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Abstract: The computation of the discrete cosine transform
(DCT) is a computationally intensive problem in a number
of signal processing applications, for example in image and
video coding (where it is part of standard methods). This
paper reviews possible trade-off’s in the computation of the
DCT. Lower bounds on the number of multiplications in
the one dimensional case as well as known numbers in the 2
dimensional case are reviewed. Alternative structures for the
computation of the 2D DCT are indicated. Improvements
through scaling is discussed and implementation issues (both
in hardware and software) are addressed.

I Introduction

The DCT [1] has by now become the standard decorre-
lation transform for the compression of 1D and 2D signals,
and has also been proposed in the 3D case. Numerous fast al-
gorithms have been proposed for its computation, and these
algorithms can be divided into 3 classes:

1) Direct algorithms based on the factorization of the DCT

matrix [3,8,7].

ii) Indirect algorithms using the DFT, permutations [11]
and auxiliary operations {13].

iil) Optimal algorithms (in terms of number of multiplica-
tions) [4,6]. The optimal algorithms are either indirect
(N odd) or direct (N a power of 2} and rely on results
for the complexity of the DFT and of polynomial mul-
tiplication.

Algorithms for the 2D DCT have been proposed as well,
and are usually indirect, that is permutations followed by a
2D DFT and some output rotations {12,14]. Best perfor-
mance is obtained when true 2D FFT algorithms are used
for the DFT part (like vector-radix or polynomial transform
algorithms).

In coding applications, the output of the DCT can usu-
ally be scaled since it will be followed by a quantizer that can
take this scaling into account. This can lead to reduction in
computational complexity {9].

Note that the DCT is not self-inverse, and that inverse
algorithms, especially in the multi-dimensional case, can be
involved to derive. However, the transposition principle (see
[15]) can be used to derive an inverse algorithm with the
same additive and multiplicative complexity.

Finally, most results presented will be biased towards
minimizing the number of real multiplications (and then pos-
sibly the number of additions as well). However, some pro-
cessors (e.g. CORDIC’s) use rotations as basic operations,
and therefore, the number of rotations has to be minimized
[9]. Only partial results are available on this subject which
turns out to be harder to study due to the weaker underlying
mathematical structure.

In the examples, emphasis will be put on transforms
of small length (typically, N = 8), since these are of great
practical importance in applications like image coding. Note
that we use the short hands p and a for multiplication and
addition respectively.

II One dimensional DCT algorithms

I1.1 Definitions and preliminary remarks
The length-N 1D forward and inverse DCT’s are defined

e 2n(2n + 1)k
X(k) = (k) ';] z(n)cos(—m——) (1a)
N-1
2(n) = 3 c(k)X(k)cos(?lrg:Nl%) (18)
k=0

e(0) = +/1/N, c(k)=+/2/N, k#0

Note the symmetric definition of the weights between for-
ward and inverse transform. In matrix notation, (1) be-
comes:

X=Tx, x=T7X (2)

since T is unitary (T~! = T7). Separating the weights c(k)
from the actual trigonometric transform leads to:

T=CT' (3a)

C = Diag[\/1/N,+/2/N, .. ,\/2/N] (3b)

From (2) and (3) it follows that:
(TT.ct.T' =1 (4a)
C? = Diag[1/N,2/N, ..,2/N] (4b)

Therefore, instead of distributing the weighting over both
the forward and inverse transform, the normalization is usu-
ally done in a single step with multiplication by C? (this is
especially practical when N is a power of 2 and this reduces
to shifts only). We will call T' the “denormalized DCT”
(X(0) has a norm which is bigger by /2 compared to the
other coefficients). This transform is the one usually consid-
ered {13,6] because of its intimate relationship to the DFT.

When N is even, X(N/2) involves multiplication by
cos((2n + 1)r/4) = £+/1/2 which can be merged between
forward and inverse transform. A “scaled DCT” can then be
obtained with ¢(0) =1 and ¢(k) = v/2,k # 0. This will save
1 multiplication over the denormalized DCT at k = N/2 {9).
Note that in this case all the DCT vectors have the same
norm (equal to VN).
1.2 Algorithms for the 1D DCT
a) Case N odd

Heideman has shown [6] that this computational prob-
lem is equivalent to a DFT on a real sequence of length N,

and this with permutations and sign changes only (that is,
no arithmetic cost). Thus:
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u[DCT(2K +1)] = u[DFT(2K +1)] (50)

o[DCT(2K + 1) = o[ DFT(2K +1)] (5b)

where y[.] and a[.] stands respectively for multiplicative and
additive complexity of the problem [.]. Therefore, one can
use optimal DFT algorithms (2,12} and for example, DCT(9)
uses 10 multiplications, 1 trivial multiplication and 34 addi-
tions.

