signal. In this paper, we will
show a perfect reconstruction algorithm using multiple sets
of arbitrarily undersampled signals. The different sets of
samples have unknown, real-valued relative offsets.
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A similar problem for discrete-valued offsets is de-
scribed by Marziliano and Vetterli [1]. They compute the
relative offsets using a combinatorial method. Another
method for solving this problem with bandlimited signals
is described in [2]. The relative offsets are computed using
a subspace algorithm in frequency domain.

In imaging, such algorithms are generally used to solve
the super-resolution problem. A number of low resolution
images, either registered or not, is combined to reconstruct
a higher resolution image. The super-resolution idea was
introduced in 1984 by Tsai and Huang [3]. A good overview
of existing algorithms is given by Borman and Stevenson [4]
and by Park et al. [5].

In this paper, we will first formulate the problem math-
ematically (Section 2) and solve it for one-dimensional sig-
nals (Section 3). It is then extended to images in Section 5.
Results are shown in Section 6 and discussed in Section 7.

2. PROBLEM STATEMENT FOR 1D SIGNALS

Take a periodic, bandlimited, continuous-time signal x(t)
with period 1 and Fourier coefficients X[l] (−L ≤ l ≤ L).
We want to reconstruct x(t) from M sets of samples ym[n]
(0 ≤ m < M , 0 ≤ n < N ) that are all undersampled.
The sampling frequency N for obtaining the different ym[n]
does not satisfy the Nyquist criterium: N ≤ 2L. The sets
of samples can thus be written as

ym[n] = x

(

n + tm
N

)

, (1)

with tm the offset of the m-th set of samples relative to the
first one (t0 = 0). In our setup, we assume that next to the
M sets of samples ym[n], the sampling frequency N and
the maximum signal frequency L are known. We want to
compute the original Fourier coefficients X[l], and for this,
the offsets {tm}m=0..M−1 need to be determined first.
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3. SOLUTION FOR 1D SIGNALS

The reference set of samples y0[n] can be written as a func-
tion of the unknown Fourier coefficients as

y0[n] =

L
∑

l=−L

X[l]e
j2πln

N . (2)

As N ≤ 2L, different spectrum components overlap, and
x(t) cannot be perfectly reconstructed from y0[n]. There-
fore, M sets of samples are considered, with unknown off-
sets tm. The m-th set of samples can be written as

ym[n] =

L
∑

l=−L

X[l]e
j2πl(tm+n)

N =

L
∑

l=−L

X[l]W ltm+ln
N , (3)

with WN = ej2π/N . In matrix notation, we obtain
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The different sets of samples can be combined in a large
matrix-vector product as
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(5)

with y a MN×1 vector, W a MN×(2L+1) matrix, and X

a (2L+1)×1 vector. From (5), we can see that the combined
sample vector y belongs to the 2L + 1-dimensional space
spanned by the columns of W. The matrix W depends
on the unknown offsets {tm}m=0..M−1. Therefore, we can
find these offsets as the values for which the sample vector y

remains unchanged under projection onto the space spanned
by W. In other words, we can compute {tm}m=0..M−1 as

min
{tm}

‖y − ŷ‖2
2

with ŷ = PWy = W(WT
W)−1

W
T
y. (6)

The matrix PW performs a projection onto the space span-
ned by the columns of W. Once the offsets {tm}m=0..M−1

are known, the original signal x(t) can be reconstructed. In
(5), W is now known, and there are MN linear equations
in 2L + 1 unknown Fourier coefficients X[l]. In order to
have a unique solution for this set of equations, we require
that the number of sample sets M has to satisfy

M > (2L + 1)/N. (7)

The solution of these equations can be computed using a
least squares method to make it more robust to noise.

4. INTERPRETATION

The computation of the relative offsets forms the central part
of our reconstruction algorithm. An example of ‖y − ŷ‖2

2,
the function to minimize, is shown in Figure 1 for two and
three sets of samples (M = 2 and M = 3). Next to the
global minimum, this function also has a large number of
local minima. It is therefore important to understand its
structure.
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Fig. 1. Examples of ‖y − ŷ‖2
2 for one-dimensional signals.

Next to the global minimum, many local minima are visible.
(a) Two sets of samples. ‖y− ŷ‖2

2 for different values of t1.
(b) Three sets of samples. ‖y − ŷ‖2

2 for different values of
t1 and t2. Brighter pixels represent higher values.

Let us first analyze the simplest case, where signals are
undersampled by a factor less than two. This means that
there are at most two overlapping spectral components at
each frequency (see Figure 2). The undersampling fac-
tor has to be strictly smaller than two, because we need
some extra information to be able to compute the offsets
{tm}m=0..M−1. In this case, two sets of samples are suffi-
cient for perfect reconstruction (M = 2), as it can be seen
from (7).

