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Abstract

We present a general framework for constructing transforms
in the field of the input. The construction is carried out
over finite fields, but is shown to be valid over the real
and complex fields as well. It is shown that these base-
field transforms can be viewed as projections of the DFT
and that they exist for all length N for which the DFT is
defined. The construction further shows that these trans-
forms are not unique; that there are in fact mng(/N) such
transforms . Finally, the convolution property of the base-
field transforms is derived and a condition given for such
transforms to have the self-inverse property.

1. Introduction

The discrete Hartley transform (DHT) has been proposed
as a real transform with convolution property [9] [12] [13]
and is thus an alternative to the discrete Fourier trans-
form (DFT) for the convolution of real sequences. Note
that the DIHT is self-inverse. Since the DFT can be defined
over finite fields, it is natural to ask whether a Hartley or
Hartley-like transform exists over finite fields. Aside from
the theoretical interest for such a finite field DHT), its ad-
vantages are potentially more substantial than in the real
case since computing finite field DFT’s often involve going
to much larger extension fields. The reason for this stems
from the fact that we need an element of order N in order
to compute a DFT of size N. Therefore, if the input belongs
to GF(g), we have to go to GF(¢™) where m is such that
N|¢g™ — 1 in order to compute the size N DFT. Because
of the different extension fields involved and the fact that
computation is invariably more complex in the extension
fields (involving polynomial multiplications and reductions
etc), it is desirable to have a transform in the basefield
GF(q) when the input is in GF(g). In this paper we will
construct such a basefield transform and show that it can
be viewed as a “projection” of the DFT algorithm. We
will also derive the convolution property of such a trans-
form and give a condition for the transform to have the
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self-inverse property. Finally we will show that the theory,
though developed in the context of finite fields, applies to
the real and complex fields as well.

2. The Forward Transform

The most natural way to construct a Hartley transform
over finite fields is to mimic its construction over the re-
als. Such a construction, however, leads to a non-invertible
transform, indicating that the connection between the DFT
and the DHT is deeper than what is suggested at a first
glance by the real case. Qur approach to this problem will
therefore be indirect.

Consider figure 1 where we've denoted the input by {z,}
and the DFT and the (yet undefined) DHT of {z.} by
{X,} and {X,} respectively. Note that {z,} and {X,}
will be elements of the same field B=GF(q) while {X,}
depending on the length of the transform, will be in some
extension field E=GF(¢™) of B. The function F between
{zn}and {X,}is the usual DFT mapping. The function
H is the Hartley transform that we seek. Shown also is
an intermediate map, ¢, between {X,} and {Xn} . Since
F and M (if it exists) are bijections, clearly the Hartley
transform exists iff the intermediate transform ¢ exists.
Therefore if we can construct the mapping ¢ from {X,} to
{X,} then the composition of F and ¢ will yield a Hartley
transform, namely H = ¢ o F.
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To construct ¢, consider {X,}, the DFT of {z,}. Since
the z,’s are in the basefield B, X,’s satisfy the conjugacy
constraint [7]

Xy = X7 vk, 1. (1)
The conjugacy class of X with respect to B therefore con-
sist of

m~1

{Xb, Kigy Xpgpo oy Npgmn } = { X, XL, X X070

Let M be a matrix with elements in E such that

Xk Xk
qu \ )\'z
M| Xp | =M| xI' | €B"=GF(g™
Xjogm1 xm

Clearly M must be circulant, invertible and it must send
the conjugacy class of X} into B. Can we always find such
an M? Yes. Let {a,a?.af, .- a?" '} 2 {a) be a normal
basis of I viewed as a vector space over B (notation : Epg).
Define

@ al af af
m=—=1 m=2
af @ ot ol
IW — aquz aq'anl a aqm——l
. 2 5
af of o o

then M is circulant, invertible and we have

« o af ! X Tr{aX:)
o™ « al ™ X7 TriaX})
m—2 m—1 m—3 a2 02
at al a al X7 = Tr(eX])
2 3 m=1 com—1

af of al « X7 Tr(aX]

where Tr is the trace function [1] [2] [6] . Since the trace
function is a linear functional on Fp, defining Xyt by
Tr(aX}') we have X, € B as desired. The map

¢ Xy X = Tr(aXy) (2)

thus defines a one-to-one correspondence between { X, }and
{X.}.

