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Abstract

This paper presents some results in design of multidimen-
sional filter banks with arbitrary sampling patterns. It con-
centrates on the particular cases of quincunx and hexagonal
sampling. We point out applications in obtaining direc-
tional subband decomposition with hexagonal filters and
decomposition of interlaced and progressively scanned tele-
vision with quincunx ones.

1 Introduction

In the last decade subband coding has become one of the
most commonly used tools in compressing still images and
video. However, most of the proposed schemes use sepa-
rable processing in two or three dimensions. Only recently
have some results emerged setting up the theory of general
multidimensional filter banks using arbitrary non-separable
sampling lattices as well as general non-separable filters [1],
2.

First, in section 2 we review some results on perfect recon-
struction filter banks in multiple dimensions. Basically, the
known one-dimensional results were extended to the general
non-separable two dimensional case. This leads to condi-
tions for alias cancellation and perfect FIR reconstruction.
The role of polyphase decomposition is a central component
as is the notion of paraunitary matrices [2].

Then we concentrate on some particular cases of interest.
In section 3 we explore filter banks with quincunx sam-
pling, which applies naturally to television systems allow-
ing elegant solutions to the problems of compatibility and
compression [3]. We state conditions on what is and what
is not achievable given specific design constraints, such as
perfectly diamond shaped filters, linear phase and parauni-
tariness. Useful cascade structures are given and the issue
of completeness is addressed. A similar analysis is carried
out in section 4 for the hexagonal case and a structure al-
lowing perfect reconstruction while yielding linear phase
and paraunitary filters is proposed. Finally, in section 5 we
point out some applications.

2 Two Dimensional Perfect Reconstruc-
tion Filter Banks

We will keep our discussion to the two dimensional FIR
case, but most results hold for an arbitrary number of di-
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mensions. Given an input lattice indexed by (nq,n;), a
location on the output lattice (u1,u2) can be written as [4],

[5]:
(=( 2)(m)=pu W

Note that D is not unique for a given sampling pattern and
that two matrices representing the same sampling process
are related by a matrix with determinant equal to one [4].
The subsampling factor when going to the lattice (ug,us)
is giVEH by N = det[D] = doodn - dOldID- The subsam-
pling operation is clearly space variant, since samples of
the input at locations D - u are kept while all the others
are dropped. It is this space variance that leads to aliased
versions of the input appearing in the output. In a subband
coding system, dropped samples will be replaced by zeroes
(corresponding to an upsampling) before entering the syn-
thesis bank, and thus, the down-and-upsampling process is
equivalent to a modulation by a function f(ni,n;) which
equals 1 at locations D -u and zero elsewhere [2], producing
N —1 aliased versions. A convenient way to take care of the
space-variance of such a multidimensional multirate system
is to decompose signals and filters into so-called polyphase
components, which correspond to samples on the subsam-
pling lattice and all its cosets with respect to the input lat-
tice (that is V polyphase components). In this polyphase
domain, the system becomes space invariant. Thus, signals
at the output of the analysis bank can be represented in
terms of the input signal and the analysis polyphase ma-
trix Hy(21,22) (that is matrix containing polyphase com-
ponents of the analysis filters), while the output signal can
be represented in terms of the input channel signals and
the synthesis polyphase matrix Gp(z1,22) (that is matrix
containing polyphase components of the synthesis filters).
For the definitions of polyphase matrices see [6].
Conditions for aliasing cancellation are given in [2] and are
given in terms of the transfer function matrix Tp(z1,22)
obtained as the product of the polyphase matrices of the
synthesis and analysis bank:

Tp(znzz) = Gp(zlvz2) : Hp(ll,Zz)- (2)

In order to make the alias-free condition clear we will state
it for a one dimensional system first. The output of a sys-
tem with an up/downsampling factor of N is given by:
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where T,,(zV) = G,(2")H,(2V) while the vector

Z(2)T=(1 =z ZN-1)T

4)
is the non-causal version of the inverse polyphase trans-
form. Now it can be shown that aliasing is canceled if and

only if. B
T(z) Z(=)", (5)

where T'(z) is a scalar polynomial. The above condition
means that Z(z)T is the left eigenvector of T,(z) with
an eigenvalue T'(z). The interpretation is that impulses at
various polyphase locations are thus put in the right place
and convolved with the same eigenvalue T'(z). This result
is equivalent to Tp(z) being a pseudo-circulant matrix [7].
In two dimensions the result is similar except that the
vector corresponding to the inverse polyphase transform
is given by Z5(2:)T ® Z;(z1)T where ® stands for Kro-
necker product. This vector has to be the left eigenvector
of Tp(2{% 230, 21 2811) with an eigenvalue T'(z1, 25) which
is a scalar polynomial [2]. Unlike the one-dimensional case
this condition does not stipulate a simple structure of the
matrix T,(z1, z3) except when the sampling is separable in
which case it yields a block pseudo-circulant matrix [8].
Now it is obvious that perfect reconstruction is achieved
when Tp(22,27) = I or a shifted version thereof. Thus,
the filter design problem we are faced with is to find use-
ful set of filters so that T,(z;,2;) corresponds to perfect
reconstruction. Several approaches are possible depending
on which constraints have to be met. For example, one
can require the filter bank to be paraunitary [9], that is
(assuming real filters):

Z(z)T Ty(") =

IIP(Z;]:Z;I)T ‘Hy(z1,22) = L. (6)
In addition one can impose linear phase on all filters.

