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ABSTRACT

We consider expansions which give arbitrary orthonormal
tilings of the time-frequency plane. These differ from
the short-time Fourier transform, wavelet transform, and
wavelet packets tilings in that they change over time. We
show how this can be achieved using time-varying orthog-
onal tree structures, which preserve orthogonality, even
across transitions. One method is based on lapped orthogo-
nal transforms, which makes it possible to change the num-
ber of channels in the transform. A second method is based
on the construction of orthogonal boundary filters; these al-
low us to construct essentially arbitrary tilings. We present
a double-tree algorithm which for a given signal decides on
the best binary segmentation, and which tree split to use
for each segment. That is, it is a joint optimization of time
and frequency splitting. The algorithm is optimal for ad-
ditive cost functions lge.g. rate-distortion). This gives best
time-varying bases. Results of experiments on test signals
are shown.

1 INTRODUCTION

There has been a renewal of interest in linear expansions of
signals, particularly using wavelets and some of their gener-
alizations (see, for example, [7] and references thereinz. It
is well known that the classical short-time Fourier tranform
or Gabor transform, and the more recent wavelet transform
are just two of many possible tilings of the time-frequency
plane. These are illustrated in Figures 1(a) and (b). We use
the term “time-frequency tile” of a particular basis function
to designate the region in the plane which contains most of
the function’s energy. An elegant generalization that con-
tains, at least conceptually, Gabor and wavelet transforms
as special cases, is the idea of wavelet packets [11] or arbi-
trary subband coding trees. An example of a wavelet packet
tiling is given in Figure 1(c). While the wavelet packet
creates an arbitrary slicing of frequencies (with associated
time resolution), it does not change over time. Often a
signal is first segmented, and the wavelet packet decom-
position is performed on each segment independently. An
obvious question is whether we can find a wavelet packet
decomposition that changes over time, that is, an arbitrary
orthogonal tiling of the time-frequency plane. An example
of such a generalized tiling is shown in Figure 1(d). We use
the term “arbitrary” somewhat casually, since the tiling
is restricted to those produced by binary tree structures.
However, the wavelet packet construction is generalized suf-
ficiently to warrant the term.

The goal of this paper is to futher develop such arbitrary
tilings, as well as to describe the double tree algorithm to
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find an optimal tiling for a given signal.
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Figure 1: Tilings of the time-frequency plane. a) Short-
time Fourier transform tiling. (b) Wavelet tiling. (c)
Wavelet packet tiling. (d) Generalized tiling which adapts
in time as well as in frequency.

2 ADAPTIVE MODULATED LAPPED
TRANSFORMS

We mentioned previously, that the wavelet packets (see Fig-
ure 1(c)) produce “arbitrary” slicing of frequencies, but
they obviously do not change over time. Consider what
would happen if we would exchange axes in Figure 1(c). In
this new tiling, the time is sliced up, while the frequency
division is uniform, which can be seen as the dual of wavelet
packets. Now which system can produce such a tiling? The
uniform division of the spectrum can be obtained with many
different filter banks structures, one of them being the so-
called modulated lapped transforms (MLT) [4]. Moreover,
we will show that it is possible to switch between differ-
ent MLT’s over time, giving the dual of wavelet packets
discussed above. We will call these constructions adaptive
modulated lapped transforms.

MLT’s are a special class of perfect reconstruction filter
banks (see, for example, %]), using a single prototype fil-
ter of length 2N (where N is the number of channels) to
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construct all of the filters ho,...,hy_1, by modulation as
follows:

hi(N,n) = hP'\%") -cos((”;;l) @n - N +1)r), (1)

