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Abstract

In this paper, it is shown that oversampled A/D con-
version methods can be substantially improved by us-
ing iterative postprocessing involving linear filtering
as well as nonlinear operations. The only condition
is that the quantizer produces a so-called convex code,
which is the case for the simple and dithered A/D con-
version, as well as for nth order single path Σ∆ modula-
tion. The iterative algorithm, using alternate projection,
searches for the intersection of a subspace (band limited
signals) and a convex set (signals with same code). Con-
vergence is guaranteed by convexity. We indicate prac-
tical algorithms for simple, dithered, 1st and 2nd order
(single path) Σ∆ oversampled quantization. The im-
provements in SNR due to oversampling in these schemes
which would normally be 3, 3, 9 and 15dB per octave of
oversampling respectively, are increased to 6, 6, 12 and
18dB. That is an increase of 3dB per octave.

1 Introduction

Oversampled A/D conversion (or ADC) is usually viewed
as represented in figure 1. Consider a signal x(t) band
limited to the maximum frequency fm. For the sake of
our discussion, call it x(0)(t) since it will be our refer-
ence signal. In the scheme of figure 1, x(0)(t) is first
sampled at a rate fs larger then 2fm to give a discrete-
time and continuous amplitude signal {x(0)

i }. For conve-
nience, this sequence will be noted x(0) (vector notation)
and x

(0)
i will be its value at time index i. This last sig-

nal is then approximated by a discrete-time and discrete
amplitude signal {e(0)

i } (or e(0)). A reconstitution of
the signal x(0)(t) is conceptually done by lowpass filter-
ing the quantized signal e(0) at the cutoff frequency fm.
In terms of information, x(0) is completely equivalent to
x(0)(t), according to the Whittaker-Shannon-Kotelnikov
sampling theorem. However, e(0) is a distorted transfor-
mation of x(0) with an error called the quantization er-
ror. In the case of oversampling, this error signal, when
viewed as a stochastic signal (like noise), has a power
spectrum which spreads out over the whole frequency
range fs, so that only a portion of it remains added to

the signal after the lowpass filtering. In the simple ADC,
provided that the quantization error signal is uncorre-
lated with the input signal, the error signal power (or
means square error, MSE) is reduced by a factor equal
to the oversampling rate R = fs/2fm. If the quantizer is
an nth order single path Σ∆ modulator , the reduction
is proportional to R2n+1 [1, 2, 3, 4]. But in general, let
us point out that the error signal contained in e(0) is re-
duced during the A/D conversion by manipulation of its
power spectrum by mean of a linear time invariant (LTI)
system (the lowpass filter). Now the question is: if we
don’t confine ourselves to the context of LTI processing,
can we do any better than this and how ?

Before answering this question, it is first important
to revise a little the understanding of the oversampled
ADC, as shown in figure 3. We fundamentally separate
the notion of coded signal C(0) and quantized signal
e(0). C

(0)
i is an abstract code (for example, a binary

code) which identifies the quantization interval the in-
put sample x

(0)
i belongs to. e

(0)
i is an analog signal

sample chosen in the interval labeled C
(0)
i . If only the

code sequence C(0) is available, e
(0)
i has to be chosen

arbitrarily in the interval C
(0)
i as an estimate of x

(0)
i

(traditionally at the center of the interval for different
reasons). The quantization error appears then from this
arbitrary estimation. The analog lowpass filter of figure
1 can be decomposed into two filters: a discrete lowpass
filter of cutoff frequency fm working at the oversampling
frequency fs, producing a discrete-time continuous signal
e(1), and a sinc interpolator producing the continuous
time continuous amplitude e(0)(t). As signals e(1) and
e(0)(t) are equivalent, the actual error reduction lies in
the discrete-time lowpass filter between e(0) and e(1).
e(1) is then a better estimate of x(0) obtained by per-
forming a filtering in the space of discrete signals.

The hint that e(1) is not always the best estimate of
x(0) is that e(1), when requantized, does not necessarily
give the same code C(0). Figure 6 shows an example
made on a simple signal x(0)(t) oversampled by 4. One
can see that samples 10 and 11 of e(1) (lowpass version
of e(0)) are not in the same quantization intervals as
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for x(0). By projecting them to the border of the right
interval (black arrow), we necessarily reduce the error
between e(1) and x(0). We call this operation the code
projection. We end up with an estimate e(2) which
would give the code sequence C(0) if it were requantized,
and which is necessarily better than e(1). e(2) is then the
transformation of e(0) by two consecutive operations:

(i) a lowpass filtering
(ii) a code projection.

