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ABSTRACT

The use of an adaptive tree structure using wavelet packets
as a generalized wavelet decomposition for signal compres-
sion was recently introduced by Coifman, Meyer, Quake,
and Wickerhauser [1]. The idea is to decompose a discrete
signal into all wavelet packet bases of a given wavelet ker-
nel, and then to find the “best basis” wavelet packet. Un-
like the work of [1], in this paper, we conduct our best
basis search in a rate-distortion framework. We formulate
a fast algorithm to prune the full tree, signifying the entire
library of admissible wavelet packet bases, into that basis
subtree which minimizes the total distortion for a given cod-
ing bit budget. Arbitrary finite quantizer sets are assumed
for each hierarchical level of the basis-family tree. Finally,
a DCT “wavelet packet” basis quadtree segmentation is de-
scribed as an image coding application in a JPEG [5] envi-
ronment, with good improvement shown over non-adaptive
JPEG quantization.

1. INTRODUCTION

Wavelet packets, introduced recently by Coifman, Meyer,
Quake, and Wickerhauser (CMQW) [1] as a family of
orthonormal (ON) expansions, include the well-known
wavelet basis and the Short-Time-Fourier-Transform-like
(STFT) basis as its members. They represent the entire
family of subband coding tree decompoasitions, from which
the optimal decomposition subtree can be selected to max-
imize compression by permitting the signal characteristics
to be matched “on the fly.”

This scheme enables the coder to exhibit, for example,
a STFT-like characteristic (regular tree) at one source in-
stance, a wavelet characteristic (logarithmic tree) at an-
other instance, or any intermediate characteristic (arbitrary
wavelet packet subtree) at yet other instances to best match
the signal’s non-stationary statistics. Figure 1 shows the
complete depth-(log N) binary subband or wavelet packet
(WP) tree, while Figure 2 shows some typical admissible
“pruned” WP trees or subband topologies. The popular
wavelet and STFT decompositions are mere special cases of
permissible WP structures. The ON decomposition, which
enables each internal tree node to spawn off branches pro-
viding a complete disjoint basis cover for the space spanned
by their parent, is vital to the development of the fast prun-
ing algorithm.
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Figure 1: Complete wavelet packet tree of depth log N to
code signal block of dimension N. Each node n} contains the
basis vector b; with wavelet packet coefficient vector c; The
complete set of all pruned subtrees represents the library
of all admissible wavelet packet bases, or equivalently, all
subband decomposition topologies.

Related work and contribution of this paper

While the adaptivity and the speed of the best-basis search
of [1] are unmistakable, the cost criterion and the coding
(quantization) method used there to exploit this speed and
flexibility are somewhat ad hoc. In this paper we formulate
a fast algorithm, for a given total coding bitrate budget,
to pick the optimal WP basis, together with the optimal
quantizer choice for that optimal WP subtree, for each of
the independent segments or “blocks” that the signal com-
prises. Optimality is with respect to a global distortion cri-
terion that is additive over the signal blocks, e.g. m.s.e or
weighted m.s.e. We conduct our best basis hunt in a rate-
distortion (R-D) framework, a generalization of the treat-
ment in [1] where a one-sided “entropy” or “m.s.e” criterion
is used. Our approach could be viewed, in its quadtree ap-
plication, as an extension of [3] to provide a fast algorithm
covering hierarchies of admissible quantizers. As a practical
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Figure 2: (a) All possible binary wavelet packet decompo-

sitions of depth 2. (b) Some typical depth-3 binary wavelet

packet subtree decompositions. Note that Ho and Hi rep-
resent the “low pass” and “high pass” analysis filters.

contribution, a quadtree-based image compression applica-
tion using a family of DCT “wavelet packet” bases is de-
scribed. Our application is similar to that of independently
done work in (4], involving efficient quadtree segmentation
using VQ. We, however, use classified quantizers in a JPEG
(DCT-based) [5] coding environment.