with k=0,...,N—1, n=0,...,2N — 1. Here the proto-
type lowpass filter &p-(N,n) is usually symmetric and has
to satisfy hZ,(N,n) + h2.(N,N —1—n) = 2. This last
condition, imposed on the window, ensures that the result-
ing MLT is orthogonal. The two symmetric halfs of the
window are called “tails”. We want to show how to con-
struct adaptive MLT’s. Note that something similar, with-
out details of the construction or the proof, was mentioned
in [1]. The basic idea is that since the tails of the larger,
Nz-channel MLT are already orthogonal to each other, why
not use them to construct the filters in the smaller, N;-
channel MLT. Thus, we choose N, filters out of N2 possible
ones, discard the middle coefficients and just keep the tails.
Then by construction these tails are going to be orthogonal
to each other, as well as across overlaps.
We now briefly present the construction (for more details,
refer to [2]? We want to show that one can switch from an
Njy-channel MLT to an Nz-channel MLT (where N; < N2
and N; = 2™, N; = 2™3) as follows:
a) Since the maximum overlap between the two MLT’s is
1, then one has to adjust the size of the window of the
Na-channel MLT accordingly, that is, its length has to be
reduced to N2 + Ni, or the outer Ny/2 coefficients of each
window tails have to be zero, while the middle N; ones have
to equal /2.
(b) Then, one has to choose N, basis functions out of N2
possible ones. It can be shown that the choice of indices
of the form i.272="™1+¢ or . (2"2=™1+i _ 1) will yield the
appropriate basis functions leading to an orthogonal N;-
channel MLT.
(c) Finally, the resulting basis functions of the N;-channel
MLT are hx(N1,n) = /Na2fN1hi, (N2,n + (N2 — N1)/2),
for n € [0, Ny — 1], and hi(N1,n) = +/Nz/Nihi, (N2,n +
(3(N2 — NI;MZ)’ for n € [N1,2N; — 1}, where ix belongs to
the set of valid indices.
The proof is very simple. Here we just sketch it, for more
details, refer to [2]. One has to prove that the orthogonality
of overlapping tails between the two banks holds (true by
construction). By the same token, the orthogonality of tails
for the Nj-channel MLT holds. The two facts left to show
are that the resulting vectors from the N;-channel MLT are
unitary, as well as that they are mutually orthogonal. After
some algebraic manipulations, these follow easily.
In [2], a few more interesting tilings are shown, demonstrat-
ing how to switch among more than two MLT’s. It is also
discussed how to obtain boundary MLT’s, that is, MLT’s
that are switched without overlaps.
Since the MLT can be seen as the dual of the wavelet packet
tree [6, 1], MLT can be pruned optimally using the sin-
gle tree algorithm. The fast dynamic programming based
pruning algorithm used to find the best basis in the wavelet
packet application, is also applicable here due to the inde-
pendence in the optimal orthonormal decomposition splits
for adjacent signal segments of the MLT tree. Note that
this is true only when the tails of all the MLT’s involved
are the same, otherwise changing MLT’s become a “depen-
dent” problem. For more details on these issues, refer to

3 SWITCHING ORTHOGONAL TREES

We now consider the problem of changing between orthogo-
nal trees based on two-channel filter banks. If we can do this
we will be able to construct the most arbitrary tree-based

tilings as indicated in Figure 1 (d). We will make extensive
use of the time-domain operator notation for filter banks
[5, 8]. For example, if we wish to grow some section of a
subband tree, but only for a finite portion of the signal, we
can apply a finite duration orthogonal filter bank for this
segment. That is we apply the operator

o M o
[0 0 I]’ @)

to the outputs of the branch that we wish to grow. M is
the matrix that represents the finite duration orthogonal
filter bank, so that we get the additional frequency resolu-
tion for the duration in question, but before and afterwards
we process with the identity operator, i.e. leave the branch
alone. In this way we can change between arbitrary filter
bank topologies iand corresponding arbitrary tilings of the
time-frequency plane) by taking appropriate cascades of or-
thogonal filter bank operators.

3.1 Orthogonalization procedure

The problem of applying an orthogonal filter bank over a
finite signal segment involves finding an appropriate way
of treating the boundaries. If we take, for example, the
case of length-4 filters, applied for the segment 0 < n <
n1, consider the following truncation of the time-domain
operator

ho(1 ho(2)  ho(3 0 0
ho(2) —ho(1) ho(0 0 0
M= 0 ho(U) ho(l ho(?) hogg;

0 —ho(3) ho(2 —ho(l) ho

3
We have shown the top left corner only, but the bott((mz
right is entirely similar. It is easy to verify that this matrix
is square, has full rank, but is no longer unitary. If we
denote by M; the i-th row of M we find that

<Minj > = oy ie{0,1},]'6{2,3,~-n1—1,n1}; (4)

but < Mo,M; > # 0 and < My, 3, Myn, > # 0. Since
the matrix is of full rank, i.e. we have a set of linearly
independent vectors, we can restore orthogonality using the
Gram-Schmidt procedure. To do this start by normalizing

the first vector My = M, /|| Mo||, and then

ny

My = Mi—<M,My >M =Y <Mi,M;>M,
=3

= Mi— <M, My >M,. (5)

The simplification is a consequence of (4). Finally set M1” =
! 1] "
M, /||M;||. Note that since M; and M, each have only

three non-zero entries, so does M; from (5). The same
procedure is applied to the other boundary vectors My, _,

and My,. A new matrix M" which has rows

"

(Mg, My, M2, Ms,-- -, My, _2, My, _y, My, }

is then obviously unitary. What is important to note is

that M" has exactly the same zero entries as M; i.e. the
orthogonal boundary filters have the same support as the
truncated filters.