What we have just done has a geometric interpreta-
tion. In the space H of all discrete signals x sampled at
rate fs, if we call V0 the subspace of signals band limited
by fm, the lowpass filtering of e(0) to get e(1) is actually
an orthogonal projection on V0. It can be seen on figure
2 that this necessarily reduces the distance between the
estimate and x(0). But at the same time, we see that
we confine our freedom of displacement to the direction
perpendicular to V0. The second transformation we in-
troduced, the code projection, is indeed a projection in
a different direction: it is the projection on the set Γ0 of
discrete signals which all give the same code C(0) when
quantized. If we repeat these alternate projections, we
improve the estimate further and end up with an element
e∞ of V0 ∩ Γ0, as shown in figure 2. Not only have we
improved e(1), but we have reached the theoretical limit
of improvement, deterministically speaking. Indeed, as
x(0) ∈ V0 ∩ Γ0 is the only information we have, there is
no deterministic reason to privilege a particular element
of V0∩Γ0 rather than another one as an estimate of x(0).

Starting from this idea, the goal of this paper is to im-
prove a number of oversampled ADC schemes (namely
classical and dithered A/D conversion, 1st and 2nd or-
der single path Σ∆ modulation). As shown in part 2,
the geometric interpretation of signals is based on the
Hilbert space structure of H and the convexity property
of V0 and Γ0. On a particular family of signals, we see in
part 3 that, taking an estimate in V0 ∩ Γ0 theoretically
reduces the MSE by a coefficient proportional to R2 in-
stead of R. This means we obtain a gain of 3dB per
octave of oversampling in the error reduction over the
classical signal reconstruction. After designing alternate
projections algorithms for the other more sophisticated
ADC techniques (part 4 and 5), we show in part 6 the
results of numerical tests: we still obtain a gain of 3dB
per octave for the dithered ADC, the 1st and 2nd order
Σ∆ which means that we improve their MSE reduction
dependence from R,R3, R5 to R2, R4, R6 respectively.

2 Alternate projections in sim-
ple ADC

The geometric interpretation of a signal is based on the
fact that the traditional power measurement

∑
i∈Z

|xi|2 of

a signal x ∈ H is the norm associated with the inner
product 〈y, z〉 =

∑
i∈Z

yizi, that is ||x|| = (
∑
i∈Z

|xi|2)1/2.

H then becomes a Hilbert space with regard to the inner
product. Qualitatively speaking, H has the structure
of a geometric space with the notion of orthogonality
(x⊥y ⇔ 〈x,y〉 = 0), and metric distance (d(x,y) =
||x− y||). In this context, we basically use the following
Hibert space property: if S0 is a closed and convex subset
and y(0) /∈ S0, there exists a unique y(1) ∈ H which
minimizes d(y(0),y(1)), and necessarily y(1) is closer to
any element of S0 than y(0). y(1) is then called the
projection of y(0) on S0. We recall that S0 is convex if
and only if for any pair of elements x, y ∈ S0, the whole
segment [x, y] is included in S0.

First of all, our two sets V0 and Γ0 are indeed convex.
For V0, this is trivial because it is a vector space. For Γ0

it is enough to prove that:

∀x,y ∈ Γ0,∀θ ∈ [0, 1], θx + (1 − θ)y ∈ Γ0

This is true because at every time index i, as both xi, yi

belong to the quantization interval labeled C
(0)
i , then

this is also true for θxi + (1 − θ)yi. We always consider
the closure of V0 and Γ0.

The second fact is that the two signal transformations,
the lowpass filter and the code projection, are indeed the
projection operators on V0 and Γ0 respectively. For the
lowpass filter, this can be seen by using the theorem of
Pythagoras and the spectral expression of the inner prod-

uct 〈x,y〉 =
1
2π

∫ +∞

−∞
X(ω)Y ∗(ω)ejωdω from Parseval’s

theorem (X,Y are the Fourier transforms of x,y). For
the code projection, figure 6 shows that the projected
signal is indeed the closest signal to e(1) of those which
have the same code as x(0).

Now, Youla and Webb prove in [5] that the alternate
projections between two closed and convex sets always
converge. Moreover, the limit is necessarily an element
of this intersection, that is, V0 ∩ Γ0 in our case.

Actually, this property remains true if, instead of con-
sidering the projection operators PV0 , PΓ0 on V0,Γ0, we
used the following operators:

TV0 = PV0+(1−α)(PV0−1) , TΓ0 = PΓ0+(1−β)(PΓ0−1)

where the relaxation coefficients α, β are chosen in the
interval ]0, 2[. These operators are intermediate between
the identity operator (α or β = 0) and the symmetry op-
erator with regard to the projection (α or β = 2). When
α = β = 1, they coincide with PV0 and PΓ0 respectively.
Youla and Webb prove in [5] that the convergence to an
element of V0∩Γ0 is still guaranteed with such operators.
In practice, the speed of convergence can be dramatically
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enhanced by optimizing α and β in ]0, 2[. This is often
done experimentally.