In the previous discussion the filters involved were gen-
eral two-dimensional, including both separable and non-
separable filters. Let us point out that the non-separable
solutions have some advantages over their separable coun-
terparts.  Consider for example a two-channel one-
dimensional system. It is known that there are no linear
phase paraunitary filter banks achieving perfect reconstruc-
tion [10], and thus no separable solutions exist in a four
channel two-dimensional case. However, there does exist a
non-separable linear phase paraunitary solution in two di-
mensions (2], demonstrating the greater freedom offered by
non-separable systems.

In what follows, we will need the linear phase testing con-
dition in order to analyze linear phase solutions [2]:

H,, = z{“z;* SH,_J, (1)
where {w; + 1) and (w; + 1) are the numbers of unit cells
along the axes in the polyphase domain and J is an ex-
change matrix. S is a diagonal matrix with elements 1 or
—1 depending on the symmetry of the corresponding filter.
The subscripts + and — stand for (21,22) and (277, 2;57)
respectively. Note that S = I. A matrix U satisfying
U = JUJ is called “persymmetric”.
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3 Analysis of the Quincunx Case

In the quincunx case the sampling process will be repre-
sented by D, = (_1
factor N = 2.

11 with the corresponding sampling

3.1 The Linear Phase Case

Let us first restrict our attention to the FIR filters of
the desired diamond shape. Note that a two-dimensional
“persymmetric” polynomial p(z,y) is the one for which
p(z,y) = a"y™p(z~1,y~!). The product of two persym-
metric polynomials is persymmetric and the sum of two
persymmetric polynomials of the same size is again per-
symmetric.

Bearing in mind the above properties of the persymmetric
polynomials we can investigate possibilities yielding perfect
reconstruction solutions, or alternatively a polyphase ma-
trix with a monomial determinant. It can be shown that
the only possible solution of having diamond shaped, lin-
ear phase filters is when both filters are made causal in
one dimension and their sizes are (2k + 1) x (2k + 1) and
(204 1) x (21 + 1), where k and ! are not both odd or both
even at the same time [11]. Thus a polyphase matrix has
the following form:

kK L kmlk=1 o
YD ayziz Y Y biztag?
Hy(z,2) = | F°73° o e ' 8
Yo caz YD diariz?
=0 j=0 =0 j=0

with k+/odd. Note that since the polynomials involved are
persymmetric in each of the above sums we have pairs of
identical coefficients, for example a;; = aj_i-;. Since the
determinant has to be a monomial we must have a nonzero
_GeATod) (ki)

coeflicient next to z; z; 2, whileall the other ones
( Mz)ﬂ of them) must equal to zero.

The smallest useful example in this class was found to be
(the polyphase components are given):

2

Hoo(21,22) = b(1+27'2") + 27" + 277,
Hoi(z1,22) = a, (10)

Hyo(z1,22) = b%(l +275?) 4 de ey
b+ e+ )+ 445 (1)
Hiy(z1,2) = (1 +27'25Y) + a2t + 2371, (12)

yielding the following filters:

1
1 bt+cla a b+cfa
b a b befa c d ¢ befa
1 b+cla a b+cfa
1

(13)

The determinant of the above generated basic block is
(a(d — 2) — 2bc)z7 25" corresponding to a z7? delay in the
upsampled domain. Obviously a(d — 2) — 2bc # 0. Cas-
cades of the polyphase matrices in egs.(9)-(12) will generate
(2k—1) x (2k—1) and (2k+1) X (2k+1) size filters retaining



Figure 1: Magnitude of the frequency response of a 5 x 5
linear phase diamond shaped filter with ¢ = —4 and d =
—28.

the same symmetry properties and perfect reconstruction,
and this for £ > 2. This can be shown by induction where
the initial step is obvious by inspection. For the inductive
step assume that the polyphase components Hoo, Ho1, Hio
and Hy; are of the following sizes in the polyphase domain:
kxk, (k—1)x(k—=1), (k+1) x(k+1) and k x k re-
spectively which actually corresponds to (2k —1) x (2k —1)
and (2k 4+ 1) x (2k 4 1) size filters. Then multiply the
corresponding polyphase matrix from the right by the one
obtained from eq. (13). By the previously mentioned prop-
erties of the persymmetric polynomials it follows that the
resulting matrix will contain four persymmetric polyphase
components of sizes (k+1) x (k+1), kx k, (k+2) x (k+2)
and (k+ 1) x (k+ 1) corresponding to (2k + 1) x (2k + 1)
and (2k + 3) x (2k + 3) size linear phase filters O.

