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ABSTRACT

In this paper we consider expansions which give arbitrary
orthonormal tilings of the time-frequency plane. These dif-
fer from the short-time Fourier transform, wavelet trans-
form, and wavelet packets tilings in that they change over
time. We show how this can be achieved using time-varying
orthogonal tree structures, which preserve orthogonality,
even across transitions. One method is based on lapped
orthogonal transforms, which makes it possible to change
the number of channels in the transform. A second method
is based on the construction of boundary filters, and gives
arbitrary tilings. We present an algorithm which for a given
signal decides on the best binary segmentation, and which
tree split to use for each segment, and is optimal in a rate-
distortion sense. We present the results of experiments on
test signals.

1 INTRODUCTION

Recently there has been a renewal of interest in linear ex-
pansions of signals, particularly using wavelets and some of
their generalizations (see, for example, [5] and references
therein). It is well known that the classical short-time
Fourier tranform or Gabor transform, and the more recent
wavelet transform are just two of many possible tilings of
the time-frequency plane. These are illustrated in Figures
1(a) and (b). We use the term “time-frequency tile” of
a particular basis function to designate the region in the
plane which contains most of the function’s energy. An
elegant generalization that contains, at least conceptually,
Gabor and wavelet transforms as special cases, is the idea
of wavelet packets [8] or arbitrary subband coding trees.
An example of a wavelet packet tiling is given in Figure
1Ec . While the wavelet packet creates an arbitrary slicing
requencies (with associated time resolution), it does not
change over time. Often a signal is first segmented, and
the wavelet packet decomposition is performed on each seg-
ment independently. An obvious question is whether we can
find a wavelet packet decomposition that changes over time,
that is, an arbitrary orthogonal tiling of the time-frequency
plane. An example of such a generalized tiling is shown in
Figure 1(d). We use the term “arbitrary” somewhat casu-
ally, since the tiling is restricted to those produced by binary
tree structures. However, the wavelet packet construction
is generalized sufficiently to warrant the term.
Some of the key questions to be answered are:
e How general can the basis functions be ? Can, for ex-
ample, adjacent wavelet packet decompositions overlap in
order to avoid discontinuities due to segmentation ?
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¢ For a given signal, what is the optimal tiling, and can it
be found efficiently ?

¢ What relationship exists between discrete-time and
continuous-time constructions ? In other words, is it pos-
sible to construct continuous-time bases from discrete-time
ones as in the wavelet case 7

The goal of this paper is to answer these questions. We pro-
pose bases, develop algorithms and carry out experiments
to verify performance.

The paper is structured as follows. We begin by construct-
ing adaptive orthonormal systems. The first, in Section 2, is
an adaptive lapped orthogonal transform (LOT), allowing
one to change the number of channels on the fly, with over-
lapping basis functions. The second, based on orthogonal
boundary filters treated in Section 3, allows us to start a
frequency segmentation at any point in time, and thus can
be used for arbitrary tilings. Given such arbitrary bases, it
is necessary to find efficient algorithms to choose the best
basis for a given input signal. This is done in Section 4,
where the best tiling in a rate-distortion sense is found us-
ing an extension of the wavelet packet algorithm [4]. Section
5 shows the results of some experiments on speech signals.

2 VARIABLE SIZE LOT’S

We start by examining the first question, namely whether
it is possible for the basis functions of the adjacent decom-
positions to overlap in order to avoid discontinuities due
to segmentation. In this section, we present a particular
construction achieving the overlap but leading to very re-
stricted tiling given in Figure 2(a). It will be referred to as
“variable size LOT’s”.