3 Improvement of the estimate
e∞ in simple ADC

To see if it is worth applying the alternate projections,
we want to see how much better the estimate e∞ is com-
pared to e(1). In order to have a first idea of the quality
of such an estimate, we confine ourselves to periodic dis-
crete signals of period T0 and a sampling interval equal to
Ts. For a given maximum discrete frequency N < M/2
(where M = T0/Ts is the number of samples per period),
V0 is the subspace of signals x where the kth discrete

Fourier component Xk =
M∑
i=1

xie
2πik/M is zero except

for −N ≤ k ≤ N .

We want to evaluate the distance between any two el-
ements of V0 ∩ Γ0. Can we try to have a description of
V0 ∩ Γ0 in the time domain ? If we take the example
of figure 6, from the knowledge of C

(0)
i , Γ0 can be visu-

ally represented by the domain delimited by the heavy
hashed lines in figure 7. This figure shows for example
that the continuous version of a signal of Γ0 should stay
in the interval [− q

2 , q
2 ] between 4Ts and 6Ts, in [ q

2 , 3q
2 ]

between 7Ts and 9Ts, and necessarily crosses the quanti-
zation threshold q

2 between 6Ts and 7Ts. In other words,
this representation gives an information on the quantiza-
tion threshold crossings of the continuous time version of
elements of Γ0, with absolute precision on the amplitude,
but uncertainty on the instant when it occurs. The time
uncertainty is the sampling period Ts.

Suppose the original signal x(0) is such that we ob-
serve more than 2N +1 quantization threshold crossings
from the coded sequence C(0). At the limit of an infi-
nite sampling frequency, the instants t01, t

0
2, ..., t

0
2N+1 are

known with infinite precision. If x(0)(t) is the continu-
ous time version of x(0) and (X0

k) the discrete Fourier
transform of x(0), then from:

x(0)(t) =
1
2π

N∑
k=−N

X0
kej2πkt/T0 ,

we can write
[
X0

−N ... X0
N

]T
=

[M(t01, ..., t
0
2N+1)

]−1·[L0
1 ... L0

2N+1

]T

(1)
where M(t1, t2, ..., t2N+1) is the matrix[
ej2πkti/T0

]
1≤i≤2N+1,−N≤k≤N

and L0
j is the threshold

that x(0)(t) crosses at time t0j . M is a Vandermonde ma-
trix, and thus has a determinant different from zero if
and only if all t0j are distinct. If the sampling frequency
is not infinite, any element of V0∩Γ0 will also be given by

(1) but with an error bounded by Ts on t01, t
0
2, ..., t

0
2N+1.

This will induce an error on the knowledge of M which
can be linearized for Ts small enough. This will the in-
duce an error proportional to Ts on every coefficient X0

k ,
−N ≤ k ≤ N . As, from Parseval’s theorem, the power
of a signal is also equal to the power of its Fourier trans-
form, the mean square error of an element of V0 ∩ Γ0

from x(0) will be bounded by a function proportional to

T 2
s , or inversely proportional to R2 =

(
T0

2NTs

)2

. A more
detailed explanation is given in [6].

Conclusion : The quantization error power reduction is
asymptotically proportional to R2 instead of R, if x(0)

displays enough level crossings.

4 Generalization to other over-
sampled ADC systems

In part 2, we saw that the alternate projection principle
is based on the fact that Γ0 is convex (the convexity of
V0 is always true). We naturally want to extend this
principle to other A/D conversion techniques where Γ0

is still convex.

We are going to focus on a particular family of coding
systems where Γ0 can be equivalently described by the
block diagram of figure 4. In this scheme, F and d(0)

are respectively a linear operator (not necessarily time
invariant) and a discrete signal, and are assumed to be
completely known to the user.

The classical ADC technique corresponds to the trivial
case where F = I (identity operator) and d(0) = 0. The
dithered ADC also falls into this case where F = I and
d(0) is the dither sequence. The only difference with the
common use of a dither is that d(0) is assumed to be
completely known at every instant.