To obtain a [fartley transform H, consider

N-1
AX/C = Z (EHW;\;&
n=0
where 2, € B and Wy is an clement of order N in E. Let
{80, B, B2y~ s Pm—1} be a basis of Eg, then Wi has a
unique representation with respect to this basis

Wi =l bo + wll B+ w8+ w8,
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Therefore

N-1 N-1 N-1
Xy o> 2w + B > xnuilk) ot Bt Y Taw
n=0

n=0
4 B XY

i

=0 n=0
30X+ XV 48X 4+

A ~N-1 (4)
- Zn:O ZnWpj

where X1 € B. Since H = ¢ o F, we have
X = Tr(aBo) X+ Tr(ap) XM+ 4 Tr(efp_ ) XY

()
which is indeed a basefield transform. While this proves
the existence of a basefield transform, expression {3)is not
optimal. We can reduce the amount of computation signif-
icantly by choosing our basis cleverly. Instead of an arbi-
trary basis, choose {8;} to be the (unique) dual basis of (a)
. With this choice of bases, o; and §; are trace-orthogonal,
le.

Tr(e:f;) = 6

thus (3)reduces to

N-1 N-1
X=X =Y el = 3 e Tr(aWih).  (4)
n=0 n=0

This is the final form of our basefield transform which we
will henceforth call a Hartley transform.
Rmk :

1. There is nothing special about, X,io). By permuting
the elements of {¢;} and {8;} we could just as easily
obtaln .

Xp=x0= > 2ol
n=0

for any i.

(S

. Equation (4) actually defines a whole class of trans-
forms thereby showing that basefield transforms are
not unique. In fact by taking all possible comibinations
of Wy and « it is easy to see that we can construct
mnd(N) transforms of the type defined by (4), where
m is the dimension of Eg, n is the number of normal
basis in £ and ¢ is the Euler function . Note, how-
ever, not all of these transforms will be ‘distinct’. It
can be shown that many of these will be permutations
of each other.

3. The Inverse Transform

To find the inverse Hartley transform (as defined by (4)) we
need to first invert the intermediate map . Equivalently,
we need to find the inverse of the matrix M of section 2.
Recall that the elements of M are members of a normal
basis {av} = (@) = {a,a%a®, -+, a7}, If {4} is the
dual basis of {a;} then it can be shown that {B:} is also
normal, ie. {Fi} = (8) = {B,6,87,---, 87"} for some

(m-1)
nk



B € E. and that M~ is given by

BT g g

g BT B

M=l pF g g g

ﬁq"‘“ 54"“2 5q"'“3 e B

Therefore

X goopmT g B X
Xiq ﬁq: B g 5q§ Xig
-qu2 = ﬂq ﬂq ﬂ ﬂq qu"’
Xegner )\ g™ g™ )\ s

implying that
g.’)_l : ~’k — Xp = ,3/{% +ﬂquqm—I +-- +ﬂqm_1);r};q. (5)

Refering back to fig. 1 we see that H™! = F~lo ¢l
Composing the two functions yields the following inverse
transform

N-1 y L
p = N7U S (XA B K pgmes 4407 Xg) W™, (6)

n=0

While expression (6) will compute the correct inverse, note
however, this computation is performed in the extension
field E. Since we seek a transform in the basefield B, we
need an alternative to (6) . To that end consider the first
summand of (6)

N-1 N-1 N-1
SBXLWE = Ba Yl X W4 Bat 3T XIWRT 4
n=0 n=0 n=0
1 N~‘1 1
C BatTT N XTI,
n=0

It can be shown that the terms SN-4 X8 W™ are elements
of B. Using this fact and the fact that a; and §; are trace-
orthogonal, we have that

N-1 N-1
Tr(Y B W) = 3 X, Wi™ = Nz,
n=0 n=0

nk

If we expand Wg5™" with respect to the normal basis (a)

Wi = ot what + w4+ ul o™
then Tr(BW5™) = w(_ozk_ and we have
N-1 _ N-1 _
o= N Kl = NTUSD X, Tr(BWR. (7)
n=0 n=0

This then is the basefield inverse of the DHT.