LOT’s are a special class of perfect reconstruction filter
banks (see, for example, [3]), using a single prototype fil-
ter of length 2N (where N is the number of channels) to
construct all of the filters ho,..., hn_1, by modulation as
follows:

hor(Nym) 2k 4 1)
N aN

withk=0,...,N—=1, n=0,...,2N —1 and where the pro-
totype lowpass filter hp.(N,n) is usually symmetric. The
question we want to answer now is whether it is possible
to switch between different LOT’s with overlapping basis
functions, while preserving perfect reconstruction and or-
thogonality. The answer is positive and here we summarize
it. For more details, refer to [2].

he{(N,n) = (2n ~ N+ 1)x), (1)

Theorem 2.1 One can switch from an Ni-channel LOT
to an Ny-channel LOT (where N1 < N and Ni, N2 even)
as follows:

1. Set
0 né€ [o,ﬁ’rz’lL -1},
hpr(Na, k) = 0 ne[thon, -],  (2)

ﬁ ne [NZiQN] , 3N22—N| _ 1]
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2. Choose
N; — N
he(Nam) = ([ R2ha (an+ 2220y )
1 2
forn € [0, Ny — 1] and
N. 3Nz — N;
he(Ni,n) = ([ FFhi(Non+ =2222), (4)
1 2

for n € [N1,2N; — 1] and where i € [0, N; — 1] and i) #
4,k .

The proof is very simple and can be found in [2]. The
idea behind the construction is the following: start with
an Nz-channel LOT and construct an Ni-channel LOT by
taking N; basis functions from the Nz-channel LOT and
discarding the middle coefficients where the prototype filter
is constant. Therefore, effectively we have constructed an
Ni-channel LOT from the tails of the N;-channel one (a
similar scheme can be found in [8], and this also resembles
what the signal processing community calls MDCT with a
50% overlap). As an example, consider switching from a
4-channel to an 8-channel LOT. It yields the tiling of the
time-frequency plane as given in Figure 2(a). As mentioned
earlier, the types of tilings we car obtain in this fashion are
restricted. Another point is that the amount of overlap is
fixed to the size of the smaller LOT (in this example, it
would be 4).

Using the same type of a reasoning, one can construct even
more sophisticated schemes. For example, one could switch
from a 2-channel to a 4-channel to an 8-channel LOT. The
type of tiling one could produce in this manner is given in
Figure 2(b). For the details of the construction, refer to [2].

3 SWITCHING ORTHOGONAL TREES

We now consider a different approach, which will allow us
to realize the most arbitrary tree-based tiling, as depicted
in Figure 1(d).

Consider the following simple example by way of illustra-
tion: suppose we wish to split a signal z n; using length
4 orthogonal analysis filters Ho(z) and Hi(z), but only for
time no < n. Note that the relation between the analysis
filters is H1(z) = Ho(—2z"") [7).

The matrix corresponding to the filter bank operating on
an infinite signal can be written as a doubly infinite uni-
tary block Toeplitz matrix [7]. In restricting the matrix to
the half infinite range n¢ < n, however, one of two things
happens: either the matrix fails to be unitary, or the ma-
trix becomes rank deficient. Orthogonality is required by
the fast tree pruning algorithm which we use in the next
section, and if the matrix is rank deficient it has a null-
space, which means that certain non-zero signals would be
“invisible” to the system. We wish to avoid both of these
undesirable effects.

We overcome both problems by finding boundary fil-
ters. For example, we will show how to find the filters

hg(n),h;(n) such that the operator T, in (5) is unitary
without a null-space.

ho(0)  ho(1) ho(2) 0 0
hy hy(1)  hy(2 0 0
- © hoggg ho%;i ho(2) (3

0 —hg(3) ho —ho(l) ho

(5)
Constructions of this kind will allow us to change between
one orthogonal tree and another, without losing the orthog-
onality property. For example, suppose we wished to grow
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a tree using the filters {ho(n), h1(n)} starting at some time
no. We could let Ip be the half infinite identity matrix con-
taining ones on the diagonal as far as no — 1, and then use

the operator
T= [ L 0

0o T, |’

which gives the appropriate transition at time no. In this
way we will be able to change between different trees, and
grow branches at will, provided the appropriate boundary
filters are used. Pruning a tree is done similarly, boundary
filters are found which allow us to cease splitting a signal
with a certain set of filters.

Solutions

To illustrate the procedure we solve the particular case al-
ready introduced, the length 4 example (see [2] for the more
general case). We claim that a solution can be found, when
the boundaries are as shown in (5); thus we must find the
coefficients of the boundary filter pair at the top of the ma-
trix in terms of those of ho(n) and hi(n). For convenience
denote by r; the i-th row of the matrix. To make the matrix
unitary we must hence ensure rir] = §;;.