This particularly simple example illustrates a much stronger
result, which gives that the boundary filters for orthogonal
FIR filter banks always have support only in the region of
the boundary. We can formally state this as follows.
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Proposition 3.1 The set of boundary filters needed to ap-
ply @ two-channel orthogonal filter bank, with length-N fil-
ters to a finite length signal is a set of SN— 2)/2+d vectors
at each boundary, each of which has only N —2+d non-zero
values. If we define

Q=[04 G 04 ], (6)

where G is the 2k x No + 2(k — 1) matriz containing
the shifted filter impulse responses of the filters ho(n) and
hi(n), and Og, and O, are 2k x d; and 2k x d, matrices
of zeros, then the boundary vectors are always of the form

ei=(I-Q7Q) e,
for some e;.

The outline of the proof is given in [3]. The importance
of the result is that it is constructive; for any orthogonal
filter bank it tells us how to take care of the boundary. Es-
sentially this proposition merely involves carrying out the
Gram-Schmidt procedure in operator notation; the novel
factor is that the resulting output vectors have non-zero el-
ements only in the region of the transition. The result of the
orthogonalization is, of course, not unique. However, given
one solution we can explore the space of all possible orthog-
onal boundary solutions by premultiplying by the matrix

U; 0 0
0 I, _(N_2)-g-q, O |, 7
o 1—( 0) ) U (7

r

where U; and U, are unitary matrices of size (N —2)/2+d;
and (N - 2)/2 +d,.

The above orthogonalization procedure is actually a special
case. Clearly we can use it to change between orthogonal
trees just by calculating an appropriate set of boundary
functions on each side of the transition; Proposition 3 tells
us how to do so. In this case there will be no overlap across
the boundary; more general solutions, where there is in fact
overlap, are given in [3]. Further, it is possible to use the
discrete-time time-varying bases described above in an iter-
[ative] scheme to derive continuous-time time-varying bases
2, 3].

4 OPTIMAL TILING

We have so far considered the construction of time-varying
bases. The obvious question is how to find the “best basis”
[1] for a given input signal. We now describe the machinery
needed to jointly find the best adaptive time split together
with the best basis for each time segment for a given signal.
This will be done using an extension of the wavelet packet
algorithm of [1, 6] called the double tree algorithm which
uses the orthogonal boundary filters designed in the previ-
ous section. Before we describe the double tree algorithm,
we first lay down the necessary background groundwork.

4.1 Rate—Distortion framework

While the double tree algorithm is an extension of the best
basis algorithm of [1] and is valid for any additive cost mea-
sure over the set of sequences considered, we turn here to
the rate-distortion (R-D) cost measure, i.e. we seek the
optimal binary tiling of the time—frequency plane in the op-
erational R-D sense. The R-D measure is a two-sided cost
function encompassing both rate and distortion, having the
distortion-only and entropy-only criteria of [1] as special
cases, and it is the correct measure for coding applications.
Note that an optimal tiling for one coding application cor-
responding to a particular wavelet kernel, quantizer set and
coding scheme need not be the same as that for another. In
the R-D framework, the optimal tiling is that which mini-
mizes total distortion subject to a maximum total bit rate

constraint, or conversely, which minimizes the bit rate sub-
ject to a maximum distortion constraint.

Optimal bit allocation The topic of optimal bit alloca-
tion, a constrained optimization problem (COP) where the
distortion is minimized subject to a target bit budget con-
straint (or vice versa), has received exhaustive study. For
an orthonormal decomposition and an additive distortion
measure (such as the mean square error — MSE), the “hard”
constrained optimization problem can be solved by convert-
ing it to an “easy” equivalent unconstrained optimization
problem (UOP) via the Lagrange multiplier A which “trades
oft” rate for distortion [6]. The UOP is the minimization,
over all permissible operational (R,D) points, of the La-
grangian cost D + AR, where D is the distortion and R the
rate. As shown in [6], the UOP solution for the “correct”
value of A, X*, is the desired convex-hull operating point for
the original COP as well. The optimal operating slope A*
is obtained by performing a fast convex recursion in ). See
[6] for details.