Less obvious is the fact that the nth order single path
Σ∆ modulation technique (figure 8) belongs to that fam-
ily of coding systems. To see this, one can first be con-
vinced that, if C(0) is the code sequence given by x(0), a
signal x gives the code sequence C(0) through the block
diagram of figure 8 if and only if it also gives the code se-
quence C(0) through the block diagram of figure 9. This
last scheme is itself equivalent to figure 4 where F is the
cascade of n accumulators (and is therefore linear), and
d(0) is the value of −a in figure 9 when x is forced to
zero. d(0) is known, as it can be computed from C(0).

We are going to show that, for such coding systems,
Γ0 is always convex. If x(1) and x(2) give the same code
sequence C(0), then at every time index i, a

(1)
i and a

(2)
i

will belong to quantization interval labeled C
(0)
i . As the

signal at the quantizer input node corresponding to the
input signal θx(1) + (1 − θ)x(2) (θ ∈ [0, 1]) is equal to
(using the fact that 1 = θ +(1− θ) and that F is linear):
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F (θx(1) + (1 − θ)x(2)) − d(0)

= θF (x(1)) + (1 − θ)F (x(2)) − θd(0) + (1 − θ)d(0)

= θ(F (x(1)) − d(0)) + (1 − θ)(F (x(2)) − d(0))
= θa(1) + (1 − θ)a(2)

,

its value at time i also remains in the quantization inter-
val C

(0)
i . This implies that θx(1) +(1− θ)x(2) also gives

the code sequence C(0). This proves that Γ0 is convex.

The principle of alternate projections can then theo-
retically applied on such coding systems.

5 Algorithm design of the code
projection for the dithered
ADC, the 1st and 2nd order sin-
gle path Σ∆ modulation

One should not forget that the mathematical existence of
a solution is far from being the ultimate goal. If we have
abandoned the context of LTI processing, we still have
the constraint that any signal transformation should be
progressive in time. By this we mean that the future is
always unknown and the control over the past is limited.

In the simple ADC, we have seen that the code pro-
jection is straightforward, as every sample is processed
independently. In the dithered ADC, this is also the
case. The slight difference is that, from the view point
of the input signal, the quantization intervals move from
one time to another. But they are simply shifted by the
value d

(0)
i at time i, which is anyway known by the user.

If we want to deal with the 1st order Σ∆ modulation
(figure 5), the code projection can no longer be expressed
as an individual transformation of the input samples. We
need to design a more sophisticated algorithm. We base
our study on the equivalent diagram of figure 4, where F

is the accumulation function and d(0) is equal to minus
the accumulation of C(0).

The projection of a signal x on Γ0 is the signal x+∆x
such that x+∆x ∈ Γ0 and the energy of ∆x is minimized.
If a = F (x) − d(0) is the signal at the input node of
the quantizer, then the variation ∆x on x will induce
a variation ∆a on a such that ∆a = F (∆x). Saying
that x + ∆x ∈ Γ0 is equivalent to saying that at every
instant i, ai + ∆ai belongs to the quantization interval
labeled C

(0)
i , or, ∆ai belongs to this interval shifted by

−ai. Let us call this shifted interval Qi. Every time
we want to project a signal on Γ0, we can compute this
interval sequence Qi. An example is shown in figure 11,
where at every time index i, the arrows symbolize the
boundaries of Qi. In this example, we assume we start
coding at time i = 0 where a0 is initialized to 0 (∆a0 is
then constrained to be equal to 0). We also deal with the

general case of nonuniform quantization: every Qi can
have different length, or even have only one boundary.

The projection problem consists then in finding the se-
quence ∆a that minimizes the energy of ∆x = F−1(∆a)
with the constraint ∆ai ∈ Qi for every i (note that as
F is the integration operator, F−1 is the first derivative
operator). We show in [6] that this solution can be found
by what we call the “thread algorithm”. Physically
speaking, it amounts to attach a thread at node (0,0),
and stretch it between the arrows in the direction of in-
creasing time index by maintaining at tension. Taking
∆ai on the path of the resulting thread position gives
the solution to the projection of x on Γ0 (see figure 11).

For the 2nd order Σ∆ (figure 10), the approach is simi-
lar, where this time F is the cascade of two accumulators.
F−1 is consequently the second derivative operator. The
algorithm is described in detail in [6].

6 Numerical results

We have concentrated our numerical tests (table 13) on
ideal cases in order to validate the principle of alternate
projections. to be able to perform ideal lowpass filtering,
we have performed our simulations in the context of peri-
odic signals. We have also dealt with uniform quantizers.
For every test, we measure the remaining error contained
in the estimate given by the algorithm. We compare it
with the classical uniform quantization noise power q2

12
and express the ratio in dB. If the MSE is proportional
to Rn where n is a certain number, then every time R
is doubled we will expect a gain of 10 log 2n 
 n × 3dB.
For every test configuration, we fix 2N + 1 the number
of non zero low frequency Fourier coefficients, and A the
amplitude of the signal (peak to peak amplitude). we
then apply the algorithm on a certain number of trial
signals (between 780 and 1000) which are randomly gen-
erated and satisfy the conditions on the parameters N
and A.