To force 71 and r2 to be orthogonal to r3 and ry gives

ho(1)  ho(2) (ke ). (o -hogo; )
hi(1) Ry (2) 0 ki )7\ ho(1) —ho(0) /°
. . (8
for any ko and k3. Orthogonality of r; and r; requires
ho(0)h1(0) + kokiho(1)® + kokiho(0)2 = 0. (7)

Hence we can arbitrarily choose h(',(O) and then determine
A1 (0) from (7), and the remaining coefficients from (6).
Normalization of hy(n) and h;(n) gives ko and k;.

Boundary scaling functions and wavelets

In El] it was shown how discrete-time orthonormal bases
could be used to generate continuous-time ones. The above
construction shows how to find time-varying discrete-time
orthonormal bases. We shall apply an approach similar to
that of [1Lto our novel time-varying bases, and suggest how
this may be used to find compactly supported wavelet bases
for functions which are supported on an interval.

We again use the length 4 case for illustration. Consider
the half-infinite block Toeplitz matrix Ho which contains
as rows the shifted impulse response of ho(n), and has the
boundary filter in the first row.

If Lix(z) denotes the z-transform of the coefficients of the

i-th row of (Ho)*, then it can be shown that

-1
Li(z) =27 VO[] Ho(z*") i1 (8)

k=0

The function L2;(z) can easily be recognized as the z-
transform of the “graphical iteration” [ll] to find the scaling
function of a compactly supported wavelet scheme (see [7]).
That is, if we define from Li;(z) a continuous-time function

fOAz) = bj(n)

it can be shown that f{’)(z) converges to the scaling func-
tion ¢(z) as i — oo (under some constraints on ho(gn)).
Because of the boundary, a special form is required to cal-

culate Ly;(z)

n/2 <z <(n+1)/2,

j—2
Liy(2) = ho(0)Ly,—1(2) + 2 B ) [ Ho(z™"), (9)
] k=0



where E(z) = ho(1) + h(l)(2)z"]. As for fU)(z) we define
b(J)(:c), as a continuous-time function derived from L;;(z).

I ) () converges as j — oo we call it the boundary func-
tion. That it is orthogonal to ¢(z — k; V k € Z follows from
orthogonality of the filter set. Similarly it is compactly sup-
ported since the filters are FIR.

By way of illustration, Figure 3 shows the wavelets gener-
ated by the Daubechies length 4 filters {1], with appropriate
boundary functions, for an interval of length 4. The figure
shows 1 (z), ¥(z — 1) together with the boundary functions
at the z = 0 and z = 4 boundaries.

It is worth emphasizing that we have given the analysis
for the length 4 case; the number of boundary functions
depends on the length of the filters used. Also note that
the boundary function, which is determined by (9) does not
obey a two-scale difference equation, and that the question
of convergence is less clear.

Orthogonality of the boundary scaling function and wavelet
with respect to integer translates follows from the orthog-
onality of the rows of Ho and H;. Orthogonality across
scales is verified similarly. This is the machinery we need
to derive wavelet bases for the interval. A more detailed
account is given in [2].

4 R-D OPTIMAL TILING

From a coding perspective, the optimal orthonormal (ON)
tiling of the time—frequency plane should be in the opera-
tional rate—distortion (R-D) sense. Thus, an optimal tiling
for one coding application corresponding to a particular
wavelet kernel, quantizer set and coding scheme need not
be the same as that for another. In the R-D framework, the
optimal tiling is that which minimizes total distortion sub-
ject to a maximum total bit rate constraint, or conversely,
which minimizes the bit rate subject to a maximum distor-
tion constraint.

Optimal bit allocation

The topic of optimal bit allocation, a constrained optimiza-
tion problem (COP) where the distortion is minimized sub-
ject to a target bit budget constraint (or vice versa), has re-
ceived exhaustive study [6]. For an ON decomposition and
an additive distortion measure (such as the mean square er-
ror — MSE), the “hard” constrained optimization problem
can be solved by converting it to an “easy” equivalent un-
constrained optimization problem (UOP) via the Lagrange
multiplier A which “trades off” rate for distortion [4, 6].
The UOP is the minimization, over all permissible opera-
tional (R,D) points, of the Lagrangian cost D + AR, where
D is the distortion and R the rate. As shown in [4], the
UOP solution for the “correct” value of X\, A*, is the desired
convex—hull operating point for the original COP as well.
The optimal operating slope A* is obtained by performing
a fast convex recursion in A. See [4] for details.