105

4.

The Self-Inverse Problem

Let us restate the Hartley transform and its inverse

. N-1 N-1
ch = Zznwgo,c) = :chr(aWﬁk) (8)
n=0 n=0
N-1 N N-1 .
ao= N7 X, = NS X Tr(BWE).(9)
n=0 n=0

From the definitions it is clear that the forward and inverse

transform will be the same iff w§°)

= w(_g-> ¥i (note that

i

these components are with respect to different bases). The

following proposition therefore characterizes the self-inverse
transforms.

Proposition 1 Let E be an extension field of B. There ez-
ist a self-inverse B-transform (of the form (8)(9)) iff there
is a normal basis (@) of Ep such that

Tr(aWg) = Tr(BWx*) Yk (10)
where Wiy s any element of order N in E and (3) is the
dual basis of ().

5. The Convolution Property

The convolution property of the Hartley transforms can be
deduced readily with the aid of the intermediate map ..
Since convolution corresponds to pointwise product in the
Fourier domain , to obtain the couvolution property in the
Hartley domain, simply map the sequences which we are
convolving to the Fourier domain (via 1), perform the
convolution there (pointwise product), and map the result
back to the Hartley domain (via ).

Let {y.} be the convolution of {z,} and {/,}. Using the
notations of the previous sections, we have

m-1 o~

Xe = 0 (XNp) = BG4 K gmor +87 Xz 4+ 4377 X,

Hi = o7 (Hy) = BHAB Higmos +87 Hygnoa -3 I,
implying that

m—1 m—1
Yi = HXp = (Y 8" Xpm (S 37 Hipme))
=0 j=0
m-—1 . N
= S B Ry Hyges.
i,g=0

To express ¥} in terms of X, and H, |, we ‘project’ Y to
the basefield by taking its trace with a. This results in the
following convolution formula for Hartley transforms

Vi = oY) = Tr(als)
m—1

= 3 Tr(aB? )\ X ymes Higmes (11)
i,7=0



6. Hartley Transform over 2 Revisited
L is easy to see that the results of the previous sections
hold, nurtatis mutandis, for 2 and ¢ In fact il we replace
‘conjugate’ by ‘complex conjugate’” and the definition of
trace by

Tr(e) =

o+ ot

then the derivation of the preceeding results for the real
and complex fields would be exactly the same as that for
finite fields.

We derive, in the appendix, the classes of real trans
forms and self-inverse real transforms permissible under
this theory. It is seen that the real transforms are essen.
tially Ansari’s Discrete Combinational Fourier Pransforms
for real input [10] and the self-inverse real transforms are
essentially the Hartley transforms.

7. Conclusion and Dircction

We have presented a general framework for constructing
hasefield transforms having a convolution property. The
construction is valid in finite fields as well as the real
and complex fields and results in transforms which can be
viewed as projections of the DITUA probleni of interest is
to derive fast algorithms for these DIFTs0 [t s shown i a
future paper that this can he done.

Appendix

In this appendix we apply the theory developed for finite
ficlds to the real and complex ficlds. We will start by de-
termining the normal bases of C. Since (s a two dimen-
sional vector space over 18] a normal basis of O s of the
form

A=A, 0"} = {a+iba—ib}.

The dual basis of A is also normal, hence it too is of the
form

B={p,4"}={c+id,c—d}.