Note that the DCT-basis family tree of our application
and the standard basis tree of [4] are not strictly WP trees,
which are derived recursively using QMF filter banks or
using multi-resolution wavelet analysis. The scope of appli-
cability of our algorithm extends to all classes of structures
which permit the construction of a hierarchy of basis covers
for the input signal space. While this obviously includes
structures like quadtrees and ON ‘transformed (e.g. DCT)
quadtrees, other powerful structures such as the CMQW
multiresolution decomposition wavelet packets, and hierar-
chical subband coders are also applicable.

2. BASIC IDEA OF THE ALGORITHM

We convert our constrained best basis WP (and quan-
tizer) sequence search into an unconstrained one via the
Lagrangian cost functional J(3) = D + AR. See [2] for
mathematical details. This makes it feasible to deal with
each block independently. - It can be shown that, at opti-
mality, all nodes of all subtrees of all blocks must operate
at “constant quality slope A”. See Figure 3. For a given
X =| AD/AR |, we populate each node of each tree block
independently with the Lagrangian cost function associated
with the best quantizer for that node. The best quantizer
for a particular tree node is that one which “lives” at ab-
solute slope A on the convex hull of the operational R-D
curve for that node, as shown in Figure 3. Then, by apply-
ing, in parallel for each signal block, the pruning criterion of

972

(Left child) Slopel= A
——— D,
ISlope]| "
Dp =\ Rcl
[ —
(Parent Node)
(Right child) | iSlopel=
]
Re,
For “quality factor” A, prune if
(DD, ) + ARgRe, ) >(Dgr AR)

Figure 3: Lagrangian cost pruning criterion for “quality
criterion” \ for each parent node of the wavelet packet tree.
This condition is used recursively to do fast pruning from
the complete tree depth towards the root to find the optimal
subtree for a given A.

Figure 3 recursively on every node, starting from the full-
depth tree and proceeding towards the root, we find the
sequence of best WP bases and associated best guantizers
with which to code the signal. The recursive algorithm ex-
ploits Bellman’s optimality principle by eliminating quickly
a host of suboptimal subtrees from contention for the opti-
mal solution, in a manner reminiscent of the popular Viterbi
algorithm. Finally, we show a fast convex iterative search,
using Newton’s method, over the Lagrangian multiplier },
to find the optimal A* that satisfies the given budget con-
straint Rbudget.

3. FORMAL PROBLEM DEFINITION

Without loss of generality, we will consider the problem of
a binary WP decomposition tree of a discrete input sig-
nal (vector) of size N in I*(N) See Figure 1. The analysis
and synthesis filters of each branch satisfy the standard or-
thonormality conditions of paraunitary perfect reconstruc-
tion filter banks (PRFB’s). As is well known, iterating the
orthonormal filter templates to the complete tree depth re-
sults in an equivalent generalized multiresolution decompo-
sition tree (i.e. WP tree) whose nodes represent a family
of orthonormal bases [1]. We assume that there are M sig-
nal blocks to be coded independently, each of size N. Let
T denote the complete WP tree, for each signal block, of
depth log N as shown in Fig. 1,1 denote any node of T.
Let S < T be any pruned subtree of T i.e. a WP basis sub-
tree of T that shares its root; thus, S corresponds to any
admissible WP basis, while S defines the set of terminal
nodes or leaves of S. Also, let ga(t) be the set of all ad-



missible quantizers for node t € T, while Qa(S) represents
the vector set of all admissible quantizers for the collection
of individual leaf nodes of subtree S. Figure 1 shows the
definitions of nj,bj,c; as the jth node, basis, and coeffi-
cient vector respectively, at the ith tree-depth or “scale”
(for i =1,2,...,log N ). Thus, b} represents the RN basis
members associated with node 'n";-, while cf, represents the
inner product of the signal with the basis vectors in b} Note
also that to simplify notation, {¢, b: and c;} will be invoked
where convenient.

