OPTIMAL BUFFER-CONSTRAINED SOURCE QUANTIZATION AND FAST
APPROXIMATIONS

Antonio Ortega®

Kannan Ramchandran'

Martin Vetterli*

Department of Electrical Engineering
and Center for Telecommunications Research,
Columbia University,

New York, N.Y. 10027

ABSTRACT

We formalize the description of the buffer-constrained quan-
tization problem. For a given set of admissible quantiz-
ers to code a discrete non-stationary signal sequence in a
buffer-constrained environment, and any global distortion
minimization criterion which is additive over the individ-
ual elements of the sequence, we formulate the optimal so-
lution as well as slightly suboptimal but much faster ap-
proximations. As a first step, we define the problem as
one of constrained, discrete optimization and establish its
equivalence to some of the problems studied in the field
of integer programming. Dynamic programming using the
Viterbi algorithm is shown to provide a way of comput-
ing the optimal solution. Finally, we provide a heuristic
algorithm based on Lagrangian optimization using an oper-
ational rate-distortion framework that, with much-reduced

computing complexity, approaches the optimally achievable
SNR.

1. INTRODUCTION

The application of variable bit rate (VBR) techniques to
non-stationary sources, such as video sequences, in a con-
stant bit rate (CBR) transmission environment, requires
the definition of buffer control policies. Recently, the need
to address the problem of buffer-constrained quantization
in the context of image and video coding has risen sharply
to the point where buffer-control algorithms are being pro-
posed for the MPEG video standard [1). Many applica-
tions like CD-ROM storage of images and video sequences,
windows applications for workstations, buffer-limited JPEG
[2] coding, and MPEG buffer control strategies are non
real-time finite-buffer constrained coding applications where
computationally expensive methods are not taboo if the
complexity-performance tradeoff is worthwhile, specially if
the one-time coding complexity can reduce transmission
cost, e.g. limiting the amount of buffer memory needed
by the user.

This provides the motivation to investigate optimal quan-
tization strategies for the coding of signal sequences in a
finite buffer environment, and to quantify the performance
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tradeoffs involving key design parameters like buffer size or
buffer occupancy “granularity”. The possession of an opti-
mal solution can also be an invaluable benchmark for assess-
ing the performance of real-time constrained and practical
coders as well as for quantifying the suboptimality of fast
heuristics. In asynchronous network applications (Asyn-
chronous Transfer Mode or ATM networks), the idea of
“self-policing” by the user, to guarantee conformance with
the negotiated transmission parameters while ensuring an
optimal grade of quality delivered, can also be very appeal-
ing, as the user has more “control” over the quality of ser-
vice he can expect from the network. Besides, negating the
value of buffer-control algorithms by making the encoder re-
sort to a large enough buffer size to absorb all source bitrate
variations may not only be unacceptable because of end-to-
end delay restrictions, but also economically unwise even
when delay is not an issue, as there may exist “smarter”
shorter-buffer solutions that yield the same performance.

We formalize the generalized problem of buffer-
constrained independent quantization of a sequence and de-
scribe how, given a set of quantizers, a finite buffer, and
any additive cost measure over the sequence elements, an
optimal solution can be found [3]. We show how this prob-
lem, one of discrete optimization with constraints, can be
construed as a deterministic dynamic programming prob-
lem with the Viterbi algorithm used to compute the opti-
mal solution. After drawing parallels between this buffer-
constrained quantization problem and the less complex
budget-constrained unbuffered quantization problem [4], we
present a recursive Lagrange-multiplier based algorithm
that provides a fast nearly-optimal solution with much re-
duced complexity. For simplicity, we use the mean-squared-
error (MSE) distortion criterion in our simulations, though
any additive criterion is admissible in general. The source
sequence elements (8x8 pixels image blocks in our simula-
tion) are quantized with the JPEG coder [2] using a finite
number of quantization scales as the admissible quantiza-
tion set.

2. PROBLEM DEFINITION

2.1. A First Formulation

Let us consider a sequence made of blocks, representing
discrete analog samples or sets of samples (depending on the
application), that are to be coded independently, possibly
after some unitary transformation. For a given finite set of
quantizers, the problem consists in choosing, for each block,
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that quantizer within the admissible set, that will minimize
the global cost of coding the sequence, where the cost is
additive over the independent individual blocks.