Each column wl of W can be written as
[

1 W l
N W 2l

N · · · W
(N−1)l
N W lt1

N W lt1+l
N · · ·W lt1+(N−1)l

N

]

T,

(8)
with −L ≤ l ≤ L. If we denote by Al the vector

Al =
[

1 W l
N W 2l

N · · · W
(N−1)l
N

]T

, (9)
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X[l]

L lN

Fig. 2. Aliasing with a factor less than two. The original
spectrum (-) and two aliased copies (- -) are displayed

we can rewrite (8) as

wl =
[

Al W lt1
N Al

]T
. (10)

It describes a trajectory in a two-dimensional subspace of
C2N , as a function of the unknown offset t1, namely the
space

Sl = span
([

Al

0

]

,

[

0
Al

])

. (11)

If −L ≤ l±N ≤ L (i.e. two components overlap), column
wl and column wl±N describe the same trajectory. This
can be seen from the fact that since W N

N = 1, in (9) Al =
Al±N and therefore in (10), wl and wl±N only differ by
their coefficient W t1

N . In this case Sl = Sl±N .
If t1 6= 0, these two vectors wl and wl±N form a ba-

sis for the two-dimensional subspace Sl. Each of these N
two-dimensional subspaces Sl is orthogonal to all other sub-
spaces Si,i6=l. This is obvious from (11) and the fact that Al

and Ai are (orthogonal) Fourier basis vectors. The projec-
tion of the sample vector y onto W can therefore be decom-
posed into separate projections onto each of these N known
two-dimensional subspaces. We can rewrite (6) as

‖y−ŷ‖2
2 =‖y0−ŷ0‖

2
2+‖y1−ŷ1‖

2
2+· · ·+‖yN−1−ŷN−1‖

2
2.

(12)
If at frequency i, there are two overlapping frequency

components, the subspace Si is spanned by the two vectors
wi and wi±N , and therefore

‖yi − ŷi‖
2
2 = 0. (13)

Thus, (6) can be rewritten using only the subspaces Si where
there is only one frequency component:

‖y − ŷ‖2
2 =

∑

i∈L

‖yi − ŷi‖
2
2, (14)

with L the set of frequencies that do not overlap. An ex-
ample is shown in Figure 3. The global minimum is found
as the value of t1 for which the (periodic) minima of the
different components coincide.

More generally, when at most S components overlap
and M sets of samples are used, the columns describe tra-
jectories in M -dimensional subspaces of CMN . The offsets
{tm}m=0..M−1 can therefore be searched separately in the
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Fig. 3. Decomposition of ‖y − ŷ‖2
2 (solid line) in its com-

ponents from different two-dimensional subspaces.

different subspaces having less than M overlapping compo-
nents. In each M -dimensional subspace, we first project y

onto the M -dimensional subspace described by the trajec-
tory of the overlapping columns of W. Next, we search
for the particular set of values {tm}m=0..M−1, such that
the projection belongs to the S-dimensional subspace cor-
responding to these offset values. The global solution is
found as the common solution for all the components in the
different M -dimensional subspaces.

5. EXTENSION TO 2D SIGNALS

The above method can be directly applied to super-
resolution imaging. In this simulation, we assume there
are only global horizontal and vertical shifts between the
different images. The images are undersampled by a fac-
tor S in both dimensions, and therefore there are at most
S2 overlapping spectrum components. The horizontal and
vertical offsets can be computed independently, consider-
ing first the lines and then the columns of the image. To
compute the Fourier coefficients of the high resolution im-
age when the offsets are known, we need to have at least
M = d((2L + 1)/N)2e input images.

6. RESULTS

Our algorithm was tested on some real images in a simula-
tion. Four low resolution, (circularly) shifted and aliased
images are created from an original high resolution im-
age. In our simulation, we undersampled the images by
almost two in both dimensions. The undersampling has to
be slightly smaller than two, because the offsets also have
to be estimated. If the images are undersampled by exactly
two, the set of equations is underdetermined due to the un-
known offsets. In our simulation, the relative offsets were
computed exactly and the high resolution image was recon-
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structed from the low resolution images up to working pre-
cision (Figure 4, RMSE = 7 · 10−12).

(a) (b)

Fig. 4. Simulation result using four images undersampled
by two (a). The original double resolution image is perfectly
reconstructed (b).

7. DISCUSSION

Using the decomposition presented in Section 4, the pro-
jection of an MN -dimensional sample vector onto a 2L +
1-dimensional space is reduced to a projection of an M -
dimensional vector onto an S-dimensional space, with S
the number of overlapping Fourier coefficients. This also
allows us to eliminate the components that do not contribute
to the minimization function. If the signals are undersam-
pled by less than two, the solution can be computed analyt-
ically. For signals that are undersampled by more than two,
the offsets can be found by evaluating the projection on a
regular grid of possible offset values. In this way, a first ap-
proximation of the global minimum is obtained. It can then
be refined using a standard minimization algorithm like gra-
dient descent.

In this paper, the images are described as a linear com-
bination of Fourier basis vectors. However, this method can
also be generalized to other bases, such as piecewise poly-
nomials, gaussians, etc. As long as the continuous-time sig-
nal can be written as a linear combination of known basis
vectors, and multiple sets of samples with unknown offsets
are available, our method can be applied to reconstruct the
original signal.

Next to super-resolution imaging, this algorithm can
also be applied for demosaicing from multiple images.
Whereas a standard algorithm based on only one image can
contain color aliasing artifacts, they can be completely re-
moved by taking multiple images.

The above simulation results were obtained using an
ideal, noise-free setup. In future work, we plan to analyze
the sensitivity of our method to noise and test it on a practi-
cal setup.

8. CONCLUSIONS

We presented a new algorithm to estimate unknown offsets
between multiple arbitrarily aliased sets of samples and re-
construct the original signal. The offsets are computed us-
ing a subspace projection method. The projection is decom-
posed into different independent projections on spaces with
smaller sizes, reducing the computational complexity. Once
the offsets are known, the original signal is reconstructed as
the solution of a set of linear equations in the unknown basis
components. These basis components can be Fourier coef-
ficients, or the coefficients in any other known basis. Our
algorithm is applied to super-resolution imaging in a simu-
lation, showing good results.
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