Let Dg(t), Rq(t) be the distortion and bitrate, respec-
tively, associated with quantizing WP coefficient vector c:
of node t using quantizer ¢ € ga(t), and Dg(S), Rg(S) be
the distortion and rate, respectively, associated with cod-
ing subtree S using quantizer @ € Qa(S). In our case,
they are both linear tree functionals: i.e. total distor-
tion = Dq(5) = ¥ ,e5Da(t) and total rate = Rq@(S) =
Z: 5‘R¢(t)'

e problem to solve, then, is that of finding, given
a total budget of Rbudge: to code M independent signal
blocks, that sequence of (pruned) subtree best-bases ST
(fori=1,2,..., M) together with their associated optimal
quantizers Q; € Qa(S!) which minimize the global coding
distortion. Mathematically, this boils down to determining:
Drnin = Zf‘il DQ: (S.'), where

Dq: (5!) = min

$;=<T

min

1
[QiGQB(Si) ®

DQ.(Si)]

such that Riotat = Zﬂ, R+ (S?) < Rouaget.

4. FAST SOLUTION

Without loss of generality, due to the “parallelization” of
the problem, we consider the problem of pruning a single
tree (M=1), i.e. determining:

Dg-(§") = msin mgn Dg(S) s.t. Rg+(S") < Roudger (2)

We solve the constrained problem of Eq.(2) by convert-
ing it to an unconstrained problem using Lagrange multi-
pliers. Our problem becomes a hierarchical extension, us-
ing a fast pruning algorithm, of the “flattened” problem
of [3]. After introducing the Lagrangian cost functional
J(A) = Jx(5,Q) = [De(S) + ARq(S)), the equivalent un-
constrained problem, becomes the solution to:

7*(2)

I

©)
(4)

min min JA(S, Q)

min (3 min[Dq(t) + ARq(1)])

tes

Thus, one can equivalently solve the above unconstrained
equation for the optimal values of Q, S, and A. The opti-
mal quantization choice Q (for a fixed subtree S and a fixed
operating slope ) is the inner minimization of Eq.(4), ex-
pressed as the sum of the (Lagrangian) costs of the leaf
nodes of S. The optimal subtree basis S < T (for the fixed
quality slope A) of the outer minimization of Eq. (4) is

" of the tree T Its two children are t; = n',':
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found by the fast pruning method described in Section 4.1.
Finally, the optimal X that solves the given budget Roudget,
to within a convex hull approximation, is found using a
convex search method described in Phase II of Section 5..
Refer to [2] for mathematical details.

4.1. Fast pruning to find optimal basis subtree

A Viterbi-like fast dynamic programming technique is fea-
sible due to the ON property of the WP basis family, that
enables the signal space spanned by an arbitrary subtree
rooted at internal node t of the tree to be identical to
the space spanned by the twin subtrees rooted at the two
branches emanating from node t. To be specific, let t = nj,
i.e. tis the jth node of the ith hierarchical level (or depth)
1 and t; =nj] -
See Figure 1. Then, because of the ON property, the sub-
trees rooted at t; and tz cover disjoint halves of the signal
space spanned by their parent node 1.

This allows a direct quantitative one-to-one comparison
between the N/2' basis coefficients {c;} associated with the
basis subset {b}} of node ¢ with the (2x (N/(Z“"’”))) coef-
ficients {{c5t1,}, {c3t!}) associated with the basis subsets
{b‘{;’_‘_’} and {b'zjfl} of nodes t; and 1, respectively. The
«split/merge” decision will be based on which option leads
to a cheaper Lagrangian cost, as spelled out in Figure 3.

Assume known the optimal subtree from node t = nj “on-
wards” to the full tree-depth log N. The subtrees could be
likened to surviving paths in the Viterbi algorithm. Then,
by Bellman’s optimality principle, we know that all surviv-
ing paths passing through node ¢t = nj at depth ¢ must
invoke this same optimal “finishing” path. There are two
contenders for the “surviving path” at every node of the
tree, the parent and its children, with the winner having
the lower Lagrangian cost. Using this, we begin at the
complete tree-depth log N and work our way towards the
root of the tree, using the above cost criterion at each level
i to determine whether to split or merge.