The parameters a, b, o, d are not completely independent

since the bases must satisfly the trace-orthogonality refation
Tr(eqfly) = oty + lv:/f; = by

The constraint forces ¢ = = and o = -2
Aa 45
',})lt YI()’"”];\] l);l.H('.H ()f ("’f 1I,ll(l ‘yh(‘lr ('()l'l"f‘.‘\'l)()'l(li”g (lll;Ll l)llle'S

consequently
arc exactly
A = ooty = a4 iba - ab)
1 S I

O L N L ST
4.1 ! {4(L 14[)74(1. +l/]/:

I3 = }

where a b e [t are arbitrary.

Over the complex field, the elements of order N oare

{e A ' tom- N, (i, Ny =1}.

follows that

2 L2
'I'r((yW,{‘,) = ‘)u,(t()x«/:f/r—nl,lxt + 2bsan —/{"rfm/’:

«

Tr{pW) =

| 2 I 2
—cos——mk + —sin-—mk
2a N N

20

which yield the following real transforms

NT]
3w (W)

Xy =
=)
N1 ; .
y 2w L2
= rJ2acos—nmk + 2bsin—nink 12
%‘(, [(L(MNJL N 1 (12)
Nob
I N ST XTI (BWE)
1= () .
Nl B .
SR 2 2
= N7 %} ,X',‘{Z—(;(‘oxﬁwnmk + z—l).«zn NTTIJH,}\I]( 13)

For m=1, the above rednces to Ansari’s Discrete Combina-

tional Fourier Transforms for real input [10]

N-1

- = 2 .2
Xy = “27) .E,L[Zu,(:us—NZ[nk + 21::41.1:,%7:,/\:]
N-1 ¢ f
— 1 2 12
rp = N7 L X,l[gzr:usﬁ‘”nk + 727“%171,7\?/[1:,/»:]4

=0

Let us now impose the self-inverse condition (10) on equa-
tions (12) and (13) .
fined by (12) and (13) will have the scll-inverse property

il

By Proposition |, the transforms de

Tr(aWhy - Tr(fWRY) V.

This means that we must have, for all k

5 « « .

) 27 A I b I 27
2acos—r1nk 4+ 2bsin—ink = : ~cos—1nk 4 - -stn- 1k
N N 3 N p

which s satisfied only if

1
b= +—.
2

a sxof and

|
2

Substituting these values into (12) and (13) yields the fol
lowing self-inverse real transforms

N—1 ¢

. ! 2 2

Xy = %{) o, l( 4 )eos »/an,m,k + (4)sn )\.,/rrnm,/.:] (11)
N n .

vy = N7 L X, [(4)eos- zrvn'ln,/\: 4 (l;).w,nzfrwiul(]lﬂ)
o) N N

Our theory thus permits 4¢(N) sell-inverse real transforms
of which the Hartley transform is but one case (correspond-

ing Lo the case where m=

and a=b=1). It should he noted
however that different choices of m) a, and b do not_lead to
radically new transforms. In fact it is casy Lo see that other

permssible values of my a and b lead to only permutations
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and/or sign changes of the basic Hartley transform.

We will conclude the appendix by deriving the convolu-
tion property of the Hartley transform. By equation (11)
the convolution property (adapted for the real field) is given
by

Vi = Tr(aBB)H.X; +Tr(afB ) HX_x )
+ Tr(aB B)H Xy + Tr(ef 8*)H_ X_;.

As indicated above the Hartley transform corresponds to
the choice m=1 and a:b=% , which means that the asso-
clated normal and dual bases are

A= {aar) = (40,501~ 0))

B= (5,8} = (3(1~9),5(1+0)}.

It is readily verified that Tr(agB) = Tr(aff*) = 1 and

Tr(af*B*) = -1, therefore
Vo = SI%+ SHX b Sl X~ S X
k=g kk+2 k‘_k+2 -k Xk ok Xk
. X+ X 2 Xe— Xk,
SRRSO e

- }Ik);,—}geven) + f{_kX,EOdd)

which is as expected [9].
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