Our system consists of three basic elements: the encoder,
the decoder (each including a buffer, See Figure 1) and the
transmission channel. In the general case, although trans-
mission need not be synchronous (e.g. video transmission
over ATM networks), it can be seen that, since the encoder
and the decoder are usually attached to synchronous de-
vices, a constant delay restriction exists between the input
to the coder and the output of the decoder. See Figure 2.
As a consequence, given the constant delay through the sys-
tem and the finite channel rate, we conclude that the buffer

size will be finite.
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Figure 1: Block diagram of the encoder
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Figure 2: Synchronous devices at encoder and decoder in a
system with limited channel rate imply constant end-to-end
delay and therefore finite buffering.

We can now formulate the problem of optimal buffer-
constrained quantization:

Formulation 1 Given a set of quantizers, a finite buffer,
an average throughput rate, and a sequence of blocks to be

ded independently, select the optimal sequence of quan-
tizers corresponding to each block such that the total cost
e is d and buffer overflow is avoided.

2.2. An Integer Programming Formulation

A fundamental facet of this problem is that the set of avail-
able quantizers is finite in size, which discretizes the set of
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admissible solutions and makes it natural to look at integer-
programming (IP) formulations {5, 6] to help solve it.

Consider the allocation for N blocks and suppose there
are M quantizers available to code each block. To de-
note the use of a given quantizer, the set of variables to
be optimized is defined as: z;;, which is 1 if quantizer j is
used for block i and is O otherwise, for i = 1,..., N and
i=1..., M.

Let di; and bi; be, respectively, the distortion and the
number of bits produced by the coding of block i with quan-
tizer j.

Formulation 2 (0-1 Integer Programming)
Given Bamax (the buffer size) and r (the channel constant
bit rate), find values for z:; € {0,1} to minimize:

N M
Dror = zzdijzij
i=1 j=1

subject to:

@

and

k M
SO biizis—(k=1)-r < Buax, VE=1,..,N (2)

i=1 j=1

Constraint (1) requires that only one quantizer is used for
each block, while constraint (2) is the overflow restriction.
Note that underflow will be avoided under the condition
that distortion has to be minimized.

3. DYNAMIC PROGRAMMING SOLUTION
USING THE VITERBI ALGORITHM
3.1. The Viterbi Algorithm

This problem can be solved using dynamic programming
(DP) and, in particular, the Viterbi algorithm [7, 8], can
be employed. The basic idea consists of starting at the ini-
tial buffer state and growing a path for every admissible
quantizer (that does not cause buffer overflow), resulting
in a trellis diagram whose states are the buffer-occupancy
levels. See Figure 3. Each trellis path, corresponding to a
quantizer choice, has a cost associated with it correspond-
ing to the distortion incurred by the quantizer while the
quantizer’s coding bitrate dictates the destination state of
the path. For an additive cost function, the well-known
Viterbi algorithm provides the optimum choice of quantiz-
ers to code the sequence. This technique establishes a rule
to prune out the suboptimal paths in the trellis: if a node
can be reached by more than one path, only the minimum
cost path will be kept.

3.2. The Optimal Solution

By investigating the optimal solution, one can study the
characteristics of the optimal system configuration, and use
it, as motivated earlier, as a benchmark for evaluating ex-
isting buffer-control practices and heuristics. For example,
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Figure 3: The problem seen from the Viterbi algortihm
point of view: (a) The rate-distortion characteristics of the
the blocks for the available quantizers. (b) Equivalent rep-
resentation. Each of the branches corresponds to the choice
of a specific quantizer and has attached a cost. The length
of the branch is proportional to the rate. (c) All possible
paths for the three blocks considered. Path 2 cannot be
used because of overflow. 1 and 3 are, respectively, the
maximum and minimum distortion paths.

Figure 4 shows how, for different rates, increases in buffer
size beyond a certain level produce no significant quality
improvement.

As DP methods like the Viterbi algorithm are enumera-
tive techniques with complexity that is exponential in the
number of states in the trellis, it is useful to study the merits
of reducing computational complexity at the cost of incur-
ring acceptable suboptimality. Our results show that both
reducing the number of nodes at each level (for example,
by “quantizing” the number of buffer states — see Figure 5)
and limiting the memory of the problem (i.e. confining the
decision making, in releasing a branch in the path, to a
finite number of consecutive sequence blocks) can reduce
the complexity while not significantly decreasing the per-
formance.