Brief Review of Wavelet Packet Algorithm

Optimal bit allocation in a wavelet packet (WP) framework
has been solved in [4] using an R-D criterion to find the
“best WP basis” decomposition for a given signal. The ba-
sic idea is that the full-depth WP tree is populated with the
Lagrangian cost D(node)+ AR(node) for each internal tree
node. Then, a fast pruning algorithm, based on Bellman’s
optimality principle, is used to prune the full-depth tree
into that subtree which has minimum total sum-of-leaves
cost. The basic pruning criterion applied at each node is
that of deciding in favor of the parent or its children based
on which has the lower Lagrangian cost (for a fixed quality
factor A).

Arbitrary tiling: the double tree algorithm

In order to solve the problem of finding the R-D optimal
tiling of the time—frequency plane, we extend the fast WP
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algorithm outlined above to a “double tree” algorithm. This
is easiest explained through an example. Consider Figure
4. Assume a length-4 input signal [1,2,3,4] and a Haar ba-
sis as the wavelet kernel. To find the optimal split, optimal
WP subtrees are found for all possible binary signal subsets:
{(1,2,3,4],1,2],(3,4],[1),(2],[3],{4]} as shown in Figure 4(a). A
scalar quantizer of step size 4 has been picked for this exam-
ple to quantize all WP coefficients. As before, a Lagrangian
cost criterion is used for the optimal tree pruning operation
(A = 0 shown in the figure). Then, the costs associated
with the best bases determined in the first step are used to
populate a second tree called the splitting tree as shown in
Figure 4(b). The root of the splitting tree is populated with
the cost associated with the best basis WP for the [1,2,3,4]
signal split, the first tree level with the two costs corre-
sponding to the [1,2] and [3,4] splits respectively, etc.. The
splitting tree is pruned using the identical fast algorithm
as that used to find the WP trees whose costs populate its
nodes. The optimal operating slope A* is found as in [4].

5 EXPERIMENTAL RESULTS

The double tree algorithm was used to find the optimal
tiling for several test signals. The optimal split for a 512
point speech segment to a maximum depth of 7 using the
Daubechies length 4 filter with its boundary filters is shown
in Figure 5. A quantizer step of 20 was used and first or-
der entropy and MSE were used as the rate and distortion
measures. The optimal split achieves 1.99 bits per sample
(bps) with 27.98 MSE, while the best basis WP tree needs
2.44 bps with 28.33 MSE, highlighting the usefulness of ef-
ficient binary tiling. Note that the overhead of sending the
splitting map has been included.
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Figure 1: Tilings of the time-frequency plane. ,Sa) Short-
time Fourier transform tiling. asb) Wavelet tiling. (c)
Wavelet packet tiling. (d) Generalized tiling which adapts
in time as well as in frequency.
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Figure 2: Variable size LOT’s. Thick lines denote the
switching point. On top of each tiling, basis functions
with appropriate overlaps are given. (a) Switching from
a 4-channel to an 8-channel LOT. (b) Switching from a 2-
channel to a 4-channel to an 8-channel LOT.

Figure 3: Boundary functions for wavelet basis for the inter-
val [0,4). Left and right boundary functions are supported
on [0,2) and [2,4) respectively.
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Note that the distortion with this split (5.03) is less than the best basis
distortion of WP tree A (5.43).
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Figure 4: The double tree optimal ON splitting algorithm
on the input signal {1,2,3,4] in R* for the Haar kernel and a
scalar quantizer of step size 4. Lagrangian costs are shown
in brackets (A = 0 used here). %? The best basis WP
subtrees corresponding to all feasible signal subsets. (b)
The splitting tree whose nodes are populated from the best
basis costs of (a).

Optimal split for 512 pt. speach signal for budget of 2 bps
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Figure 5: Optimal split for a 512 point speech signal for the
D2 filter, a scalar quantizer of step size 20, and maximum
depth 7. First order entropy and MSE are used as the rate
and distortion measures.