b) Case N even

It can be shown that the denormalized DCT is a part
of the DFT of size 4N [13], and in such a way that multi-
plicative complexities can be added up [6]. This leads to the
general complexity formula:

__ uDFT(4N) — uDFT(2N)
- 2

uDCT(N) (7)
Note that (5a) is a particular case of (7). Now, the (mul-
tiplicative) complexity of the 1D DFT is well studied and
thus, (7) provides the minimum number of multiplications
for 2 DCT of arbitrary length. For example, if N = 2™, then
the number of multiplications is [6]:

plDCT(2™) = 2™+ —m — 2 (8)
This result was derived independently by Duhamel as well
[4] based on the relation between the DCT and a circular
conyolution of the same length. However, these optimal al-
gorithms in the case 2™ lead to unreasonable number of ad-
ditions. For example, an optimal algorithm for the length-8
DCT uses 11 multiplications but 58 additions (15 of which
can be implemented as shifts) and its structure is not very
regular (polynomial products modulo cyclotomic polynomi-
als U+1,U%+1 and U* +1).

Therefore, more practical solutions have to be sought.
The mapping of the DCT into a DFT of the same length [11]
and some auxiliary operations leads to the following opera-
tion count (N even) [13]:

p[DCT(N)| = u[DFT(N)] +3/2-N -2 (%)

a[DCT(N)) = o[DFT(N)] +3/2-N -3 (9)

Note that the DFT is taken on real values, requiring thus
half as many multiplications as in the complex case. For ex-
ample, for N = 8 and with DFT(8) = (24, 20a) one obtains
DCT(8) = (12p4,29¢), that is a total of 41 operations. Note
that at the cost of one multiplication, this algorithm saves 14
additions over the optimal algorithm (neglecting the shifts).
Note that the optimal algorithm will be in Winograd form
while the sub-optimal one will not (even if the DFT is in
Winograd form, the output rotations will follow after the
output addition stage of the DFT). For N = 8, Heideman
(6] proposed an algorithm in Winograd form (using a subop-
timal product modulo (U* + 1)) that leads to (13y,32a) or
a total of 45 operations. Note that the. Winograd form will
become useful in multi-dimensional DCT’s.

While direct schemes (factorization of the DCT matrix
(8,7]) can achieve similar performance, they are usually more
complex to derive and their numerical behavior is sometimes
tricky [8]. Note that the algorithm by Chen et al. [3] uses
15 and 26« (that is also 41 operations) for this small DCT,
but becomes less competitive for larger DCT’s.

I1.3 Comments on scaling and inverse

The above discussion has focused on the denormalized
DCT because of its direct relationship to the DFT. As men-
tioned before, a scaled DCT saves 1 multiplication over the
above algorithms, and this for both the optimal and the sub-

optimal algorithm. For N = 8, this leads to a 10y and 11z
algorithm respectively, with unchanged number of additions.
Now, the DCT is often followed by a quantizer. If the quan-
tizer is implemented with a specific look-up table for each
output (as might be the case in high speed hardware), then
each output can have a different scaling factor (which is then
corrected in the quantizer). This permits the denormaliza-
tion of the rotations in the sub-optimal algorithm, saving
another N/2 — 1 multiplications and additions. For N = 8,
this leads to a (84,26a) algorithm (assuming the rescaling
in the quantizers is free). In the optimal algorithm, such a
denormalization of the outputs would save only 2 multipli-
cations in the case N = 8, leading to 8 multiplications as
well

For the inverse, we will use the transposition princi-
ple (see [15]) which guarantees equal complexity (both in
terms of multiplications and additions) by flowgraph inver-
sion. Note that proper scaling has to be done between the
forward and inverse transform (all terms have to have the
same scaling factor).

III Two dimensional DCT algorithms

Transforms of size N by N will be considered. Unlike
in the 1D case, there are fewer results on the complexity
of multi-dimensional transforms with common factors in the
various dimensions. Some techniques are known (like the
Winograd nesting and the polynomial transform) but the
structure of the algorithms is often involved.