By choosing b = 1 and ¢ = «a one obtains additional
circular symmetry. The determinant of a polyphase matrix
thus becomes a(d —4)z;'z;" excluding values of @ = 0 and
d = 4 as possible. It is worth noting that (5x 5) and (7x T)
filters obtained in the next step of the cascade are general
solutions for the linear phase filters with circular symmetry
and the above size. This can be verified by comparing the
corresponding coefficients in the polyphase matrix obtained
by the circular cascade and the one which is the general
solution to the problem. Special attention has to be paid to
the forbidden values which turn out to be the same in both
cases, meaning that all the solutions to the general case can
be obtained by the cascade. A useful example is obtained
by substituting ¢ = —4 and d = —28 in eq.(13). These
filters were successfully applied to HDTV representation
and coding [3]. The magnitude of the frequency response
of the lowpass filter is given in Figure 1.

Having shown that it is possible to generate cascades of
odd-length, different size, linear phase diamond shaped fil-
ters let us now relax the shape restriction and show how
to obtain cascades of linear phase, nearly diamond shaped
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filters, but this time of the same size:

0
H,(z1,2) = W, H Di(z1,22)Uis - Da(21, 22)Use, (14)
i=K

where W, is a Walsh-Hadamard matrix of size 2, D; is a
diagonal matrix with 1 and z7! on the diagonal, D, is a
diagonal matrix with 1 and z;! on the diagonal, and Uj; 5

are matrices of the form:
( 1 di1,2>
a1

The proof that the resulting cascade is indeed linear phase
is by induction using the testing condition given by eq.(7).
The initial step with & = 0 is trivial since the matrix is
Walsh-Hadamard. For the inductive step assume that (7)
holds for some H,. We want to prove that it holds for
H; =H, D;-U;-D;- U, as well. To see this let us start
from the right hand side of the eq.(7):

Uip = (15)

—wy L, —uQ 1 —
5 zS - H, J =

= 27"2,**8 - H, D;_UiDy_Uad,
= Wz T22718 .S H,, IDy_UiDy_UsJ,
= z'z;7'H,,ID,_U;D,_U.,J,
= H,,D,,U,D;, U,,
= H,. (16)

In the above proof S = diag(l,—1). We also used the fact
that the U;’s are persymmetric and the properties men-
tioned in the previous section.O

The smallest possible filters generated by the cascade are
given by:

1 g 1 as
ay a1Gy a1ty a4 —a1 —ai0y aidy; a
ag 1 —dasy -1
(17)

Though we know that the cascade structure given is not
complete the first pair of useful filters given above covers
the whole space of linear phase 4 x 3 filters. For the proof
we refer to [11].

3.2 The Paraunitary Case

[t can be shown that in this case a general polyphase matrix
will be of the following form [11]:

H
O (.

which shows that the paraunitary solutions possess some
important structural properties.

(a) The filter Hy(z1,22) is completely specified by the filter
Ho(z1,22) by modulation with (—1)™*" and reversal.

(b) The two polyphase components of Ho(z1, z2) are of the
same size. This requirement automatically excludes the
possibility of having paraunitary filters of the desired per-
fect diamond shape.

(¢) Finally, in order to achieve perfect reconstruction the

Hy,
Lk
21 2y Hoo_

). )



polyphase components of Ho(z1,22) have to meet:

H00+H00_ + H01+H01, =1L (19)
Equation (19) can now be met through an optimization.
Instead, we derive cascade structures which produce auto-
matically paraunitary filter banks:

0
Hp(zl-,ZQ) :UI\'—-I H Di(zlsz)Uiv

i=K-2

(20)

where D(zy, 2,) is a diagonal matrix of delays and the Uy’s
are unitary matrices. It is easy to verify that H, (21, 22)
in (20) is paraunitary since all the blocks are unitary but
completeness of the structure is not guaranteed, unlike the
onc-dimensional case.

Similarly to the lincar phase case we can generate nearly
diamond shaped paraunitary filter banks by substituting
the corresponding U;’s in eq. (14) by unitary matrices:

( 1 —an,z)
;1,2 1 '

The smallest example in this class is (just the first filter is

Ui1,2 = (21)

given):

1 —ag
ho(ny,ng) = | —aoar agaiay —ajaz —ay (22)
—aopd2 —Qo

Starting from a general paraunitary system of the above
size, two solutions were obtained both of which can be gen-
erated by the first step of the proposed structure. The first
one is as given while the second one is produced when the
diagonal matrices of delays are interchanged. This in turn
shows that at least for the paraunitary filters of size 4 x 3
the above structure generates a complete solution. The
reconstruction filters are the same (within reversal).