4. HEURISTIC METHODS TO APPROACH
THE OPTIMAL SOLUTION

4.1. Rationale for the Heuristic Approach

To develop fast heuristics for our problem, we turn to rate-
distortion theory by noting that our allocation problem
without the buffer constraintreduces to the classical budget-
constrained allocation problem cited in the literature [4], for
which a fast Lagrange multiplier based solution exists.
Further, since our problem has an essentially limited
memory (due to the finite size of the buffer), we can, in
practice, reduce the horizon of our optimization problem to
Jjust a finite number of sequence blocks, i.e. we can decouple
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Figure 4: Optimally attainable SNR vs. normalized buffer
size. Each point corresponds to the optimal quantization
for the sequence at a given buffer size. Note that “rate”
refers to the average number of bits used to code each source
block.

the future beyond a certain point from the decision on the
current block, and this without significantly reducing the
coding quality (see the top curve in Figure 7).
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Figure 5: Effect of buffer quantization. The degree of quan-
tization refers to the buffer state reduction factor, i.e. the
number of consecutive physical buffer occupancy states that
are “collapsed” into one virtual state, or node, in the trellis
diagram.

4.2. Recursive Lagrangian Optimization

We combine these two ideas to formulate the following al-
gorithm:

Algorithm 1

(step 1) At every stage k, use Lagrangian optimization [4],
with budget constraint n - r + B(k) — Bmax /2, to ob-
tain the best non-buffer-constrained allocation for the
following n blocks, where B(k) is the buffer occupancy
level at the k-th stage as determined by the recursive
algorithm.

(step 2) Use the quantizer choice found by the previous step
for block k and release it to the buffer, and repeat the
first step for stage k + 1.

This is equivalent to performing a sliding window opti-
mization so that the quantizer choice for the k-th block



depends only on the rate-distortion characteristics of the
following n blocks and on the buffer occupancy level at the
k-th stage. Thus by exploiting the finite memory exhibited
in practice by the problem (see results in Figures 4 and 7)
and the fact that we can perform Lagrangian optimization
very inexpensively due to the convexity of the resulting “un-
constrained” case, we can approach the optimal solution.
Our simulations verify that this heuristic yields solutions
very close to the optimal one, as obtained using the more
“brute force” Viterbi Algorithm. Experimental results have
shown that, typically, using Algorithm 1 results in less than
10% of the blocks being coded with a non-optimal choice of
quantizer (as computed with the Viterbi algorithm, under
the same conditions).

4.3. Heuristic Improvement

A computationally efficient heuristic that sacrifices little
quality is the following: use the algorithm described above,
except undertake optimization over n blocks only when the
algorithm results in paths whose buffer occupancy levels
at any stage violate certain empirical thresholds. Call the
heuristic percentage the fraction of the size of the buffer that
is used as the threshold. Thus a 10% heuristic would mean
that the algorithm would be recomputed when it results
in any path whose buffer occupancy level is below 10% or
above 90% of the total buffer size (note that a 50% heuristic
would be equivalent to Algorithm 1). This algorithm can
be formulated as:

Algorithm 2

(step 1) At every stage k, if the buffer occupancy is within
the defined thresholds use the allocation previously com-
puted for this block. Otherwise, use (step 1 ) of Algo-
rithm 1 to compute the allocation for the following n
blocks,

(step 2) Use the quantizer choice found by the previous step
for block k and release it to the buffer, and repeat the
first step for stage k + 1.

Buffer size

Block number

Figure 6: Algorithm 2: the allocation, using Algorithm 1
for n consecutive blocks is recomputed only when the buffer
occupancy exceeds the thresholds.

In Figure 7, the SNR of both the Viterbi solution with
limited memory (top curve) and the heuristic (10%) ap-
proximation are compared. For a sufficiently large number
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Figure 7: SNR Comparison between the Viterbi algorithm
(top curve) and recursive 10% buffer-threshold Lagrangian
heuristic for finite memory case. Note that the Viterbi al-
gorithm is applied in a sliding window fashion, i.e. a on on
a quantizer assignment is made based on the following n
blocks and not on the whole sequence.

of blocks, simulations indicate that the heuristic approxi-
mation comes within 0.05 dB of the optimal value, while
consuming about 1/20 of the CPU time.

5. CONCLUSIONS

In this paper, we have examined the problem of optimal
buffer-constrained independent quantization for an additive
cost criterion. The problem is formulated in an integer pro-
gramming framework and a way of reaching the optimal
solution using the Viterbi algorithm is described. The re-
sults obtained from the optimal solution are studied and a
fast heuristic algorithm, based on recursive Lagrangian op-
timization using rate-distortion concepts, is proposed which
provides a close approximation to the optimal solution with
much lower computational complexity.
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