A two-dimensional DCT of size N by N is defined as:

N-1N-1
X (ks ko) =c(kr)e(ks) 3 Y 2(na,ne)
n1=0nz=0
2m(2ny + 1)k 2n(2ng + 1)k2
os( Vi Jeos( N )

c(0) = /1/N, (k)= +/2/N,k#0
Clearly, the transform is separable, and that is why row col-
umn computation is frequently used (requiring 2N DCT’s of
length N). Again, we will consider denormalized versions as
well as scaled versions of the 2D DCT (which can be obtained
from their 1D counterparts by applying the 1D version over
rows and columns).

(10)

[

When N is odd, a two-dimensional version of Heide-
man’s mapping [6] will transform the DCT into a same size
DFT. In what follows we will however be concerned with the
case when N is a power of 2, since this is the case in most
applications.

In matrix notation, we can rewrite (10) using Kronecker
products (2] as (where the two dimensional data arrays have
been expanded into vectors by stacking columns):

X=(T®T)x=(CT'® CT')x (11)
This can be rewritten, using properties of the Kronecker
product [2], as:
X=(C®C)-(T'®T')x (12)
We will concentrate on the computation of the denormalized
2D DCT given by T' @ T'. First, if the 1D DCT algorithm
is in Winograd form (see (6)) and uses mo non-trivial and
m; trivial multiplications (this gives the size of the matrix
B), then we can write (similarly to (11) and (12)):

T'@T' =(C®C)- (BO®B)-(A®A) (13)

1000



This is the so-called Winograd nesting and it leads to the
following number of non-trivial multiplications:

u[DCT(N x N)| = m} + 2mom, (14)
For example, in the case N = 8 where mg =11 and my; =1
this leads to 143 multiplications (and a very large number
of additions). This is to be compared with the row-column
method which uses 16:11=176 muitiplications. Now, con-

sider the case when the 1D DCT is computed through a
DFT followed by post-rotations:

T'=R-F (15)
Then, similarly to (11) and (12):
T®T =(R®R)-(F®F) (16)

that is, a 2D trigonometric transform followed by rotations.
Both matrices (R ® R) and (F @ F) can now use Wino-
grad’s nesting as in (13). Consider for example the case
N = 8. Since R uses 10 non-trivial and 1 trivial multipli-
cation, and F uses 2 and 6, it follows that (R ® R) uses
120 multiplications and (F ® F) uses 28, that is a total of
148 multiplications. This is slightly more than the previous
scheme, but with many less additions. The major point how-
ever in (16) is that a 2D DCT can be computed as a same
size trigonometric transform and post-rotations. Now, the
post-rotations consist of Kronecker products of elementary
2 by 2 rotations. In [15] it is shown that:
R, 0

R.® Ry = PT. ( wto Eﬂ_ﬁ) P an
where P is a matrix of additions and subtractions only. From
(17), it follows that 4 outputs of the 2D DCT can be obtained
with 2 rotations or 1.5 i per point. Therefore, taking sim-
plifications into account, a 2D DCT can be obtained from
a 2D DFT of the same size on real inputs at the cost of a
permutation and:

u[ROT(N x N)] =3/2N* — 2N (18)

This algorithm was first described, although in a different
form, in [14]. Note that the multiplicative complexity is
dominated by the post-rotations when N is small (like 8 or
16) and that the optimization above is thus worthwhile.

Depending on the choice of the 2D DFT algorithm, sev-
eral different 2D DCT algorithms are possible. A first one
of interest is a row-column approach for the 2D DFT as fol-
lows. Perform real-DFT’s on the columns of the data, then
on the rows. Combine some of the outputs to obtain the
true complex DFT, while taking hermitian symmetry into
account. Then apply the rotations so as to obtain the 2D-
DCT. This algorithm is some kind of intermediate between
a pure row-column DCT and a full 2D treatment. For small
size DCT’s, its arithmetic complexity is low (112y, 470« for
an 8 by 8 DCT, and 672y, 2662« for a 16 by 16 DCT), and
its simple structure seems well suited for high throughput
VLSI implementations.

A second approach is obtained by using a vector-radix-2
algorithm for the 2D FFT on real data [10]. Compared to
the previous algorithm, this one results in a lower number of
operations, especially for longer transforms (104, 462a for
an 8 by 8 DCT, and 640y, 2630« for a 16 by 16 DCT'). Nev-
ertheless, its implementation requires several type of butter-
flies, and this solution would thus be prefered in software
(its structure is easely programmed).