Note that in the two-channel case linear phase and parau-
nitariness requirements are mutually exclusive.

4 Analysis of the Hexagonal Case

The sampling process is now described by a matrix Dy =

(J_) ])) with the corresponding sampling factor N = 4.

Similarly to the quincunx case, let us propose a cascade
structure which would generate four filters (two symmet-
ric ones and two antisymmetric ones) guaranteeing perfect
reconstruction, linear phase and/or paraunitariness. The
size of the filters’ region of support in each subsequent step
would be 2k x 2(2k —1) and the shape is close to hexagonal.
(loncentrating first on the linear phase solution:

1

0 -1
H,(z1,2) = WHy [] A

=K
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Figure 2: Magnitude of the frequency response of the low-
pass filter in the first step of the hexagonal cascade with
a=2f=1d=1ande=—1}

In the previous equation Uy’s are persymmetric matrices:

1 a b e
U, = Z ]‘i J; 71 (24)
c b oal
with the determinant equal to:
det(U) = ((c+1)(f+e) — (a+b)(g+d))
((e=)(f —e) +(a=b)g—d)), (25)

which has to be nonzero in order to avoid singular blocks.
To verify that the cascade produces indeed linear phase
filters we can use the same approach as in the proof of
the quincunx case. However the symmetry matrix is of
the following form § = diag(1,—1,~1,1) since the first
and the fourth filters are symmetric while the other two are
antisymmetric. The smallest useful example would be (just
the first filter is given, the other three are similar except
for the signs):

a1
. (26)

ho(ny,n2) =

~
a o

b
c
a
1

o0 8 =

Imposing some additional symmetry with b = 1, ¢ = aq,
g = f we get the filter:

d f
- 1)

s
[SWELY

11
a
ho("l,”z) = a Z
11
The forbidden values are a #t 1, d # e and d + ¢ # 2f.
The magnitude of the frequency response of the lowpass
filter witha =2, f=1,d =} and e = —1 is given in
Figure 2. Note that this is just initial design and thus the
quality of the highpass filters is not exceptional.
Unlike the quincunx case however, now we have the option



of obtaining paraunitary and linear phase solutions at the
same time. To achieve it the matrix U; in addition to
being persymmetric has to be unitary. A general 4 x 4 real
unitary matrix can be factorized using 6 rotations. One of
the possible solutions for the matrix U; would then be:

1 —a —b —ab
a 1 —ab b
Ui = b —ab 1 a ’ (28)
—ab —-b —a 1

which is obviously both unitary (within scaling) and per-
symmetric with two free parameters. The first filter in the
smallest useful example is then:

1 b
“ab —a —ab b 1
holmms) = | 7T T T (29)
b1

5 Applications

Recently a technique has been proposed for subband de-
composition of a progressively scanned video signal into an
interlaced one and “deinterlacing” information [3], [11]. Af-
ter passing the above signals through a synthesis bank the
original progressive one can be perfectly recovered. The
results and concepts presented in section 3 are a good tool
to provide such a splitting which is useful in dealing with
questions such as compatibility and coding. Some of the
filters presented have already been used for HDTV with
promising results. Also, an interlaced signal can be split
into a lowpass progressive one and a highpass “interlacing”
signal. Such a scheme would be useful for coding purposes,
since the highpass version will be relatively easy to code,
and the lowpass version is well suited for motion based pro-
cessing owing to its progressive nature.

As already pointed out the theory presented in section 2
was developed in a general framework of nonseparable ex-
tensions of the one-dimensional concepts both in terms of
sampling structures and the filters involved. A problem
arising with separable sampling structures is that some of
the subbands obtained contain mixed orientations. A pos-
sible remedy would be to consider the hexagonal sampling
lattice which produces subbands with pure directional ori-
entation [12]. The cascade structure developed in section
4 can be useful to obtain such a splitting while having low
computational complexity and allowing filters which are
both linear phase and paraunitary.

6 Conclusion and Further Work

In this paper new results in the design of multidimensional
filter banks were presented with particular attention to
quincunx and hexagonal sampling cases. Useful cascade
structures were derived addressing such design issues as lin-
ear phase and paraunitary filters while guaranteeing perfect
reconstruction. Some applications of hexagonal and quin-
cunx filter banks were pointed out. Further work includes
careful design of the filters obtained by the proposed cas-
cades. For example in the hexagonal case all four filters
must have good orientational selectivity. More work has to
be done in finding other possible design structures.
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