Best Basis Tree
for [1,2,34]
22
(1]

@
(Distortion=5.43)

Best Basis
for {34]

[(Dist.=4.03)

-~ S
Bast Bast basis
for [1) for (2)
@ @
(Dist.=1) (Dist.~4)

Rt @ _u)'@

OPTIMAL SIGNAL SPLIT
| 2 | 1 | 1 |
I 1 I |

Note that the distortion with this split (5.03) is less than the best basis
distortion of WP tree A (5.43).

(b)

Figure 2: The double tree optimal ON splitting algorithm
on the input signal [1,2,3,4) in R* for the Haar kernel and a
scalar quantizer of step size 4. Lagrangian costs are shown
in brackets (A = 0 used here). (a) The best basis WP
subtrees corresponding to all feasible signal subsets. (b)
The splitting tree whose nodes are populated from the best
basis costs of (a).
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Figure 3: Optimal tiling for a synthetic test signal consisting of a Dirac and a sinusoid: Dirac is close to the left edge.
(a) Optimal split using the double tree algorithm. Note how both the Dirac in time and Dirac in frequency are detected
with good resolution. (b) Optimal single tree (WP) split. Note how the impulse in time is not detected. (Shown for the
Daubechies D2 filter, quantizer step size of 0.1 (fine quantization), A = 1, and the tree grown to a maximum depth of 6, i.e.
to a leaf size of 16, First order entropy and MSE are used as the rate and distortion measures.)

4.2 Brief Review of Wavelet Packet Algorithm

Optimal bit allocation in a wavelet packet (WP) framework
has been solved in [6] using an R-D criterion to find the
“best WP basis” decomposition for a given signal. The ba-
sic idea is that the full-depth WP tree 1s populated with the
Lagrangian cost D(node) + AR(node) for each internal tree
noge. Then, a fast pruning algorithm, based on Bellman’s
optimality principle, is used to prune the full-depth tree
into that subtree which has minimum total sum-of-leaves
cost. The basic pruning criterion applied at each node is
that of deciding in favor of the parent or its children based
on which has the lower Lagrangian cost (for a fixed quality
factor A).

4.3 Arbitrary tiling: the double tree algorithm

In order to solve the problem of finding the R-D optimal
tiling of the time—frequency plane, we extend the fast WP
algorithm outlined above to a “double tree” algorithm, This
is easiest explained through an example. Consider Figure
2. Assume a length-4 input signal [1,2,3,4] and a Haar ba-
sis as the wavelet kernel. To find the optimal split, optimal
WP subtrees are found for all possible binary signal subsets:
{[1,2,3,4),1,2],[3,4},(1],[2),[3},[4]} as shown in Figure 2(a). A
scalar quantizer of step size 4 has been picked for this exam-
ple to quantize all WP coefficients. As before, a Lagrangian
cost criterion is used for the optimal tree pruning operation
(A = 0 shown in the figure). Then, the costs associated
with the best bases determined in the first step are used to
populate a second tree called the splitting tree as shown in
Figure 2(b). The root of the splitting tree is populated with
the cost associated with the best basis WP for the [1,2,3,4]
signal split, the first tree level with the two costs corre-
sponding to the [1,2] and [3,4] splits respectively, etc.. The
splitting tree is pruned using the identical fast algorithm
as that used to find the WP trees whose costs populate its
nodes. The optimal operating slope A* is found as in [6].

5 EXPERIMENTAL RESULTS

The double tree algorithm was used to find the optimal
tiling for several test signals, both real and synthetic. For a
test signal composed of of an impulse and a sinusoid, Fig-
ure 3(a) and (b) show the optimal tiling representations
for the double tree and the “best basis” algorithms respec-
tively. Darker tiles denote basis functions with more energy.
A scalar quantizer of step size 0.1 is used (to ensure fine
quantization) with the tree grown to a smallest split of 16,
for A = 1. As seen, the double tree split “adapts” well to
the input signal, finding a split with good time resolution
around the impulse, and good frequency resolution around

the sinusoid. The wavelet packet tiling of Figure 3(c), on
the other hand, fails to isolate the impulse. This example
should highlight the usefulness of adaptive time—frequency
tiling, as possible using the double tree algorithm.
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