5. COMPLETE ALGORITHM

5.1. Initialization

Step 1: Generate the coefficients {c}} for the entire WP
family.

Step 2: Gather the given quantizer set dependent R-D
points for each node t € T Vg € qa(t).

Phase I: Optimality For A Given Operating Slope

Phase I of the algorithm is run for a given slope value A
Step 8: For the X of the current iteration, populate all
the nodes t € T with J:(A), (or equivalently, populate node
n} with J;(})), where: Je(A) = min[Dg, () + AR ()]
Step 4: Initialize i — n, where n = log N is the maximum
signal block tree-depth. For t = n7,if q! is the value of g¢
that minimizes Ji()) initialize:

R} — R} (where R} = Rq; (1))
D? — D} (where D} = Dq; ®))
e
Step 5: i—1—1.If1<0, go to Step 8.
Step 6: Vi=1,2,..., 2% at the ith tree level:
if 730 < B0+ B



then {split(n}) — NO; R} = R}; D= Dj; J;=J;}
else { split(n}) — YES; R} = R}, + Ry}%s
D = D, + Difs Jy = 31, + 1!

Step 7: Go to Step 5.

Step 8: Starting from the root o, and using, in a linked-
list fashion, the node data-structure element split(node),
selected optimally for all the nodes of T, carve out the op-
timal subtree S*(A) and its associated optimal quantizer
choice Q*(A). Also readily available at the data-structure
for root node to are Rg+(S*) = R} and Dq+(S*) = D3, the
rate and distortion of the optimal subtree S*(}).

Phase II: Iterating towards the optimal operating point

We now describe the bisection iteration process (convex
search) to find the optimal slope A*.
Step 1: Pick A; € Ay such that

Y RI(M) € Rouggee < Y RIN)

If the inequality above is an equality for either slope value,
stop. We have an exact solution. Otherwise, proceed to
Step 2.

ADI(A)=D7(Xs)) .
Step 2t Anest | %m | +¢€, where € is
a vanishingly small positive number picked to ensure that
the lower rate point is picked if Anes: is a “singular” slope
value.
Step 3: Run the Phase I optimal algorithm for Anezt.

= if {3, R{(Anezt) = Y-, Ri(Au)}, then stop.
A = A

u
= else if (Ei R:(Anazt) > Rbudget), Al — Anext.
Go to Step 2.
== else Ay — Anext. Go to Step 2.

6. QUADTREE APPLICATION RESULTS

As an application, Figure 4 shows a typical result of a
quadtree-based image compression example using a family
of DCT “wavelet packet” basis matrices of sizes 4x4, 8x8,
and 16x16 used independently over the non-overlapping
16x16 subblocks into which the original image is divided.
Classified quantizers, with four perceptually consistent
classes for each block-size, were chosen to be the admis-
sible quantization set for this application. Figures 4 and 5
show some typical results. As can be seen, for the “Bar-
bara” image, our adaptive scheme outperforms the static
JPEG scheme by about 2-3 dB at fixed bitrate, or equiva-
lently about 25-35% compression advantage at fixed SNR,
over an entire range of bit rates of interest.

7. CONCLUSION

We have shown, for a given hierarchy of admissible quan-
tizers, an efficient scheme for coding adaptive trees whose
individual nodes spawn off descendents forming a disjoint
and complete basis cover for the space spanned by their
parent nodes. The scheme presented guarantees operation
on the convex hull of the operational R-D curve for the
admissible hierarchy of quantizers. Applications for this
coding technique include the CMQW generalized multires-
olution wavelet packet decomposition, iterative subband
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Figure 4: Comparison of adaptive depth-3 DCT basis
quadtree coding scheme with non-adaptive JPEG coding
scheme for Barbara image.
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Figure 5: Comparison of adaptive depth-3 block DCT basis
quadtree coding scheme with non-adaptive JPEG coding
scheme for “mit” sequence frame.

coders, and quadtree structures. An application to image
processing involving quadtrees with a family of DCT bases
has been demonstrated in a JPEG-like coding environment
with good improvement shown over the static JPEG coding
scheme.
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