Simple ADC

In tests 1 and 2, we try to verify the theoretical factor
R2 in the MSE reduction we found in part 3, on simple
sinusoidal signals having more than 2N + 1 = 3 quan-
tization threshold crossings (they actually have exactly
4 crossings). We find a gain of 5.7dB as R is doubled.
This is close to 6dB = 2 × 3dB which corresponds to a
R2 behavior. In those tests, the iteration is stopped as
soon as the step increment of gain is less than 5.10−3dB.

Adding the relaxation coefficients to alternate projec-
tions, we experimentally obtained the best results with
α = β = 2. Test 3 gives a typical example of perfor-
mance achieved in this case. With an oversampling rate
of R = 64 = 26, the classical signal reconstruction should
give a quantization noise reduction of 6×3 = 18dB: with
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our algorithm we improve it to more than 26dB. More-
over, the iteration always explicitly ends up with an esti-
mate in the interior of V0∩Γ0 in a finite number of steps
(64 in average in this case).

In test 5 we deal with a nonideal filter. We use an
FIR lowpass filter of length 2048 obtained by Hanning
windowing the perfect filter. We limit the number of
iterations to 32. We find that we only lose 0.1dB in
average compared to the ideal case (test 4).

Dithered ADC

With the dithering technique, we get rid of the con-
straint on level crossings. In tests 6 and 7, we use a sinu-
soidal dither of amplitude q and frequency 2fm. Techno-
logically speaking, this can be easily realized with high
precision. The condition here is that every sample of the
dither should be known by the user with precision. Test
6 is done with the same conditions as test 3 with this
dither: it yields an even better error reduction (29dB)
without any sign of weakness for signal of amplitudes
going to zero (figure 12). This test is more thoroughly
described in [6]. The R2 dependency is confirmed in test
7, obtaining a gain of 11.5dB 
 4×3dB as R is multiplied
by 4 = 22.

1st order Σ∆

We have limited the quantizer to be a single threshold
comparator, giving code +1 (resp. −1) when its input
is positive (resp. negative). The in-built D/A outputs
the analog value +q (resp. −q) when it receives the code
+1 (resp. −1). We fix α = β = 1 to test the regular
alternate projection. In the Σ∆ tests we also start with
e(0) = 0 as the first estimate of the iteration. With the
usual R3 behavior, we would expect a gain of 3×3×3 =
27dB when R is multiplied by 8 = 23. With test 8 and
9 we find 34.4dB. This is close to 36dB = 4 × 3 × 3dB
which corresponds to a R4 behavior. Note the reasonable
number of iterations.

2nd order Σ∆

Tests 10 and 11 are similar to tests 8 and 9 with the
2nd order Σ∆. The normal R5 behavior would give a
gain of 5 × 3 × 3 = 45dB. We find 53.0dB. This is
close to 54dB = 6 × 3 × 3dB which corresponds to a R6

behavior.

7 Conclusion

We have designed algorithms which systematically im-
prove the signal reconstruction by 3dB per octave of
oversampling in the following coding techniques: sim-
ple and dithered ADC, 1st and 2nd order single path Σ∆
modulation. They are based on the principle of alter-
nate projections and the convexity of the coding system.

We have theoretically justified this improvement on the
simple ADC case for a certain family of signals.

In spite of their complexity, these algorithm have some
implementation potential in the context of ADC preci-
sion improvement by off-line postprocessing. Note that
the whole processing is done at the oversampling fre-
quency fs. The effect on the alternate projections of
nonideal characteristics of implementable filters are un-
der study.

It is important to see that our algorithms do not re-
quire any modification to the A/D conversion process
which can be done, for example, in real time with exist-
ing and traditional circuits. Actually, those algorithms
can even take account of circuit defects such as quantizer
nonuniformity provided they can be measured.
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Figure 1: Oversampled A/D conversion principle
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Figure 8: nth order single path Σ∆ modulation block diagram
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Figure 9: Virtual coding system for the nth order Σ∆
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Figure 10: 2nd order Σ∆ modulation block diagram
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Figure 12: MSE reduction versus A obtained in test 6
(dithered ADC)

2N+1 : number of non-zero discrete
low frequency components

A : peak-to peak amplitude (in multi-
ples of the quantization step q)

R : oversampling rate

α/β : relaxation coefficients for
the projections on V0/Γ0
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Table 1: Numerical results
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