Finally, one can consider a polynomial transform ap-
proach for the 2D FFT computation. The resulting algo-

rithm has lower computational requirements (104, 462« for
an 8 by 8 DCT, and 568y, 2558« for a 16 by 16 DCT), but
whether this reduction in arithmetic complexity translates
into faster implementation remains to be shown, since for
small sizes, the gain is small but the structure complex. Note
that permitting denormalized rotations (assuming scaling is
done in the quantizers) one can save additional multiplica-
tions in the final rotations. For example, 23 multiplications
can be saved in the 8 by 8 DCT, leading to a 81y algorithm.

The numbers above should be compared with the (192,
4640a) of the row/column approach (that is, a total of 656
operations). Permitting denormalization, this last number
of multiplications can be reduced to 128 by denormalizing
the rotations in each set of DCT’s (8x each and a total of
16 DCT’).

Yet another alternative would be to use a polynomial
transform approach directly on the 2D DCT. Although very
involved, this approach seems very promising since numbers
of multiplications as low as 56 can be obtained for an 8 by
8 DCT. Denormalizing some rotations is also feasible, and
results in an algorithm requiring still fewer multiplications.
This approach thus deserves further work and will be re-
ported elsewhere.

IV Implementation issues

In specialized processors (like signal processors), it is of-
ten advantageous to write so-called “linear code” for a spe-
cific recurring application like the DCT. In that case, the
running time will be dominated by the number of opera-
tions (unless very sophisticated pipelining have to be taken
into account). In that sense, the algorithms described above
should improve running speeds, especially if multiplication
times are higher than addition times. Preliminary results
{5] indicate the following running times for 8 by 8 DCT’s on
grey scale pictures of size 672 by 536 (on a general purpose
computer):

- 9.8 sec. for the algorithm in (3]

- 8.0 sec. for the algorithm in (13] in a row/column fash-
ion

- 4.4 sec. for the algorithm based on a row/column FFT
followed by optimized rotations Note that denormaliz-

ing the rotation leads to a further gain of 7%.

In hardware (VLSI), algorithms based on vector-radix
FFT’s and a set of rotations are still relatively well-struc-
tured. For CORDIC type of processors, the output rotations
are well-suited, but the 2D FFT needs some more investiga-
tion.

Note that most figures were given for the denormalized
DCT. For example, an additional 3 multiplications can be
saved for the scaled 2D DCT (at ky, k2 = N/2), but this gain
is not significant unless one considers a scaled 1D DCT used
in a row-column fashion which then saves 2N multiplications.

The issue of quantization error in the DCT/IDCT is of
great concern in finite precision implementations. The only
way to get a perfect DCT/IDCT pair with a finite number
of bits (and perfect meaning no error at all) is to embed the
DCT into a finite field [2,12] so that the inverse exists as
well. This embedding costs however additional bits (corre-
sponding to the maximal growth of the quantized transform,
that is of the order the number of bits of the coefficients plus
Log, N bits due to N additions). Also, the “meaning” of the
coefficients can get lost by this embedding (the notion of
distance is not defined any longer as in the case of “real” co-
efficients). Note, however, that an application of the connec-
tion between length-2" DCT and cyclic convolution {4] may
solve this problem, by computing the cyclic convolution by
means of a Number Theoretic Transform (NTT). The over-
all scheme is depicted in figure 1. Provided that the number
of bits of the modulus is large enough, properties of NTT’s
will guarantee that the DCT coefficients will be exact (to
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desired precision). Usual distance properties are then used
to scale and quantize the transformed coefficients, which can
be back transformed by the same means. All these proper-
ties will hold provided that the computations are performed
with a modulus of at least:

m + n + [Loga[N]] (19)

where n is the number of bits of the input and m the number
of bits used to code the transform coefficients. Transformed
values could be truncated for coding purposes.

Note that reduction in computational complexity usu-
ally reduces the computation noise (by reducing the number
of sources) at least as long as a well conditioned algorithm
is used. However, the correlation between noise in different
channels is increased in a fast DCT over the straight matrix
multiplication. Thus, the issue of quantization needs more
study, especially in the context of fast algorithms.

V Conclusion

An overview of some alternative algorithms for one and
two dimensional DCT"s has been given, together with discus-
sion of scaling and implementation issues. Operation counts
were derived for typical examples useful in image processing.
It is possible to generalize the 2D schemes to 3D DCT’s as
well (see [15]). The result is that a 3D DCT can be obtained
from a 3D DFT of same size on reals at the cost of permu-
tations and O[3/2N3] multiplications. The scheme involves
rotations on 8 output points at a time.
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Figure 1: Computation of the DCT/IDCT in finite pre-
cision using Number Theoretic Transforms (NTT’s).
Note that only 8 multiplications per DCT are required.
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